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Contribution of density fluctuations to the damping of giant resonances
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A generalized kinetic equation of Lennard-Balescu type is derived with retardation effects. By expli
consideration of the density-density fluctuations we give the contribution of fluctuations to the spreading wi
of giant resonances besides the collisional part. For small frequencies and long wavelengths, approxim
formulas for the damping of giant resonances are derived. The density fluctuations couple the equation of
to the damping rate and give rise to an overall enhancement factor. This density and temperature depen
factor can reproduce the experimental values of the damping. Inside the spinodal region the factor turns o
be negative, indicating unstable modes. Explicit comparisons are made with the experimental values of g
monopole and dipole resonances. It is shown that the experimental widths can be described assuming
nuclei since surface effects are important for the influence on density fluctuations. The recently repo
saturation of the dipole width with increasing energy is explained as a transition between zero and first so
Within this treatment we find an overcritical range of fluctuations, above which the nucleus is destroyed and
collective behavior is possible at all.@S0556-2813~96!02307-2#

PACS number~s!: 24.30.Cz, 24.60.Ky
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I. INTRODUCTION

Since the first discovery of collective vibrations in nucl
by Baldwin and Klaiber in 1947@1# the giant resonance
have been studied intensively. Most data are available
giant dipole resonances@2,3#, which corresponds to a vibra
tion out of phase of protons against neutrons. It is found t
this resonance is a property of all nuclei. The restoring fo
is generated by the attractive nuclear force between
nucleons. Thus it is an important experimental signal
study the microscopic nuclear forces. Restoring forces c
rently provide quite reliable information on bulk propertie
like compression moduli, symmetry energy, spin-isosp
sound velocity, etc., of symmetric and asymmetric nucle
matter. Recent experimental results concern double gian
pole resonances@4#, i.e., resonances built on resonances.

Many experimental measurements were performed
photoabsorbtion reactions@5,6#. There the giant resonanc
can well be described by a Lorentzian distribution who
centroid energy and width vary smoothly with nuclear ma
This indicates that these are collective phenomena in wh
many nucleons participate@7,8#. Collective vibrations occur
quite universally in interacting systems forming clusters@9#,
like in liquid metals or nuclei. Therefore it is one of th
challenging questions to understand the width of such g
resonances, because this can give information on the en
dissipation in Fermi liquids. A lot of attempts are made
understand these properties within a microscopic pict
@10,11# ~and citations therein!.

From optical potential analysis of nucleon-nucleus sc
tering at low energies one can deduce that the nucleon m
free path is of the order of the nuclear radius. Thus the qu
article picture is an appropriate starting point for the descr
tion of giant resonances. Therefore the kinetic description
believed to be applicable. This leads to the picture of qua
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i

for

at
ce
the
to
ur-
s
in
ar
di-

by

se
s.
ich

e
ant
rgy
to
re

at-
ean
si-
ip-
is
si-

particles moving through a common mean field and be
described by the collisionless Vlasov equation. To descr
the spreading width one has to account for collisions. This
done by linearization of the Vlasov equation which yields t
random phase approximation~RPA! for small amplitudes
@12–15#. In this way RPA theories can describe the gia
resonances correctly@11#. The solution of these collective
modes within the Vlasov approach can be found in@16–18#.
In principle, one goes beyond collisionless transport in
lowing energy dissipation, that is definitely not the case
the Vlasov equation, which is reversible. Therefore the e
tension of the Vlasov equation represents already a high
order type of collision integral, i.e., the Lennard-Balescu c
lision integral. In this paper we derive this collision integr
from the equation of motion for the density correlation. B
this way we are able to derive the spreading width with
kinetic theory approach, from the coupling between one- a
two-body dissipation. While the giant dipole and quadrupo
resonances can be described within these models@19,20# the
description of giant monopole resonances remains a prob
@21–23#. The inclusion of memory effects does not improv
the results much@22#, but turns out to be necessary to obta
nonzero damping in the kinetic approach. In the latter pa
it is shown that the consideration of quantal effects as wel
finite size effects cannot account remarkably for this discr
ancy. In@24,25# it was demonstrated that the contribution
collisional damping does not exceed 50% for the damping
giant dipole and 30% for giant monopole resonances. The
fore another damping mechanism should be respons
within the kinetic description of giant resonances. In th
paper we show that this missing part is just the dens
density fluctuations.

