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Effects of systematic errors in analyses of nuclear scattering data
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The effects of systematic errors in elastic scattering differential cross-section data upon the assessment of
quality fits to that data have been studied. First, to estimate the probability of any unknown systematic errors,
select, typical, sets of data have been processed using the method of generalized cross validation; a method
based upon the premise that any data set should satisfy an optimal smoothness criterion. Specified systematic
errors should also be taken into account when high quality fits to data are sought. We have considered such
effects due to the finite angular resolution associated with the data in some quite exceptional, heavy ion
scattering data sets. Allowing angle shifting of the measured values gave new data sets that are very smooth.
Furthermore, when such allowances for systematic errors are so taken into account, reasonable, but not nec-
essarily statistically significant, fits to the original data sets can become so. Therefore, they can be plausible
candidates for the “physical” descriptions of the scattering processes. In another casefuthetion that
provided a statistically significant fit to data, upon allowance for angle variation, became overdetermined. A far
simpler S function form could then be found to describe the scattering processSThections so obtained
have been used in a fixed energy inverse scattering study to specify effective, locatlisgphrpotentials for
the collisions. An error analysis has been performed on the results to specify confidence levels for those
interactions[S0556-28186)01707-4
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I. INTRODUCTION latter kind; i.e., with the the specified values of the angular
resolution with differential cross-section data on heavy ion

In recent years, fixed energy inverse scattering methodseactions. The results of this known error consideration we
[1] have proved interesting means of analyzing experimentadlesignate as angle smoothed data sets.
elastic scattering daf®2-6]. The aim of such methods is to Note that even if the best, optimally smooth data set has
determine an effective interaction acting between collidingbeen found, either from the original data being of excep-
guantal systems, starting from a set®functions that have tional quality or after application of smoothing techniques
been obtained by fitting data; differential cross-section datsuch as the GCV, there may still exist numerous ambiguities
usually. The guality and extent of data is crucial in determin-with analyses(e.g., phase shift analysesf that data set.
ing not only these associat&functions, but also the shapes Only a statistically significant fiti.e., one for which the chi
and strengths of the inversion potentials so obtaified square per degree of freedomg?/F, is near 1 allows
However, these qualifications are not restricted to just in-‘meaningful” conclusions about the physics of the scatter-
verse scattering methods. They can have a pronounced inflirg process to be contemplated for that data and for that
ence on the results of phenomenological model seaf@es particular search process. But by that alone, one does not
as well. Hence, we are interested in methods of smoothingave confirmation of validity of any conclusions reached
experimental data so that the contributions of nonstatisticasince there can be more than one specification meeting the
errors(known or unknowh may be minimized. significance criterion. The addition @f priori physical in-

In the treatment of unknown systematic errors, splineformation may help to delineate between such equivalent
techniques have had a long histdigee Ref[9] and refer-  results, but that may also serve to prejudice in favor of cer-
ences therein and are particularly suitable for adapting to tain phenomena at the expense of the true physics unless an
specific problems. In addition, splining software is readilyappropriate weighting of the effects of thatpriori input is
available in either commercial packages, or in the publianade. However, both the GCV and angle smoothing tech-
domain on the internet. One such method is that of generahiques do help to ascertain the success of an analysis with
ized cross validatiofGCV) [9] in which only the spatial more certainty. They may simultaneously help in the defini-
coordinates and statistical information on each data point argon of the limits of current theoretical models of quantal
used to determine a tradeoff between goodness of fit ansicattering(nuclear in particulgr by providing a more “real-
smoothness of solution. There are other methods, notabligtic” data set in that the content of nonstatistical informa-
kriging [10], which may be superior in smoothing certain tion has been minimized. In any case, as will be shown, it is
kinds of data sets, including highly clustered ones, but wémportant that known systematic error in the form of finite
restrict ourselves to GCV in this study. In this scheme, noangular resolution should always be included in high quality
direct, a priori knowledge of any possible systematic errorsanalyses of cross-section data.
is used so that this approach is quite different to those The method of generalized cross validation is described in
smoothing methods for whicta priori, the magnitudes of Sec. Il. In Sec. lll, details of the calculations are shown and
the systematic errors are assumed to be known. The secotitk results are discussed in Sec. IV.
part of our analyses deals with a smoothing procedure of the Three cases are studied, namely the differential cross-
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section data sets from the elastic scattering of 200 MeV prolations have been made with cubic splines, i.e., with the
tons from*2C [11], of 350 MeV %0-1%0 scatterind12], and  choice ofm=2. The cross validation process we have used
of 288.6 MeV °C-1°C scattering 13]. Past analyses of the finds the optimal value for the parameter in a self-
first two data setgRefs.[14,5]), for the proton and'®O  consistent way9].
scatterings, respectively, extracted effective interactions by We have also sought a smoothing method to allow for the
using fixed energy inverse scattering theory, notably of thenagnitudes of known systematic errors. For the data con-
Lipperheide-FiedeldeylF) type[15]. In the study of proton cerned, those are the known values of the angular resolution
scattering, an error analysis of the result was also made. with the measured differential cross-section data. We have
Thus herein we report on the results we have obtainedreated that information as an angle uncertainty allowing us
using LF fixed energy inverse scattering theories to specifyo adjust the data set within those specified limits and have
new candidate heavy ion interactions for tH©-10 colli-  simply adjusted the identifying angles to optimally agree
sion (given that there is now a very extensive data set availwith the best theoretical fit we could find to the original data.
able and an effective Schrdinger interaction for the 288.6 The results of this known error consideration we designate as
MeV °C-12C collision. Confidence limits on both interac- angle smoothed data sets.
tions have been found as well and at all radii. The theories

