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Contribution of density fluctuations to the damping of giant resonances
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A generalized kinetic equation of Lennard-Balescu type is derived with retardation effects. By explicit
consideration of the density-density fluctuations we give the contribution of fluctuations to the spreading width
of giant resonances besides the collisional part. For small frequencies and long wavelengths, approximate
formulas for the damping of giant resonances are derived. The density fluctuations couple the equation of state
to the damping rate and give rise to an overall enhancement factor. This density and temperature dependent
factor can reproduce the experimental values of the damping. Inside the spinodal region the factor turns out to
be negative, indicating unstable modes. Explicit comparisons are made with the experimental values of giant
monopole and dipole resonances. It is shown that the experimental widths can be described assuming finite
nuclei since surface effects are important for the influence on density fluctuations. The recently reported
saturation of the dipole width with increasing energy is explained as a transition between zero and first sound.
Within this treatment we find an overcritical range of fluctuations, above which the nucleus is destroyed and no
collective behavior is possible at all50556-281®6)02307-3

PACS numbegp): 24.30.Cz, 24.60.Ky

I. INTRODUCTION particles moving through a common mean field and being
described by the collisionless Vlasov equation. To describe
Since the first discovery of collective vibrations in nuclei the spreading width one has to account for collisions. This is
by Baldwin and Klaiber in 19471] the giant resonances done by linearization of the Vlasov equation which yields the
have been studied intensively. Most data are available forandom phase approximatioiRPA) for small amplitudes
giant dipole resonancgg,3], which corresponds to a vibra- [12—15. In this way RPA theories can describe the giant
tion out of phase of protons against neutrons. It is found thatesonances correctlyl1]. The solution of these collective
this resonance is a property of all nuclei. The restoring forcanodes within the Vlasov approach can be founf1i6—18.
is generated by the attractive nuclear force between thén principle, one goes beyond collisionless transport in al-
nucleons. Thus it is an important experimental signal tdowing energy dissipation, that is definitely not the case in
study the microscopic nuclear forces. Restoring forces curthe Vlasov equation, which is reversible. Therefore the ex-
rently provide quite reliable information on bulk properties tension of the Vlasov equation represents already a higher-
like compression moduli, symmetry energy, spin-isospinorder type of collision integral, i.e., the Lennard-Balescu col-
sound velocity, etc., of symmetric and asymmetric nucleatision integral. In this paper we derive this collision integral
matter. Recent experimental results concern double giant dfrom the equation of motion for the density correlation. By
pole resonancegt], i.e., resonances built on resonances. this way we are able to derive the spreading width within
Many experimental measurements were performed b¥inetic theory approach, from the coupling between one- and
photoabsorbtion reactior$,6]. There the giant resonance two-body dissipation. While the giant dipole and quadrupole
can well be described by a Lorentzian distribution whoseresonances can be described within these mdd8i2Q the
centroid energy and width vary smoothly with nuclear massdescription of giant monopole resonances remains a problem
This indicates that these are collective phenomena in whichi21-23. The inclusion of memory effects does not improve
many nucleons participa{&,8]. Collective vibrations occur the results much22], but turns out to be necessary to obtain
quite universally in interacting systems forming clustg@f  nonzero damping in the kinetic approach. In the latter paper
like in liquid metals or nuclei. Therefore it is one of the itis shown that the consideration of quantal effects as well as
challenging questions to understand the width of such giarfinite size effects cannot account remarkably for this discrep-
resonances, because this can give information on the energycy. In[24,25 it was demonstrated that the contribution of
dissipation in Fermi liquids. A lot of attempts are made tocollisional damping does not exceed 50% for the damping of
understand these properties within a microscopic picturgiant dipole and 30% for giant monopole resonances. There-
[10,11] (and citations therein fore another damping mechanism should be responsible
From optical potential analysis of nucleon-nucleus scatwithin the kinetic description of giant resonances. In this
tering at low energies one can deduce that the nucleon megraper we show that this missing part is just the density-
free path is of the order of the nuclear radius. Thus the quasdensity fluctuations.
article picture is an appropriate starting point for the descrip- By a microscopic derivation of the collision integral in-
tion of giant resonances. Therefore the kinetic description i€luding both density-density fluctuations as well as quasipar-
believed to be applicable. This leads to the picture of quasiticle collisions we are able to rederive the former known
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expression for the damping width, but with an additionaldensity fluctuations via an additional enhancement factor.
enhancement factor. This factor connects the width of th@he damping of isovector giant dipole and isoscalar mono-
resonances explicitly with the equation of state and in parpole resonances is compared with the experimental values. A
ticular becomes large in the vicinity of a phase transition. Inreasonable agreement is found. The saturation properties of
this way the kinetic transport equations are extended to ingiant resonances in hot nucleus are explained considering
clude both the short and the long range correlations, whicfinite size effects and a transition from zero to first sound.
were separately considered in other recent approaches
[26,27]. Il. GENERAL COLLISION INTEGRAL