By a microscopic derivation of the collision integral in
cluding both density-density fluctuations as well as quasip
ticle collisions we are able to rederive the former know
833 © 1996 The American Physical Society
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834 54K. MORAWETZ AND M. DI TORO
expression for the damping width, but with an addition
enhancement factor. This factor connects the width of
resonances explicitly with the equation of state and in p
ticular becomes large in the vicinity of a phase transition.
this way the kinetic transport equations are extended to
clude both the short and the long range correlations, wh
were separately considered in other recent approa
@26,27#.

Next we consider the behavior of hot resonances. I
found that the recently observed saturation of damping w
higher excitation energy is possible to explain within th
treatment. The derived density dependence of the dam
corresponding to the temperature behavior shows a trans
from zero to first sound, which supports the result of@28#.
We must remark that many studies have been devoted to
analysis of correlation effects in the theory of nuclear coll
tive motions, in particular giant resonances@11,29,30#. It is
however very difficult to predict the temperature depende
of these contributions. In this paper we suggest a semic
sical approach which also allows one to get a quite sim
picture of correlation contributions at high temperature w
clear consequences on the nature of collective motion
excited nuclear matter.

The outline of the paper is as follows. In Sec. II we gi
the derivation of the Lennard-Balescu collision integ
which leads to an extension of common RPA to nonequi
rium situations, far from the near-equilibrium states, wh
linearization is justified. Together with the Boltzman
Nordheim collision term describing short range correlatio
we derive a joint collision integral which combines both lo
range fluctuations and short range interactions. Here
complete non-Markovian behavior is considered. Then,
Sec. III, we give the calculation of the damping rate apply
a linearization of the non-Markovian collision integrals d
to external fields, but taking into account the memory effe
Analytic formulas are obtained, which include densit
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density fluctuations via an additional enhancement fac
The damping of isovector giant dipole and isoscalar mo
pole resonances is compared with the experimental value
reasonable agreement is found. The saturation propertie
giant resonances in hot nucleus are explained conside
finite size effects and a transition from zero to first soun

II. GENERAL COLLISION INTEGRAL

A. Density-density fluctuations

The density fluctuation in a nonequilibrium system is d
fined as

dr~118!5C1~18!C~1!2^C1~18!C~1!&, ~1!

where numbers are cumulative variables (r 1 ,t1 ,s1 ,i 1 , . . . )
denoting the space, time, spin, isospin, and other variable
is convenient to describe fluctuations in the nonequilibri
many-particle system in terms of Green’s functions. We
troduce the correlated part of the two-particle Green’s fu
tion including exchange by

L~121828!5 i @g2~121828!2g1~118!g1~228!#. ~2!

In the following we will consider the special correlatio
function

L~121121!5L~12! ~3!

which may be written as

L~12!5Q~ t12t2!L
.~12!1Q~ t22t1!L

,~12!. ~4!

It follows immediately that the correlation function of de
sity fluctuations is given by

^dr~118!dr~228!&5 iL.~12!5 iL,~21!. ~5!

We consider a system of fermions with the Hamiltonian
nction

ns lead
ects can
approxi-
excita-
H5(
i
E drC i* ~r ,t !Hi~r !C i~r ,t !1

1

2(i , j E dr̄drC i* ~r ,t !C j* ~ r̄ ,t !Vi , j~r , r̄ !C i~r ,t !C j~ r̄ ,t !, ~6!

whereV is a residual interaction.
With the help of the second equation of the Martin-Schwinger hierarchy, which couples the two-particle Green’s fu

to the three-particle one, we get the following equation of motion for the correlatorL defined in~2!:

2 i S i\ ]

]t1
1

~ i\¹1!
2

2m DL~121828!5d~1218!G~228!2d~1228!G~218!2d~1218!G~228!1G~228!E d3V~13!L~131831!

1E d3V~13!G~331!L~121828!1 iG~118!G~228!E d3V~13!G~331!

2 i E d3V~13!G3~123182831!. ~7!