used to effe'ct the fixgd energy inve'rsions and to make the Il. DETAILS OF CALCULATIONS
error analysis are reviewed in brief in Sec. V while the re- . . . .
sults are presented and discussed in Sec. VI. There are diverse techniques by which generalized cross
Conclusions we can draw from these studies are presenté@lidation of a data set can be made. We have used those
in Sec. VII. encapsulated in the GCV package in tkwell-known
NETLIB routines that are to be found in the public
Il. GENERALIZED CROSS VALIDATION ]Ejomam I|brgry of (;]ompl_JterI softwa_re /pf)ub/nethb/bgcv at
AND ANGLE SMOOTHING tp.cs.uow.edu.au. There is also a suite of GCV subroutines

available in the International Mathematics and Statistics Li-

Smoothing splines provide “nice” curves with which one brary (IMSL). The programs of either library generate new
may smooth discrete, noisy data. A practical, effectivedata sets from the input empirical ones; with the smallest
method by which they may be used to estimate the optimunadjustments possible made to any and all of the data
amount of smoothing of data has been specified by Cravemagnitude but not scattering anglso that the smoothest
and Wahbd9]. Their method uses generalized cross validaspline interpolates the results. To illustrate how significant
tion (GCV) to estimate the appropriate degree of smoothinghe apparently small changes wrought by the GCV and/or the
and therewith prescribes a mathematical scheme to asseasgle smoothing processes can be, we consider the variations
inherent systematic errors in the starting data set. A full acthat result toS functions designed to fit the data. Such a
count of the method has been given in R8f.and so only a  process is the first step in most fixed energy inversion analy-

brief outline is presented herein. ses of scattering cross sections, and so we have chosen the
The Craven-Wahba model considers thathaentry data  rational form for theS function that is the usual initial quan-
set,y;, can be specified by tity for inversion schemes of the LF typ&5], whether used
in semiclassical(WKB) [3,6] or fully quantal inversion
yi=9g(t)+ €, (1) [4-6] applications, namely
where g(t;) are smooth polynomials anfk;} are random N A2 g2
errors (white nois¢@ for the given parametric values SN =S M [ ( > 2) 5
t e[0,1]. n=1 \ A = ap
The problem one faces is to find functiohthat minimize , , .
the expression \ being the angular momentum variable. Physical values co-

incide withA=I1+ 1/2 . In thisS function, S(\) is a ref-
1. 1 erencesS function which we take as
23, )=y Pro [ MWl @ o
Sref(k):el nin(\ +)\c), (6)

where the paramete® controls the tradeoff between the

“roughness” of the solution, as measured by where 7 is the usual Sommerfeld parameter and is a

background cutoff parameter. The complex parameters
1 {ay,Bn} have been adjusted so that we find a best fit to each

f [f™(u)]?du, (3)  data set as defined by a minimal value to the chi square per
0 degree of freedomy?/F. In our context the degree of free-

dom is the difference between the number of data points and

and the infidelity to the data specified by the number of adjustable parameters.

1 n
= [f(t)—y;l% (4) IV. RESULTS OF APPLICATION OF GCV
Nj=1 AND ANGLE SMOOTHING

As an estimate of, it is customary to start with the smooth-  We have applied these processes to two sets of heavy ion
ing polynomial splineg), ,(u) of degree th— 1. Our calcu- elastic scattering data taken by the experimental group at the
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TABLE I. The rational function parameters that gave the fitto  TABLE Il. The rational function parameters that gave the fit to
the 200 MeVp-*?C cross-section data. The background cutoff pa-the 350 MeV '%0-'%0 cross-section data. The background cutoff
rameter,\., was chosen to be 0.2. The rows labeled “Orig” con- parameter)., was chosen to be 1.92.
tain the values of the parameters determined by a fit to the originat
data set, while those labeled “GCV” give the parameter values for a, Bn

a fit to the GCV data set. Real Imaginary Real Imaginary
ay Bn n=1 54.2908 —11.4607 24.0430 3.1105
Real Imaginary Real Imaginary n=2 65.7168 —20.9684 57.5211 19.9136
n=3 —62.5244  —20.0659 34.1675 34.7576
n=1 Orig 10.0131 —5.9492 1.1305 3.4212 n=4 —10.3285 —2.9333 —25.9941 3.3402
GCV 10.2394 —5.9830 1.6833 3.5518 n=5 ~16.0811 —39.5517 —25332 2.4529
n=2 Orig 26.8805 —42.6996  0.5574  3.0838 =6 ~ —28.0978  ~145510  ~41.3634  19.2387
GCV 264927 —425370 03576 27283 "=/ —37.9825  ~117218 = -50.8647  2.7793
n=8 —13.6747 —10.3874  —59.4870 8.0638
n=3 Orig 27100 —3.0292 —4.3915 3.0549 n=9 —24.0183 ~3.1871 9.7988 3.0394
GCV 26652 —3.1173 —4.4325 3.2730
n=4 ggg _;:2;3? _;Z;; _E:igg; ﬁ:ggi: ment. The solid line portrays our best fit to the original data
set for which we found a value of 28.8 fgf. Application of
n=5 Orig —4.2938 -16.6161 —22.8934 42.9272 the GCV process gave a new data set which is barely distin-
GCV —2.9102 -16.0866 —23.1430 43.0483 guishable from the original, and an independent search for a

