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S-matrix analysis of heavy-ion elastic scattering
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A procedure to minimizec? is described which explores the fact that the distribution is of the fourth
degree in the&S-matrix elements. The fact that all three roots of the scale parameter for the minimyfrirof
its gradient direction are algebraically determined gives the present procedure some global features that pre-
vious methods did not contemplate. The automatic search procedure also preserves the unitary bound constraint
of the S-matrix at every step. When the search in the gradient direction slows down, the procedure reverts to
the traditional quadratic approximation with zero-order regularization. The method is applied to the elastic
scattering of the'C+ %0 reaction near the Coulomb barri¢80556-28186)02008-(

PACS numbds): 24.10-i, 25.70.Bc

. INTRODUCTION transformationS, = exp(,,+i72,). The present procedure
turns out to be stable when analyzing, without external ma-

The analysis of the elastic scattering channel of heavy-iomipulation, 16 elastic angular distributions of thé&C+ 60
collisions near the Coulomb barrier has been extensivelgystem.
done with the help of the Woods-Sax0WsS) optical poten-
tial [1]. Much of what we learned came from these analyses
which give a somewhat structure less behavior of the colli-
sion. Another approach to the analysis of these collisions, the Wwe write the scattering amplitude as
algebraic potential based on the (1) symmetry, has been
proposed by Alhassid and lache]®)]. In actual applications, _

. S : f(0)=1(6)+fn(0),
this approach showed properties similar to the WS potential
[3,4] and, at this moment, it is not clear whether the alge-
braic approach has a physical content different from the wavhere
optical potential. However, extensive measurements and
analysis of light heavy-ion systemi§—9] have shown reso- ~ exd —in Insirf6/2)]
nances that cannot be easily explained in the context of the fe(0)=—7 exp2ioo)—— Si(612)
WS optical potential. These resonances of total widths of the
order of 300 ke\{ pr.eclude s.uch a simple .explanatlon. an('];ls the Coulomb amplitude and
suggest that a rich intermediate structure is present in the
collision.

An alternative way out of this scheme, at least for spinless
collisions, is to usé&-matrix or phase shift analysis. Even in
this case, a systematic study of the intermediate structure was
made difficult by the lack of a reliable automatic, stable. .
search for thés-matrix elements for the elastic channel. It is '° the nucle_ar part of the total amplitude. The purpose of the
the absence of stability that made unreliable the phase Ship(gocedure ,,'S to Sear9h f9r the _“”k”F"’_V”_ matrix 2e|ements
analysis in heavy-ion collisions. Very frequently, starting the> » ffom /=0 up t0/"=/"y, which minimize they* de-
search from different initial conditions, different sets for the fined by
S matrix were found which had different physical contents.

In this paper, we present a procedure for determining the N [o(6;)— a®(6;)]?

S-matrix elements for spinless collisions, which converges X2=2 ]Az(e-) =

automatically to a physical solution even when 25 angular =1 J

momentum channels are simultaneously searched. The pro-

cedure is based on the simple observation thatythéunc- ~ where ¢°(¢;) are the experimental cross sections and

tion for the angular distribution is a fourth degree polynomialA(#;) the experimental errors at the center of mass angle

in the S-matrix elements. In contrast, the procedure of@;. The search proceeds first in the direction of the gradient

Krappe and Rossnefl0] considers the highly nonlinear in the parameter space. The choice/4f,, depends on the
size of the system and the energy under consideration, and
for angular momenta” above this value th&-matrix ele-

“Present Address: GANIL. B. P. 5027, 14021-Caen, Cedexments are assumed to be unity. We wigk=x,+iy, and
France. set

II. THE PROCEDURE

1 ee]
()= 5 2 27+ DSUS—DP(cos) (1)
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where S" is the previous and) the new matrix element
shifted in the direction of the gradient gf.
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We write
/max
S =S"+a(u,+iv,), 2) D= > (ui+v?). (6)

’ min

The values ofa for which x? is an extremum are given by
the roots of the cubic equation:

Substituting the previous equation in the expression for

x> we obtain a polynomial of the fourth degree in the scale

factor a:
x’=Aa*+Ba’+Ca’+ Da—i—Xg,

where the coefficientd, B, C, andD are easily obtained in
analytical form. We set

1
b(0)= H;L (2/+1)S(u,+iv /)P (cosh),

and we have

4Aa®+3Ba’+2Ca+D=0. (7)
The values ofA andD are positive which indicates that the
cubic equation always has at least one negative root which
corresponds to the local minimum in the negative direction
of the gradient. Quite often the equation has three real roots
indicating the existence of a second minimum. Our search
procedure always considers the possibility of branching to
this second minimum whenever the valueydfat the mini-
mum is smaller than the value at the local minimum. Figure
1 exhibits the value ofy? as a function of Re$,) for
/=4 at a typical situation of the analysis of tHéC+ %0
angular distribution. The experimental points were actually,
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TABLE I. A summary of the 16 energies analyzed. The labels TABLE Il. The parameters of the four Regge poles observed in

of the columns are explained in the text. the 23.14 MeV angular distribution.