Next we consider the behavior of hot resonances. It is
found that the recently observed saturation of damping with
higher excitation energy is possible to explain within this The density fluctuation in a nonequilibrium system is de-
treatment. The derived density dependence of the dampinfined as
corresponding to the temperature behavior shows a transition
from zero to first sound, which supports the result28]. Sp(11) =¥ (1) ¥ (1) —(¥*(1)¥(1)), 1)
We must remark that many studies have been devoted to the

: : : where numbers are cumulative variables,{;,S;,iq, .. -
analysis of correlation effects in the theory of nuclear collec- 21,8101 )

tive motions, in particular giant resonandds, 29,30, It is denoting the space, time, spin, isospin, and other variables. It

however very difficult to predict the temperature dependencc'as convenient to describe fluctuations in the nonequilibrium

of these contributions. In this paper we suggest a semicla (any-particle system in terms of Green's functions. We in-

) )  SEMICA% 5 duce the correlated part of the two-particle Green’s func-
sical approach which also allows one to get a quite S'mpl%on including exchange by

picture of correlation contributions at high temperature with
clear consequences on the nature of collective motions in L(1212")=i[g,(121'2")—g4(11)g.(22)]. (2
excited nuclear matter.

The outline of the paper is as follows. In Sec. Il we give In the following we will consider the special correlation
the derivation of the Lennard-Balescu collision integralfunction
which leads to an extension of common RPA to nonequilib-
rium situations, far from the near-equilibrium states, where
Iinearizgtion i_s_justified. Tog.et.her with the Boltzmann— which may be written as
Nordheim collision term describing short range correlations
we derive a joint collision integral which combines both long L(12=0(t;—t,)L"(12+ O (t,—t,)L=(12). (4)
range fluctuations and short range interactions. Here the . . ) .
complete non-Markovian behavior is considered. Then, th_ follows |n_1med_|ate_ly that the correlation function of den-
Sec. Ill, we give the calculation of the damping rate applyingSity fluctuations is given by
a linearization of the non-Markovian collision integrals due / NN i > _i <
to external fields, but taking into account the memory effects. (9p(11)0p(22')) =1L~ (12)=IL(21). ®)
Analytic formulas are obtained, which include density- We consider a system of fermions with the Hamiltonian

A. Density-density fluctuations

L(121"2%)=L(12) 3)

H=>, fdr\lfi*(r,t)Hi(r)\Ifi(r,t)+%Z drdr W (r, )W (RHV; (r,nW(r, )W), (6)
i 1,]

whereV is a residual interaction.
With the help of the second equation of the Martin-Schwinger hierarchy, which couples the two-particle Green'’s function
to the three-particle one, we get the following equation of motion for the corrdlattafined in(2):

ity 2m

(.9 (ihVy)?
—|( )L(121’2')=5(1—1’)6(22’)—5(1—2’)(3(21’)—5(1—1’)0(22’)+G(22’)f d3V(13)L(131'3")

+f d3V(13)G(33+)L(121’2’)+iG(ll’)G(22’)f d3V(13)G(33")