fit to that GCV data gave a8 function of form Eq.(5) and
with which the y? fit was 29.0. The cross section is not
Hahn-Meitner |nstitu Berlin and to a proton elastic scatter- discernible from that shown in Flg 1. The rational function
ing cross-section data set measured by Mesteal. at the ~ parameters of th& functions that gave these high quality fits
IUCF, Indiana. to both the original and GCV data sets are given in Table I.
Of those, we consider first the differential cross-sectionThe x?/F values in these cases were 0.99 and 1.00, respec-
data from the elastic scattering of 200 MeV protons off oftively; values that definitely identify the fits as statistically
12C [11]. Next we analyze the extensive set'80-°0 dif-
ferential cross-section data that was taken at 350 NIEX: TABLE llII. The rational function parameters that gave the fit to
quite exceptional nuclear heavy ion data given the range ahe 288.6 MeV*?’C-?C cross-section data. The background cutoff
scattering angles specified. Finally we have analyzed thparameter)., was taken to be 1.73. The rows labeled “Orig”
cross-section data fronf?C-12C scattering at 288.6 MeV contain the values of the parameters determined by a fit to the
[13]. original data set, while those labeled “GCV” give the parameter
In the case of proton scattering, no information on knownvalues for a fit to the GCV data set.
systematic errors was available, so only the GCV technique
has been used with that data set. For the heavy ion scattering %n Bn

data sets however, the effect of a 0.1° uncertainty on the Real Imaginary Real Imaginary
scattering angles also was investigated. In the diagrams de- i
picting the cross-section data and fits, the original data sefd=1 Orng 27.744523 —14.389995  3.796999  9.515195
are depicted by solid circles while the GCV sets are shown GCV 28317065 —14.202606 3.916821  9.520174
by open circles. If at any Scattering angle the two sets Coinﬁ:2 Orig 27.008218 —13.488378 —8.739953 15.988789
cide, the GCV designatiofopen circleg predominates. The GCV 27.505197 —13.372077 —8.324556 16.115838
results of angle adjustment of data are displayed in relevant
diagrams by the open squares. n=3 Orig —2.917832 —1.476174 —3.851786 4.834795
The fits to data are shown in full first and then in seg- GCV —2.968014 -—1.460472 —3.854648 4.867008
ments not only to clearly demonstrate the high quality nature )
of the data sets, but also to show which specific subset di=4 Orig —9.831692 —6.186899  43.143690 10.541231
data points contributes most significantly to the ovejdll GCV —9.885386 —6.145712  43.270682 10.490968
values of any fit. Tables | — Ill give the relevant parametersy—g Orig —20.589188 —7.171096 —33.211045 6.013674
that determine theS function for each data set, while in GCV —20.639399 —7.266823 —33.437661 6.486210
Table IV we have summarized the contributions to the total
fit values of 2 from segments of the original, the cross N=6 Orig —15.227739 —27.310543 22.629528 15.792581
validated, and, where relevant, the angle smoothed data sets. GCV —14.884547 —27.445701 22.929486 15.662967
n=7 Orig —35.596499 —8.147487 —24.006946 6.267502
A. The 200 MeV proton-1%C cross section GCV —35.570996 —8.107553 —23.871387 6.444519
The differential cross section fqr-1%C scattering at 200 n=g Orig —43.939140 —8.960540 27.586294 5.983191
MeV is compared with the best fit result in Fig. 1. It is shown GCV —43.926832 —8.998362 28.086728 5.996632

there for the complete angular range measured in the expet
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TABLE IV. The contributions to thee? and y?/N values from angular segments of the original differ-
ential cross-section data and of the cross validated set. The valyééFofor the total results are given in

brackets.
Original data GCV data Angle smoothing
p-t2C Angular segment X% x?IN X% : x?IN
0-40 10.4 : 0.65 9.65 : 0.60
40-80 2.15:0.14 2.02:0.13
80-120 16.2 : 0.90 17.3: 0.96
0 160 28.77 : 0.59 28.96: 0.59
(0.992 (0.998
160-160 Angular segment X2 x?IN X2 x%IN X% x%IN
0-4 326.5:65.3 145.9:29.2 8.61:1.72
4 -7 187.7 : 20.9 140.6 : 15.6 6.89 : 0.77
7-10 573.3:22.1 426.11:17.0 18.7: 0.75
10 — 13 347.2:11.6 301.2:10.0 36.5:1.22
13 -20 131.8 : 2.69 119.3:2.43 7.98 : 0.16
20 — 27 51.5:2.15 51.9:2.16 30.4:1.27
27 - 34 23.0:191 229:1.91 7.13:0.59
0-34 1641.1: 10.6 1207.8 : 7.84 116.2 : 0.75
0-75 1706.1 : 8.57 1274.7 : 6.44 150.8 : 0.76
(10.9 (7.89 (0.98
2c-tc Angular segment X2 x3IN X2 x%IN X2 x%IN
0-10 15.2:0.76 5.48 : 0.27 4.03:0.20
10-15 9.87 : 0.58 6.60 : 0.39 1.80:0.10
15-20 18.5:1.16 17.7:1.11 5.89:0.42
20-25 12.6 : 0.84 12.6 : 0.84 7.56 : 0.47
25-30 8.03:0.62 8.02:0.62 5.04:0.39
30-35 2.08:0.26 2.08:0.26 1.64:0.20
35-40 2.39:0.34 2.39:0.34 2.06:0.29
0-40 68.70: 0.72 54.88 : 0.57 28.01:0.29
(1.07 (0.89 (0.49
significant ones. There is little to distinguish one data set
from the other, and concomitantly, one calculated cross sec- 10°
tion from the other. Thus, in Fig. 2, we show the two data o r e e et
sets and the fit to the original data gaeb difference is ap-
parent with the fit to the GCV data even on this expanded 10° |- -
scale for segments of the scattering angle range, 0°—-40°,
40°-80°, and 80°-120°, specifically. There is little distinc- & 10° b ]
tion between the two data sets even on these expanded scaless
(remember that the GCV data takes precedence whenever the g
two data plots overlgpBy this criterion, the original data set c 10% —
is optimally smooth. The similarity of the original and GCV =~ 2
results is emphasized by the close comparison in the cross- .8 10" L ]
section segment values of thé that are given at the top of |
Table IV.
The modulus and phase of the ratioBdunction that fits 10" |- -
the original data fromp-'%C scattering at 200 MeV are PN IR IR N N N M B

