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Dissipative shape dynamics in thesd shell
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The coupling between the nuclear shape dynamics and the internal degrees of freedom is investigated in the
frame of a time-dependent Hartree-Fock-Bogolyubov Langevin formalism. The shape coordinate considered
here is the quadrupole deformation, and the internal configuration space is restrictedsi shell. The
numerical results concern the effects of pairing, dissipation, and temperature on the giant quadrupole shape
vibration of 28Si. Time scales for decay, thermalization, and configuration transitions are obtained.
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[. INTRODUCTION lations based on transport equations, this approach has the
quality of including the quantum effects at the same level as
The change in the internal structure of the nucleus duringhe TDHFB approach does. Therefore, it seems to be the best
large amplitude collective motion is the basic process forsuited for the study of the combined effect produced by pair-
particle emission or fission-fusion reactions. At low excita-ing and temperature in large amplitude collective motion.
tion energies the mean free path of the nucleons is large, and For applications to the giant quadrupole resonad/@QR)
they interact basically only with the time-dependent mearthe general TDHFB-Langevin equations are constrained to
field [1]. In this case, the simple classical model of an elasticccount for only the quadrupole shape deformation and oc-
container filled with gas at very low pressure shows the occupation number degrees of freedom. The restriction should
currence of one-body dissipatid@]. This mechanism was preserve the original Hamiltonian structure of the TDHFB
used especially in the study of the fission prodgsd], re-  equations and is not trivial. The trial manifolds and the basic
producing well the neutron multiplicities and the kinetic en-dynamical equations for a single oscillator shell are pre-
ergies of the fragmen{s]. sented in Sec. Il
In this approach a first limitation is introduced by the  The environmentis supposed to represent the intrinsic and
treatment of the time-dependent mean field, which is nogollective deegrees of freedom which are fast relatively to
self-consistent, but acts like an external force. For instancéhe quadrupole vibratiofi0], and also which are responsible
the internal motion is regular during forced quadrupole shapéor its decay. The increase of the decay width for decreasing
oscillations, but it becomes chaotic in a self-consistent calhuclear volumgmass is similar to the behavior of damping
culation[6]. In addition, the assumption of the complete dis-in viscous systems, and was accounted for by hydrodynamic
appearance of two-particle pairing correlations may be nomodels with two-body dissipatiofiL1]. Beside this general
realistic. At low excitation energy the nucleus ressembles &end, the GQR widths are particularly small near closed
superfluid Fermi droplet, and the irreversible changes of théhell nuclei[12]. This fact indicates that the GQR dynamics
nuclear shape are strongly connected to the superflidity depends also on details of nuclear structure which can be
The purpose of this paper is to investigate the effects oficcounted for properly only in microscopic models. The
pairing and temperature on the nuclear quadrupole shape dfDHFB-Langevin approach includes the shell effects, and
namics. Systems in thermal equilibrium at high excitationcan be applied to study the GQR dynamics. Numerical re-
energy were studied using coupled variational equations fosults obtained for®Si are presented in Sec. IV. Conclusions
the static Hartree-Fock mean field and entrdgy. In the  are summarized in Sec. V.
present work, the system is not supposed to be equilibrated,
and the time-dependent Hartree-Fock-BogolyubtDHFB)
mean-field equations are coupled to a classical thermal envi- Il. TDHFB-LANGEVIN EQUATIONS
ronment, represented by a bath of harmonic oscillators. _ ) o
Therefore, evolution towards thermalization can be studied L€t uS denote by, the microscopic nuclear Hamiltonian,
dynamically, solving a set of generalized TDHFB-Langevin&Nd byS={|¥)(X)} the trial manifold of normed HFB func-
equations. These equations are derived in Sec. Il following!onS Within a model space containihg states. The coordi-
the variational procedure applied before to the time-ates onS, denotedX={x'}, i=1,2N,N=Ng(Ns—1)/2, can

dependent Schdinger equatiof9]. Compared to the calcu- be chosen to be the parameters of the general Bogoliubov
transformation[13], and ® is the matrix wS=[w{ (¥)],

defined by
“Permanent address: Centre d’Etudes Naiots de Bordeaux-

Gradignan, IN2P3-CNRS/UniverSiordeaux |, BP 120, F-33175, S
Gradignan Cedex, France. i (V) =2hIm(5; ¥ |5; V). (1)
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In this case, the TDHFB equations can be derivedand
from the stationarity condition of the functionalf X] N
= [(P]ihd,—Ho|W)dt with respect to small variations of
the trajectorieX,, and can be expressed in the form of the F(t):i; giCicosw;t= _f dod(w)
Hamilton system of equatiorjd4|
oN W e, can be considered as a renormalization of the interac-
S Kol (V)= KW |Ho| V) (2 tion term inH, and it will be neglected(t) represents the
=k ax¥ ' noise, and is related #(t) (the “memory function”) by the
fluctuation-dissipation theoren) &(t)£(s)))=kgTT' (t—s),
Therefore, the variational equatidiy J[ X]=0 has the solu- the double brackets meaning statistical averaging over the
tion |'W)(X;), with X; a trajectory given by Eq2). bath ensembl§l16].
Let us consider now a many-body system which is The spectral density of the batf(w), for white-noise
coupled bilinearly to a bath dfl; classical harmonic oscila- (linear friction) and blackbody radiation is presented 7],
tors. Within the same mean field approximation, the evoludiscussing the possible transition from a radiation reaction to
tion can be obtained using the variational equation an elastic responsgelastoplastic behavipr For linear fric-
tion, T'(t) =2y« 8(1), with y, the static friction coefficient.
In this case Eq(7) takes the form

coswt

Sug, | AS M@+ (Wlins-HW)=0, (@)
a 2N

. I . ~KVHo|V)  (WIK|)

whereH=H,+H,, Ho is the Hamiltonian operator without 21 Xop(W)=—— 10—~ — %

bath coupling, and N
2
|q| Ci
i+
2 (ql miwi2K>
At T=0 the noise vanishes, and the enerdy

