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Hadrodynamic approach to compressible nonuniform nuclear systems
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The energy-momentum tensor for isospin-symmetric semi-infinite nuclear matter~SINM! as well as for
finite spherically symmetric nuclei is evaluated in the relativistic Thomas-Fermi~RTF! approximation of the
s-v model. TheT33 stress tensor component of self-bound SINM vanishes identically. Our field theoret
RTF approach reflects the elementary relationp52 s/R between the bulk pressurep, the surface tensions
and the radiusR of a nucleus.@S0556-2813~96!03407-3#

PACS number~s!: 21.65.1f, 11.15.Kc, 21.30.Fe, 21.60.2n
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I. INTRODUCTION

In conventional nonrelativistic descriptions of nuclei th
nucleon density appears as explicit degree of freedom.
meson fields, however, are hidden in an effective nucle
nucleon interaction that is represented by, e.g., a Skyr
type energy functional of the nucleon density. Hadrodynam
approaches@1# start from a relativistic treatment of th
nucleon motion that is coupled explicitly to meson field
Thus, these fields enter as new degrees of freedom media
the interaction between the nucleons.

If uniform infinite symmetric nuclear matter~INM ! is
treated nonrelativistically, phenomenological thermodyna
ics defines the~thermodynamic! pressurepth at zero tempera-
ture by

pth5r2
d

dr S E~r!

r D , ~1!

wherer is the baryon density andE is the energy density
depending only on the baryon density. In the case of a fi
theoretical description of nuclear matter the energy den
E in addition becomes a function of the meson field pote
tials. Nevertheless, the expression~1! — now with meson
fields depending on the source densityr — defines a~ther-
modynamic! pressure for a uniform system with give
baryon density and meson fields.

Field theoretically, the energy densityE of a system must
be identified with the quantum mechanical expectation va
^T00& of theT00 component of the energy-momentum tens
Tmn defined from the LagrangianL5L(fa ,]mfa) of the
system by

Tmn52gmnL1(
a

]nfa

]L
]~]mfa!

, ~2!

where in the case of a QHD-I@1# nuclear Lagrangian
m,n50,1,2,3 anda51,2,3 with the meson fieldsf1 and
f2 , and the nucleon fieldf35c. The entity Tik
( i ,k51,2,3), composed of the spatial components of
energy-momentum tensor, is called the stress tensor s
classically the componentFi of the force on a volume with
surface elementsdnk in the matter-field system is given b
the surface integral
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Fi5t Tikdn
k. ~3!

For a homogeneous and isotropic fluid at rest the diago
elements of the expectation value of the stress tensor
equal, and the nondiagonal elements vanish. Thus, a hyd
static scalar pressurephydr can be defined by

phydr[
1
3 (
i51

3

^Tii &. ~4!

This simplification of the stress tensor clearly is only po
sible for such symmetric systems as, e.g., uniform static fl
ids with rotational invariance.

In the case of the mean-field approximation~MFA! of the
quantum hadrodynamic model QHD-I@1# the expectation
value of the stress tensor can be specified to

Tmn5^ i c̄~ t,x!gm]nc~ t,x!&1]mf„x)]nf~x!

2]mV0~x!]nV0~x!1gmn„
1
2 $@¹f~x!#21ms

2f2~x!%

1 1
3 bf3~x!1 1

4 cf4~x!2 1
2 $@¹V0~x!#21mv

2V0
2~x!%….

~5!

For uniform systems the relevant hydrodynamic pressu
p hydr turns out to be identical with the thermodynamic pre
surepth ~see, e.g.,@1,2#!. One refers to thermodynamic con
sistency of the two pressure definitions in the case of t
MFA for uniform systems. It is a little paradox that if one
goes beyond MFA by, e.g., a Dirac-Hartree-Fock~DHF!
method, which improves the treatment of the fields by taki
into account retardation effects, the thermodynamic cons
tency between the two pressures is lost~see, e.g.,@2#!.

Now, saturation of infinite nuclear matter means that it
self-bound without an external pressure. Which pressure,
hydrodynamic or the thermodynamic pressure, should va
ish? Also the Hugenholtz–van Hove theorem valid for va
ishing pressure has to be reconsidered in view of the fact t
there are two pressure definitions@2#. In fact, the trouble
calls for a unique adequate definition of a ‘‘real’’ pressur
The situation ressembles the case of matter in electrom
netic fields where there is in addition to the material pressu
a pressure coming from field effects described by the ele
tromagnetic Maxwell stress tensor. From the standpoint o
731 © 1996 The American Physical Society
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732 54T. v. CHOSSY AND W. STOCKER
unified description of fields and matter by QHD the press
definition via the stress tensor, which includes field effe
consistently, is more satisfying than the thermodynamic d
nition. The coincidence of the thermodynamic definition
full field theory@3# and also in some approximations with th
hydrodynamic definition seems to be remarkable, but
compulsory.