Taking into account binary collisions allows one to describe short range interactions, while the long ranged interactio
to characteristic collective modes. Approximations are necessary, which take into account collective effects. Such eff
be described in a convenient manner in terms of fluctuation quantities defined above. Whereas the binary collision
mation leads to the Boltzmann equation describing dilute systems, we want to include medium effects like collective
tions. Therefore we consider the three-particle Green’s function in the following approximation@31#:

iG3~123182831!5 iG~118!G~228!G~331!1G~118!L~232831!1G~228!L~131831!1G~331!L~121828! ~8!



ain an

54 835CONTRIBUTION OF DENSITY FLUCTUATIONS TO THE . . .
which describes the three-particle propagator in terms of all possible two-particle fluctuations. By this way we obt
equation, which is equivalent to the RPA approximation in nonequilibrium. For Eq.~7! we now obtain@31#

S i\ ]

]t1
1

@~\/ i !¹1#
2

2m DL~121828!52 id~1228!G~218!2 i E d3V~13!L~232831!G~118!. ~9!
t
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The occurring integrations should now be specified and
appropriate solutions have to be selected. Therefore we
write the condition of the weakening of the initial correlatio
@31,32# by the definition ofL, Eq. ~2!, into the following
form:

L~121121!u t1→2`52 iG~121!G~211!5L0~121
121!.

~10!

Equation~9! for L can then be solved neglecting higher o
ders of interaction in the following manner:

L~421828!5L0~421828!1L0~41181
1!V~13!L~232831!.

~11!

Because we are interested in the two-point-function, Eq.~3!,
we use a special case of Eq.~11!:

Lab~12!5L0
aa~12!dab1(

c
L0
aa~14!Vac~43!Lcb~32!.

~12!

The different kinds of particles have been explicitly mark
by Latin letters. Obviously the relationL0

ab;dab holds. In
the following we will drop this notation for simplicity and
restore these notations in the final results.

Equation~12! is a causal one, which means that all fun
tions entering are causal ones. Therefore we can apply
Langreth-Wilkins@33,34# rules to obtain in operator notatio

L:5L0
:1L0

RVL:1L0
:VLA,

LR/A5L0
R/A1L0

R/AVLR/A. ~13!

Using the second equation one gets from the first equa
the optical theorem

L:5~eR!21L0
:~eA!21, ~14!

where we introduced the operators of retarded and advan
dielectric functions, which in the most general case are
fined as~see, e.g.@35#,!

eR512L0
RV[~11VLR!21,

eA512VL0
A[~11LAV!21. ~15!

The optical theorem~14! is valid as long as initial fluctua-
tions are sufficiently damped out and only the adiabatic e
lution with time is considered@36#. This is certainly ques-
tionable for strong nonequilibrium and unstable situatio
Therefore we will use another appropriate form later, wh
does not rely on the optical theorem.

With the help of these retarded and advanced respo
functions we can now write down the form of self-energ
From the definition ofL in Eq. ~2! and the introduction of
self-energy@37#, which is graphically represented in Fig. 1
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we see that the following relation holds:

2E d2V~12!L~121821!5E S8~12!G~218!d2. ~16!

HereS8 denotes the self-energy with the Hartree part su
tracted. The Fock part can further be split in order to get t
correlated self-energy

S8~12!5Sc~12!6 i E d1̄V~11̄!G,~ 1̄2!d~r 12r 2!,

where the upper sign stands for Bose particles and the lo
one for Fermi particles. The required correlation self-ener
is then easily derived in the following way:

Sab
: ~118!

5 i(
c
E d2d28Vab~12!Lbc

: ~228!Vca~2818!Ga
:~118!.

~17!

Furthermore, it is useful to introduce the fluctuating potent
in the following way:

(
c
Vac~ecb

a !215V ab
a . ~18!

From ~17! and ~14! we have

Sab
: ~118!5 i(

c
E d2d28V ab

r ~12!Gbc
: ~2828!

3Gbc
" ~2828!V ca

a ~2818!Ga
:~118!. ~19!

Another form of self-energy, without using the optica
theorem, can be found from the diagrammatic expansio
Fig. 2, where the effective potentialV sums all ring diagrams
in Eq. ~12!:

FIG. 1. Definition of self-energy in terms of density fluctuation



e
the

-
we

ari-

ng

836 54K. MORAWETZ AND M. DI TORO
Sab~118!5 i(
c
E d2d28Vab~12!Gbc~228!