Z
represents the bath energy plus the coupling interaction. Pet=(y|H,|¥) is dissipated according to the law
forming the variations with respect ¥(t) and the bath tra-

(W |K| W)

x| &0~ w—gq ®)

(4)

jectoriesq;(t), the coupled equations of motion are dE d(K)\?
N rT VK(T 9
2 )-(Jw_ (‘I’)Z ‘9<‘P|HO|‘P>
=1 Ik axK The system may reach in this case the HFB ground state
(9.s) with energyE, s .
(9<\p||<2|\p> |9| WhenT>0, the asymptotic value of the excitation energy
2 Ex(t)=E(t) — Eg fluctuates around an average depend-

ing on the number of thermalized degrees of freedom which

contribute to the specific heat of the system. If the quadru-

pole vibrations are the only possible motion, tHer=kgT,

and represents the average energy of the shape fluctuations.
(5) The friction constantyk is given by the spectral density
) 5 of the environment. Therefore, it can be calculated if the
with g;=C;/m;wj" and parameters of the bath oscillators as well as the strength of

p coupling are known.
|

ml

8<‘I’|K|‘I’>
—(9k_ idi»

ai=
I1l. RESTRICTED TDHFB-LANGEVIN APPROACH

. FOR QUADRUPOLE AND PAIRING DYNAMICS
pi=—mw’g;— Ci(V|K|¥). (6) Q

_ _ The HFB trial functions have a complicated structure, ac-
Equations(6) may be solved in terms of the unknown func- counting for many degrees of freedom of the nucleus. There-
tion of time (W|K|¥), and when their retarded solution is fore, to study only quadrupole and pairing dynamics, the trial
inserted in Eq(5) we obtain a Langevin form of Eq2) [15],  functions will be restricted to submanifolds & param-

etrized by the phase space coordinates for the quadrupole

2N

> xS (V)= ‘9<\P|H0+Wren|q’>_ o(WIK[W) motion and the pairing variables.

i= K XX axX The quadrupole deformation parameggrappears both in
collective and microscopic models of the nucl¢l8]. Phe-

x| &(t)— f T(t—t) <‘I’|K|‘I'>dt, 7) nomenologically, it is a mean-field parameter which can be
dt’ ' extracted from the measur&®{E2) transition rate between
the 0" ground state and the first'2excited statg¢19].
Here The g.s. axial deformation breaks the rotational symmetry
and appears spontaneously, to lower the level density of the
=(K2—<\P|K|\II)K)® spherical mean field. Microscopically, this means a change
ren 2 in the single-particlgs.p) basis which is used to construct
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the g.s. many-body wave function, and a rearrangement of j
the A nucleons on the new orbitals. The observable related to  3-[Ho.K1=2w00(2S2,~ S5~ S,y). S =,21A (S2)i s
this change is the g.s. expected vak®,) of the =0 =

component of the quadrupole  operator, Qg (14
:Ei=1A\/5/16ﬂ'(222_X2_y2)i . with
For excited configurationg,Q,) depends on time, such _
that I .
2, =753 S1;]1=i[(b")F~Dbf1/4. (15
d(W|Qol W) _ i |
dt - ﬁ<q'|[H0’Q0]|‘I’> (100 Therefore, Eq.(11) can be solved by a Slater determinant

constructed using the eigenstatig)(\y,\p) of the s.p.

(the Ehrenfest theoremTherefore, to study the shape dy- Hamiltonian
namics, a minimal requirement is to construct many-body L L L e
trial states| V') where the single-particle basis depends con- (A p) =ho = M2k = ko= Ky) =N (282~ S Sz'y()l’
tinuously on the deformation coordinate and velocity, and
allowing for the change of the occupation probabilities. with A\=Co\q and X p=2wCol,, .

Following the procedure applied before to spontaneously If \,=0, thenh(\,,0) is the Hamiltonian of a deformed
symmetry breaking systemig0], if [Hy,Q]#0, then atwo-  harmonic oscillator with frequencies
parameter family of “yrast” state$¥) can be constructed
having a classical phase-space structure, and the lowest en- wx=0y=woV1+26/3, w,=weV1—45/3,
ergy compatible with fixed expected values for the quadru- ) )
pole momentum(Q,) and velocity,d(Qo)/dt. Such many- and 6=3\/2fiwy the Nilsson deformation parameter. The

body wave functions are the extrema of the crankingtigenstates oh(x,,0) are related to those &f, by unitary
variational equation “squeezing” transformationsJ, [23] and

6)

i h(A,0)=hy— 2% wooK/3
5\lf<q'|Ho_)\qQo_)\ug[Ho,Qo]hw:O (11
=U, > tfojblbj+1/2 Ut 17

and are parametrized by the Lagrange multipliegs X, . e

However, when Eq.(11) is solved and the functions with

|W(Ng,\,)) are known, the parametrization can be changed, _

if desired, using Qo) andd(Q,)/dt as new variables. Up=e (Bt Oy 02 w=woe™%. (18
The “velocity” operator may be easily calculated in the

harmonic oscillator approximation. This approximation was Wheni,#0, then

proved to be relevant for the microscopic description of the _ -1

fusion/fission reactions of light nucl¢R1], being success- A(hichp) =UhpgU (19

fully used in the Harvey mod¢R2]. Let us denote by the  with

s.p. isotropic oscillator Hamiltonian

hoq= E:(bb;+1/2)
pa . IVEiHI
hO:, E ﬁwo(b?bj+1/2), i=xy,z
=X,Y¥,Z
o and
ith bi =1/ _ip. — Aqp-13 _
with by = Vmwo/2%(x;—ip;/Mwg), wo=41A MeV/4, U= PPk, Ejzﬁwoefﬁi. 0

and by K the dimensionless quadrupole operator

K:Q()/CO, with Co=(5/477)1/2ﬁ/mw0=2617 MerrﬂZ/ Hereexz ey:q and GZ:_ln 3_6p —2e” q’ such that
fLwo,

