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Dissipative shape dynamics in thesd shell
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The coupling between the nuclear shape dynamics and the internal degrees of freedom is investigated i
frame of a time-dependent Hartree-Fock-Bogolyubov Langevin formalism. The shape coordinate conside
here is the quadrupole deformation, and the internal configuration space is restricted to thesd shell. The
numerical results concern the effects of pairing, dissipation, and temperature on the giant quadrupole sh
vibration of 28Si. Time scales for decay, thermalization, and configuration transitions are obtaine
@S0556-2813~96!05108-4#

PACS number~s!: 21.60.Jz, 21.60.Ev, 24.10.Cn, 24.30.Cz
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I. INTRODUCTION

The change in the internal structure of the nucleus dur
large amplitude collective motion is the basic process
particle emission or fission-fusion reactions. At low exci
tion energies the mean free path of the nucleons is large,
they interact basically only with the time-dependent me
field @1#. In this case, the simple classical model of an ela
container filled with gas at very low pressure shows the
currence of one-body dissipation@2#. This mechanism was
used especially in the study of the fission process@3,4#, re-
producing well the neutron multiplicities and the kinetic e
ergies of the fragments@5#.

In this approach a first limitation is introduced by th
treatment of the time-dependent mean field, which is
self-consistent, but acts like an external force. For instan
the internal motion is regular during forced quadrupole sh
oscillations, but it becomes chaotic in a self-consistent c
culation@6#. In addition, the assumption of the complete d
appearance of two-particle pairing correlations may be
realistic. At low excitation energy the nucleus ressemble
superfluid Fermi droplet, and the irreversible changes of
nuclear shape are strongly connected to the superfluidity@7#.

The purpose of this paper is to investigate the effects
pairing and temperature on the nuclear quadrupole shape
namics. Systems in thermal equilibrium at high excitati
energy were studied using coupled variational equations
the static Hartree-Fock mean field and entropy@8#. In the
present work, the system is not supposed to be equilibra
and the time-dependent Hartree-Fock-Bogolyubov~TDHFB!
mean-field equations are coupled to a classical thermal e
ronment, represented by a bath of harmonic oscillat
Therefore, evolution towards thermalization can be stud
dynamically, solving a set of generalized TDHFB-Langev
equations. These equations are derived in Sec. II follow
the variational procedure applied before to the tim
dependent Schro¨dinger equation@9#. Compared to the calcu
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lations based on transport equations, this approach has
quality of including the quantum effects at the same level
the TDHFB approach does. Therefore, it seems to be the
suited for the study of the combined effect produced by p
ing and temperature in large amplitude collective motion

For applications to the giant quadrupole resonance~GQR!
the general TDHFB-Langevin equations are constrained
account for only the quadrupole shape deformation and
cupation number degrees of freedom. The restriction sho
preserve the original Hamiltonian structure of the TDHF
equations and is not trivial. The trial manifolds and the ba
dynamical equations for a single oscillator shell are p
sented in Sec. III.

The environment is supposed to represent the intrinsic
collective deegrees of freedom which are fast relatively
the quadrupole vibration@10#, and also which are responsib
for its decay. The increase of the decay width for decreas
nuclear volume~mass! is similar to the behavior of damping
in viscous systems, and was accounted for by hydrodyna
models with two-body dissipation@11#. Beside this genera
trend, the GQR widths are particularly small near clos
shell nuclei@12#. This fact indicates that the GQR dynamic
depends also on details of nuclear structure which can
accounted for properly only in microscopic models. T
TDHFB-Langevin approach includes the shell effects, a
can be applied to study the GQR dynamics. Numerical
sults obtained for28Si are presented in Sec. IV. Conclusio
are summarized in Sec. V.

