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Hadrodynamic approach to compressible nonuniform nuclear systems
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The energy-momentum tensor for isospin-symmetric semi-infinite nuclear ni&itedM) as well as for
finite spherically symmetric nuclei is evaluated in the relativistic Thomas-FeRTiF) approximation of the
o-o model. TheTs; stress tensor component of self-bound SINM vanishes identically. Our field theoretical
RTF approach reflects the elementary relaton2 /R between the bulk pressup the surface tensionr
and the radiuR of a nucleus[S0556-28136)03407-3

PACS numbefs): 21.65+f, 11.15.Kc, 21.30.Fe, 21.60n

I. INTRODUCTION
F| @ Tikdnk. (3)

In conventional nonrelativistic descriptions of nuclei the
nucleon density appears as explicit degree of freedom. ThEor a homogeneous and isotropic fluid at rest the diagonal
meson fields, however, are hidden in an effective nucleonelements of the expectation value of the stress tensor are
nucleon interaction that is represented by, e.g., a Skyrmeesqual, and the nondiagonal elements vanish. Thus, a hydro-
type energy functional of the nucleon density. Hadrodynamistatic scalar pressuig, 4 can be defined by
approacheq1] start from a relativistic treatment of the 5
nucleon motion that is coupled explicitly to meson fields. .
Thus, these fields enter as new degrees of freedom mediating Phyda= 3 21 (Tii)- (4)
the interaction between the nucleons.

If uniform infinite symmetric nuclear matteiNM) is  This simplification of the stress tensor clearly is only pos-
treated nonrelativistically, phenomenological thermodynamsible for such symmetric systems as, e.g., uniform static flu-
ics defines théthermodynamigpressurey,, at zero tempera- ids with rotational invariance.

ture by In the case of the mean-field approximatidaFA) of the
quantum hadrodynamic model QHDFL] the expectation
) d (&p) value of the stress tensor can be specified to
Pn=p E T . (1) o
T = (t,X) ¥, 0, ¢(1,X)) + 3, (X) 3, p(X)
where p is the baryon density anél is the energy density —r7MVo(X)r9VVo(X)+9W(% {[V¢(x)]2+m§¢2(x)}

depending only on the baryon density. In the case of a field

theoretical description of nuclear matter the energy density T L3+ L cd*(x) = LITVVA(x) 12+ m2V2(x

£ in addition becomes a function of the meson field poten- 3 D700+ 7 A0 = 2 {LVVoOI 1T m, Vo) ).
tials. Nevertheless, the expressitf) — now with meson 5)
fields depending on the source dengity— defines ather-

modynamig pressure for a uniform system with given For uniform systems the relevant hydrodynamic pressure

baryon density and meson fields. P hyar turns out to be identical with the thermodynamic pres-
Field theoretically, the energy densifyof a system must SU'€P (see, €.9.[1,2]). One refers to thermodynamic con-

be identified with the quantum mechanical expectation valu§Stency of the two pressure definitions in the case of the

MFA for uniform systems. It is a little paradox that if one
(Too) Of the Too component of the energy-momentum tensor .
T,, defined from the Lagrangiad=£(¢,,d,¢$,) of the  9O€S beyond MFA by, eg. a Dirac-Hartree-FOfkHF)
” # method, which improves the treatment of the fields by taking

system by into account retardation effects, the thermodynamic consis-
or tency between the two pressures is I@ste, e.g.[2]).
T,= _gw£+2 0 g, 2) Now, saturation of infinite nuclear matter means that it is
a I ¢a) self-bound without an external pressure. Which pressure, the

hydrodynamic or the thermodynamic pressure, should van-
where in the case of a QHD-1] nuclear Lagrangian ish? Also the Hugenholtz—van Hove theorem valid for van-
m,v=0,1,2,3 anda=1,2,3 with the meson fieldg); and ishing pressure has to be reconsidered in view of the fact that
¢,, and the nucleon field¢pz=¢. The entity T;,  there are two pressure definitiof8]. In fact, the trouble
(i,k=1,2,3), composed of the spatial components of thecalls for a unique adequate definition of a “real” pressure.
energy-momentum tensor, is called the stress tensor sindéhe situation ressembles the case of matter in electromag-
classically the componert; of the force on a volume with netic fields where there is in addition to the material pressure
surface elementdnX in the matter-field system is given by a pressure coming from field effects described by the elec-
the surface integral tromagnetic Maxwell stress tensor. From the standpoint of a
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unified description of fields and matter by QHD the pressure ¢ "V V. )=+ L V24 meh21+ L bdl+ Lot
definition via the stress tensor, which includes field effects (6:6".VoVo.p)=+ 2 [($1)7+Meg"]+ 5b™+ 2 cd
consistently, is more satisfying than the thermodynamic defi- — L[(VH)2+m2V2]+g,Vep

nition. The coincidence of the thermodynamic definition in zrro 0o ’

full field theory[3] and also in some approximations with the 4 ) 3
hydrodynamic definition seems to be remarkable, but not +w[@ »° (k,2)d’k, (7)
compulsory. F