S —|\/1+1<)\ )\'2’)
K=2K,~Ky—Ky, K= > (k). (12) P= e, 4771 frwg\ " dhag)
i=1A
) _ At p=0 the coordinate is related to the Nilsson deforma-
Herekj=mawoXj/2fi=s;;+ 535, with tion parameter byp=3(e 29—1)/2. The s.p. energy levels

of the Nilsson model depend only ah but E; represents a
s, =[(bN?+b%1/4, s3;=(b/bj+1/2)/2. (13  surface depending both on deformation and momentum pa-
rameters ,p). Therefore, the Nilsson diagram of level
If Ho is reduced to the spherical harmonic oscillator term,crossings is thgg=0 section in the more complex diagram
of such intersecting energy surfaces.
_ _ _ The Hamiltonianh,, is diagonal in the basis of the iso-
Ho_i=21A (hO)'_Zﬁwoi =§1:A (SoxtS3y+ Sa2)i tropic oscillator, andpt%e two-parameter family of s.p. states
|y (N ,\p) may be generated by the unitary transformations
the velocity operator is given up to a constant factor by U acting on the eigenstatds) of hy. Thus, the solution
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| ¥y of Eq. (11) is given by the many-body correspondent

U of U and the eigenstatés).

The occupation number degree of freedom is included
using the formalism of second quantization. In terms of the

operatorscL creating fermions in the s.p. basjg), Hy is

Ho=2> (ho),.che, (22)

v

and

Ho—AK— )\p(zsz,z_ %,X_ SZy) ZU{ ME;/ (hpq)ﬂvclcu}ula

(22)
with
U= eiPKg=i(InV3-6p”—2e~ 295, ,- S, 4S;) (23)
If p andqg are small, then
U= eipKe*iQ(zsz,zst‘xfsz,y)’ (24

709

pair

G
Sy Wol 2 (Mpg)uClie,— —
M, v

PLPu|T0)=0, (29
where

PL=U'PTU=2 (u|lUT Ulv)clcl. (29
o, v

In U the exponentis,, is time reversal invariant, but
i(2k,—ky—ky) is not, and therefore

Pi=2 (ule 2P kp)clel. (30
o, v

Equation(28) can be solved within the BCS or HFB approxi-
mations, depending on the choice of the bagi3.(If this
basis is|u)=|r)[s), with [r)=[n;nin}) the eigenstates of
hg in Cartesian representation, ahs) the j=1/2 spinor,
then the matrix(u|h,g|v) is diagonal. Moreover, if the
model space is restricted to a single oscillator shell contain-

ing M orbital states, andp is small, the matrix

and up to constant factors is generated by the quadrupo@”e—zp(zkz—kx—ky)lV> is also diagonal, and¥,) has the
coordinate and velocity operators. A similar unitary transfor-gcs form ’
mation generating both the phase and space shift of the s.p.

orbitals was discussed in R¢24].
If the pairing interaction is included, thet, in Eq. (11)

should be replaced UyIO—Gpai,PTPM. Neglecting the terms

W oy=e>1P =% Po)0), (31)

containing commutators between the pairing and quadrupol#ith |0) the particle vacuum,

operators, Eq(11) becomes

i i
Su(W|Ho— =5 PTP—=XqQo=Np7[Ho,Qoll ¥)=0,
(25)
and making use of Eq22), it can be written as
s t —1_ Gpair s -
5\p<‘l’| = (hpq),u,VCMCV u - TP Pl‘I’)—O.
(26)

Here

Pf= > (-1i™"cf ¢

m=-—j,j

denotes the pair creation operator afgr() are the angular

P::Em=i1/2(—1)1/27m0:,m0:,—m!
and z,=p,e "% complex parameters. Therefore, the total
trial wave function for the treatment of the quadrupole and
pairing dynamics is

W) =U(p,q)e*1Pi =% Po|). (32
It depends on 2 2M parameters, the ‘“shape” variables
g,p, and the “internal” variables 4, ,¢,), r=1M.

The parameterg, give the particle distribution on the
levels ofh,, and whenp,q are fixed Eq.(28) leads to the
BCS equations. Their solution reflects the effect of the static
“Coriolis field” —N\K—\y(2S,,—Sx—S,y) on the struc-
ture of the ground state.

If the quadrupole moment and the shape variables are

momentum quantum numbers. In the arbitrary s.p. basi§me dependent, we cannot assume that the changes in the

(n), the pair creation operator will
T

PTZEMC%CM the bar denoting time reversal. Tfis the time
reversal operator, this expression becomes

P'=2 (ulT |v)clc!.
v

Let us assume that in E¢R6)