—if d3V(13)G5(12312'3%). (7

Taking into account binary collisions allows one to describe short range interactions, while the long ranged interactions lead
to characteristic collective modes. Approximations are necessary, which take into account collective effects. Such effects can
be described in a convenient manner in terms of fluctuation quantities defined above. Whereas the binary collision approxi-
mation leads to the Boltzmann equation describing dilute systems, we want to include medium effects like collective excita-

tions. Therefore we consider the three-particle Green’s function in the following approxinjafipn

iG4(12312'37)=iG(11')G(22')G(33")+ G(11')L(2323%)+G(22')L(131'3%)+ G(33")L(121'2") (8)



54 CONTRIBUTION OF DENSITY FLUCTUATIONS TO THE ... 835

which describes the three-particle propagator in terms of all possible two-particle fluctuations. By this way we obtain an
equation, which is equivalent to the RPA approximation in nonequilibrium. FofBagve now obtain31]

P 2
5 +[(ﬁ/l)Vl]

7 o L(121’2’)=—i5(1—2’)6(21’)—ifd3V(13)L(232’3*)G(11’). (9)

The occurring integrations should now be specified and the&ve see that the following relation holds:

appropriate solutions have to be selected. Therefore we re-

write the condition of the weakening of the initial correlation - , )

[31,32 by the definition ofL, Eq. (2), into the following _J d2v(12)L (1212 ):f 2'(12G(21")d2. (16)
form:

Here' denotes the self-energy with the Hartree part sub-
tracted. The Fock part can further be split in order to get the
correlated self-energy

L(121+2+)|tlﬂ,w= —iG(12")G(217)=Ly(121727).
(10
Equation(9) for L can then be solved neglecting higher or-
ders of interaction in the following manner: E’(12)=2C(12)tij dIV(1DG=(12)8(r,—r5),
L(421'2")=L¢(421'2")+Lo(41217)V(13)L(2323™).
1D where the upper sign stands for Bose particles and the lower
Because we are interested in the two-point-function,(8gy.  ©one for Fermi particles. The required correlation self-energy

we use a special case of Hd.1): is then easily derived in the following way:

L3b(12) = L3%(12) 5%+ >, L3%(14)Va%(43)L°%(32). 226(11)

C
(12 =i> Jd2d2’Vab(12)Lfc(22’)Vca(Z’1’)Gf(11’).

The different kinds of particles have been explicitly marked ¢
by Latin letters. Obviously the relatioh3°~ $2® holds. In 17)
the following we will drop this notation for simplicity and o ) ) )
restore these notations in the final results. Furthermore, it is useful to introduce the fluctuating potential

Equation(12) is a causal one, which means that all func-in the following way:
tions entering are causal ones. Therefore we can apply the

Langreth-Wilking[33,34] rules to obtain in operator notation ay—1_1,a
2 Vac( 6cb) — VYab- (18)
L==L5+LRVL=+L5VLA ¢
LR/A:L§/A+L§/AVLRIA_ (13) From (17) and (14) we have
Using the second equation one gets from the first equation = o .
the optical theorem (11 )ZIEC: f d2d2'V,,(12Gp(2'2")

=_ R\-1 =/ A -1 _ _
L==(e) Lo () (149 X Gp(2'2/)V3(2'1)GE (1), (19
where we introduced the operators of retarded and advanced _ _ _
dielectric functions, which in the most general case are de- Another form of self-energy, without using the optical

fined as(see, e.g[35],) theorem, can be found from the diagrammatic expansion,
R R S Fig. 2, where the effective potentiglsums all ring diagrams
€' =1-LgV=(1+VL") "7, in Eq. (12);
f=1-VLA=(1+LAV) L (15)

The optical theorenil4) is valid as long as initial fluctua-

tions are sufficiently damped out and only the adiabatic evo- %

lution with time is considered36]. This is certainly ques- m = t

tionable for strong nonequilibrium and unstable situations.

Therefore we will use another appropriate form later, which L

does not rely on the optical theorem. _ + !