II. TDHFB-LANGEVIN EQUATIONS

Let us denote byH0 the microscopic nuclear Hamiltonian
and byS5$uC&(X)% the trial manifold of normed HFB func-
tions within a model space containingNs states. The coordi-
nates onS, denotedX5$xi%, i51,2N,N5Ns(Ns21)/2, can
be chosen to be the parameters of the general Bogoliu
transformation@13#, and vS is the matrixvS5@v i j

S (C)#,
defined by

v i j
S ~C!52\Im^] iCu] jC&. ~1!
706 © 1996 The American Physical Society
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54 707DISSIPATIVE SHAPE DYNAMICS IN THEsd SHELL
In this case, the TDHFB equations can be deriv
from the stationarity condition of the functionalJ@X#
5*^Cu i\] t2H0uC&dt with respect to small variations o
the trajectoriesXt , and can be expressed in the form of t
Hamilton system of equations@14#

(
j51

2N

ẋjv jk
S ~C!5

]^CuH0uC&
]xk

. ~2!

Therefore, the variational equationdcJ@X#50 has the solu-
tion uC&(Xt), with Xt a trajectory given by Eq.~2!.

Let us consider now a many-body system which
coupled bilinearly to a bath ofNc classical harmonic oscila
tors. Within the same mean field approximation, the evo
tion can be obtained using the variational equation

dC,qiE dt(
i51

Nc

mi~ q̇i !
21^Cu i\] t2HuC&50, ~3!

whereH5H01Hb , H0 is the Hamiltonian operator withou
bath coupling, and

Hb5(
i51

Nc Fmiq̇i
2

2
1
miv i

2

2 S qi1 Ci

miv i
2K D 2G ~4!

represents the bath energy plus the coupling interaction.
forming the variations with respect toX(t) and the bath tra-
jectoriesqi(t), the coupled equations of motion are

(
j51

2N

ẋjv jk
S ~C!5

]^CuH0uC&
]xk

1
]^CuK2uC&

]xk (
i51

Nc Cigi
2

1
]^CuK uC&

]xk (
i51

Nc

Ciqi ,

~5!

with gi5Ci /miv i
2 and

q̇i5
pi
mi

,

ṗi52miv i
2qi2Ci^CuK uC&. ~6!

Equations~6! may be solved in terms of the unknown fun
tion of time ^CuK uC&, and when their retarded solution
inserted in Eq.~5! we obtain a Langevin form of Eq.~2! @15#,

(
j51

2N

ẋjv jk
S ~C!5

]^CuH01WrenuC&
]xk

2
]^CuK uC&

]xk

3F j~ t !2E
0

t

G~ t2t8!
]^CuK uC&

dt8
dt8G . ~7!

Here

Wren5~K22^CuK uC&K !
G~0!

2

ed

f
e

is
-
lu-

t

Per-

c-
is

and

G~ t !5(
i51

Nc

giCicosv i t[
2

pE0
`

dvJ~v!
cosvt

v
.

Wren can be considered as a renormalization of the intera
tion term inH, and it will be neglected.j(t) represents the
noise, and is related toG(t) ~the ‘‘memory function’’! by the
fluctuation-dissipation theorem̂^j(t)j(s)&&5kBTG(t2s),
the double brackets meaning statistical averaging over
bath ensemble@16#.

The spectral density of the bath,J(v), for white-noise
~linear friction! and blackbody radiation is presented in@17#,
discussing the possible transition from a radiation reaction
an elastic response~elastoplastic behavior!. For linear fric-
tion, G(t)52gKd(t), with gK the static friction coefficient.
In this case Eq.~7! takes the form

(
j51

2N

ẋjv jk
S ~C!5

]^CuH0uC&
]xk

2
]^CuK uC&

]xk

3Fj~ t !2gK

d^CuK uC&
dt G . ~8!

At T50 the noise vanishes, and the energyE
5^CuH0uC& is dissipated according to the law

dE

dt
52gKS d^K &

dt D 2. ~9!

The system may reach in this case the HFB ground st
~g.s.! with energyEg.s..