3Gbc~228!Vca~2818!Ga~118!. ~20!

In contrast to Eq.~19!, now all functions appear to be caus
ones. The corresponding correlation functionsSab

: can be
derived easily with the help of the Lengreth-Wilkins rule
Applying the optical theorem~14! for V correspondingly one
obtains just~19!. Both forms will serve as a starting point t
derive kinetic equations, but only~20! is appropriate for
strong fluctuations, like those that can occur in the vicinity
phase transitions.

FIG. 2. Definition of the fluctuating potential.
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B. Lennard-Balescu collision integral with memory

In order to describe nuclear matter in nonequilibrium w
consider now the general Kadanoff-Baym equation for
correlation functiong: @37,38#:

i F ]

]t
1S p

ma
1

]SHF
a ~pRt!

]p D ]

]Ra

2
]SHF

a ~pRt!

]Ra

]

]pG fWa ~pRt!5I ~p,t !,

I ~p,t !5(
b
E
0

`

dt@$ga
.~p!,Sab

, ~p!%

2$ga
,~p!,Sab

. ~p!%#~ t2t/2,t!~ t2t/2,2t! . ~21!

Here f W(p,R,t)56g,(p,R,t50,t) denotes the Wigner
distribution function and$,% is the anticommutator over in
tegrals of Wigner coordinates indicated on the right. Here
restrict to the time diagonal case@34,39#. This equation is
exact in time, but we used gradient expansion for space v
ables and drop allR dependence for simplicity.

Using the approximation for the self-energy, Eq.~17!, and
introducing the quasiparticle picture we derive the followi
collision integral@35#:
Ī a
LB~k,t !5Re(

b
E
0

t

dtE dka8dkbdkb8

~2p\!6
d~ka1kb2ka82kb8!e

2 i @~Eka
1Ekb

2Eka8
2Ekb8

!t#@ f a8 f b8 f̄ a f̄ b2 f af b f̄ a8 f̄ b8#Vab
R ~kb82kb ,Ek

b8

2Ekb
,t2t!VbaA ~ka82ka ,Ek

b8
2Ekb

,t ! ~22!
t
e

r

r

c

o
nd
st

a

with correspondinglyf a5 f (ka ,R,t2t), f̄5(12 f ), and the
quasiparticle energyE. If the latter one is time dependen
i.e., already in mean field approximation, then the expon
tial in ~22! has to be replaced by

expS 2 i E
t

t2t

dt8@Eka
~ t8!1Ekb

~ t8!2Ek
a8
~ t8!2Ek

b8
~ t8!# D .

~23!

This collision integral is valid for quasiequilibrated fluctua
tions, which means that the initial fluctuations are alrea
damped out@36#. For short time fluctuations, where the op
tical theorem is not applicable, Eq.~20! should be used as a
starting point. At variance with~22! the fluctuating potential
appears there only once. Here memory effects are inco
rated. Equation~21! together with~22! determines the time
evolution of the Wigner distribution function and therefo
the behavior of the correlation function in the quasipartic
picture. The kinetic equation has the form of a generaliz
Lennard-Balescu~LB! equation and describes the influen
of the density fluctuations on the collision process by a d
namical fluctuation potential.
,
n-

-
dy
-

po-

e
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e
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C. Phase transition and critical regions

The kinetic equation~22! is a complicated coupled equa-
tion with the response function~15! given in the quasiparti-
cle approximation as

eR~p,v,R,t !511V~p!E dp̄

~2p\!3

3
f ~Ep̄2p ,R,t !2 f ~Ep̄ ,R,t !

v2Ep̄2p1Ep̄1 ih
. ~24!