With the help of these retarded and advanced response P : .

functions we can now write down the form of self-energy.
From the definition ofL in Eqg. (2) and the introduction of
self-energy{37], which is graphically represented in Fig. 1,  FIG. 1. Definition of self-energy in terms of density fluctuation.
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B. Lennard-Balescu collision integral with memory

3 D [ In order to describe nuclear matter in nonequilibrium we
@ = RN I ! P consider now the general Kadanoff-Baym equation for the
correlation functiorg= [37,38:
g9 (P &Eﬂp(pRt)) J
I — — —
= :.J/\/L7 gt \m, ap JRa

W(PRY=1(p,t),

Q ZAe(pRY 4
Nt TR,

FIG. 2. Definition of the fluctuating potential.

p.0-3 [ artiaz ()350)
Eab(ll,):ig JdZdz,Vab(lz)GbC(ZZ/) _{g;(p)ing(p)}](tfT/2,T)(I77'/2,77')' (21)

X Gpc(22')V:a(2'1")G,(17"). (20
Here f\,(p,R,t)==*=g~(p,R,7=0,) denotes the Wigner
In contrast to Eq(19), now all functions appear to be causal distribution function and,} is the anticommutator over in-
ones. The corresponding correlation functicﬁﬁo can be tegrals of Wigner coordinates indicated on the right. Here we
derived easily with the help of the Lengreth-Wilkins rules. restrict to the time diagonal ca$84,39. This equation is
Applying the optical theoreril4) for V correspondingly one exact in time, but we used gradient expansion for space vari-
obtains just(19). Both forms will serve as a starting point to ables and drop aR dependence for simplicity.

derive kinetic equations, but onlf20) is appropriate for Using the approximation for the self-energy, Etj7), and
strong fluctuations, like those that can occur in the vicinity ofintroducing the quasiparticle picture we derive the following
phase transitions. collision integral[35]:

— t dk dkpdk}, L e S _ ,

|22k =Re2 fodrf (é‘qu—ﬁ)M(ka+ kp— k= kp)e Lk B BB 4 iy fofy— fafufarfy 1VE(K) — ke . Eig

~Ext— ) Voa(ka—ka Exg —Ext) (22)
|

with correspondinglyf .= f(k, ,R,t—7), f_:(l_f), and the C. Phase transition and critical regions

quasiparticle energi. If the latter one is time dependent,  The kinetic equatiorf22) is a complicated coupled equa-

i._e.,_already in mean field apprOXimation, then the exponenton with the response fUnC“Oﬁ.S) given in the quasiparti-
tial in (22) has to be I’ep|aced by cle approximation as

. t—7 R dp—
eX[{_lft dt,[Eka(t,)—'_Ekb(t,)_Ek;(t,)_Eké(t,)] . € (pawvat):1+V(p)J (27Th)3
(23

f(Ep—p,RO—F(Ex R,Y)
'I_'his Colligion integral is valid _fo_r_quasiequi!ibrated fluctua- X w—Eg p+Egtin :
tions, which means that the initial fluctuations are already
damped ouf36]. For short time fluctuations, where the op-
tical theorem is not applicable, ERO) should be used as a
starting point. At variance witf22) the fluctuating potential
appears there only once. Here memory effects are incorp
rated. Equation(21) together with(22) determines the time
evolution of the Wigner distribution function and therefore
the behavior of the correlation function in the quasiparticle
picture. The kinetic equation has the form of a generalized
Lennard-BalescyLB) equation and describes the influence U=A(n/no)+B(n/ng)” (25
of the density fluctuations on the collision process by a dy-
namical fluctuation potential. with

(29)

With the help of this response function it is possible to
find regions where the excitation spectrum is singular and
therefore the density fluctuations become infinite. This is just
e liquid gas phase transition regip#0]. In Fig. 3 we plot
the isothermal lines of the chemical potential. Here we use a
Skyrme-type parametrization for the mean figdd]
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D. Particle-particle scattering and BUU with memory
o=

7
, A=-356 MeV, B=303 MeV,

6 Up to now we have only considered the particle-hole
channel. In order to include the particle-particle channel,
ny=0.145 fm 3 (26)  which is necessary to describe short range interactions and
repulsion, we use th&-matrix approximation. This leads to
representing a soft equation of state. the collision integra[39]
|
dk dkpdk; t S
1I399(ka 1) = ReE f E ;;)6 5 (ke kp—Ky—kj) | dre(i/h)(Ey +Ey —Ey—Ey) 7l far iy fafp— fafpfarfor]
0 a a
Ka—Kp|_g ki \ [ ki—ky —kb
“\ 73 Tab(Kat K, € — €, t) (Todab(Kat K, B — By t=17) (27

where f,=f(p,R,t—17). If the quasiparticle energf be-  collision integral. It should be remarked that the ladder sum-
comes time dependent, the exponentia(2i) has to be re- mation and the ring diagram summation can be derived on
placed by(23). Neglecting the retardation in the distribution equal footing within the Faddeev equatidds].