[W)=UW,), (27)

be written as Structure are necessarly adiabatic. Therefgreshould be

considered independent variables and functions of time. The
(2+2M)-dimensional manifoldM of the trial states from
Eq. (32), obtained considering,q,z, as independent vari-
ables, is embedded in the manifdfdf the HFB states in the
selected model spade?M(2M —1) dimensiondl and ac-
counts for only the particular degrees of freedom of interest.
The remainingN,=2M(M—1)—1 degrees of freedom
which are neglected will be included in the environment.
The classical phase-space structureMdnis given by the
matrix of the symplectic formu™ defined in Eq.(1). With

with | W) unknown. This function should be obtained from respect to this structure the shape varialges considered

the variational equation

above are not canonical, and
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wpg=h{eW(Wol Ky Wo) +(WolK, | ¥o)) M = (1| 2P k(0 1) = MIME MY,
4% _f —_ A0 — oa—In3—6pZ—2¢ 24
" (3—6p2—2e*2q)3/2<\l’0|Kz|\I’0>}- (33  Herefy=fy=—¢€l f,=2e"™ , and

bIFor ttrr:e igté};nalhdynamicsteit is (zjonven(ie.ntz;go)zuseha_lshvari-lvlr 1 n; 1 n}![Z(njr—k)]! ( 2ipf, )n}—k
ables the phase anglg, and p,=(sinZp,)°, whic = - — o3 -
equals half the expected number of particles in the orbital boVitipfE gk (nj—k)rk! 1+ipf,
[25]. These coordinates are canonical, such that (39

oM, =48, oM =0 oM, =0. (34) In this expressiornp appears in the denominator, and de-
Pror " PrPr! i creases the pairing correlations when the shape is nonstation-

All the other matrix elements ab™ which depend on both ary. . . .
shape and internal variables contain the expected values of dW't? ItEhe?Be) r_esults the Hamilton function on the right-hand
the commutators between pairing operators linat S, ; and side ot £q.(9) 15

will be neglected, to the same degree of approximation as —(V|HA| )=
assumed in EG25). H(P.0.Pr b)) =(V[Ho| V) =Hquad P, 0. Pr)
I&et us consider now Eq8) with |¥) given by Eq.(32) + Hpaid .9, Pr » &) (40
an
where

pair

G
Ho=2, (ulho|v)cle,~xK?= —=P'P, (35 02
" HqUa&p,q,pr>=2ﬁwoZ P | coshig)+ e

the schematic Hamiltonian of the pairing plus quadrupole

model[13]. With this choice Eq(8) may be written in ana- X (i + n;+ 1)
lytical form, and the numerical integration is simplified.
The average of the s.p. term i |Ho|¥) may be calcu- 2—p°—e .
lated using the following mean values: + 3—6pZ—2e Nzt 2
p . —x{(¥|K?
(¥18:1)= costiar+ & ot ol o), j=xy, x(WIKA)
(36) and
2
2 -2 .
<\P|S’>Z|qf>: 2_p —e <\If0|%z|q}0> Hpair(paQaprvﬁbr):_GpairE M;(M?’/M?elqsr\/pr(l_pr)
’ V3—6pZ—2e~ o

_ . - ) Within the approximations implied abové{,,; is the only
wher(ia¢ _<\I'0|%,J|q’0>2—22r(53,i)rr lor*=Zc(j+Dvel* term depending on the phase angigs In general, the total
vr=€'rsin2p, and|v[*=p; . number of particles is an invariant of Ed8), but if

The average of the quadrupole-quadrupole interaction cag =0, then each occupation probabiliy becomes con-
be similarly calculated, and if the model space is a singlestgm in time.

oscillator shell,

) 4sk, ) IV. NUMERICAL RESULTS
=_ a
<‘I’|K |\I’> 4 W'ﬁ'@ (Skx‘l‘Sk),)

The formalism presented above can be applied to the iso-
scalar GQR of?8Si observed in inelastie: particle[26] or

2

+(WIK[W)%, (37) electron[27] scattering experiments. The measured strength

. _ 201 has theEO andE2 components concentrated between 14 and
with sk~ [u| (nj+1) and 27 MeV. The centroids are locatedBgyg=17.9 MeV and

2(Wo|Ss|Wo) Ecor=19.03 MeV[26], corresponding to the excitation en-
(PIK|W)= 0I~3z ? ergies of the giant monopole and quadrupole resonances. The
V3—6p°—2e~ % strength widths ard’ gyg=4.8 MeV andl'gor=4.4 MeV,
respectively.

—€4((Wo|Saul o) +{(Wo|Ssy|Fo)). (39 The 28Si nucleus contains 12 particles outside tH®

core, distributed over the 6 oscillator levels of the shell.

These terms are independentdfand therefore they cannot This nucleus is one of the few light nuclei where collective
change the occupation numbeps. Additional terms con-  behavior is observed, being attractive for microscopical stud-
taining ¢, appear if more oscillator shellAN=2) are in- jes. Its structure was investigated before using thg3sU
cluded. model [28], by the standard Hartree-Fock proced(iz8)],

The average of the pairing ter(¥ |PP|¥) may be writ-  and in the generalized “valley” approximatidi80]. In the
ten as(Wo|P,Py|Wo) =4[5, Mv,u,|%, u,=1—[v,]?, with  Harvey model [21], the harmonic oscillator levels
PL defined in Eq(29) and (nx,ny,n,) of the sd shell which are occupied in the g.s. of
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285 are (2,0,0), (1,1,0), and (0,2,0). Each level contains two Y

protons and two neutrons, and the frequencies of the de- §:ﬁ_w0<K>' (41)
formed oscillator potential are supposed to be in the ratio

w7 wyxiwy=2:1:1. This ratio corresponds t&=—0.75, and the BCS pairing gangGpairE?=1m:2-45
when a “deformed shell” structure occuf81]. However, MeV is the same as the one obtained from the self-consistent
the total energy contour map shows that f88i the g.s. gap equations

minimum appears at a smaller deformatiér; — 0.45.