The present investigation aims at working out a prelimi-
nary concept for the energy-momentum tensofimite self- ~ Wheres*(k,2)=Vk*+M**(2) andM*(2)=M —gs¢(2). A
bound nuclei. Because of the anisotropy of nonuniform sysPrime denotes derivation with respect to thecoordinate.
tems with some preferred direction, the stress tens@yimt ~ ©F(z) is the local Fermi sphere defined b®g(2)
necessarily symmetric ar(d) its diagonal elements need not ={k|lk<kg(2)}, where the local Fermi momenturk:(z)
to be equal. Thus, the concept of a scalar hydrodynamiéollows from the baryon densitg(z) via
pressure(4) breaks down, and the correct way to treat the
direction dependent mechanical pressure effects is given by

— 3
the fundamental relatio€®). In particular, the question of the p(2)= 372 ke (2). ®
consistency of hydrodynamic and thermodynar(scalay
pressure might become meaningless. The integration ove® ((z) in the last term of Eq(7) can be

As first steps to finite systems we study semi-infinitecarried through analytically and yields
isospin-symmetric nuclear matt€8INM) as well as spheri-
cally symmetric nuclei treating them in the relativistic 4
Thomas-FermiRTF) approximation to QHD-I with scalar —Sf e*(k,2)d*k=3kg(2)p(2)g(a(z)),
o mesons and vectap mesons, and disregarding Coulomb (2m)*J o)
effects. Along the surface norm@hosen to be the 3-axis or
z axig) the surface region of SINM is nonuniform, and per- M*(z)
pendicular to it of homogeneous character, differing, how- a(2)= ke(z) ©
ever, from saturated INM. This property of SINM is reflected
in its local energy-momentum tensor the form of which is\yhere the functiorg is given by
different from that for uniform isotropic infinite nuclear mat-
ter. Starting from the minimum principle for the surface ten- 1
sion we carry through pragmatic RTF calculations of SINM. g(a):f x2\x?+a’dx
The local pressures—i.e., elemdny; of the stress tensdp) 0

and the thermodynamic pressufg, depending now on the 1 a* 1ra2+1
coordinate—are evaluated. There is a characteristic differ- =-|(1+a?)%¥2+ 1+ a?— —In———| . (10
ence between the two pressures that is identified as a meson 8 2 1+a*-1

field effect depending on the gradients of the field potentials.
Thus, thermodynamic consistency is lost for the two localThere are pure meson field contributions together with terms
pressures. The hydrostatic pressiirg is found to vanish arising from the interaction of fields and matter. All these
identically in equilibrated SINM. In the surface region the relations follow in a straightforward way by specializing the
thermodynamic definition of a local pressure leads to nongeneral RTF expressions, derived in Rf], to the SINM
zero values. For finite spherical nuclei the RTF approachsystem.£(z), Eq. (7), can be decomposed into two terms,
results in a symmetrical; stress tensor with nondiagonal

elements in the Cartesian representation. _Spherlca_l coordi- E(b, " NoVb,p)=En(dNo,p)+Egl( B’ V),

nates @,¢,r) transform the stress tensor into a diagonal
form where theT,, element differs from the others. The
T, element leads to a radial force per surface area which we

show to be approximately consistent with the elementary re- .
lation for the bulk pressurp, where the “volume part’€,. at a positiorz follows from the

energy density of INM when in a local density approxima-
20 tion the INM density is replaced by the densjtyz), and
pP=—= (6) meson fields are treated correspondingly. The additional
term in Eq.(11) depends on gradients of the meson fields,
only. Thus, the INM limit of Eq.(11) is correctly obtained.
The RTF equations for theelf-boundSINM matter sys-
tem follow by minimizing the surface tension

Egl @' Vo) =3[(¢")2=(Vp)?], (11)

whereo is the surface tension ari®l the nuclear radius.