functions and in th& matrix one obtains the usual quantum In the following we proceed assuming small frequencies
Boltzmann-Uehling-Uhlenbeck(BUU) collision integral for the modes of the fluctuations. Further we use the quasi-

equation. classical limit or the long wavelength limit restricting to
large scale fluctuations. Then the denominator of the fluctu-
E. Joint collision integral ating potential becomegl4]

Adding both collision integral$22) and(27) we describe
both the particle-particle collisions and the fluctuation or ex-

citation properties. But if we look graphically at the sum of RN .
both expansions we see that the Fock part to the self-energy@ + + ~—
T

is double countedsee Fig. 4. This known facf42] can be

cured by subtracting just that Fock term. This translates into
the subtraction of the Landau collision integral which is ac-
tually the Born term in th@ -matrix equation. Thus, the final <:>
collision integral reads = ‘ !

H
{

ltota™ I BUUT | LB~ Landau (28
FIG. 4. Self-energy diagrams summed by thenatrix and the
including both the scattering by BUU type of collision inte- fluctuating potential. The Born term corresponding to the Landau
grals and the fluctuating part by a Lennard-Balescu type otollision integral is double counted and has to be subtracted once.
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an( ue) tor of the fluctuating potential can be written in front of the
EP (29 collision integral. Further, we assume that the scattering
events may be well represented by a Born-type approxima-
with V(0)=9U(n)/dn and the interaction-free chemical po- tion. By this way the total collision integral, E¢28), re-
tential 1 . Using the effective potentigR5) the denomina- duces to the following form:

e(p,w)—1—V(0)Rell(0,00=1+V(0)

L ke 1 1 [ dkydkydk, AT kK
joint Ka O = TG0y an o) apea] 72 “(2mnys O (Katko~Ka=kp)
|ka_kb| dO' t t—7 — , L
X m m OdTCO J't (El_El‘{'Ep*_Ep)dt {fa’fb’fafb_fafbfa'fb/} (30)
[
with f,=f(k,,R,t—7) andda/aQ the differential cross sec- Ill. CALCULATION OF THE DAMPING RATE

t|_on. _V\{[e W'Ill Irtefer to t["Sf collr:smn |rt1t%grtgl ap;)]!rlﬁd ﬁomt' The further considerations will be carried out in the same
ston integral ft accounts tor the contribution of the Tluctua- way as it was done i123]. According to this model, the

tions as well as the particle-particle scattering. Further, the =\ jeviations of the phase space density around equilib-
equation includes memory effects by the retardation of the;, .,

distribution functions.

The factorization of the fluctuation denominat@9) out
of the collision integral is only valid for soft modaes=0
and quasiclassical or long wavelengths-7k—0. Other-
wise the scattering integral includes the full excitation func-
tion e(p,w), which can be treated only numerically, which is
in progress. This fluctuation factor is plotted in Fig. 5 for the
mean field parametrizatiof25). One sees that in the vicinity
of a phase transition region the factor becomes large. Insidé
the spinodal the factor is negative indicating the instability of gt &f={6h.fo; —{ho, 5f}
the system. This is plotted in Fig. 6 where the fluctuation
factor is shown for a temperature =1 MeV. While it
remains almost a constant one for densities above 0.15
fm 3 it increases rapidly near the phase transition border
around 0.11 fm 3.