If the 0 core is assumed to be inert, the model space 2 6 1
can be restricted to the six orbitals of the shell. According Gpair: 21 A%+ (E,— )
r

to the SU3) classification, this model space carries the six-

dimensional irreducible representatio®,Q)=(2,0) [32], 6 E )\

with (P,Q) the Cartan representation labels. The restriction Npar= E { . —— (42)
to the valence particles reduces the volume of numerical cal- =1 VAZ+(E,—N)?

culations, but it should be taken with caution. For instance, . . . .
the electrofission reactioa+ 28Si —e’ + %0 +12C is never \(/jwth Npar=6 and the s.p. energids; given by the partial
produced with the both final nuclei in the ground stic&#], erivatives

indicating that during large amplitude motion of the valence 1 Hquad

nucleons, the core may get excited. Also, at deformations =— e (43

=
large as—0.75, the core level (0,0,1) becomes degenerate 2 pr
with the sd shell levels occupied by the valence particles. .t the metastable point. One should note, however Afyas

The Hamiltonian of Eq(40) will be considered further for - gajier than the gap extracted from the even-odd mass dif-
a single kind of particles, protons, or neutrons. FA@ core ference,A gyp=4.4 MeV [35].
is accounted by adding 3 toV'o|S;;| ¥ o) in Eq. (36), repre- If the system is not in the m.g.s., its evolution will be

sentin_g the contribution o_f the inert levels. The residual in'given by the set of 14 coupled TDHFB-Langevin equations
teraction strengths are fixed here a+=0.186 MeV and

Gpai—=1.23 MeV. For these values and six particles the 14 IH KK )

present model has a metastable ground statey.s) at xlwﬁf(zp)z—r—k—

5~ —0.45, with a quadrupole moment and pairing gap closé =1 X X

to the values given byQg) .= V5/36mA(r?),6=0.185A3 d( K| )

fm?2 [33] and A,,=12\/A MeV [13], respectively, when X §(t)—7KT : (44)
A=28.

Knowledge of the ground state is necessary first of all toqgre x12 denotes the shape variablpsq and {xj,j =3,8
fix the scale of the excitation energy. In the g.s. the energ¥enresents the six occupation probabilitigs, while
has the absolute minimum, while the occupation probabili—{xj j=9,14 denotes the six BCS anglef . The “environ-
tiesp,, r=1,6, and the shape variablgs,{) are constantin - ent could be represented by the neglected degrees of free-
time. The g.s. parameters can be obtained by a timegom (N, =59 whenM =6), the core excitations, more com-
independent search of the energy extremum, but the solutioficated shape distortions, or particle emission channels.
represents also the lowest energy critical point for the systerBecayse there is no detailed information about the strength
of Eq. (2). This point can be found by the method of fric- 4t the coupling between this environment and the quadrupole

tional cooling[34] consisting in solving Eq(2) with random dynamics, the coupling operator is chosen tokband the
initial conditions and artificial dissipative terms on the right- spectrum of noise is assumed to be flahite).

hand side. If the trajectories are calculated for long enough™ 11,4 symplectic form(Poisson brackgtw’!

. h . hould be ind d f the ini nq depends on
time, the asymptotic state should be independent of the inig shape and internal variables. Therefore, the classical

tial conditions, and very close to the true ground state. phase-space structure of the shape dynamics changes in time,

This methoq ?hOWS that the Hamiltonian of Eiq'O) has . following the changes in the internal structure of the system.
no bounded minimum, because at large deformations the in- Near the m.g.s{K) andw,, are well approximated by
.g.S. nq

crease of the occupation numbers for the orbitals with large
n, makes the system unstable. This instability is related to (K)~—4.7+10.98,, wM~#(33.4+13.63,), (45)

the volume conservation conditi¢81], not considered here, pd

and can be removed in a more refined treatment. However, igind without environment couplingyt=0) Eq. (44) shows

the physical region of oblate deformations there is a wellthe occurrence of small amplitude shape and pairing vibra-
defined metastable ground state. This state occurs for thgyns. The shape vibrations have two modes, one with high
shape variables p9=0, 9=0.137 [8,=4\#/5(5/13)  and the other with low frequenc§),=19.6 MeVh, respec-
=4\/m/5(e~ 29~ 1)/2= —0.43], and for the occupation prob- tively ,=1.9 MeV/h ([18], p. 507. Q,, is also the oscilla-
abilites  p?:  plao0= P10~ Plo20=0-864, ploy tion frequency of the occupation numbeps. € is very
=I0?o,1,1):0-188v anq)?O’O’Z)z 0.032. At this stationary point close to the random-phase-approximatidRPA) estimate
obtained by frictional cooling, the self-consistency equationsy2wo/27=19.1 MeVh [36], the small difference being
for the quadrupole momentum and the pairing gap are fulproduced essentially by pairing. However, the excitation en-
filled to a very good accuracy. Thus, the quadrupole momenrgrgy in the small amplitude regime, when RPA is a valid
is related to the deformation parameter by approximation, is too small compared Eg;qr. Let us as-
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FIG. 1. Collective Hamiltoniar(A) and pairing gap(B), calculated for the yrast configuratigsy, as a function of the quadrupole
coordinate and momentum variables.

sume that the system increases its energy above the m.g.s. _ IH oy IHY g
value by adiabatic deformation. ¢f andp are shifted from pwgq=a—q wgq= - 07—q. (46)
the metastable equilibrium pointp{,q% in small steps q P

€,,€q, then at each node of the latticgp¥%+kyep,q° _ L .
+Kqeq), Kpq==12,..., the internal configuration According to the requantization formalisf87], the closed

(p,,¢,) can be determined from the condition of the mini- Orbits O, selected by the integrality condition

mum for the Hamiltoniar{(p,q,p;,¢;) in Eg. (40). This

restricted minimization problem can be solved by frictional _ _ _

cooling of the intrinsic dynamics at each fixed couple of Uzndpdq‘”gq =nh,  Op=0%,, n=123...,

shape variablesp(q). The solution for this “yrast” internal (47)

configuration is represented by a set of 12 figdfi§p,q) and

#{(p,q), r=1,6, over the shape phase space, and the totgre related to the eigenstates of the many-body system. For

energy is given by a collective Hamilton function n=1 and small amplitudes this condition corresponds to the