shown in Fig. 3 and in the top and bottom segments, respec-
tively. As with the cross sections themselves, the magnitude
and phase of th& function found by the fit to the GCV data

0 20 40 60 80 100 120 140 160

0., (deg)

are indistinguishable from those displayed in Fig. 3 on the FIG. 1. The differential cross section fpr'?C scattering at 200
scale given. Thus the differences in the values of the poleMeV. The solid line corresponds to thé=28.8 fit to the original
zero-pair values found by the independent searches essetata set.
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as well, viz.,S(\,j)=S*)(\). To some extent, however,
the cross sections reflect the average of the two sets.

B. The 350 MeV %0-1%0 cross section

The complete measured differential cross section for
160-180 scattering at 350 MeV and the best fit we could find
using rational function forms of th& functions are com-
pared in Fig. 4. Using the parameters given in Table Il we
obtained the cross section as displayed by the solid curve in
Fig. 4 and with which we found a fit to the original data set
with a (total) x? value of 1706.1. As for the-1°C case, the
differential cross section results for the GCV analysis, both
the data set and the cross-section fit, are not displayed in Fig.
4. On the scale of this diagram, differences between the GCV
and original results are not apparent. The associated values
of x?/F are not as small as would be desired in these cases,
being 10.5 and 7.9, respectively. We note that the values of
chi square per data point are 8.6 and 6.4, respectively. That
fit criterion has been used by others in analyses of this and
80 90 100 p 120 other heavy ion scattering data, bt_Jt it is more rele_vant to ta_ke

deg) the numb_er of free paramet_ers into con5|derat|(_)n. Stu_d|es
eC-M- ( g that effectively use every radial value of a model interaction
. ] ] potential as adjustable may find reasonable fits to scattering

FIG. 2. The differential cross sections for 200 MeV protons yata according to the determined value of chi square per data

elastically scattered fror?C shown by segments. The solid circles point, %N, but run the risk of having meaninglegsven

correspond to the original data set, and the open cirtsng . 2 N

precedence where there is ovejlaprrespond to the GCV data set. gﬁgﬁgﬁefr\éaelu; asr acr)‘];)e(t(/a'r:s; Qrs] egc? :; f,tth gno:j esgg%zl[vgg?

The solid line corresponds to thg=28.8 fit to the original data search with the GCV da,lta has been constrained. First. we

set sought pole—zero-pair fit values that we could use with the

inversion methods to specify aiO-°0 inversion potential.

. The result is a set of pole—zero-pair parameter values very

the S function. . . . L . close to the original set listed in Table II. If we allowed the
The abso_rpnon_attnbute in tr@function is weak with the search to be unfettered then we could find a much better fit to

modulus being quite large save for the very smallest angulatr e GCV data set. A value 2.5 for they?/F can be found

momentum vaIue;, ar_ld not very structured. The assoclatqq) i the result cannot be inverted with our present methods as
scattering potential W'I! have a smooth Woods-Sa?(o_n—llkethe pole-zero pairs have very small imaginary values. How-
form [14]. We are cognizant of the need for spin-orbit inter-
actions in proton-nuclei optical potentials, and so né&ed

functions that are functions of the total angular momentum

tially reflect only the ambiguity in the parametric form for

ever, we have not pursued thoSdunctions further for an-

6
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. I 1016 1 I 1 I 1 I 1 I 1 I 1 I 1 I
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A 6, (deg)
FIG. 3. The modulitop) and phasegbottom and in raplof the FIG. 4. The differential cross section fdf0-1%0 scattering at

rational S function with which the original data set fgr-*°C scat- 350 MeV. The solid line corresponds to th8=1706.1 fit to the
tering at 200 MeV was fitted with g2 of 28.8. original data.
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FIG. 6. The modulitop) and phasegbottom and in ragof the
rational S functions with which a fit measured by?=1706.1 is
10° | s y found to the cross section frodfO-1°0 scattering at 350 MeV.
4 10
P I P P N I PR I I S P I

process was used to ensure that the resultant cross section
20 22 24 26 28 30 32 M was indeed accurately calculated, especially at large angles.
0. (deg) Hence the numb_er of significant fi_gures in the tabul_ation of
¢m the pole-zero pairs of parameters in Table Il. Only with such
detailedS functions could the original and GCV data sé&i

. . . 16 .
FIG. 5. The differential cross sections f810-'°0 scattering at  1gg point$ be fit; and even then with less than satisfactory
350 MeV for diverse scattering angle segments. The solid lee?/alues 0f)(2/F

show the original data set, and the open circles give the GCV re-
sults (taking precedence where there is overlap between thg¢ two
The curve displays the fit witly? of 1706.1 to the complete data
set.