The present investigation aims at working out a prelim
nary concept for the energy-momentum tensor offinite self-
bound nuclei. Because of the anisotropy of nonuniform s
tems with some preferred direction, the stress tensor is~i! not
necessarily symmetric and~ii ! its diagonal elements need n
to be equal. Thus, the concept of a scalar hydrodyna
pressure~4! breaks down, and the correct way to treat t
direction dependent mechanical pressure effects is give
the fundamental relation~2!. In particular, the question of th
consistency of hydrodynamic and thermodynamic~scalar!
pressure might become meaningless.

As first steps to finite systems we study semi-infin
isospin-symmetric nuclear matter~SINM! as well as spheri-
cally symmetric nuclei treating them in the relativist
Thomas-Fermi~RTF! approximation to QHD-I with scala
s mesons and vectorv mesons, and disregarding Coulom
effects. Along the surface normal~chosen to be the 3-axis o
z axis! the surface region of SINM is nonuniform, and pe
pendicular to it of homogeneous character, differing, ho
ever, from saturated INM. This property of SINM is reflect
in its local energy-momentum tensor the form of which
different from that for uniform isotropic infinite nuclear ma
ter. Starting from the minimum principle for the surface te
sion we carry through pragmatic RTF calculations of SIN
The local pressures—i.e., elementT33 of the stress tensor~2!
and the thermodynamic pressure~1!, depending now on thez
coordinate—are evaluated. There is a characteristic dif
ence between the two pressures that is identified as a m
field effect depending on the gradients of the field potenti
Thus, thermodynamic consistency is lost for the two lo
pressures. The hydrostatic pressureT33 is found to vanish
identically in equilibrated SINM. In the surface region th
thermodynamic definition of a local pressure leads to n
zero values. For finite spherical nuclei the RTF approa
results in a symmetricalTik stress tensor with nondiagon
elements in the Cartesian representation. Spherical coo
nates (u,f,r ) transform the stress tensor into a diagon
form where theTrr element differs from the others. Th
Trr element leads to a radial force per surface area which
show to be approximately consistent with the elementary
lation for the bulk pressurep,

p5
2 s

R
, ~6!

wheres is the surface tension andR the nuclear radius.

II. ENERGY-MOMENTUM TENSOR FOR SELF-BOUND
NONUNIFORM SYSTEMS

A. Semi-infinite nuclear matter

The energy densityE of isospin-symmetric SINM in the
RTF approximation to QHD-I with nonlinear scalar mes
terms is given by
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E~f,f8,V0 ,V08 ,r!51 1
2 @~f8!21ms

2f2#1 1
3 bf31 1

4 cf4

2 1
2 @~V08!21mv

2V0
2#1gvV0r

1
4

~2p!3
E

QF~z!
«!~k,z!d3k, ~7!

where«!(k,z)5Ak21M!2(z) andM!(z)5M2gsf(z). A
prime denotes derivation with respect to thez coordinate.
QF(z) is the local Fermi sphere defined byQF(z)
[$kuk<kF(z)%, where the local Fermi momentumkF(z)
follows from the baryon densityr(z) via

r~z!5
2

3p2 kF
3~z!. ~8!

The integration overQF(z) in the last term of Eq.~7! can be
carried through analytically and yields

4

~2p!3
E

QF~z!
«!~k,z!d3k53 kF~z!r~z!g„a~z!…,

a~z![
M!~z!

kF~z!
, ~9!

where the functiong is given by

g~a!5E
0

1

x2Ax21a2dx

5
1

8 F ~11a2!3/21A11a22
a4

2
ln

A11a211

A11a221
G . ~10!

There are pure meson field contributions together with ter
arising from the interaction of fields and matter. All thes
relations follow in a straightforward way by specializing th
general RTF expressions, derived in Ref.@1#, to the SINM
system.E(z), Eq. ~7!, can be decomposed into two terms,

E~f,f8,V0 ,V08 ,r!5E`~f,V0 ,r!1Egr~f8,V08!,

Egr~f8,V08![ 1
2 @~f8!22~V08!2#, ~11!

where the ‘‘volume part’’E` at a positionz follows from the
energy density of INM when in a local density approxima
tion the INM density is replaced by the densityr(z), and
meson fields are treated correspondingly. The additio
term in Eq.~11! depends on gradients of the meson field
only. Thus, the INM limit of Eq.~11! is correctly obtained.