WhenT.0, the asymptotic value of the excitation energ
Ex(t)5E(t)2Eg.s. fluctuates around an averageEf depend-
ing on the number of thermalized degrees of freedom whi
contribute to the specific heat of the system. If the quad
pole vibrations are the only possible motion, thenEf5kBT,
and represents the average energy of the shape fluctuati

The friction constantgK is given by the spectral density
of the environment. Therefore, it can be calculated if th
parameters of the bath oscillators as well as the strength
coupling are known.

III. RESTRICTED TDHFB-LANGEVIN APPROACH
FOR QUADRUPOLE AND PAIRING DYNAMICS

The HFB trial functions have a complicated structure, a
counting for many degrees of freedom of the nucleus. The
fore, to study only quadrupole and pairing dynamics, the tr
functions will be restricted to submanifolds ofS, param-
etrized by the phase space coordinates for the quadrup
motion and the pairing variables.

The quadrupole deformation parameterb2 appears both in
collective and microscopic models of the nucleus@18#. Phe-
nomenologically, it is a mean-field parameter which can
extracted from the measuredB(E2) transition rate between
the 01 ground state and the first 21 excited state@19#.

The g.s. axial deformation breaks the rotational symme
and appears spontaneously, to lower the level density of
spherical mean field. Microscopically, this means a chan
in the single-particle~s.p.! basis which is used to construc
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708 54M. GRIGORESCU AND N. CARJAN
the g.s. many-body wave function, and a rearrangemen
theA nucleons on the new orbitals. The observable relate
this change is the g.s. expected value^Q0& of the m50
component of the quadrupole operator,Q0

5( i51,AA5/16p(2z22x22y2) i .
For excited configurations,̂Q0& depends on time, such

that

d^CuQ0uC&
dt

5
i

\
^Cu@H0 ,Q0#uC& ~10!

~the Ehrenfest theorem!. Therefore, to study the shape dy
namics, a minimal requirement is to construct many-bo
trial statesuC& where the single-particle basis depends co
tinuously on the deformation coordinate and velocity, a
allowing for the change of the occupation probabilities.

Following the procedure applied before to spontaneou
symmetry breaking systems@20#, if @H0 ,Q0#Þ0, then a two-
parameter family of ‘‘yrast’’ statesuC& can be constructed
having a classical phase-space structure, and the lowes
ergy compatible with fixed expected values for the quad
pole momentum̂Q0& and velocity,d^Q0&/dt. Such many-
body wave functions are the extrema of the cranki
variational equation

dC^CuH02lqQ02lv

i

\
@H0 ,Q0#uC&50 ~11!

and are parametrized by the Lagrange multiplierslq , lv .
However, when Eq.~11! is solved and the functions
uC(lq ,lv)& are known, the parametrization can be chang
if desired, usinĝQ0& andd^Q0&/dt as new variables.

The ‘‘velocity’’ operator may be easily calculated in th
harmonic oscillator approximation. This approximation w
proved to be relevant for the microscopic description of t
fusion/fission reactions of light nuclei@21#, being success-
fully used in the Harvey model@22#. Let us denote byh0 the
s.p. isotropic oscillator Hamiltonian

h05 (
j5x,y,z

\v0~bj
†bj11/2!,

with bj
†5Amv0 /2\(xj2 ip j /mv0), v0541A21/3 MeV/\,

and by K the dimensionless quadrupole operat
K5Q0 /c0, with c05(5/4p)1/2\/mv0526.17 MeV fm2/
\v0,

K52K z2K x2K y , K j5 (
i51,A

~k j ! i . ~12!

Herek j5mv0xj
2/2\5s1,j1s3,j , with

s1,j5@~b†! j
21bj

2#/4, s3,j5~bj
†bj11/2!/2. ~13!

If H0 is reduced to the spherical harmonic oscillator ter

H05 (
i51,A

~h0! i52\v0 (
i51,A

~s3,x1s3,y1s3,z! i ,

the velocity operator is given up to a constant factor by
t of
to
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\
@H0 ,K #52v0~2S2,z2S2,x2S2,y!,S2,j5 (

i51,A
~s2,j ! i ,

~14!

with

s2,j5
i

\
@s3,j ,s1,j #5 i @~b†! j

22bj
2#/4. ~15!