But there is a 0.1° spread in the angles at which measure-
ments for the 350 Me\V0-1%0 cross section were made
[12]. As noted previously, we have treated that information
as an angle uncertainty allowing us to adjust the data set
ithin specified limits to find an optimal agreement with the
est theoretical fit we could find to the original data. That fit,

. 2 . - - - .
The data spans 10 orders of magnitude and so it is ndgavmgx /F of 10.5, is displayed in Figs. 4 and 5. This new

surprising that with the complete result plotted in Fig. 4 there ata set is shown in the segment plots, Fig. 7, by the open
is no distinction between the original and GCV data setsSauares. We stress that Ehe_ s_h|fts nzever_take a data point
Likewise on this scale one would consider the fits to data togﬁtﬁfin?;?ﬁegu doa:;a; s(()a.tl's l(')mg;g_g;?olr';efr'totfnt]ge nnfv(\j'é -
be near perfect. But quite a different view results when the 9 IS ©.96, gnitude |

data are plotted in angular segments and on expanded Scalgggvgme_r\t uDOg the ongmal 10.5 value. Table IV shows the
The angular segments 4°—7°, 7°~10°, 10°~13°, 13°_pqecontribution tox for various angular ranges. It can be seen

5 ;
20°~27°, and 27°~34° are displayed in Fig. 5, where We‘L’hat the bulk of the totaj* comes from comparison at the

have included both the origin&bolid circles and the GCV Igrwlard scatteitrin_g anglels. Crc:ntributionsl_tqbtlhe tfg;(t%llirolmf i
data(open circlegas well as the fit to the original datsolid € large scatlening angles have a negligible etiect. In tact,

; ; the results for angles below 15° account for approximately
curve. Clearly GCV smoothing adjusts many of the data 2 o -
points in the small angle regiori® 15° in particulay and is 90% of the totaly” for the best it /F =10.9 to the origi-

the prime reason why the fit to the GCV data with essentiall)p"’.II data. When we applied the generali;ed cross validation to
the sameS function that “best fit” the original data gave the this new, smoothed data set, no discernible difference results.

2 HP [ 1417
improved value ofy2/F. So far as totaly“ is concerned, the original “best fit” theo-

The modulus and phase of the ratioBdLinction we have retical cross section gave a value of 150.8 when taken
found from the fit to the original data set froH0-160 scat- against the new smoothed data, while it gave 151.2 against

; - - the GCV data set found by using the smoothed data as input.
tering at 350 MeV, are displayed in Fig. 6. Note that the . .
phase is plotted modula to keep the vertical scale of the As noted previously by Brungest al. [16], with data sets of

diagram small. Thi$ function has much more structure than such_gxtent, and when quality fits to that data set are to be
that given beforefor the p-2C scattering Also as the ex- specified, the analyses must allow for the angle resolution

tensive data set spans 10 orders of magnitude the fits ar%uoted for the. experllment. In.the present case that made an
" . . order of magnitude difference; and an order that changed the
extremely sensitive to details of ti&functions. Therefore,

although both the original and GCV data 8tfunctions are result of an analysis to be statistically significant.
essentially the same, small numerical differences between 1o 1 _
the two have in part been responsible for the difference in C. The 288.6 MeV *“C-**C cross-section data

x?IF values found. It was necessary to carry at least six- The complete measured differential cross section for
figure accuracy with each value &(k) when the fitting  'C-1°C scattering at 288.6 MeV is displayed in Fig. 8. The

other reason as well. As will be shown, angle smoothing o
the data has a profound effect.
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5 TABLE V. The quality of fit to angle smoothed 288.6 MeV
' ' ' ' 12C-12C data found by using-pole—zero pairs to describe &

4 10° function of the form Eq(5), and under the constraint that thaSe
10" | ““_\\ functions can be inverted.