The RTF equations for theself-boundSINM matter sys-
tem follow by minimizing the surface tension

s5E
2`

`

@E~f,f8,V0 ,V08 ,r!2mr#dz, ~12!

with respect to the three degrees of freedom, i.e., the t
meson field potentialsf andV0 , and the baryon densityr,
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dE
df

50,
dE

dV0
50,

dE
dr

5
]E
]r

5m,

d

dxa
5

]

]xa
2

d

dz

]

]xa8
~xa5f,V0 ,r!. ~13!

The Lagrangian parameterm in this SINM case coincides
with the Fermi energy in INM, and due to the Hugenholt
van Hove theorem with the average energy per nucleo
INM. The variational derivatives occuring in Eqs.~13! lead
to the field equations

S d2dz2 2ms
2Df~z!52gsrS~z!1bf2~z!1cf3~z!, ~14!

S d2dz2 2mv
2DV0~z!52gvr~z!, ~15!

and the proper RTF equation

gvV0~z!1AkF2~z!1M!2~z!5m. ~16!

As in the case of any Thomas-Fermi approximation one
faced with the technical problem of boundary conditions.

Now, a local RTF energy-momentum tensorTmn can be
defined following the general prescription~5! with a view to
the fact that SINM is nonuniform in thez direction. For the
ground state expectation value one obtains the expressi

Tmn5F E 0 0 0

0 mr2E 0 0

0 0 mr2E 0

0 0 0 mr2E12 Egr
G . ~17!

This local SINM tensorTmn turns out to have vanishing non
diagonal elements as in the INM case. However, the st
ture of its diagonal elements differs from the INM case.
the surface region of SINM they are no longer equal, refle
ing the nonuniformity or anisotropy of SINM.

The T33 element of the SINM stress tensorTik
( i51,2,3) is of special interest. Following Eq.~3! it is the
force per unit area in thez direction in SINM, produced by
matter and field. Explicitly written,

T33~z!5mr~z!2E~z!1$@f8~z!#22@V08~z!#2%

5mr~z!2E~z!12 Egr~z!, ~18!

with

E~z![E„f~z!,f8~z!,V0~z!,V08~z!,r~z!…,

Egr~z![Egr„f8~z!,V08~z!…

@see Eq.~11!#. The first two terms in the expression forT33
are identical with the negative Swiatecki integrand enter
into the definition~12! of the surface tension. In addition
there is the characteristic gradient term 2Egr .

DifferentiatingT33(z) with respect toz, one gets
z–
n in

is

on

-
ruc-
In
ct-

ing
,

T338 5mr82
]E
]xa

xa82
]E
]xa8

xa91
d

dzS xa8
]E
]xa8

D
5mr82xa8

dE
dxa8

, ~19!

with summation over the indexa51,2,3 andE independent
of x385r8. Taking into account the variational Eqs.~13! that
define the SINM saturation state one can see that

T338 ~z!50⇒T335const ;z, ~20!

and sinceT33(z) in the bulk interior of the saturated SINM
system is zero,T33(z) vanishes identically. Because of this
property, the stress tensorTik can be rewritten as

Tik5F 22 Egr 0 0

0 22 E gr 0

0 0 0
G . ~21!

The calculated local energy-momentum tensor therefore f
fils the differential conservation laws

]mT
mn50, ~22!

which in general come from the invariance ofL under an
infinitesimal space-time translation.

From the local SINM energy density~11! ~identical with
the T00 element! a local ~thermodynamic! pressure can be
obtained following the definition~1!,

pth5r2
d

dr S Er D , ~23!

with the variational derivative denoted byd. SinceE, Eq.
~11!, does not depend on the gradient of the baryon dens
r and because of Eqs.~13!, the expression forpth is obtained
explicitly by

pth5r2
]

]r S Er D5mr2E. ~24!

The contributions from theEgr term are different in the ex-
pression~24! for pth and inT33, Eq. ~18!. Thus, the thermo-
dynamic pressure in the surface region at a given pointz is
different from T33. The value~24! will be nonzero in the
surface region even in saturated SINM, whereas the bu
value for saturated SINM comes out to be zero.