Il. ENERGY-MOMENTUM TENSOR FOR SELF-BOUND
NONUNIFORM SYSTEMS

A. Semi-infinite nuclear matter o= J_w[f(fﬁ,qﬁ',Vo,V('),p)—,up]dZ, (12
The energy density of isospin-symmetric SINM in the

RTF approximation to QHD-I with nonlinear scalar mesonwith respect to the three degrees of freedom, i.e., the two
terms is given by meson field potentialg andV,, and the baryon density,
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oe_ o aE_ o8 0 o 0E e, df 0

550 WO S X o @ g
o6&

) Jd d 4 ' ’

e ixa dzox. (Xa=¢:Vo.p)- (13 A

The Lagrangian parameter in this SINM case coincides With summation over the indea=1,2,3 and¢ independent
with the Fermi energy in INM, and due to the Hugenholtz—Of x3=p". Taking into account the variational Eq43) that
van Hove theorem with the average energy per nucleon ifefine the SINM saturation state one can see that

INM. The variational derivatives occuring in Eq4.3) lead

to the field equations T34(2)=0=Tgz=const Vz, (20)
d? ) ) 3 and sinceT35(2) in the bulk interior of the saturated SINM
a2~ Ms #(2)=—9gsps(2) +bd*(2) +c¢>(2), (14)  system is zeroT s5(z) vanishes identically. Because of this
property, the stress tensdy, can be rewritten as
d2
(@—mi)Vo(ZF—gvp(Z), (15) —2& O 0
Tu=| 0 —2&; 0], (21
and the proper RTF equation 0 0 0
g,Vo(2)+ \/k§(2)+ M*Z(z)z,u. (16 The calculated local energy-momentum tensor therefore ful-

fils the differential conservation laws
As in the case of any Thomas-Fermi approximation one is
faced with the technical problem of boundary conditions. a4,TH'=0, (22
Now, alocal RTF energy-momentum tensdr,, can be
defined following the general prescripti¢s) with a view to  which in general come from the invariance Sfunder an
the fact that SINM is nonuniform in thedirection. For the infinitesimal space-time translation.
ground state expectation value one obtains the expression  From the local SINM energy densitiL1) (identical with
the Ty element a local (thermodynamit pressure can be

& 0 0 0 obtained following the definitiorl),
0 wp—& O 0
T,,= Y 5 (&
wTlo 0 up—€ 0 pth=p25—p<;), 23
0 0 0 up—E+2&

with the variational derivative denoted hy Sinceé&, Eq.

ghis |°CT‘| ?'NM tensofm,, :\U”‘S out to have vanishinrg]j NON-"(11), does not depend on the gradient of the baryon density
lagonal e gments as in the IN.M case. However, the struc[—J and because of Eq&L3), the expression fopy, is obtained
ture of its diagonal elements differs from the INM case. 'nexplicitly by

the surface region of SINM they are no longer equal, reflect-

ing the nonuniformity or anisotropy of SINM. 9 1E
The T33 element of the SINM stress tensofy pth=p2—(—) =up—E&. (24)
(i=1,2,3) is of special interest. Following E() it is the aplp
force per unit area in the direction in SINM, produced by o ) )
matter and field. Explicitly written, The c_ontr|but|ons from _thé,’gr term are different in the ex-
pression(24) for py, and inTs3, Eq.(18). Thus, the thermo-
= — +I1d' 2_r1y! 2 dynamic pressure in the surface region at a given poist
Tod2)=up(2) =2+l DT [Vo(2) I} different from T33. The value(24) will be nonzero in the
=up(2)—E&(2)+2 & (2), (18 surface region even in saturated SINM, whereas the bulk
value for saturated SINM comes out to be zero.
with There is no thermodynamic consistency between the two
local RTF pressures in the surface region. In the field theo-
E&(2)=E(¢(2),¢'(2),Vo(2),Vo(2),p(2)), retical calculation leading t@35(z) the field contribution to
the pressure is treated correctly. Also intuitively one expects
E(D)=Ey(9'(2),Vo(2)) the pressurd 33 in saturated SINM to vanish everywhere. In

any case, because of the anisotropyTef, Eq. (17) the
[see Eq(11)]. The first two terms in the expression fbg;  consistency of the scalar thermodynamic pressure and the
are identical with the negative Swiatecki integrand enterinchydrostatic pressure following froffy, is no more a reason-
into the definition(12) of the surface tension. In addition, able question. Therefore, we suppose that the hydrodynamic
there is the characteristic gradient terni2. definition of a local pressure via the stress tensor is the ad-
Differentiating T33(z) with respect taz, one gets equate one.
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B. Spherically symmetric nuclei noting o or w, respectively and with respect to the baryon