n X X°IF
8 28.01 0.44
6 35.61 0.49
5 64.46 0.85
4 85.12 1.06

is slightly overparametrized. Therefore, we have the interest-
ing case of a statistically significant result, originally de-
scribed by an appropriate number of parameters, being per-
haps slightly overdetermined once a smoothness criterion is
introduced via the GCV procedure. Given that $iunction
10" 9 10" was slightly overparametrized when fitting this GCV data,
Lt b bl Lol b L b L 1 we deleted the largest valued pole and zesg @nd 8,)
20 22 24 26 28 30 32 34 from the eight given in Table Il and undertook another
0, (deg) search for a seven-pole—zero-pSifunction with y2/F~1.
o A successful fit to the GCV data was found witk=79.8
FIG. 7. The differential cross sections ffO-160 scattering at  and x*IF=1.17. Therefore, the number of parameters re-
350 MeV for diverse scattering angle segments. The solid circle§luired to find a statistically significant fit has been reduced
show the original data set, and the open squares give the angl®y four — a reduction of 12.5%.
smoothed settaking precedence where there is overlap between the To take the principle of smoothness one step further, we
two). The curve displays the fit witly?> of 1706.1 to the complete also applied the 0.1° uncertainty with the scattering angles,
data set. again by allowing the experimental data to be moved any-
where within that+0.1° angular range to result in the most
GCV data sefand calculated resulis not displayed as, on optimally smooth new data set. Accounting for angular reso-
this scale, it is inseparable from the original data @etd lution in that way, they?/F of our best result decreased from
resul). Our best fit to the measured cross section is displayed.07 to 0.44; a value notably less than one. A breakdown of
on the same figure as a solid line. This fit was obtained usinthese fits for various 5° angular ranges is given in Table IV.
the (“Orig” ) parameters of Table Il and the relevant value Evidently at forward scattering angles the differential cross
of (total) x? is 68.7. The GCV rational function parameters section is most affected by these considerations of systematic
of Table Il led to a fit to the GCV data set and withy@  errors. The results at angles less than about 25° particularly
value of 54.9. These correspond ¥&/F values of 1.07 and are affected. In the angular range 5°—10° the valugatél)
0.86, respectively, so that both results are statistically signifiy? is reduced by more than a factor of 3 onké, , is taken
cant. However, as the value gf/F for the GCV result is into account while in the range 16I15°, they? is reduced
just less than 1, it may be argued that for this, 8feinction by a factor of 6. Once again a statistically significant result
has become overdetermined by taking into account a
smoothness requirement of the data. Théunction which
gave a good description to the original data with eight-pole—
zero pairs is now clearly overparametrized. As above with
— the GCV data case, we sought to find a sim@dunction,
i.e., one specified by fewer pairs but with a statistically sig-
nificant fit to the(angle smootheddata set. Therefore, we
T reduced the set dfe,,B,} progressively seeking to have a
fit with statistical significance while retaining a form that can
be inverted. The results of our searches are displayed in
Table V, and therein i” denotes the number of pole-zero
pairs employed. Starting with thee=8 pair S function which
fitted the angle smoothed data wigf/F=0.44, we were
able to reduce the parametrizedl function to one with
n=4 pairs and still have a fit to the angle smoothed data
with xy?/F=1.06; a value essentially identical to that of the
0 10 20 30 40 eight-pair fit to the original data.
. (deg) However, if we revert to using the original data, this sim-
pler (n=4) S function does not give a cross section with a
FIG. 8. The differential cross section data f8€-1°C scattering  x*/F as an alternative minimum to the origin@ight-paip
at 288.6 MeV compared with the fit correspondingyto=68.7. result. But, by using that four-pa® function to initiate a

do/dQ (mb/sr)
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TABLE VI. The result of searching for the optimal four-pole—

i . zero-pairS function which can be inverted and best fits the mea-
] sured 288 MeV!?C-12C scattering data. The set designated “Start”
1S.] — is that found by using the smoothing processes described in the text
A b and the search result is identified as “Best.” T&/F reduces
] from 1.6 to 1.2 with this search.
] an Bn
Real Imaginary Real Imaginary
n=1 Start —11.3410 -—6.0709 —8.2442 12.0089
Sx Best —10.7096 -—6.0241 —7.0200 11.0099
n=2  Start —12.2498 —29.1349 24,7122 18.7739
i | | | Best —12.3568 —28.9806 23.0092 20.3216
1 1 1 1
0 20 40 60 80 n=3 Start —36.5267 -—9.9735 -20.8193 6.5200
A Best —35.7060 —10.1739 —21.7706 7.0669
FIG. 9. The modulitop) and phase¢bottom and in ragof the ~ n=4  Start  37.1609 —-15.0033 —-34.8925  1.8520
rationalS functions for2C-12C scattering at 288.6 MeV. The solid Best 37.3347 -15.0776 —35.4157 1.8271

line is theS function found from the fit to the original data set, the

long-dashed line to that from a fit to the GCV data set, and the
short-dashed line is that of the four-p&function described in the V. INVERSION POTENTIALS FROM THE SCATTERING

text. DATA

There are a number of inverse scattering theories for fixed
new search against the original data does. Starting from anergy datasuch as differential cross sectigres may be
(total) x> value of 127.4 §{*/F=1.59), a minimum was found in the review/1] and elsewhere. Our interest is with
found with y2=96.21 andy?/F = 1.20. Recall that our origi- those of the LF type for which th& functions described
nal result discussed above involved eight-pole—zero pairgbove are the basic input. Herein we consider both the WKB
specifying anS function that gave a fit to original data with approximation LF scheme as well as a fully quantal one. A
x2/F=1.07. The success of this procediie finding the  brief specification of both these schemes are given next for
much simpler(four-pain S function fit to the original dathis completeness and to define quantities that will be discussed
significant. Without having a good starting set, it was impos-Subsequently. o _ _
sible for us to find this specific minimum. It is a very sharp N the WKB approximatior{3], the phase shift function
minimum in the parameter space. Thus angle smoothing thE¢lates to a quasipotentiad(a), by
data not only allowed us to find a much simp&function to
fit that angle smoothed data with statistical significance, but SOV K) = — _2'“_2 * Q(o) odo

TTRAC ), Jer e T

also it has proved to be a scheme to obtaifsimplen S
function with which to fit the original data with statistical

and which, by an Abel integral transforff] gives the qua-
sipotential as

@)

significance.
The moduli and phases of three ratioafunctions that
were found to describé’C-1%C scattering at 288.6 MeV are

shown in Fig. 9 in the top and bottom panels, respectively. _4E1 d | (= 8(NK) q 8
The solid line indicates results obtained using the original (‘T)_7EE ” m)‘ A ®

data set while the long-dashed line shows those where the

GCV data set has been employed in our fitting procedureThe scattering potential then is specified by the Sabatier
There are discernible differences between those two resultgansform,
the GCV result differs from the original result in that the

curve for the modulugphaseg is above(below) that for the

original result, albeit only slightly. These slight differences

are reflected in the parameters of tBdunctions, the pole-

zero pairs{«,,B,}, which are listed in Table Ill. But the so long as there is a one-to-one correspondence between
third result, displayed by the small-dashed line in Fig. 9, isand the dimensionless variable, via the transcendental
the optimal four-pairS function with which the fit to the equation,
original data gave a?/F value of 1.20. It is noticeably

different from the other two displayed having a broader well-

like character to the modulus of ti&function and a slightly

larger phase for the most important partial waves. The po-

tentials obtained by inversion of the&functions will be  To apply the WKB fixed energy inversion scheme, it is par-
different. For completeness we give the starting and finaticularly useful to recast théfixed energy phase shift func-
four-pair S function parameter values in Table VI. tion in the form

