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S-matrix analysis of heavy-ion elastic scattering
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A procedure to minimizex2 is described which explores the fact that thex2 distribution is of the fourth
degree in theS-matrix elements. The fact that all three roots of the scale parameter for the minimum ofx2 in
its gradient direction are algebraically determined gives the present procedure some global features t
vious methods did not contemplate. The automatic search procedure also preserves the unitary bound c
of theS-matrix at every step. When the search in the gradient direction slows down, the procedure rev
the traditional quadratic approximation with zero-order regularization. The method is applied to the e
scattering of the12C116O reaction near the Coulomb barrier.@S0556-2813~96!02008-0#

PACS number~s!: 24.10.2i, 25.70.Bc
a-

he
ts

d
le
nt

nd
I. INTRODUCTION

The analysis of the elastic scattering channel of heavy-
collisions near the Coulomb barrier has been extensiv
done with the help of the Woods-Saxon~WS! optical poten-
tial @1#. Much of what we learned came from these analy
which give a somewhat structure less behavior of the co
sion. Another approach to the analysis of these collisions,
algebraic potential based on the SO~3,1! symmetry, has been
proposed by Alhassid and Iachello@2#. In actual applications,
this approach showed properties similar to the WS poten
@3,4# and, at this moment, it is not clear whether the alg
braic approach has a physical content different from the W
optical potential. However, extensive measurements
analysis of light heavy-ion systems@5–9# have shown reso-
nances that cannot be easily explained in the context of
WS optical potential. These resonances of total widths of
order of 300 keV preclude such a simple explanation a
suggest that a rich intermediate structure is present in
collision.

An alternative way out of this scheme, at least for spinle
collisions, is to useS-matrix or phase shift analysis. Even i
this case, a systematic study of the intermediate structure
made difficult by the lack of a reliable automatic, stab
search for theS-matrix elements for the elastic channel. It
the absence of stability that made unreliable the phase s
analysis in heavy-ion collisions. Very frequently, starting t
search from different initial conditions, different sets for th
Smatrix were found which had different physical content

In this paper, we present a procedure for determining
S-matrix elements for spinless collisions, which converg
automatically to a physical solution even when 25 angu
momentum channels are simultaneously searched. The
cedure is based on the simple observation that thex2 func-
tion for the angular distribution is a fourth degree polynom
in the S-matrix elements. In contrast, the procedure
Krappe and Rossner@10# considers the highly nonlinea
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transformationSl 5exp(hl 11 ih l 2
2 ). The present procedure

turns out to be stable when analyzing, without external m
nipulation, 16 elastic angular distributions of the12C116O
system.

II. THE PROCEDURE

We write the scattering amplitude as

f ~u!5 f c~u!1 f n~u!,

where

f c~u!52h exp~2is0!
exp@2 ih lnsin2~u/2!#

2k sin2~u/2!

is the Coulomb amplitude and

f n~u!5
1

2ik(
l 50

`

~2l 11!Sl
c ~Sl

n21!Pl ~cosu! ~1!

is the nuclear part of the total amplitude. The purpose of t
procedure is to search for the unknown matrix elemen
Sl
n , from l 50 up to l 5l max which minimize thex2 de-
fined by

x25(
j51

N
@s~u j !2se~u j !#

2

D2~u j !
,

where se(u j ) are the experimental cross sections an
D(u j ) the experimental errors at the center of mass ang
u j . The search proceeds first in the direction of the gradie
in the parameter space. The choice ofl max depends on the
size of the system and the energy under consideration, a
for angular momental above this value theS-matrix ele-
ments are assumed to be unity. We writeSl

n5xl 1 iy l and
set

ex,
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FIG. 1. x2 as function of Re(S4) for a simu-
lated case. It also exhibitss4, the estimated erro
for Re(S4).
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2~2l 11!

k (
j51

N
s~u j !2se~u j !

D2~u j !
Pl ~cosuj!Im@ f * ~u j !Sl

c #,

v l 5
]x2

]yl
5
2~2l 11!

k (
j51

N
s~u j !2se~u j !

D2~u j !

3Pl ~cosu j ! Re@ f * ~u j !Sl
~c!#.

We write

Sl
n5Sl8

n1a~ul 1 iv l !, ~2!

whereSl8
n is the previous andSl

n the new matrix elemen
shifted in the direction of the gradient ofx2.