Therefore, Eq.~11! can be solved by a Slater determinan
constructed using the eigenstatesuc&(lk ,lp) of the s.p.
Hamiltonian

h~lk ,lp!5h02lk~2kz2kx2ky!2lp~2s2,z2s2,x2s2,y!,
~16!

with lk5c0lq andlp52v0c0lv .
If lp50, thenh(lk,0) is the Hamiltonian of a deformed

harmonic oscillator with frequencies

vx5vy5v0A112d/3, vz5v0A124d/3,

andd53lk /2\v0 the Nilsson deformation parameter. Th
eigenstates ofh(lk,0) are related to those ofh0 by unitary
‘‘squeezing’’ transformationsUu @23# and

h~lk,0!5h022\v0dK /3

5UuF (
j5x,y,z

\v j~bj
†bj11/2!GUu

21 , ~17!

with

Uu5e2 i ~uxs2,x1uys2,y1uzs2,z!, v j5v0e
2u j . ~18!

WhenlpÞ0, then

h~lk ,lp!5UhpqU
21, ~19!

with

hpq5 (
j5x,y,z

Ej~bj
†bj11/2!

and

U5eip~2kz2kx2ky!Uu , Ej5\v0e
2u j . ~20!

Hereux5uy5q anduz52 lnA326p222e22q, such that

p5
lp

2\v0
q52 lnA11

1

\v0
S lk2

lp
2

4\v0
D .

At p50 the coordinateq is related to the Nilsson deforma-
tion parameter byd53(e22q21)/2. The s.p. energy levels
of the Nilsson model depend only ond, butEj represents a
surface depending both on deformation and momentum
rameters (q,p). Therefore, the Nilsson diagram of leve
crossings is thep50 section in the more complex diagram
of such intersecting energy surfaces.

The Hamiltonianhpq is diagonal in the basis of the iso-
tropic oscillator, and the two-parameter family of s.p. stat
uc&(lk ,lp) may be generated by the unitary transformatio
U acting on the eigenstatesur & of h0. Thus, the solution
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54 709DISSIPATIVE SHAPE DYNAMICS IN THEsd SHELL
uC& of Eq. ~11! is given by the many-body corresponden
U of U and the eigenstatesur &.

The occupation number degree of freedom is includ
using the formalism of second quantization. In terms of th
operatorscm

† creating fermions in the s.p. basisum&, H0 is

H05(
m,n

~h0!mncm
†cn ~21!

and

H02lkK2lp~2S2,z2S2,x2S2,y!5UF(
m,n

~hpq!mncm
†cnGU21,

~22!

with

U5eipKe2 i ~ lnA326p222e22qS2,z2qS2,x2qS2,y!. ~23!

If p andq are small, then

U5eipKe2 iq~2S2,z2S2,x2S2,y!, ~24!

and up to constant factors is generated by the quadrup
coordinate and velocity operators. A similar unitary transfo
mation generating both the phase and space shift of the
orbitals was discussed in Ref.@24#.

If the pairing interaction is included, thenH0 in Eq. ~11!
should be replaced byH02GpairP

†P/4. Neglecting the terms
containing commutators between the pairing and quadrup
operators, Eq.~11! becomes

dC^CuH02
Gpair

4
P†P2lqQ02lp

i

\
@H0 ,Q0#uC&50,

~25!

and making use of Eq.~22!, it can be written as

dC^CuUF(
m,n

~hpq!mncm
†cnGU212

Gpair

4
P†PuC&50.

~26!

Here

P†5 (
m52 j , j

~21! j2mcj ,m
† cj ,2m

†

denotes the pair creation operator and (j ,m) are the angular
momentum quantum numbers. In the arbitrary s.p. ba
(m), the pair creation operator will be written as
P†5(mcm̄

†cm
† the bar denoting time reversal. IfT is the time

reversal operator, this expression becomes

P†5(
m,n

^muT un&cm
†cn

† .