V(p)=E , €)

1—exp —

Q(o))
E

Q(U))

2E (10

p=Kkr=agex
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N

1
S K= 2 [IN(\?=BY)—-In(\*=ad)], (1D
21 p=1 <
o
for which the S function has the rational form given previ- =
ously in Eq.(5), as then the quasipotential is analytic. Ex- >
plicitly that quasipotential is
N
2E7 1 1 <
o)= ———=+2iE - . (12 (]
R A N N 2
The same rational function form for tt&function can be =

used to effect a fully quantal inversion of the data by one of

the set of LF methods. In the simplest of those schemes, the
so-called rational scheme, the inversion potential is derived
by the iteration

FIG. 10. The realtop) and imaginary(bottom) components of
V(1) =Vp_1(r)+AM(r), (13) inversion potentials found by LF inversion of original data sets. The
results displayed on the left are those found by starting withSthe
where, withVy(r) being the potential associated with the functions found from the eight- and four-pole—zero-pair fits to the
chosen referencs function, Sy(\), the final inversion po- 288.6 MeV 12C-12C scattering datésolid and short-dashed curves,
tential is Vy(r). For each pole-zero pair in thd set, the respectively and from that(eight-pole—zero-pajrfit to the associ-
increment is given in terms of the Jost solutions from theateéd GCV data sétong-dashed curvesOn the right are shown the

o ; 16(_ 16, ;
interaction of the preceding iteraté,—)(r), by potentials for=°0--"0 scattering at 350 MeV.

tive interactions and are shallow in comparison to the phe-
) , (19 nomenological and semimicroscopic optical model potentials
usually assumed for the heavy ion collisions. But their use in
Schralinger equations leads to relative motion wave func-

Ay =2 g2 d r
P T L i +L ()

where the logarithmic derivatives are tions with asymptotic properties giving tt&functions(and
(d/dr)f(i>(r) so fits to measured datwith which we started. The charac-
L=+ A ) (15) ter of these inversion potentials are not unphysical as
A fii)(r) smooth, large wavelength oscillatory behavior in local effec-

tive interactions may simply be a reflection of true nonlocal-
But there is a restriction for stable solutions that the polesty in the scattering process. They are different in detail from
and zeros of thes function must lie in the first and fourth the result in Ref[5]. Fully microscopic model calculations
quadrants of the complex plane. In finding optimal fits to  of (proton-nucleusoptical interaction$19] also yield effec-
scattering data, that constraint has been too severe in thie local interactions with long wavelength oscillations; al-
past. But extension of this scheme to allow a class of nonrapeit with much smaller amplitude. Two other inversion po-
tional S functions, as well as to “mixed” nonrational- tentials for'%C-1°C scattering at 288.6 MeV are displayed in
rational forms, has made the schemes more applicable iRig. 10. Those results, shown therein by the long- and short-
actual cases. Essentially then the “wrong” pole-zero ele-dashed curves, respectively, are the inversion potentials we
ments in a rational form of th8 function that are needed for have obtained with théeight-paij fits to the GCV data set
a quality fit to any data set, can be structured to form a nevand with the optimal four-pair fit to the original data. Clearly
“reference” function and the inversion potential found againthe eight-pair(GCV) result is similar to the potential found
by iteration. Such is the case for ti&functions we have from inversion of the original data set and the four-pair result
found in the analyses of the data sets considered herein. is not. The four-pair interaction is overall shorter ranged,

The 200 MeV p-'2C scattering data have been studiedmore refractive but similarly absorptive to the others.

previously to specify inversion potentials from use of the
(quanta) LF methods[14]. The S functions we have found V1. WKB ERROR ANALYSIS OF THE POTENTIALS
with this study give very similar results and so no “new”
inversion potential is shown for this reaction. Therefore, we A full account of the WKB approximation method of er-
consider just the'®0-%%0 and 'C-'C interactions further. ror analyses of calculated phase shifsfgnctiong and de-
The inversion potentials fot0-%%0 at 350 MeV and*?C-  rived quantities has been publishgl?,18, so only the es-
12C at 288.6 MeV are displayed in Fig. 10 and in the left-sential features are given here. We consider first an
and right-hand sides, respectively, and by the solid curvegassessment of errors in specifying the phase shifts. This re-
They are displayed from the radius of 2 fm as that is thequires evaluation of the error matrix defined from the cova-
smallest radius for which the actual data show sensitivityriance of the parameters used to specify those phase shifts. If
when the potentials are used in Safirger equations with a the parameters collectively are designatedaby{a,}, the
“notch test” procedure used in their solutions. In Fig. 10 the €rror matrix is given by the matrix elements
real and imaginary parts of the interactions are given in the 1
top and bottom segments, respectively. Both are net absorp- €nm=(AazAam) = Bun(X/F). (16)
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ThereAa,=a,—a,, where{a,} is the set of parameters for

which ~ 0
>
1 M lo-o(6,0)] 2 -10
X2/F: 2 [O-i O-( i!a)] (17) ~— |
M—4N & (Agy)? 2 5
o
is a minimum. Note that we chood¢ to be the number of & -30
pole-zero pairs,{(@;, B}, j=1,2,...,N), so that with four > I
distinct components to each pole-zero pair, the parameter set Ty J -
is a vector of length M. The inverse of the matrix element 2 4 6 8 12
weighted by they?/F in Eq. (16) is given by r (fm)
Bam=(M—4N) apy, (18) FIG. 11. The inversion potentials f3fC-1%C scattering at 288.8