Substituting the previous equation in the expression
x2 we obtain a polynomial of the fourth degree in the sc
factora:

x25Aa41Ba31Ca21Da1x0
2 ,

where the coefficientsA, B, C, andD are easily obtained in
analytical form. We set

f~u!5
1

2ik (
l PL

~2l 11!Sl
c ~ul 1 iv l !Pl ~cosu!,

and we have
for
le

A5(
j51

N uf~u j !u4

D2~u j !
, ~3!

B54(
j51

N uf~u j !u2

D2~u j !
Re@ f ~u j !f* ~u j !#, ~4!

C52(
j51

N uf~u j !u2

D2~u j !
@s~u j !2se~u j !#

14(
j51

N
$Re@ f ~u j !f* ~u j !#%

2

D2~u j !
, ~5!

D5 (
l 5l min

l max

~ul
21v l

2 !. ~6!

The values ofa for which x2 is an extremum are given b
the roots of the cubic equation:

4Aa313Ba212Ca1D50. ~7!

The values ofA andD are positive which indicates that th
cubic equation always has at least one negative root wh
corresponds to the local minimum in the negative direct
of the gradient. Quite often the equation has three real ro
indicating the existence of a second minimum. Our sea
procedure always considers the possibility of branching
this second minimum whenever the value ofx2 at the mini-
mum is smaller than the value at the local minimum. Figu
1 exhibits the value ofx2 as a function of Re(Sl ) for
l 54 at a typical situation of the analysis of the12C116O
angular distribution. The experimental points were actua
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786 54CHISTÉ, LICHTENTHÄLER, VILLARI, AND GOMES
in this case, simulated by an optical potential. The errors
the equation forx2 were assumed constant and equal to 10
One clearly observes, within the interval@21,1# for
Re(S4), the presence of two minima forx

2. This simple case
illustrates that a search based only in the local gradient
rection, depending on where the search starts, finds the f
minimum. In our procedure, for the case illustrated, it fin
the true minimum in a single iteration. In this figure we al
have shown the estimated errors450.02 for Re(S4) as the
width of curve calculated wherex2 is one unit above its
minimum value.

Before making the choice at which minimum to branch
we impose the unitary bound for eachSl .

The equationuSl8
n1a(ul 1 iv l )u51 gives

a2~ul
21v l

2 !12g l a2~12uSl8
nu2!50 ~8!

with g l 5ul xl8 1v l yl8 . The two roots of this equation are

a l8 52
g l 1Ag l

21~ul
21v l

2 !~12uSl8
nu2!

ul
21v l

2 <0,

a l9 52
g l 2Ag l

21~ul
21v l

2 !~12uSl8
nu2!

ul
21v l

2 >0.

The unitary bound on eachSl is easily imposed by writing
the new values asSl8

n1a l (ul 1 iv l ) with

a l 5a l8 for a l ,a l8

5a l for a l8 <a l <a l9

5a l9 for a l >a l9 .

The case whena l8 5a l9 50 needs consideration. This occu
whenever theSl is on the unitary circle (uSl8 u51) and the
gradient is tangent to this circle (g l 50). In this particular

TABLE I. A summary of the 16 energies analyzed. The lab
of the columns are explained in the text.

Ec.m. ~MeV! l max N0 N x2

8.549 9 42 22 20
9.064 9 43 23 13
10.010 12 43 17 14
11.040 13 43 15 12
11.980 13 44 16 16
13.013 14 41 11 13
14.042 15 45 13 14
14.984 16 44 10 41
17.280 19 87 47 50
19.400 19 68 28 5.8
20.790 20 87 45 34
21.860 21 88 44 19
23.140 23 103 55 5.5
24.490 24 84 34 3.5
25.500 24 88 38 10
26.740 25 87 35 4.9
in
.

di-
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s
o

o,

s

case we write Sl
(n)5Sl8exp(ibl ) with b l 5a0(v l xl8

2ul yl8 ), which corresponds to a displacement on the unit
circle.

The search along the gradient directions stops whene
the value of the gradient is sufficiently small to guaran
that, in Eq.~7!, the linear approximation is valid. When th
happens, the procedure reverts to a search in every direc
of the parameter space by changing the above method to
standard one@11# based on the quadratic approximation f
x2. To avoid instability due to the large number of param
eters involved, the zero-order regularization@12# was intro-
duced.

III. THE QUADRATIC APPROXIMATION

We assumeL to be the interval@ l min ,l max# and set
l 15l min21 andl 25l max2l min11. Changing to the nota
tion ai5xi1l 1 andai1l 25yi1l 1 we write

x25x0
21(

i
BiDai1

1

2(im AimDaiDam

with

Bi5
]x2

]ai
,

Aim5
]2x2

]ai]am
.