Let us assume that in Eq.~26!

uC&5UuC0&, ~27!

with uC0& unknown. This function should be obtained from
the variational equation
t

d
e

ole
r-
s.p.

ole

sis

dC0
^C0u(

m,n
~hpq!mncm

†cn2
Gpair

4
PU
†PUuC0&50, ~28!

where

PU
† 5U21P†U5(

m,n
^muU21T Uun&cm

†cn
† . ~29!

In U the exponentis2,k is time reversal invariant, but
i (2kz2kx2ky) is not, and therefore

PU
† 5(

m,n
^mue22p~2kz2kx2ky!un&cm̄

†cn
† . ~30!

Equation~28! can be solved within the BCS or HFB approxi
mations, depending on the choice of the basis (m). If this
basis isum&5ur &us&, with ur &[unx

rny
r nz

r& the eigenstates of
h0 in Cartesian representation, andus& the j51/2 spinor,
then the matrix^muhpqun& is diagonal. Moreover, if the
model space is restricted to a single oscillator shell conta
ing M orbital states, andp is small, the matrix
^mue22p(2kz2kx2ky)un& is also diagonal, anduC0& has the
BCS form

uC0&5e(r51
M

~zrPr
†
2zr* Pr !u0&, ~31!

with u0& the particle vacuum,

Pr
†5(m561/2~21!1/22mcr ,m

† cr ,2m
† ,

and zr5r re
2 ifr complex parameters. Therefore, the tot

trial wave function for the treatment of the quadrupole an
pairing dynamics is

uC&5U~p,q!e(r51
M

~zrPr
†
2zr* Pr !u0&. ~32!

It depends on 212M parameters, the ‘‘shape’’ variables
q,p, and the ‘‘internal’’ variables (r r ,f r), r51,M .

The parametersr r give the particle distribution on the
levels ofhpq and whenp,q are fixed Eq.~28! leads to the
BCS equations. Their solution reflects the effect of the sta
‘‘Coriolis field’’ 2lkK2lp(2S2z2S2x2S2y) on the struc-
ture of the ground state.

If the quadrupole moment and the shape variables
time dependent, we cannot assume that the changes in
structure are necessarly adiabatic. Thereforezr should be
considered independent variables and functions of time. T
(212M )-dimensional manifoldM of the trial states from
Eq. ~32!, obtained consideringp,q,zr as independent vari-
ables, is embedded in the manifoldS of the HFB states in the
selected model space@2M (2M21) dimensional# and ac-
counts for only the particular degrees of freedom of intere
The remainingNr52M (M21)21 degrees of freedom
which are neglected will be included in the environment.

The classical phase-space structure onM is given by the
matrix of the symplectic formvM defined in Eq.~1!. With
respect to this structure the shape variablesp,q considered
above are not canonical, and
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710 54M. GRIGORESCU AND N. CARJAN
vpq
M5\$eq~^C0uK xuC0&1^C0uK yuC0&!

1
4e22q

~326p222e22q!3/2
^C0uK zuC0&%. ~33!

For the internal dynamics it is convenient to use as v
ables the BCS phase anglef r and pr5(sin2rr)

2, which
equals half the expected number of particles in the orbitr
@25#. These coordinates are canonical, such that

vprfr 8

M 52\d rr 8, vprpr 8

M 50 vfrfr 8

M 50. ~34!

All the other matrix elements ofvM which depend on both
shape and internal variables contain the expected value
the commutators between pairing operators andK or S2,j and
will be neglected, to the same degree of approximation
assumed in Eq.~25!.

Let us consider now Eq.~8! with uC& given by Eq.~32!
and

H05(
m,n

^muh0un&cm
†cn2xK22

Gpair

4
P†P, ~35!

the schematic Hamiltonian of the pairing plus quadrup
model @13#. With this choice Eq.~8! may be written in ana
lytical form, and the numerical integration is simplified.