MeV (left pane) and for 350 MeV®0-%0 scatteringright pane)
found by the LF full quantal inversion methathe solid curve
5 9 gives the real part and the dashed curve gives the imaginary part
o :E I°(x°IF) (19) and by the WKB approximatiofisolid circles at select scattering
nmo2 dadan 5 angles. The “error” bars on the WKB results give the approximate
67% confidence bands described in the text.

where

The data set has been assumed to comtaentries,s; , each

having a statistical error dio; . [14], in these cases the confidence intervals on the inversion
The errors in any specified quantit function, potential, potentials are also of the order of a few percent at most radii.

etc) can be obtained from the appropriate covariance whicfThese confidence limits are small at all radii reflecting a very

for the case of the LEWKB) inversion potential gives tight band of &67%) probability content. Note, however,
N that for the Y2C-1°C scattering, the complex WKB method
5 AV(r) aV(r) itself becomes inaccurate at about 4 fm.
[AV(r)] _nzz Ja.  oda. | Enmo (20 It is to be stressed that the above results only pertain to
" mla the family of rational scattering functions used to fit the ex-
where perimental data. Ambiguities that may be generated with
other classes of potentials are not explicitly considered, and
aV(r Q(s) in fact may give confidence levels from error analyses much
7a, =exg —Q(s)/E] oa " n=12,... AN in excess of those found herein. Conventional optical model

21) approaches should be appraised with these means in future
studies to delineate the associated parameter values and the
when Q(s) is the quasipotential defined by E¢B) and confidence limits one should place upon the resultant poten-

s=o/k. tial.
The quality of both the'®0-1%0 and *2C-12C scattering
data and of the fits we have found to them allows us to use VIl. CONCLUSIONS

the theory outlined above to make &VKB) error analysis

of the (WKB) LF inversion potentials. For those radii where ~ Analyses of both unknown and known systematic error
the WKB approximation result agrees with the fully quantaleffects on three differential cross-section data sets have been
inversion interaction then we ascribe the same erfooafi-  made. All three data sets used are significant ones insofar as
dence limit$ to the quantal potential. their relevance in theoretical studies of optical model inter-

This approach has been used in the recent fiEgjtto  actions. The effects of unknown systematic errors have been
analyze data from electron-He atom scattering. The resultg@ssessed by applying generalized cross validation to the data
gave “confidence” limits for the potentials at each and everysets. For those cases with which angular resolution of the
radial point and are to be interpreted as follows. Should andata has been given, that form of known systematic error has
other potential exist which fits the cross-section data with thédeen considered by a simple data smoothing technique. In
samey?/F, then there is~67% probability that it will lie  the case ofp-2C scattering at 200 MeV a statistically sig-
within the confidence bands we show. nificant fit to the data of?/F=0.99 remained virtually un-

In Fig. 11 the WKB and fully quantal inversion potentials changed once GCV was applied to the data. We therefore
are shown for the'®0-%0 and '°C-1°C scatterings on the conclude that this data was priori optimally smooth. For
right- and left-hand sides. The latter are the results obtainethe '°0-°0 data at 300 MeV a GCV analysis reduced
from our (four-pole—zero-pair fitanalyses. In this figure, the x*/F from 10.5 to 7.9, still of low statistical significance.
solid curves represent the real parts of thély quantal in-  However, an angle smoothing procedure taking into account
version potentials, while the dashed curves denote the assdhe quoted finite angular resolution reduced this to
ciated imaginary parts. The WKB potentials, with associatedy’’F=0.98. A subsequent GCV analysis of this angle
errors, are plotted for select radii as solid circles; the “errorsmoothed data set showed that it was optimally smooth. In
bars” being the confidence intervals found for each point. Ashe case of'’C-12C at 288.6 MeV, an initially good fit of
with the results found previously with the inversion potential x?/F =1.07 became 0.86 upon application of the GCV pro-
from analyses of the 200 MeV protoliC scattering data cedure, once again indicating the smooth nature of this data
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in the first place. Angle smoothing gave the large effect oflow, net weakly absorptive and have long wavelength
overdetermination. They?/F was reduced to 0.44. The oscillations. Such behavior has been noted in fully micro-
smoothing process thereby allowed us to look for simplerscopic calculations of 200 MeV proton-carbon scattering po-
(fewer parameter valug$ functions and still retain a statis- tentials although the variations are not so pronounced. The
tically significant fit to the data. results are stable and given the quality of fit to the data set by

The S functions used to fit the scattering data, be it theeach underlyingS function, error analyses of the inversion
original, GCV, or angle adjusted set was of the form thatpotentials give quite narrow confidence levels at physically
could be used in a fixed energy inversion scheme of thémportant radii. Of course, while another potential with a
Lipperheide-Fiedeldey type. Stable smooth complex interacsimilar value of y%/F has a~67% probability of lying
tions were thereby obtained and they demonstrate a charagithin the displayed “error” bars, it is a potential of the
teristic behavior. These local effective interactions are shalsame family(class.
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