Ec.m (MeV) / max No N X2 /o r/n2 A

8.549 9 42 22 20 13.50 2.25 3.00

9.064 9 43 23 13 6.50 0.93 1.51

10.010 12 43 17 14 2.70 1.00 1.50

11.040 13 43 15 12 0.00 0.75 1.20

11.980 13 44 16 16

13.013 14 41 11 13

14.042 15 45 13 14 case we Wl’ite S(n) = S}exp@ﬂ/) W|th ﬁ/ = Clo(l) /X}
14.984 16 44 10 41 —u,y,), which corresponds to a displacement on the unitary
17.280 19 87 47 so circle. o

19.400 19 68 28 5.8 The search along the gradient directions stops whenever
20.790 20 87 45 34 the value of the gradient is sufficiently small to guarantee
21.860 21 88 a4 19 that, in Eq.(7), the linear approximation is vqlid. When_this_
23140 23 103 55 55 happens, the procedure reverts to a search in every direction

of the parameter space by changing the above method to the

gg'gzg ;i gg gg 3;3 standard on¢l11] based on the quadratic approximation for
: x2. To avoid instability due to the large number of param-
26.740 25 87 35 4.9

eters involved, the zero-order regularizatidr2] was intro-
duced.

in this case, simulated by an optical potential. The errors in
the equation foi® were assumed constant and equal to 10%.

One clearly observes, within the intervdl—1,1] for We assumel to be the intervall/ min./ mad and set
Re(S,), the presence of two minima faf?. This simple case 1=/ min—1 and/ =/ ax—/ mint 1. Changing to the nota-
illustrates that a search based only in the local gradient dition a,=x,, , anda;,,. =Y., we write

rection, depending on where the search starts, finds the false ! 2 !

minimum. In our procedure, for the case illustrated, it finds s 2 1

the true minimum in a single iteration. In this figure we also XP=xo+ 2 Bida+ EZ AimdaAan,

have shown the estimated err@;=0.02 for Re§,) as the ' "

width of curve calculated wherg? is one unit above its ith

minimum value.

Ill. THE QUADRATIC APPROXIMATION

Before making the choice at which minimum to branch to, B — ax*?
we impose the unitary bound for ea&h. oy
The equatiorS)"+ «(u,+iv )| =1 gives -
X
QAW +03)+2y,a—(1-]8/)=0 ® Aim= Gaoan

with y,=u,x’+v,y. . The two roots of this equation are The new values of the parameters are obtained shifting the
- ’ old values by the following amount:

VNS

wom W+ o2 = Aay==2 (Aim*\Oim) B,
" Y, NV (WH+v) (1S s where\ is the regularizing parametgt2]. We set
a,=— =Y.
4 uZ+uv? _TrA
. . . . S 2y
The unitary bound on eac8, is easily imposed by writing
the new values aS)"+ a(u,+iv ) with and the search iterates until the variatiom@fbetween two
successive iterations is less than 0.1%. At this point the er-
a,=a, fora,<a, rors da; and the correlation coefficients,, are calculated by
=a, fora,<a,<a’ da;=A; 1,
=a) fora,=a). ALl
Pim

. . . " sa;0ay,
The case whem,= a,=0 needs consideration. This occurs L

whenever theS, is on the unitary circle|S,|=1) and the The analytical expressions f@& andA;, are the following
gradient is tangent to this circley¢=0). In this particular (1<i,m</):
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FIG. 2. The angular distribution fits for six
analyzed energies.
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IV. THE '%C+'%0 ELASTIC CHANNEL MeV, 14.984 Me\, by Villari [13] (forward anglel and

, , .Charles[14] (backward anglesin the range[17.28 MeV,
The procedure was applied to the analysis of 16 elasti o ;
angular distributions measured in tH&C+ %0 collision. 21.86 MeV] and Villari [13] in the rangg 23.14 MeV, 26.74