Heol(P,Q) = H(p,q,p{.¢?). In this calculation the lattice normalization of the RPA quasiboson operat38]. In the

constants were fixed a},=0.0133 ande,=0.033. The fields  present case it selects an or8itvith the excitation energy

p{ and ¢} are almost constant, such thgf(p,q)~py and  E,=19.1 MeV, very close t&€gqr, and the oscillation fre-

#!(p,q)~0. The collective Hamilton functiohl ., is repre-  quency 15.5 MeW. This orbit was calculated choosing as

sented in Fig. (@A). The pairing gap A initial conditionsp®=0, q°=0.65 (§=—1.1), and has the

=Gpail =7~ ;M,v,u,| obtained for the yrast internal configu- “phase-space” representation shown in FigAB

ration is represented in Fig(B). It depends weakly om, The closed orbiC is not a realistic correspondent of the

but decreases strongly for large absolute values of th&QR, because is stable, with infinite “lifetime.” In fact, the

“shape momentum’p. vibrational modes of the mean field are not isolated, but
Without pairing, H, reduces practically td—lguac(p1CI) coupled With par'ticle emi;sion gha}nnels or compound

= H quadP,0,PY), and is represented for comparison in Fig. n_ucleus configurations. Part|cl_e emission fror_n Iow-ly_lng ex-

2(A). The surface is almost the samerag,(p,q) but shifted cited states can be well described microscopically within the

- R-matrix formalism[39]. The GQR has relatively high en-
upwards by the m.g.s. pairing energy of 4.86 MeV. The sym-
plpectic for% w9 ng/\/l(pp q pgg #9) giys representedin % 4 ergy, and the global effect of the interactions responsible for
pa  TRQRE TR ET T decay will be accounted for phenomenologically by the noise

units) in Fig. 2B). S . .
If Gpai=0, the evolution takes place without changes inand frlct|(_)n terms in Eq(44). With these terms, Eq(46)
8hanges into

the internal structure along the closed orbits on the surfac
pictured in Fig. 2A) which are fixed by the excitation en-
ergy. The trajectories can be found in this case by integrating
the reduced system

. angad (9<K> d<K>
Pwp,= aqq —WF(U—WT},
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FIG. 2. Collective HamiltoniariA) and symplectic forngin 7 units) (B), calculated aG ;=0 for the ground state configurati@d , as
a function of the quadrupole coordinate and momentum variables.

The dependence of the fit paramekgron u is represented
(48 in Fig. 3(B). At weak friction the accuracy of the exponential
fitis very good, and the system has damped oscillations with
I'~1.53x10°x MeV/TP. Near u~0.01 TP,T; attains a
maximum and then decreases. At-0.022 TP (;=6.75
"MeV) the behavior changes from damped oscillations to ape-
d(K))2 dB,\2 riodic motion. The valud’ gog Of ~4.5 MeV can be _th_ere—
?’K( it ) :yﬁ(ﬁ) (490  fore reproduced by two values @f: one at weak friction,
p#1=0.002 85 TP, and the other in the aperiodic regime,
M>=0.038 TP. For these two casEg(t) is represented by
dashed line in Fig. &) and Fig. 3D), respectively.

d(K
g(t)_'}’K% .

_ angad_i_ 6<K>

A9 — 7
quq (?p (;lp

The coefficienty, may be related to the friction constant
g in the B, coordinate simply equating the dissipation laws

Therefore,y, = (d(K)/dB,) “?y4, and using Eq(45), one
obtainsyy =yz/121. Microscopic estimates of the diffusion ¢ js interesting to note that in the aperiodic regime the fit
coefficientD ;=kgT/ Vg in thesd shell are presen_ted in Ref. provided byE,(t) is not very accurate, arf,(t) is closer to
[40]. In these calculation$>0, an_dyﬁ is overestimated by 5 quadratic function of time,
a factor of 10, compared to the fission data.
The dissipation mechanism is beyond the purpose of E ()= EX(O)e—ath/ﬁZ_ (51)
the present work, but to fix a reference it is convenient
to measurey, in terms of a virtual two-body viscosity coef- The dashed line in Fig.(B) is reproduced well by, with
ficient w, using the formulayﬁ=5Rg,u=5(ro)3Au fm?3 0=3.75 MeV. A quadratic dependence similar By was
[41]. Thus, forA=28, y5/h=229u/TP (1 TP= 10" N s/m?  observed for the wave packets with a Gaussian strength dis-
=6.24x 10?2 MeV s/fm®), and yx can be written as tribution and the variance of the energy [43].
v Ihi=1.9u/TP. At T>0 the thermal random forces lead to a Brownian
If T=0 but y«>0, the noise vanishes and the excitationdiffusion of the shape variables. A typical orbit calculated
energyE,(t) decreases continuously, ressembling the decawith temperature and friction for the initial conditions ©fs
process. The decay law of a quantum state changes in timegpresented in Fig.(3). In this calculationkgT=2 MeV,
being quadratic for small times, exponential at intermediatex.=0.038 TP, and the time step of the numerical integration
times, and an inverse power at long times compared to thin Eq. (48 was dt=0.001Z/MeV. At the moment
lifetime of the systenj42]. The exponential stage is charac- t,=ndt, the noise&(t) was expressed by
terized by the decay width constaht and in the present

calculation this constant will be extracted from the excitation ~[2keTyk >
energyE,(t) by a one-parameter fit with the analytical func- &(tn) = dt R (52)
tion

whereR,, n=1,2,3, ... is a sequence of Gaussian random

E|(t)=E,(0)e 't (500 numbers with 0 mean and variance 1. This choice ensures
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FIG. 3. Quadrupole shape dynamics without pairing. Phase-space @hidecay constant as a function of the friction coefficig,
((Ey))q (solid line) and E, (dashed ling at ©=0.0028 TP as a function of timéC), and ((E,))q (solid line) and E, (dashed ling at

pn=0.038 TP as a function of time).

the discrete form of the fluctuation-dissipation theorem,['; is 4.7 MeV and 3.8 MeV, respectively. These results are

((€(t))(t))a=2keTyk Sy, /dt, with ((---))¢ denoting
the average over an ensemble of trajectories.