J
5f(l’,p,t)=f(l’,p,t)—fo(e)Zx(I’,p,t)Efo, (31)

obey the linearized transport equation

- | dpadpsdpsow(1-fo)(1- 19131

—fof (11111, (32)

wheref is the Fermi function and the transition rate is given

by
!
{factor x 10
128
<129 | 7.5
N i
<108, st Ta=1MeV
— <77
2 i 2.5
= | 5
— : ° 4]
- B <os ! &
‘<29 | 2.5
B e | -5
- <-8.2 ! 7.5
'E <00 | o
-10 s e
0 0.02 0.04 0.06 0.08 0.1 0,12 0.14 0 0.025 0.05 0.075 0.1 0.125 0.15
.3 -3

n [ fm ] n[fm ]

FIG. 5. The contour plot of the fluctuation enhancement factor FIG. 6. The fluctuation enhancement factor of Fig. 5 for a tem-
vs density and temperature. perature of 1 MeV vs density.
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Wi dow ot Z(w) vicinity of phase transition we have an overall enhancement
= 1+V(0)[an(uo)/aﬂo]f ﬂe AX(w)T, of collisions. This critical scattering will be published else-
(33 where[40].
Now we turn to the evaluation of the extended collisional
with Z(w)=[d(Ae—w)—6(Ae+w)]/w, Ae=e3+€e,—€;  damping for giant modes. The relaxation rate for isoscalar

— €, andA = x3+ x4~ x1— X2 Here we extend the result harmonic vibrations with a mean frequen@ycan be defined
[23] since the BUU transition rateV term is divided by a as[23]
factor due to the fluctuating terf29). We see that in the

oW

1 [drdpydK [drdp;dp,dpsdpsWZ(Q)(Ax)?F3f5(1—3)(1—13)

T [drdpysf Jdrdpx%(alde)f, '

(34)

Similar expressions have been derived for the rates of ishancement factor. While the lower curve represents the
ovector vibrationg23]. There the distortion of the momen- damping rate without fluctuations and underestimates the ex-
tum distribution is used in terms of the Legendre functions aperimental values considerably, the upper curve is the
x=p?P,(0) for quadrupole vibrations ang=pP,;(0) for  spreading width including fluctuations. The density fluctua-

giant dipole vibrations. tions lead to an enhancement due to the forefactor. This en-
hancement factor is explicitly seen by applying the Sommer-
A. Spreading width of giant monopole resonances feld expansion

Within the context of the scaling model description of
monopole mode, the Fermi surface distortion is assumed an mp 1/27T)\2
simplified to bey=p? and the damping of giant monopole 1+V(n)a—=1+V(n)W[1— Eﬁ(e_) } (36)
modesl’ =#/7 is given according t22,23 by #o F

hUFO'n (ﬁﬂ)z

L= TV (anfamg) | der

hQ\2 [(27T\2 : .

il , where uo denotes the free chemical potential. One recog-
€ €F nizes that besides the quadratic increase of the damping

(35 width with temperature there is an additional increase by this

. . enhancement factor. Here we have assumed an effective den-
where temperature is assumed to be small compared with trgqty for the fluctuations of 0.107 fm.

Fermi energy so that standard integration techniques have This means that it is possible to reproduce the monopole

been applied43]. If we had neglected the memory effects damping width by considering density fluctuations and as-

we would have obtained no damping of the monopole resog,minga jower density than nuclear matter density. This can

nances at all. This underlines the importance of incorporating g re|ated to finite nuclear size effects as follows. We ask in
memory effects for the description of giant monopole reso-, it sten which density has to be assumed to reproduce the

nances. A more detailed analysis of the distortion of thedam PR ; ; ;
: ping including fluctuation effects. With the help of the
Fermi surface can be found [21], where the effect of the Woods-Saxon density profile for the finite nucleus

nonspherical Fermi surface is considered. This would lead to
a minor correction of the presented results. We restrict here
to the main effect of fluctuations and assume therefore a

simplified scaling model for the distortion. The numerical st
treatment of(34) in comparison with(35) as well as the
inclusion of diffusive surface can be found [@4], which sl

leads to an enhancement but still underestimates the experi-
mental values.

The expression, Eq(35), is the generalization of the
damping rates derived previoudl22] by incorporating the
density fluctuations. These fluctuations yield a direct cou-
pling of the damping rate to the equation of state.

For comparison with the experiment we used the nuclear ot
matter parameters as=0.16 fm 3, vp=0.2&, =37
MeV, the cross sectioor=40 mb, and the mass dependence
of the resonance energies was assumed to be the conven- A
tional one[7,8].