There is no thermodynamic consistency between the t
local RTF pressures in the surface region. In the field the
retical calculation leading toT33(z) the field contribution to
the pressure is treated correctly. Also intuitively one expec
the pressureT33 in saturated SINM to vanish everywhere. In
any case, because of the anisotropy ofTik , Eq. ~17! the
consistency of the scalar thermodynamic pressure and
hydrostatic pressure following fromTik is no more a reason-
able question. Therefore, we suppose that the hydrodyna
definition of a local pressure via the stress tensor is the a
equate one.
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B. Spherically symmetric nuclei

The RTF energy density of a spherical nucleus with m
numberA in QHD-I follows from theT00

A component of the
energy-momentum tensor,

T00
A 5E5E`~f,V0 ,r!1Egr~f8,V08!, ~25!

whereEgr(f8,V08)5
1
2@(f8)22(V08)

2#, with the prime denot-
ing derivation with respect to ther coordinate. The local
Fermi momentumkF(r ) and the functiong„a(r )… are defined
in correspondence to the SINM case Eqs.~8! – ~10!. The
self-bound ground state of a spherical nucleus is defined
the minimum of its total energy under the constraint of
fixed nucleon numberA, which is coupled to the energy
densityE with a Lagrange parametermA , i.e.,

dH 4pE
0

`

@E~r !2mAr~r !#r 2drJ 50. ~26!

The requirement of the vanishing of the functional deriv
tives in Eq.~26! with respect to the meson fieldsx i ( i de-
ass

by
a

a-

notings or v, respectively! and with respect to the baryon
densityr leads to the RTF equations for a nucleus,

]E
]x i

2
d

dr

]E
]x i8

2
2

r

]E
]x i8

50 ~ i51,2!,

]E
]r

5mA . ~27!

In contrast to the SINM case~14! and ~15!, there are now
characteristic curvature terms in the equations for the fie
coming from the Laplacian written in spherical coordinate
The proper RTF equation~16! remains formally unchanged
with the chemical potentialmA depending, however, on the
nucleon numberA.

The elementsTmn
A of the energy-momentum tensor can b

calculated in the standard way starting from Eqs.~2! and~5!.
In the Cartesian representation the energy-momentum te
has the symmetrical form
Tmn
A 53

E 0 0 0

0 mAr2E12 Egr
x2

r 2
2 Egr

xy

r 2
2 Egr

xz

r 2

0 2 Egr
xy

r 2
mAr2E12 Egr

y2

r 2
2 Egr

yz

r 2

0 2 Egr
xz

r 2
2 Egr

yz

r 2
mAr2E12 Egr

z2

r 2

4 . ~28!
r

h

s
The spatial partTik
A ( i ,k51,2,3), the relevant stress tenso

can be shortly written as

Tik
A52~mAr2E!gik12 Egr

1

r 2
xixk . ~29!

Note that symmetries of the~electromagnetic! stress tensor
and angular momentum conservation are interrelated~see
e.g., @4#!. Because of nondiagonal elements,Tik

A is more
complicated than the SINM tensor, which is obtained in t
limit A→`, settingx5y50 and r5uzu. By inserting the
field equations~27! into the relation

r 2] iTik
A5FmAr8~r !2

d

dr
E~r !1

d

dr
$2Egr~r !%G rxk

14Egr~r !xk, ~30!

which we verified by a Maple program, it can be proved th
the conservation laws~22! are valid for the energy-
momentum tensor~28!, too.

Starting from spherical coordinates (u,f,r ), which are
more appropriate for a spherical nucleus, one gets after so
,

e

at

me

lengthy algebra the tensorTab
A in spherical representation a

~the indices representing the spherical coordinatesu, f, and
r , respectively!

Tab
A 5F mAr2E 0 0

0 mAr2E 0

0 0 mAr2E12 Egr
G . ~31!

It can be shown explicitly thatTrr
A (r ) cannot vanish identi-

cally since its derivative with respect tor is nonzero in gen-
eral. Starting from

Trr
A 5mAr2E12 Egr5mAr2E1

]E
]xa8

xa8 , ~32!

differentation with respect tor leads to

d

dr
Trr
A 52

4

r
Egr ~33!

@where the field equations~27! had to be used#. Trr
A therefore

cannot vanish identically as the corresponding SINMTzz el-
ement, Eq.~21!.
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We have evaluated numerically in the RTF approach
elementsTab

A of the spherical coordinate representation
the stress tensor for some spherical nuclei including la
fictitious ones, using the linear parameter set introduced
Ref. @1# as well as the standard realistic parametrization N
Ref. @5# of the nuclear QHD-I Lagrangian. The results a
conclusions obtained for the two parameter sets are qua
tively identical.