With noise the excitation energy fluctuates instead of de
creasing continuously, but the average over a long time in-
terval iskgT, proving that thermalization occurs. However,
E,(t) along a single trajectory is not relevant for the calculus

of the decay width, and instead it is nece

average((E,))q(t) of E,(t) over many trajectories, gener-

ated using different sequences of random n
function for the fit in this case,

Eu(t)=E;+[Ex(0)—E¢]e "%,

depends on two parametdrs andE; .

The averag€(E,))q(t) was calculated over 100 trajecto-
ries atkgT=2 MeV, for ©=0.002 85 TP[Fig. 3(C), solid
line], and ©=0.038 TP[Fig. 3D), solid ling]. The fit by
E, (t) gives in both caseg&; very close to 2 MeV, while

The numerical

ssary to use thgystem of Eq(48),

umbers. The tri%’nergyEC

interesting, because they indicate that in the presence of the
thermal environment’; remains almost unchanged at weak
friction, but decreases definitely in the overdamped regime.

results presented above were obtained ne-

glecting the effects of the pairing interaction and keeping the
occupation probabilitiep, fixed at the m.g.s. values. When
the pairing interaction is switched on, instead of the reduced

in 2 variables, it is necessary to integrate

the full system of Eq(44), in 14 variables. The excitation
is obtained for the same initial conditionp€0,

q=0.65,p,=p?, ¢, = ¢7), and the corresponding ortal, of
the shape variables, without friction &t=0, is pictured by

(53

the dashed line in Fig.(A). By contrast tC, this trajectory

is not closed, proving the existence of energy transfer be-

tween the pairing
tion of B, in the

and shape degrees of freedom. The evolu-
two cases, with and without pairing, is

compared in Fig. @). With pairing, the periodic quadrupole
vibration acquires an amplitude and frequency modulation,
but the effect is small. As in the case of a Toda latfi¢4],



54 DISSIPATIVE SHAPE DYNAMICS IN THEsd SHELL 715

Gy (B)

0.20

0.50 5
0.10 0.00 3
—-0.00 —0.50 é
o N :i 3
Q. ] :
-0.10 ~1.00 J w J ” :
3 [ I J J ! A%
E B 195 ey (solia)
-0.20 - 1 eV (solid
Gpgr=1.23 MeV 1.50 3 &0 (dashy
kel =0, u=0 (dash)
kgT=2 MeV, ,u.—O 028 TP (sofid)
—2.00 ........................... ]
—-2.00 -1.50 -1.00 -0.50 0.00 0.50 0.00 4. 00 00 12.00
B2 t (6.58x107%s)

(©) (D)

N
F=4.5 MeV, keT 104 1 F=45 MeV, keT=0
Com=1.23 MeV, M—o 028 TP (solid) 3 | Gow=1.23 MeV. 4=0.028 TP (solid
Gry=0, 1=0.038 TP (dash) 1 | &uCo u=0058"TP (dash) (solic)
-1.40 N 0 e
0.00 ., 8.00 12.00 0.00 12.00
t (6 58x107%%s) t (6 58x1072%)

FIG. 4. Pairing effects on quadrupole shape dynamics. Phase-spaceAybjs as a function of time foGp,;=1.23 MeV (solid ling)
andGp,;=0 (dashed linpwithout environment couplingB), 8, as a function of time foG,,,=1.23 MeV (solid ling) andG,;,=0 (dashed
line) whenI';=4.5 MeV (C), andE, as a function of time foGp,,=1.23 MeV (solid line) andG,,;=0 (dashed lingwhenI';=4.5 MeV
(D).

the relatively large number of variables and the highly non-considered here. A similar situation was noticed9hwhere
linear coupling do not produce necessarily a random behavt was shown that the center of mass and squeezing degrees
ior. of freedom of the Gaussian wave packets require different
When y¢>0, the integration of Eq(44) with pairing dissipative terms. The decay constéhtis calculated using
shows a high sensitivity of the orbits with respect to thethe trial functionE,, (t). For the initial conditions of, the
initial conditions. Thus, within a set of 100 trajectories start-width I'; of 4.5 MeV is reproduced whea=0.028 TP. This
ing at the same excitation energy from initial conditions cho-value is smaller tha,, but very close to the one extracted
sen at random along,, 92 are bounded and 8 are open.from fission data,uc,=0.03+0.01 TP[45]. The change
Along the bounded orbits the system evolves towards th@roduced by pairing on the adiabatic orbit having the initial
m.g.s. “adiabatically,” dissipating energy without major excitation energy and the widfh; of the GQR is presented
changes of the occupation probabilitigs. In the other case, in Figs. 4C) and 4D). In general, for the adiabatic orbits
before reaching the m.g.9, has an irreversible evolution calculated with pairing and frictioh’; are below the curve of
towards a prolate configuratiop; when HX (p,q) = Fig. 3B), and the residual energy does not exceed 1.5 MeV.
H(p,q.pF ,#F) has no finite minimum. Along the unstable trajectories the shape variables have
The adiabatic regime ressembles the case without pairingpoth an oscillatory and drift motion, whilp, evolves from
though there is no clear transition from damped oscillationghe oblate configuratiop? to a prolate one, denoted generi-
to aperiodic relaxation. Always there is a residual vibrationcally by py . For instance, with the initial conditions 6fand
of the shape and pairing variables with a frequenc$2.3  ©=0.002 85 TP the oblate-prolate inversion of population
MeV/h, which is practically not affected by the friction force occurs at a time;;,,~0.52/MeV, when the excitation energy
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FIG. 5. Collective HamiltoniarfA) and symplectic forn{in % units) (B), generated adiabatically for the prolate configurapgn as a
function of the quadrupole deformation and momentum variables.