The RTF energy density of a spherical nucleus with mas§€nsityp leads to the RTF equations for a nucleus,
numberA in QHD-I follows from theTg, component of the

energy-momentum tensor, & d 9 2 9E 0 (i=1.2
—_—— — — = | =
R dxi drax] r 9y/ "
Th=E=E.($Vo.p)+Egl( b V), (25) X Xi Xi
where&y (¢, Vo) =3[(¢')*—(Vp)?], with the prime denot- 9E
ing derivation with respect to the coordinate. The local 52 M- (27)

Fermi momentunk(r) and the functiomgy(a(r)) are defined

in correspondence to the SINM case E(®. — (10). The

self-bound ground state of a spherical nucleus is defined bit contrast to the SINM casgl4) and (15), there are now

the minimum of its total energy under the constraint of acharacteristic curvature terms in the equations for the fields,

fixed nuc|eon numbeA’ Wh|Ch iS Coupled to the energy Coming from the Laplacian Wl’itten in Sphel’ica| COOfdinates.
with the chemical potentiglk, depending, however, on the

* | nucleon numbeA.
5(477J0 [E(r) = pap(r)]radr =0. (26) The elementd”,, of the energy-momentum tensor can be
calculated in the standard way starting from E@s.and(5).
The requirement of the vanishing of the functional deriva-In the Cartesian representation the energy-momentum tensor
tives in Eq.(26) with respect to the meson fieldg (i de- has the symmetrical form

& 0 0 0
x2 Xy Xz
0 ,uAp—<S’+26’g,r—2 Zggrr—z Zggrr_z
T = Xy y? yz . (28)
# 0 Zggrr_f ,LLAp—S-I-Zggrr—Z Zggrr_f
Xz yz z?
0 zggrr_Z zggrr_Z /.LAp—g-i-ZEg,—r—z

The spatial parﬂ';“k (i,k=1,2,3), the relevant stress tensor, lengthy algebra the tensd'l‘;\b in spherical representation as
can be shortly written as (the indices representing the spherical coordinateg, and
r, respectively

1
Tie=—(ap = E)Gikt 2 Egra Xixe (29 pap=€ 0 0
Th=| O map—E& 0 . (3D
Note that symmetries of théelectromagneticstress tensor 0 0 Hap—EFT2Ey

and angular momentum conservation are interreldtext

e.g., [4]). Because of nondiagonal elemen’ﬂ'fk is more It can be shown explicitly thanr(r) cannot vanish identi-
complicated than the SINM tensor, which is obtained in thecally since its derivative with respect tois nonzero in gen-
limit A—o, setingx=y=0 andr=|z|. By inserting the eral. Starting from

field equationg27) into the relation

Al el %
Th=pap—E+2Ey=pap—E+ PARE (32
a

: d d
P20 Th=| map’ (1) == &)+ {261} rxi
dr dr . . .
differentation with respect to leads to

+A4E4(N)Xy, (30
d_, 4
. " . _Trr == _ggr (33)
which we verified by a Maple program, it can be proved that dr r
the conservation laws(22) are valid for the energy-
momentum tensof28), too. [where the field equation®7) had to be use]dTﬁ therefore

Starting from spherical coordinate®,,r), which are cannot vanish identically as the corresponding SINM el-
more appropriate for a spherical nucleus, one gets after sonament, Eq(21).
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FIG. 1. The matrix element¥4, of the stress tensor for some
fictitious isospin-symmetric nuclei with mass numbarss a func-
tion of the radial coordinate. The NL1 parametrizatiof5] was 0.25 i
used. )
We have evaluated numerically in the RTF approach the
elementsT%, of the spherical coordinate representation of 0.00 . , , ,
the stress tensor for some spherical nuclei including large o 1000 2000 3000 4000 5000
fictitious ones, using the linear parameter set introduced in A

Ref.[1] as well as the standard realistic parametrization NL1

Ref. [5] of the nuclear QHD-I Lagrangian. The results and  FIG. 2. The calculated RTF stress tensor elenfénir =0) for

conclusions obtained for the two parameter sets are qualitahe NL1 parametrization as a function of the mass numbecf

tively identical. fictitious isospin-symmetric nuclei compared to the liquid drop ex-
For the NL1 parametrization the stress tensor elementgression for the central pressye=20/R(A).