The results for the giant monopole damping versus mass FIG. 7. The experimental values of the damping width of giant
number in the ground statel €0) can be found in Fig. 7 monopole resonances together with the theoretical damping accord-
where we plot Eq(35) with and without the fluctuation en- ing to (35) with (uppe) and without(lower curve fluctuation.

[MeV]
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we can fit the effective radius=xX R, such that the corre-
sponding density reproduces the experimental values. This
can be seen in Fig. 8. The fitted density to reproduce the
experimental values is plotted in Fig(t8. In Fig. 8c) the
factorx to be multiplied with the Woods-Saxon radiRs, of

the finite nucleus is shown. One recognizes that we can re-
produce the width of the giant resonances assuming that the
resonance affects the nucleus up to a range of
r=0.92xR,,. This means that the surface region around
r=0.92xR,, is the most important for density fluctuations
and therefore for the damping rate of the resonances. On the
other hand it is reasonable to have enhanced density fluctua-
tions on the surface just because we expect larger relative
variances where the average occupation is smaller. However
we have to remark that in this approach the Landau damping
is still missing and thus probably we have to use a quite large
enhancement factor, i.e., a too small effective density for the
evaluation of fluctuations.

B. Giant dipole resonances

In analogy to the derivation of the formula, E®5), the
width of the giant dipole resonancéSDR’s) can be given

| e

(38)

r _h VEo,N
GDR™8 1+ V(n)(an/dumg)

where o, =(1/2)o,, and we have in generalization [@3]

the fluctuation enhancement factor. This damping rate is
plotted with and without fluctuations together with the ex-
perimental values in Fig. 9. Here we used an effective den-
sity of 0.122 fm2 for the fluctuation to reproduce the data
in the upper curve. As before, in the case of monopole reso-

sity profile is assumed via a Woods-Saxon potential with radiusnances, we can reproduce the damping width assuming a

Rin.

10

smaller density for the fluctuations. Apart from the Landau
damping, as mentioned before, in this case we have also
deformation effects present in the data.

[MeV]

GDR

FIG. 9. The experimental values of the damp-
ing width of giant dipole resonances together
with the theoretical damping according {85)
with (uppe) and without fluctuation (lower
curve.
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experimental values. From the result in Fig.(d0one sees

20 that the saturation is connected to an increase of the effective
17.5 density. This corresponds to a larger effective surface region
- 15 | l J l for the resonance, as represented in FigclONe always
E 12.5 | | | have to remind the reader that Landau damping effects are
— 10 not included in this calculation and so we are probably over-
~ 7.5 / estimating the effects of fluctuations.
5 We also see that with increasing excitation energy the
2.5 (a) effective surface range which is important for the giant di-
0 pole resonances becomes larger and reaches almost half of
0-17 the nucleus radius at about 500 MeV. In other words, for
— 0.16 higher excitation energies the finite nucleus will be simply
? destroyed by too strong density fluctuations.
e 0.15 Now it is important to understand the physical mechanism
= o1 which leads to a transient regime around 200 MeV, where
c the saturation occurs. While the sharp increase for smaller
0.13 (b) temperatures is explained by a typical zero sound attenuation
due to the effect of collisions, although incorporating
0.12 density-density fluctuations, the saturation requires a new
0.9 (¢) understanding. 28] it was pointed out that this saturation
2 0.8 can be due to the transition between zero and first sound.
T 0.7 *\ This observation is underlined by our calculation which
»x 06 clearly shows how density fluctuations are providing a sub-
0.3 100 200 300 400 500 600 stantial contribution to the transition to first sound propaga-

tion. Indeed if we use the expression, E§8), without the
fluctuation correctiorfor the collision timer we can easily
E*[MeV] show that the Landau conditidd 7=1 [53,54 for that tran-
sition can be only reached at quite high temperature, of the
FIG. 10. (a) Experimental widths of giant dipole resonances for order of 12-15 MeV, much more .than an egunlbrated com-
106-112 gy ys excitation energy. The data are taken fidi,56— pound nucleus can sustdib]. This is also valid becau_se the
59,47,4. (b) Fit of the effective density, as explained in the tegs. ~ temperature dependence of the resonance centroid energy
Corresponding fraction of radius=Xx R, where this density is ¢@n be neglectef55,52. The presence of the reduction fac-
realized. The saturation of damping width is connected with arfor, Ed. (36), in the collision time drastically changes the
increasing size of the nucleus which is affected by density oscillascenario in the direction of a strong reduction of the transi-
tions. tion temperature. Using the same effective density for the
evaluation of fluctuation effects as in the ground state case,