The average of the s.p. term in^CuH0uC& may be calcu-
lated using the following mean values:

^CuS3,j uC&5S cosh~q!1
p2

2
eqD ^C0uS3,j uC0&, j5x,y,

~36!

^CuS3,zuC&5
22p22e22q

A326p222e22q
^C0uS3,zuC0&,

where ^C0uS3,j uC0&52( r(S3,j ) rr uv r u25( r(nj
r1 1

2)uv r u2,
v r5eifrsin2rr , anduv r u25pr .

The average of the quadrupole-quadrupole interaction
be similarly calculated, and if the model space is a sin
oscillator shell,

^CuK2uC&5
1

4 F 4skz
326p222e22q 1e2q~skx1sky!G

1^CuK uC&2, ~37!

with skj'( r uv r u2(nj
r11) and

^CuK uC&5
2^C0uS3,zuC0&

A326p222e22q

2eq~^C0uS3,xuC0&1^C0uS3,yuC0&!. ~38!

These terms are independent off r and therefore they canno
change the occupation numberspr . Additional terms con-
tainingf r appear if more oscillator shells (DN52) are in-
cluded.

The average of the pairing term̂CuP†PuC& may be writ-
ten aŝ C0uPU

†PUuC0&54u( rM rv rur u2, ur5A12uv r u2, with
PU
† defined in Eq.~29! and
ari-

l

s of

as

ole

can
gle

t

Mr5^r ue22ip~ f xkx1 f yky1 f zkz!ur &5Mx
rMy

rMz
r .

Here f x5 f y52eq, f z52e2 lnA326p222e22q
, and

M j
r5

1

A11 ip f j
(
k51

nj
r

1

4nj
r
2k

nj
r ! @2~nj

r2k!#!

~nj
r2k!! 3k! S 2

2ip f j
11 ip f j

D njr2k

.

~39!

In this expressionp appears in the denominator, and de-
creases the pairing correlations when the shape is nonstatio
ary.

With these results the Hamilton function on the right-hand
side of Eq.~8! is

H~p,q,pr ,f r ![^CuH0uC&5Hquad~p,q,pr !

1Hpair~p,q,pr ,f r !, ~40!

where

Hquad~p,q,pr !52\v0(
r
pr H S cosh~q!1

p2

2
eqD

3~nx
r1ny

r11!

1
22p22e22q

A326p222e22q S nzr1 1

2D J
2x^cuK2uc&

and

Hpair~p,q,pr ,f r !52GpairU(
r
M r

xMr
yMr

zeifrApr~12pr !U2.
Within the approximations implied above,Hpair is the only
term depending on the phase anglesf r . In general, the total
number of particles is an invariant of Eq.~8!, but if
Gpair50, then each occupation probabilitypr becomes con-
stant in time.

IV. NUMERICAL RESULTS

The formalism presented above can be applied to the is
scalar GQR of28Si observed in inelastica particle @26# or
electron@27# scattering experiments. The measured streng
has theE0 andE2 components concentrated between 14 an
27 MeV. The centroids are located atEGMR517.9 MeV and
EGQR519.03 MeV@26#, corresponding to the excitation en-
ergies of the giant monopole and quadrupole resonances. T
strength widths areGGMR54.8 MeV andGGQR54.4 MeV,
respectively.

The 28Si nucleus contains 12 particles outside the16O
core, distributed over the 6 oscillator levels of thesd shell.
This nucleus is one of the few light nuclei where collective
behavior is observed, being attractive for microscopical stud
ies. Its structure was investigated before using the SU~3!
model @28#, by the standard Hartree-Fock procedure@29#,
and in the generalized ‘‘valley’’ approximation@30#. In the
Harvey model @21#, the harmonic oscillator levels
(nx ,ny ,nz) of thesd shell which are occupied in the g.s. of
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54 711DISSIPATIVE SHAPE DYNAMICS IN THEsd SHELL
28Si are (2,0,0), (1,1,0), and (0,2,0). Each level contains t
protons and two neutrons, and the frequencies of the
formed oscillator potential are supposed to be in the ra
vz :vx :vy52:1:1. This ratio corresponds tod520.75,
when a ‘‘deformed shell’’ structure occurs@31#. However,
the total energy contour map shows that for28Si the g.s.
minimum appears at a smaller deformation,d'20.45.