arrives below 5 MeV. At the transition timé ~24/MeV, p,  structure{H?,(p.q), w5}, pictured in Fig. 5.

col
becomes practically constanp?2’0’0)= 0.21, P?l,o,l): 0.72, The present study is completed by calculations for the

pZ‘O’Oyz):O.%. After this moment the shape evolution is case when pairing, friction, and temperature are all included.
nonoscillatory, being produced by the new HamiltonianA typical orbit for the initial conditions of® with kgT= 2
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(dashed ling (A), and occupation probabilities in thead shell as a function of timéB).
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80.00 5 out pairing, friction, or temperature.
The ground state of®Si was generated by frictional cool-
70003 [ | ing, and the test of self-consistency for the quadrupole and
pairing mean fields was positive. The result is confirmed by
60.00 3 the study of small amplitude quadrupole shape vibrations,
which have the frequency expected for a self-consistent cal-
50.00 3 culation.
Without pairing the internal configuration is fixed and the
24000 3 orbit of the shape variables is closed. Therefore, the system
w0 OO; can be requantized by the Bohr-Wilson-Sommerfeld inte-
R grality condition of Eq.(47). The energy of the first excited
20.00 3 state predicted by this method is very close to the GQR en-
léBT.i 21g§vMeV u=0.028 TPi ergy in 'S, N .
0004 S The decay constant was related to dissipation, and its de-
pendence on the phenomenological friction coefficient is
0,00 It - given in Fig. 3B). At weak friction the decay is clearly
0.00

4‘6,0 B0 12.00 exponential, as expected for a Breit-Wigner resonance, but at
7 (658 x 107) strong friction ressembles the decay of a state with a Gauss-
ian strength distribution. This remark may be useful in the
FIG. 7. Histogram of the configuration transition tim& for ~ analysis of the experimental data.

300 trajectories calculated with=0.028 TP andkgT=2 MeV. At T>0 the shape variables have a Brownian trajectory
(“shape diffusion”) and in the final stage of decay the mo-
tion is thermalized. The average over trajectories shows that

MeV andu=0.028 TP is represented in FigA) by a solid  pefore thermalization the decay law remains close to expo-

line. The noise was chosen to be the same as in the calculgential, but the constant is different than &t=0. For

tion of the Brownian orbit shown in Fig.(8). The diffuse  k,T=2 MeV thermalization occurs withir- 1%/MeV [Figs.

orbits of Figs. 3A) and 4A) are rather similar until 3(C) and 3D)].

t~10h/ MeV, but after this moment the orbit calculated with With pairing, the Occupation probabi”ties may Change in

pairing escapes towards large prolate deformations, as can Behe adiabatically, namely, remaining near the oblate con-

seen from the trajectory plot of Fig(#). This behavior is  figuration of the metastable ground state, or they can have
explained by the evolution of the occupation probabilitiestransitions to a prolate configuration. For an initial excitation
shown in Fig. B), which change fronp{ to a prolate con-  energy of 19.1 MeV the evolution is definitely adiabatic if
figuration similar top; . The histogram of the transition time there is no dissipatiofFig. 4B)]. With dissipation the evo-

7* for 300 trajectories calculated with random initial condi- lution can be adiabatic or not, depending upon the magnitude

tions alongC, andkgT= 2 MeV is shown in Fig. 7. of the friction coefficient and the initial conditions. The adia-
batic dissipation carries the system close to the metastable
V. SUMMARY AND CONCLUSIONS ground state, but keeping a small residual excitation energy

(stored in a pairing vibrational mogewhich is weakly in-

In this work the problem of dissipative shape dynamicsfluenced by the present friction fordéig. 4D)]. For the
was treated within a TDHFB-Langevin formalism. The basichonadiabatic dissipative orbits, oblate prolate configura-
equations(7) were derived from the time-dependent varia-tion transitions occur relatively fast, within a time*
tional principle, assuming a bilinear coupling between the™27/MeV.
guantum many_body system and a thermal environment WhenT>0, the stage of adiabatic evolution is generally
(bath composed of classical harmonic oscillators. In generalfollowed by the configuration transition, and consequently
the coupling produces a memory friction term, but here wer* becomes spread over a wide inter¢aig. 7).
consider only the case of Ohmic dissipatidg. (8)]. This The results presented above indicate that transitions be-
approach distinguishes between the frictidissipation and ~ tween different internal configurations during decay may be
noise(temperaturgeffects on the many-body dynamics, and Produced by dissipation alone, or by the combined effect of
can be applied to the study of phenomena of decay, therma#flissipation and noise. Extended investigations with
ization, or both. temperature-dependent or memory friction may lead to real-

For applications to the GQR dynamics, the manifSldf istic estimates of the shape diffusion coefficient.

HFB trial functions is resticted tou, of lower dimension,
where only the quadrupole deformation and occupation num-
ber degrees of freedom are considered. The model space is
also restricted to thed shell, and numerical results are ob-
tained for the case of®Si. M.G. expresses his gratitude to Professor G. F. Bertsch

By construction, M is suited for the treatment of the for stimulating discussions on the initial aspects of this work,
quadrupole plus pairing Hamiltonian, and E§) related to to Professor P. Schuck for constructive remarks on the
this system was solved numerically for situations of increaspresent approach to the many-fermion dynamics, and to Pro-
ing complexity: for the metastable g.s., small amplitude vi-fessor V. Zelevinsky for valuable comments on the self-
brations, and large amplitude GQR vibrations with or with- consistency problem.
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