With the help of this response function it is possible t
find regions where the excitation spectrum is singular a
therefore the density fluctuations become infinite. This is ju
the liquid gas phase transition region@40#. In Fig. 3 we plot
the isothermal lines of the chemical potential. Here we use
Skyrme-type parametrization for the mean field@41#

U5A~n/n0!1B~n/n0!
s ~25!

with
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FIG. 3. Isothermal curves for chemical pote
tial using the mean field parametrization~25!.
The temperatures areT51, 4, 7, 10, 13, 16, 19
MeV.
le
el,
and
s5
7

6
, A52356 MeV, B5303 MeV,

n050.145 fm23 ~26!

representing a soft equation of state.
D. Particle-particle scattering and BUU with memory

Up to now we have only considered the particle-ho
channel. In order to include the particle-particle chann
which is necessary to describe short range interactions
repulsion, we use theT-matrix approximation. This leads to
the collision integral@39#
I a
BUU~ka ,t !5Re(

b
E dka8dkbdkb8

~2p\!6
d~ka1kb2ka82kb8!E

0

t

dte~ i /\!~Eka
1Ekb

2Ek
a8
2Ek

b8
!t@ f a8 f b8 f̄ a f̄ b2 f af b f̄ a8 f̄ b8#

3K ka2kb
2

UTabR ~ka1kb ,ek
a8
2ek

b8
,t !U ka82kb8

2 L K ka82kb8

2
U~TexA !ab~ka1kb ,Ek

a8
2Ek

b8
,t2t!U ka2kb

2 L , ~27!
n

m-
on

es
si-

tu-

au
ce.
where f a5 f (p,R,t2t). If the quasiparticle energyE be-
comes time dependent, the exponential in~27! has to be re-
placed by~23!. Neglecting the retardation in the distributio
functions and in theT matrix one obtains the usual quantum
Boltzmann-Uehling-Uhlenbeck~BUU! collision integral
equation.

E. Joint collision integral

Adding both collision integrals~22! and~27! we describe
both the particle-particle collisions and the fluctuation or e
citation properties. But if we look graphically at the sum o
both expansions we see that the Fock part to the self-ene
is double counted~see Fig. 4!. This known fact@42# can be
cured by subtracting just that Fock term. This translates in
the subtraction of the Landau collision integral which is a
tually the Born term in theT-matrix equation. Thus, the final
collision integral reads

I total5IBUU1I LB2I Landau ~28!

including both the scattering by BUU type of collision inte
grals and the fluctuating part by a Lennard-Balescu type
x-
f
rgy

to
c-

-
of

collision integral. It should be remarked that the ladder su
mation and the ring diagram summation can be derived
equal footing within the Faddeev equations@43#.

In the following we proceed assuming small frequenci
for the modes of the fluctuations. Further we use the qua
classical limit or the long wavelength limit restricting to
large scale fluctuations. Then the denominator of the fluc
ating potential becomes@44#

FIG. 4. Self-energy diagrams summed by theT matrix and the
fluctuating potential. The Born term corresponding to the Land
collision integral is double counted and has to be subtracted on
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e~p,v!→12V~0!ReP0~0,0!511V~0!
]n~m0!

]m0
~29!

with V(0)5]U(n)/]n and the interaction-free chemical p
tentialm0 . Using the effective potential~25! the denomina-
-

tor of the fluctuating potential can be written in front of the
collision integral. Further, we assume that the scatterin
events may be well represented by a Born-type approxim
tion. By this way the total collision integral, Eq.~28!, re-
duces to the following form:
I joint~ka ,t !5
1

11V~0!@]n~m0!/]m0#

1

\2E dk̄adkbdk̄b
~2p\!5

d~3!~ k̄a1 k̄b2ka2kb!

3
uka2kbu

m

ds

dVE
0

t

dtcosS E
t

t2t

~Ē12E11Ep̄2Ep!dt8D $ f a8 f b8 f̄ a f̄ b2 f af b f̄ a8 f̄ b8% ~30!
h
h

.

-

o

with f a5 f (ka ,R,t2t) and]s/]V the differential cross sec-
tion. We will refer to this collision integral asjoined colli-
sion integral. It accounts for the contribution of the fluctua-
tions as well as the particle-particle scattering. Further, t
equation includes memory effects by the retardation of t
distribution functions.

The factorization of the fluctuation denominator~29! out
of the collision integral is only valid for soft modesv50
and quasiclassical or long wavelengthsp5\k→0. Other-
wise the scattering integral includes the full excitation func
tion e(p,v), which can be treated only numerically, which is
in progress. This fluctuation factor is plotted in Fig. 5 for th
mean field parametrization~25!. One sees that in the vicinity
of a phase transition region the factor becomes large. Ins
the spinodal the factor is negative indicating the instability o
the system. This is plotted in Fig. 6 where the fluctuatio
factor is shown for a temperature ofT51 MeV. While it
remains almost a constant one for densities above 0
fm23 it increases rapidly near the phase transition bord
around 0.11 fm23.