A comparison with the monopole damping shows that thave reach the transition condition at temperatures of the order

effective surface is about 0.Bg, for dipole vibrations while of 4 MeV, i.e., at excitation energies around 200 MG.’V‘ This
it was 0.9R,, for monopole vibrations. This seems to indi- means t-hat "?‘t hllgher excrganon energy the propagation of.the

cate that the higher the order of multipolarity the less impor—d'poIe vibration is Of. classical type, W'th a related decreasing
tant the fluctuation effect temperature behavior of the attenuation. We must remark
’ that for heated dipole states we have always some evapora-

tion width which is increasing with temperature. However

C. Saturation of damping for hot nucleus the zero first sound transition will open the possibility of

. . . . observing collective dipole emissions up to very hot nuclei,
Itis observed46-5( that th? total width of glant dipole " oar the limiting temperature for a formation of a compound
resonances seems to saturate in heated nuclei. Furthermor

complete vanishing at higher excitation energies above GOOl?deus'
MeV is observed. The most investigated nuclei at high exci-
tation energies aré®® 1'25n. While the centroid energy re-
mains nearly constant the width increases with excitation Within the two time Green’'s functions formalism the
energy and can be fitted dy=4.8+ 0.00265%;16 in the range  equation of motion for the density-density fluctuations is de-
of low energied51,48,49. At higher energies the total width rived. The RPA leads to a generalized kinetic equation of
appears to show a saturation above 200 MeV. Lennard-Balescu type. A joint kinetic equation is presented
In our model we can easily get a saturation for the spreadwhich accounts for the long range density-density fluctua-
ing width, with some interesting implications. We assume ations and for the short range correlations by particle-particle
functional dependence of the excitation energy from the temscattering. This kinetic equation includes memory effects via
perature viaE.,=(m?Alder)T2. The temperature depen- retardation of the distribution functions and off shell effects
dence of the centroid energy of the giant resonances can iy explicit time dependence of the transition matrix element.
neglected52]. Then in Fig. 10 we fit the effective fluctua- Within the soft mode and small wave vector regime an
tion density corresponding to our general form(88) to the  approximative kinetic equation is derived. Here the fluctua-

IV. SUMMARY
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tions lead to a forefactor of the collision integral. The inclusion of fluctuations is essential in order to have this
memory effect is included within retardation of the single-transition at relatively low temperatures in excited nuclear
particle distribution function. Assuming scaling forms for the matter. This seems to be in agreement with recent observa-
distortion of the Fermi sphere the expressions for the damptions and could open new exciting perspectives in theory as
ing rates of giant monopole and dipole resonances are devell as in experiments.
rived. The density fluctuations lead to an additional forefac-
tor coupling the damping rate explicitly to the equation of
state. By this way we can show an overall enhancement fac-
tor for the theoretical kinetic damping rate which reproduces
the experimental values. It is shown that the fluctuation ef- The authors thank S. Ayik for interesting discussions and
fects become more important for the damping for lower mul-Armen Sedrakian for reading the manuscript and useful com-
tipolarity. The damping of monopole resonances can be welinents. The authors also thank the late Ludwigniciuow,
reproduced up to nuclei with mass number 50, although th&vhose inspiring ideas have greatly contributed to this work.
Landau single-particle damping is not included here. This work was supported by a grati.M.) of the German
The problem of saturation of the giant dipole width at Academic Exchange Service and the hospitality of Tennes-
high excitation energies is explained by a transition fromsee Technological University, where part of this work was
zero to first sound in the collective mode propagation. Thecarried out, is gratefully acknowledged.
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