The new values of the parameters are obtained shifting
old values by the following amount:

Dai52(
m

~Aim1ld im!21Bm ,

wherel is the regularizing parameter@12#. We set

l5
TrA

2l 2
,

and the search iterates until the variation ofx2 between two
successive iterations is less than 0.1%. At this point the
rorsdai and the correlation coefficientsr im are calculated by

dai5AAii
21,

r im5
Aim

21

daidam
.

The analytical expressions forBi andAim are the following
(1< i ,m<l 2):

ls TABLE II. The parameters of the four Regge poles observed
the 23.14 MeV angular distribution.

l 0 G/2 D

13.50 2.25 3.00
6.50 0.93 1.51
2.70 1.00 1.50
0.00 0.75 1.20
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Bi5
2

k
@2~ i1l 1!11#(

j

N
s~u j !2se~u j !

D2~u j !
Pi1l 1

~u j !Im@~ f * ~u j !Si1l 1
c #,

Bi1l 2
5
2

k
@2~ i1l 1!11#(

j

N
s~u j !2se~u j !

D2~u j !
Pi1l 1

~u j !Re@ f * ~u j !Si1l 1
c #,

Aim5
1

2k2
@2~ i1l 1!11#@2~m1l 1!11#(

j

N

ReS 2s~u j !2se~u j !

D2~u j !
Si1l 1
c Sm1l 1

c* 2
f j*

2

D2~u j !
Si1l 1
c Sm1l 1

c DPi1l 1
~u j !Pm1l 1

~u j !,

Ai1l 2 ,m1l 2
5

1

2k2
@2~ i1l 1!11#@2~m1l 1!11#

3(
j

N

ReS 2s~u j !2se~u j !

D2~u j !
Si1l 1
c Sm1l 1

c* 1
f j*

2

D2~u j !
Si1l 1
c Sm1l 1

c DPi1l 1
~u j !Pm1l 1

~u j !,

Ai ,m1l 2
5

1

2k2
@2~ i1l 1!11#@2~m1l 1!11#

3(
j

N

ImS 2s~u j !2se~u j !

D2~u j !
Si1l 1
c Sm1l 1

c* 1
f j*

2

D2~u j !
Si1l 1
c Sm1l 1

c DPi1l 1
~u j !Pm1l 1

~u j !,

Ai1l 2 ,m
5

1

2k2
@2~ i1l 1!11#@2~m1l 1!11#

3(
j

N

ImS 22s~u j !1se~u j !

D2~u j !
Si1l 1
c Sm1l 1

c* 1
f j*

2

D2~u j !
Si1l 1
c Sm1l 1

c DPi1l 1
~u j !Pm1l 1

~u j !.

FIG. 2. The angular distribution fits for six
analyzed energies.
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FIG. 3. The Argand diagrams for two con-
secutive analyzed energies as indicated. The so
lines are a guide to the eyes. The errors of the re
and imaginary parts of theSmatrix are indicated.
ys-
IV. THE 12C116O ELASTIC CHANNEL

The procedure was applied to the analysis of 16 elas
angular distributions measured in the12C116O collision.
The data were obtained by Fro¨hlich @8# in the range@8.549
tic

MeV, 14.984 MeV#, by Villari @13# ~forward angles! and
Charles@14# ~backward angles! in the range@17.28 MeV,
21.86 MeV# and Villari @13# in the range@ 23.14 MeV, 26.74
MeV#, with all energies referred to the center of mass s
n-
cal
FIG. 4. The absolute value of theSmatrix as
a function of the angular momentum for six e
ergies. The errors are indicated by the verti
bars.
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FIG. 5. The Argand diagrams for 15<l <30
of ~a! the totalSmatrix, ~b! Majorana, and the~c!
direct components of theSmatrix for the energy
indicated. The solid lines are a guide to the ey
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at
tem. For each one of the analyzed distributions we sta
from anS matrix generated by the Woods-Saxon poten
found by Charles@14#, that describes mainly the forwar
diffractive part of the distributions.