FIG. 5. The contour plot of the fluctuation enhancement fact
vs density and temperature.
e
e

-

e
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III. CALCULATION OF THE DAMPING RATE

The further considerations will be carried out in the same
way as it was done in@23#. According to this model, the
small deviations of the phase space density around equilib
rium,

d f ~r ,p,t !5 f ~r ,p,t !2 f 0~e!5x~r ,p,t !
]

]e
f 0 , ~31!

obey the linearized transport equation

]

]t
d f2$dh, f 0%2$h0 ,d f %

5E dp2dp3dp4dW@~12 f 0!~12 f 2
0! f 3

0f 4
0

2 f 0f 2
0~12 f 3

0!~12 f 4
0!#, ~32!

wheref 0 is the Fermi function and the transition rate is given
by

r FIG. 6. The fluctuation enhancement factor of Fig. 5 for a tem-
perature of 1 MeV vs density.
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dW5
W

11V~0!@]n~m0!/]m0#
E dv

2p
e2 ivtDx~v!

Z~v!

2
,

~33!

with Z(v)5@d(De2v)2d(De1v)#/v, De5e31e42e1
2e2 , andDx5x31x42x12x2 . Here we extend the resul
@23# since the BUU transition rateW term is divided by a
factor due to the fluctuating term~29!. We see that in the
l

s

o

l

t

vicinity of phase transition we have an overall enhancem
of collisions. This critical scattering will be published else
where@40#.

Now we turn to the evaluation of the extended collision
damping for giant modes. The relaxation rate for isosca
harmonic vibrations with a mean frequencyV can be defined
as @23#
1

t
52

*drdpxdK

*drdpxd f
5

*drdp1dp2dp3dp4WZ~V!~Dx!2f 1
0f 2

0~12 f 3
0!~12 f 4

0!

*drdpx2~]/]e! f 0
. ~34!
the
ex-
the
a-
en-
er-

g-
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Similar expressions have been derived for the rates of
ovector vibrations@23#. There the distortion of the momen
tum distribution is used in terms of the Legendre functions
x5p2P2(Q) for quadrupole vibrations andx5pP1(Q) for
giant dipole vibrations.

A. Spreading width of giant monopole resonances

Within the context of the scaling model description
monopole mode, the Fermi surface distortion is assum
simplified to bex5p2 and the damping of giant monopo
modesG5\/t is given according to@22,23# by

G5
\vFsn

11V~n!~]n/]m0!
S \V

4eF
D 2F S \V

eF
D 21S 2pT

eF
D 2G ,

~35!

where temperature is assumed to be small compared with
Fermi energy so that standard integration techniques h
been applied@45#. If we had neglected the memory effec
we would have obtained no damping of the monopole re
nances at all. This underlines the importance of incorpora
memory effects for the description of giant monopole re
nances. A more detailed analysis of the distortion of
Fermi surface can be found in@21#, where the effect of the
nonspherical Fermi surface is considered. This would lea
a minor correction of the presented results. We restrict h
to the main effect of fluctuations and assume therefor
simplified scaling model for the distortion. The numeric
treatment of~34! in comparison with~35! as well as the
inclusion of diffusive surface can be found in@24#, which
leads to an enhancement but still underestimates the ex
mental values.

The expression, Eq.~35!, is the generalization of the
damping rates derived previously@22# by incorporating the
density fluctuations. These fluctuations yield a direct c
pling of the damping rate to the equation of state.

For comparison with the experiment we used the nuc
matter parameters asn50.16 fm23, vF50.28c, eF537
MeV, the cross sections540 mb, and the mass dependen
of the resonance energies was assumed to be the con
tional one@7,8#.

The results for the giant monopole damping versus m
number in the ground state (T50) can be found in Fig. 7
where we plot Eq.~35! with and without the fluctuation en
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hancement factor. While the lower curve represents
damping rate without fluctuations and underestimates the
perimental values considerably, the upper curve is
spreading width including fluctuations. The density fluctu
tions lead to an enhancement due to the forefactor. This
hancement factor is explicitly seen by applying the Somm
feld expansion

11V~n!
]n

]m0
511V~n!

mpf
p2\3 F12

1

48S 2pT

eF
D 2G , ~36!

wherem0 denotes the free chemical potential. One reco
nizes that besides the quadratic increase of the damp
width with temperature there is an additional increase by t
enhancement factor. Here we have assumed an effective
sity for the fluctuations of 0.107 fm23.