(31) are displayed in Fig. 1 as a function of the radial coor- e ] .

dinater for some nuclei with mass numbe#s The asymp- c_ompreSS|b|I|ty modull_Js and the su_rface tension that is sta-

totic behavior of the stress tensor for large mass number cdiPnary around saturation densipy with respect to changes

be seen. All elemenﬁ;?’;b(r=0) become equal. Thermody- of the central densitysee, e.g., Ref.6]). Using a nonrela-

namic consistency is reached in the bulk with the thermodyiVistic Skyrme approach, the effect was studied extensively

namic pressure equal to the hydrodynamic one. The surfad8 RefH [7], also for small nuclei. For a pure DM picture the
values of‘l’ﬁ (surf) approach zero in the largk limit as the straight curve in Fig. 3 is obtained in our case.

bulk values do. Therefore the surface value§ gfof SINM d Théjs’hthe Iargfe?;] part Otf tlhg cur_\t/e_in Figl. 3 f%r the re-.
are obtained. AlsdT ,,(surf)=T y4(surf) approach nonzero uced change of the central densily 1S explaineéd as coming

vlues 35 SNW, 4T, co rom i compresson efect Smaler el st e
Obviously, there is a nonvanishing bulk press[ll'ﬁa(O) 9 9 P

in finit lei. This reflects the intuiti ict P tial in an optimal way. As a consequence their central density
N Tinite nuclel. This retiects the Intulive pIctureé of a Pres- ¢5 pejow the INM saturation value. This desaturation ef-

sure f_rom the surf_ace tension squeezing the bulk density. F%ct has been studied in conventional nuclear structure theory
a liquid droplet with a surface layer much smaller than thein Refs.[7,8]

bulk part the bulk pressune is given by the surface tension
o and the radiu® of the droplet by the well known elemen-

tary relation (6). In Fig. 2 we compare the bulk values 0.40 . - .

Tfr(O) with this pressure approximating the nuclear radius [ e DM

R by 0.20 | e .
(=%

R(A):r (A)Alls r (A):<—> 1/3 (34) \:? 0.00 ==
A I 2

S 020 -

whererg is given in terms of the central densip;. The =

RTF value of o was found in Ref.[9] to be 0=1.16 -040 - A2200 Ac100 acto Acg RTF 1

MeV/fm?. Nuclei with mass numbe larger than about 50 l l l l

fulfill Eg. (6) quite well. For smaller nuclei there is a devia- 06000 0z 04 06 08

tion that follows from the fact that these nuclei are no more A

of saturated structure necessary for the derivation of(&qg.

In Fig. 3 the density changen the center of a finite FIG. 3. The RTF relative density change at the center of nuclei

nucleus with respect to the INM saturation value is plottedwith mass numbera with respect to saturated INM as a function of
for the relativistic RTF calculations. In a strict droplet model A=, The dotted straight line is the droplet model value. The NL1
(DM) picture this change can be easily expressed by the bulgarametrization was used.
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Il OUTLOOK the meson fields. In particular, the dependence of the nuclear

We have studied the local energy-momentum tensor forc,urface tension on the compression of the baryonic density

sel-bound SINM as well as for finite spherical nuclei start-COUId be studied. It is well known in nonrelativistic nuclear
ing from the RTF approximation to the QHD-I model. In structure theorysee, e.g., Ref46,10]) that the surface ten-

order to treat the effect of external fields compressing sINMO" of isospin-symmetric SINM is stationary with respect to

o . i . S density changes around the saturation value. This so-called
or finite nuclei, respectively, in nonrelativistic nuclear struc- -

; ) . o=0 theorem had an impact on the theoretical foundation of
ture theory constraints depending on the nuclear densit ; . . . e
. o emiempirical mass formulas since it facilitates the calcula-
were introduced(see, e.g., Refs[10]). In relativistic ap-

proaches such as RTF one could analogously add to the fotrl-On of the expansion coefficiens].

malism external constraints constructed in such a way that

they reflect the ;peuﬁc extemal influence that leads to ACKNOWLEDGMENTS

nuclear compression. Compression effects could be produced

by external baryonic as well as mesonic effects. Thus, the We thank Dr. H. Lenske and Dr. C. Fuchs for supplying
external constraint could depend on the baryon as well as ons with their RTF program for finite nuclei.
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