Table I gives a summary of our results. The columns g
the energy of the angular distribution in the center of m
system (Ec.m.), the maximum value of l considered
(l max), the number of experimental points measured (N0),
the number of degrees of freedom of thex2 distribution
(N), and the reduced value ofx2 after the analysis (x2/N).
Once the initial set for theS matrix and the value ofl max
were chosen, the search of the final solution procee
without any intermediate manipulation. Figure 2 presents
fits obtained for six angular distributions a
Ec.m.58.55, 9.06, 17.28, 23.14, 24.49, and 26.74 MeV. W
observe that even in the worst case, atEc.m.517.28 MeV
with x2550, the fit is excellent. The apparently large val
of x2 reflects the fact that we have included only the sta
tical errors (,1%), which underestimate the total errors
the measured cross sections@13#. The richness of structure
in the angular distributions is reflected in the patterns
served in the Argand diagrams of theS matrix. A full dis-
cussion of all 16 distributions analyzed is beyond this pa
but we consider here three features that were conspicuo
seen.

Figure 3 exhibits two Argand diagrams for@Fig. 3~a!#
21.86 MeV and@Fig. 3~b!# 23.14 MeV as a function of the
angular momentum, corresponding to two consecutive e
gies analyzed. The errors are also indicated in the figu
We observe that the errors decrease asl increases as ex
pected. Figure 3~b!, in particular, exhibits a pattern of fou
loops around the origin which is the signature of the pr
ence of four Regge poles@15#. The fact that the loops en
ed
al
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circle the origin says that their partial widths are larger th
half of the corresponding total widths, characterizing
strong coupling to the elastic channel@16#. The pole param-
eters were easily obtained from theS matrix and Table II
gives the position (l 0), the half total width (G/2) and the
partial width (D) for each pole. Though the four poles ar
easily determined at 23.14 MeV, the neighboring distributi
shows that at least one pole has moved drastically away f
the origins of the diagrams making it difficult to follow th
movements of the poles. This results because the energ
tervals between the neighboring distributions are too la
(.1 MeV! in comparison to the widths of possible res
nances in this energy region. The rapid variation of the d
grams, from one to the next neighboring energy, indica
that the structures are of intermediate character and
single-particle or potential resonances, whose widths are
pected to be larger than 1 MeV. In any case, the presenc
a few poles simultaneously at quite a few analyzed energ
is a strong evidence of structures but of intermediate cha
ter. Such structures were already observed by Wilschutet al.
@7#. Measuring angular distributions at steps less than 1
keV, from 19.50 MeV to 21.00 MeV in the c.m. system
these authors identified one resonance of total width equa
3006100 keV at 19.860.1 MeV. At lower energies, Fro¨h-
lich et al. @8# were able to identify eight resonances betwe
8.5 MeV and 15 MeV, all of them with widths less than o
equal to 320 keV.

In Fig. 4 the absolute value ofSl is plotted as a function
of l at the same six energies as in Fig. 2. We observe tha
Ec.m.524.49 and 26.74 MeV the errors are very large for lo
l and that nothing can be concluded about the interaction
spite of the large errors, theA matrix defined in Sec. III is
not singular. The zigzag pattern of the points
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Ec.m.526.74 MeV forl >15 is a signature for the presenc
of an exchange component in the nuclear interaction, po
bly due the exchange ofa particles between target and pr
jectile. Writing

Sl 5Sl
01~21! l Sl

m ,

the direct (Sl
0 ) and the Majorana (Sl

m) components of the
S matrix can easily be determined. Figures 5~b! and 5~c!
exhibit this decomposition and we observe that the dir
part of the interaction is purely absorptive while the Ma
rana component exhibits, possibly, one Regge pole. T
clearly observed pattern could not be appreciated if we
plotted the two components together as it is shown in F
5~a!.

One question that is usually raised with respect to s
searches is to what extent the set of values obtained for
S matrix is stable. To shed some light on this question
investigated the reason why some angular distributions y
small errors for theS matrix while others yield very large
ones. Examining all 16 distributions we found that those
e
ssi-
-

ct
-
his
ad
ig.

ch
the
e
eld

e-

sulting in large errors were precisely those that lacked e
perimental points for large angles (Qc.m.>160°). Wecon-
clude that the stability of the search strongly depends on
completeness of the angular distributions.

V. CONCLUSIONS

The procedure developed is able to search automatica
the real and imaginary parts of the elasticS-matrix elements
and its errors without violating the unitary bound. Sixtee
angular distributions of the system12C1 16O were analyzed
and Regge poles and Majorana exchange components w
identified in theSmatrices.

We hope that the method presented will stimulate t
measurements of the elastic channels for heavy-ion syste
in a systematic way, especially in the region of importan
for astrophysics, with small energy steps to map, all the po
sible mechanisms involved in a given energy resolution.

Partial support was provided by CAPES.
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