This means that it is possible to reproduce the monop
damping width by considering density fluctuations and a
suming a lower density than nuclear matter density. This c
be related to finite nuclear size effects as follows. We ask
a first step which density has to be assumed to reproduce
damping including fluctuation effects. With the help of th
Woods-Saxon density profile for the finite nucleus

FIG. 7. The experimental values of the damping width of gia
monopole resonances together with the theoretical damping acc
ing to ~35! with ~upper! and without~lower curve! fluctuation.
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840 54K. MORAWETZ AND M. DI TORO
FIG. 8. The fit of the density~b!, where the giant monopole
resonances are built up~a!, together with the corresponding frac
tional radiusr5X3Rm where this density is realized~c!. The den-
sity profile is assumed via a Woods-Saxon potential with rad
Rm .
n~r !5
n0

e~r2Rm! /a11
, ~37!

we can fit the effective radiusr5x3Rm such that the corre
sponding density reproduces the experimental values.
can be seen in Fig. 8. The fitted density to reproduce
experimental values is plotted in Fig. 8~b!. In Fig. 8~c! the
factorx to be multiplied with the Woods-Saxon radiusRm of
the finite nucleus is shown. One recognizes that we can
produce the width of the giant resonances assuming tha
resonance affects the nucleus up to a range
r50.923Rm . This means that the surface region arou
r50.923Rm is the most important for density fluctuation
and therefore for the damping rate of the resonances. On
other hand it is reasonable to have enhanced density fluc
tions on the surface just because we expect larger rela
variances where the average occupation is smaller. How
we have to remark that in this approach the Landau dam
is still missing and thus probably we have to use a quite la
enhancement factor, i.e., a too small effective density for
evaluation of fluctuations.

B. Giant dipole resonances

In analogy to the derivation of the formula, Eq.~35!, the
width of the giant dipole resonances~GDR’s! can be given
by

GGDR5
\

8

vFsvn

11V~n!~]n/]m0!
F S \V

eF
D 21S 2pT

eF
D 2G ,

~38!

wheresv5(1/2)spn and we have in generalization to@23#
the fluctuation enhancement factor. This damping rate
plotted with and without fluctuations together with the e
perimental values in Fig. 9. Here we used an effective d
sity of 0.122 fm23 for the fluctuation to reproduce the da
in the upper curve. As before, in the case of monopole re
nances, we can reproduce the damping width assumin
smaller density for the fluctuations. Apart from the Land
damping, as mentioned before, in this case we have
deformation effects present in the data.

-

ius
-
r

FIG. 9. The experimental values of the damp
ing width of giant dipole resonances togethe
with the theoretical damping according to~35!
with ~upper! and without fluctuation ~lower
curve!.
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A comparison with the monopole damping shows that
effective surface is about 0.86Rm for dipole vibrations while
it was 0.92Rm for monopole vibrations. This seems to ind
cate that the higher the order of multipolarity the less imp
tant the fluctuation effect.

C. Saturation of damping for hot nucleus

It is observed@46–50# that the total width of giant dipole
resonances seems to saturate in heated nuclei. Furtherm
complete vanishing at higher excitation energies above
MeV is observed. The most investigated nuclei at high e
tation energies are1082112Sn. While the centroid energy re
mains nearly constant the width increases with excita
energy and can be fitted byG54.810.0026Ecn

1.6 in the range
of low energies@51,48,49#. At higher energies the total widt
appears to show a saturation above 200 MeV.