The data were obtained by Frich [8] in the range8.549 MeV], with all energies referred to the center of mass sys-
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tem. For each one of the analyzed distributions we startedircle the origin says that their partial widths are larger than
from an S matrix generated by the Woods-Saxon potentialhalf of the corresponding total widths, characterizing a
found by Charleq14], that describes mainly the forward strong coupling to the elastic chanrj&b]. The pole param-
diffractive part of the distributions. eters were easily obtained from ti&matrix and Table II
Table | gives a summary of our results. The columns givegives the position ), the half total width [/2) and the
the energy of the angular distribution in the center of masgartial width (A) for each pole. Though the four poles are
system E..), the maximum value of/ considered easily determined at 23.14 MeV, the neighboring distribution
(/' max, the number of experimental points measurdg)( shows that at least one pole has moved drastically away from
the number of degrees of freedom of tiyé distribution  the origins of the diagrams making it difficult to follow the
(N), and the reduced value gf after the analysis2/N). movements of the poles. This results because the energy in-
Once the initial set for th& matrix and the value of',,,x  tervals between the neighboring distributions are too large
were chosen, the search of the final solution proceedef’>1 MeV) in comparison to the widths of possible reso-
without any intermediate manipulation. Figure 2 presents th@ances in this energy region. The rapid variation of the dia-
fits obtained for six angular distributions at grams, from one to the next neighboring energy, indicates
E.n=8.55,9.06, 17.28, 23.14, 24.49, and 26.74 MeV. Wethat the structures are of intermediate character and not
observe that even in the worst case,Et,=17.28 MeV  single-particle or potential resonances, whose widths are ex-
with x?=50, the fit is excellent. The apparently large valuepected to be larger than 1 MeV. In any case, the presence of
of x? reflects the fact that we have included only the statisa few poles simultaneously at quite a few analyzed energies
tical errors (£1%), which underestimate the total errors of is a strong evidence of structures but of intermediate charac-
the measured cross sectidis]. The richness of structures ter. Such structures were already observed by Wilsehat.
in the angular distributions is reflected in the patterns ob{7]. Measuring angular distributions at steps less than 100
served in the Argand diagrams of tiSematrix. A full dis-  keV, from 19.50 MeV to 21.00 MeV in the c.m. system,
cussion of all 16 distributions analyzed is beyond this papethese authors identified one resonance of total width equal to
but we consider here three features that were conspicuousB00+ 100 keV at 19.8 0.1 MeV. At lower energies, Fte
seen. lich et al.[8] were able to identify eight resonances between
Figure 3 exhibits two Argand diagrams f¢Fig. 3@] 8.5 MeV and 15 MeV, all of them with widths less than or
21.86 MeV andFig. 3(b)] 23.14 MeV as a function of the equal to 320 keV.
angular momentum, corresponding to two consecutive ener- In Fig. 4 the absolute value &, is plotted as a function
gies analyzed. The errors are also indicated in the figuresf / at the same six energies as in Fig. 2. We observe that at
We observe that the errors decrease/asicreases as ex- E.n=24.49 and 26.74 MeV the errors are very large for low
pected. Figure @), in particular, exhibits a pattern of four / and that nothing can be concluded about the interaction. In
loops around the origin which is the signature of the presspite of the large errors, th& matrix defined in Sec. Ill is
ence of four Regge poldd5]. The fact that the loops en- not singular. The zigzag pattern of the points at
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E.m=26.74 MeV for/=15 is a signature for the presence sulting in large errors were precisely those that lacked ex-
of an exchange component in the nuclear interaction, possperimental points for large angle®(,=160°). Wecon-

bly due the exchange af particles between target and pro- clude that the stability of the search strongly depends on the
jectile. Writing completeness of the angular distributions.

S, =S0+(-1)S), V. CONCLUSIONS

the direct &) and the Majoranag)) components of the The procedure developed is able to search automatically
S matrix can easily be determined. Figureé)5and §c)  the real and imaginary parts of the elassienatrix elements
exhibit this decomposition and we observe that the direcand its errors without violating the unitary bound. Sixteen
part of the interaction is purely absorptive while the Majo- angular distributions of the systefiC+ %0 were analyzed
rana component exhibits, possibly, one Regge pole. Thignd Regge poles and Majorana exchange components were
clearly observed pattern could not be appreciated if we hadlentified in theS matrices.
plotted the two components together as it is shown in Fig. We hope that the method presented will stimulate the
5@a). measurements of the elastic channels for heavy-ion systems
One question that is usually raised with respect to suclin a systematic way, especially in the region of importance
searches is to what extent the set of values obtained for thfer astrophysics, with small energy steps to map, all the pos-
S matrix is stable. To shed some light on this question wesible mechanisms involved in a given energy resolution.
investigated the reason why some angular distributions yield
small errors for theS matrix while others yield very large
ones. Examining all 16 distributions we found that those re- Partial support was provided by CAPES.
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