For the NL1 parametrization the stress tensor eleme
~31! are displayed in Fig. 1 as a function of the radial coo
dinater for some nuclei with mass numbersA. The asymp-
totic behavior of the stress tensor for large mass number
be seen. All elementsTab

A (r50) become equal. Thermody
namic consistency is reached in the bulk with the thermo
namic pressure equal to the hydrodynamic one. The sur
values ofTrr

A ~surf! approach zero in the largeA limit as the
bulk values do. Therefore the surface values ofTzz of SINM
are obtained. AlsoTff~surf!5Tuu~surf! approach nonzero
values as SINMTxx andTyy do.

Obviously, there is a nonvanishing bulk pressureTrr
A (0)

in finite nuclei. This reflects the intuitive picture of a pre
sure from the surface tension squeezing the bulk density.
a liquid droplet with a surface layer much smaller than t
bulk part the bulk pressurep is given by the surface tensio
s and the radiusR of the droplet by the well known elemen
tary relation ~6!. In Fig. 2 we compare the bulk value
Trr
A (0) with this pressure approximating the nuclear rad

R by

R~A!5r 0~A!A1/3, r 0~A!5S 3

4prc~A! D
1/3

, ~34!

where r 0 is given in terms of the central densityrc . The
RTF value of s was found in Ref.@9# to be s51.16
MeV/fm2. Nuclei with mass numbersA larger than about 50
fulfill Eq. ~6! quite well. For smaller nuclei there is a devia
tion that follows from the fact that these nuclei are no mo
of saturated structure necessary for the derivation of Eq.~6!.

In Fig. 3 the density changein the center of a finite
nucleus with respect to the INM saturation value is plott
for the relativistic RTF calculations. In a strict droplet mod
~DM! picture this change can be easily expressed by the b

FIG. 1. The matrix elementsTab
A of the stress tensor for som

fictitious isospin-symmetric nuclei with mass numbersA as a func-
tion of the radial coordinater . The NL1 parametrization@5# was
used.
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compressibility modulus and the surface tension that is
tionary around saturation densityr0 with respect to change
of the central density~see, e.g., Ref.@6#!. Using a nonrela-
tivistic Skyrme approach, the effect was studied extensiv
in Ref. @7#, also for small nuclei. For a pure DM picture th
straight curve in Fig. 3 is obtained in our case.

Thus, the largeA part of the curve in Fig. 3 for the re
duced change of the central density is explained as com
from this compression effect. Smaller nuclei stretch the
selves in order to get the finite-range nucleon-nucleon po
tial in an optimal way. As a consequence their central den
falls below the INM saturation value. This desaturation
fect has been studied in conventional nuclear structure the
in Refs.@7,8#.

FIG. 2. The calculated RTF stress tensor elementTrr
A (r50) for

the NL1 parametrization as a function of the mass numbersA of
fictitious isospin-symmetric nuclei compared to the liquid drop e
pression for the central pressurep52s/R(A).

FIG. 3. The RTF relative density change at the center of nu
with mass numbersA with respect to saturated INM as a function
A21/3. The dotted straight line is the droplet model value. The N
parametrization was used.
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III. OUTLOOK

We have studied the local energy-momentum tensor
self-bound SINM as well as for finite spherical nuclei sta
ing from the RTF approximation to the QHD-I model. I
order to treat the effect of external fields compressing SIN
or finite nuclei, respectively, in nonrelativistic nuclear stru
ture theory constraints depending on the nuclear den
were introduced~see, e.g., Refs.@10#!. In relativistic ap-
proaches such as RTF one could analogously add to the
malism external constraints constructed in such a way
they reflect the specific external influence that leads
nuclear compression. Compression effects could be produ
by external baryonic as well as mesonic effects. Thus,
external constraint could depend on the baryon as well as
for
rt-
n
M
c-
sity

for-
that
to
ced
the
on

the meson fields. In particular, the dependence of the nucl
surface tension on the compression of the baryonic dens
could be studied. It is well known in nonrelativistic nuclea
structure theory~see, e.g., Refs.@6,10#! that the surface ten-
sion of isospin-symmetric SINM is stationary with respect t
density changes around the saturation value. This so-cal
ṡ50 theorem had an impact on the theoretical foundation
semiempirical mass formulas since it facilitates the calcul
tion of the expansion coefficients@6#.
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