In our model we can easily get a saturation for the spre
ing width, with some interesting implications. We assum
functional dependence of the excitation energy from the t
perature viaEcn5(p2A/4eF)T

2. The temperature depen
dence of the centroid energy of the giant resonances ca
neglected@52#. Then in Fig. 10 we fit the effective fluctua
tion density corresponding to our general formula~38! to the

FIG. 10. ~a! Experimental widths of giant dipole resonances
1082112 Sn vs excitation energy. The data are taken from@46,56–
59,47,6#. ~b! Fit of the effective density, as explained in the text.~c!
Corresponding fraction of radiusr5X3Rm where this density is
realized. The saturation of damping width is connected with
increasing size of the nucleus which is affected by density osc
tions.
the
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experimental values. From the result in Fig. 10~b! one sees
that the saturation is connected to an increase of the effec
density. This corresponds to a larger effective surface reg
for the resonance, as represented in Fig. 10~c!. We always
have to remind the reader that Landau damping effects
not included in this calculation and so we are probably ov
estimating the effects of fluctuations.

We also see that with increasing excitation energy
effective surface range which is important for the giant d
pole resonances becomes larger and reaches almost ha
the nucleus radius at about 500 MeV. In other words,
higher excitation energies the finite nucleus will be simp
destroyed by too strong density fluctuations.

Now it is important to understand the physical mechani
which leads to a transient regime around 200 MeV, wh
the saturation occurs. While the sharp increase for sma
temperatures is explained by a typical zero sound attenua
due to the effect of collisions, although incorporatin
density-density fluctuations, the saturation requires a n
understanding. In@28# it was pointed out that this saturatio
can be due to the transition between zero and first sou
This observation is underlined by our calculation whic
clearly shows how density fluctuations are providing a su
stantial contribution to the transition to first sound propag
tion. Indeed if we use the expression, Eq.~38!, without the
fluctuation correctionfor the collision timet we can easily
show that the Landau conditionVt.1 @53,54# for that tran-
sition can be only reached at quite high temperature, of
order of 12–15 MeV, much more than an equilibrated co
pound nucleus can sustain@55#. This is also valid because th
temperature dependence of the resonance centroid en
can be neglected@55,52#. The presence of the reduction fac
tor, Eq. ~36!, in the collision time drastically changes th
scenario in the direction of a strong reduction of the tran
tion temperature. Using the same effective density for
evaluation of fluctuation effects as in the ground state ca
we reach the transition condition at temperatures of the or
of 4 MeV, i.e., at excitation energies around 200 MeV. Th
means that at higher excitation energy the propagation of
dipole vibration is of classical type, with a related decreas
temperature behavior of the attenuation. We must rem
that for heated dipole states we have always some evap
tion width which is increasing with temperature. Howev
the zero first sound transition will open the possibility
observing collective dipole emissions up to very hot nucl
near the limiting temperature for a formation of a compou
nucleus.

IV. SUMMARY

Within the two time Green’s functions formalism th
equation of motion for the density-density fluctuations is d
rived. The RPA leads to a generalized kinetic equation
Lennard-Balescu type. A joint kinetic equation is present
which accounts for the long range density-density fluctu
tions and for the short range correlations by particle-parti
scattering. This kinetic equation includes memory effects
retardation of the distribution functions and off shell effec
by explicit time dependence of the transition matrix eleme

Within the soft mode and small wave vector regime
approximative kinetic equation is derived. Here the fluctu

for

an
illa-



e

d

m

is
ar
va-
as

nd
m-

rk.

s-
s

842 54K. MORAWETZ AND M. DI TORO
tions lead to a forefactor of the collision integral. The
memory effect is included within retardation of the single
particle distribution function. Assuming scaling forms for th
distortion of the Fermi sphere the expressions for the dam
ing rates of giant monopole and dipole resonances are
rived. The density fluctuations lead to an additional forefa
tor coupling the damping rate explicitly to the equation o
state. By this way we can show an overall enhancement fa
tor for the theoretical kinetic damping rate which reproduce
the experimental values. It is shown that the fluctuation e
fects become more important for the damping for lower mu
tipolarity. The damping of monopole resonances can be w
reproduced up to nuclei with mass number 50, although t
Landau single-particle damping is not included here.

The problem of saturation of the giant dipole width a
high excitation energies is explained by a transition fro
zero to first sound in the collective mode propagation. Th
-

p-
e-
c-
f
c-
s
f-
l-
ell
he

t

e

inclusion of fluctuations is essential in order to have th
transition at relatively low temperatures in excited nucle
matter. This seems to be in agreement with recent obser
tions and could open new exciting perspectives in theory
well as in experiments.
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