If the 16O core is assumed to be inert, the model spa
can be restricted to the six orbitals of thesd shell. According
to the SU~3! classification, this model space carries the s
dimensional irreducible representation (P,Q)5(2,0) @32#,
with (P,Q) the Cartan representation labels. The restrict
to the valence particles reduces the volume of numerical
culations, but it should be taken with caution. For instan
the electrofission reactione128Si→e8116O 112C is never
produced with the both final nuclei in the ground state@21#,
indicating that during large amplitude motion of the valen
nucleons, the core may get excited. Also, at deformatio
large as20.75, the core level (0,0,1) becomes degener
with the sd shell levels occupied by the valence particles

The Hamiltonian of Eq.~40! will be considered further for
a single kind of particles, protons, or neutrons. The16O core
is accounted by adding 3 tôC0uS3,j uC0& in Eq. ~36!, repre-
senting the contribution of the inert levels. The residual
teraction strengths are fixed here atx50.186 MeV and
Gpair51.23 MeV. For these values and six particles t
present model has a metastable ground state~m.g.s.! at
d'20.45, with a quadrupole moment and pairing gap clo
to the values given bŷQ0&av5A5/36pA^r 2&0d50.18dA5/3

fm2 @33# and Dav512/AA MeV @13#, respectively, when
A528.

Knowledge of the ground state is necessary first of all
fix the scale of the excitation energy. In the g.s. the ene
has the absolute minimum, while the occupation probab
tiespr , r51,6, and the shape variables (p,q) are constant in
time. The g.s. parameters can be obtained by a tim
independent search of the energy extremum, but the solu
represents also the lowest energy critical point for the sys
of Eq. ~2!. This point can be found by the method of fric
tional cooling@34# consisting in solving Eq.~2! with random
initial conditions and artificial dissipative terms on the righ
hand side. If the trajectories are calculated for long enou
time, the asymptotic state should be independent of the
tial conditions, and very close to the true ground state.

This method shows that the Hamiltonian of Eq.~40! has
no bounded minimum, because at large deformations the
crease of the occupation numbers for the orbitals with la
nz makes the system unstable. This instability is related
the volume conservation condition@31#, not considered here
and can be removed in a more refined treatment. Howeve
the physical region of oblate deformations there is a we
defined metastable ground state. This state occurs for
shape variables pg50, qg50.137 @b254Ap/5(d/3)
54Ap/5(e22q21)/2520.43#, and for the occupation prob
abilities pr

g : p(2,0,0)
g 5p(1,1,0)

g 5p(0,2,0)
g 50.864, p(1,0,1)

g

5p(0,1,1)
g 50.188, andp(0,0,2)

g 50.032. At this stationary point
obtained by frictional cooling, the self-consistency equatio
for the quadrupole momentum and the pairing gap are
filled to a very good accuracy. Thus, the quadrupole mom
is related to the deformation parameter by
wo
de-
tio

ce

x-

on
al-
e,

e
ns
ate

n-

e

se

to
gy
ili-

e-
tion
em
-

t-
gh
ini-

in-
ge
to

, in
ll-
the

ns
ul-
ent

d

3
5

x

\v0
^K &, ~41!

and the BCS pairing gapDg[Gpair( r51
6 Aprg(12pr

g)52.45
MeV is the same as the one obtained from the self-consiste
gap equations

2

Gpair
5(

r51

6
1

AD21~Er2l!2

Npart5(
i51

6 F12
Er2l

AD21~Er2l!2
G , ~42!

with Npart56 and the s.p. energiesEr given by the partial
derivatives

Er5
1

2

]Hquad

]pr
~43!

at the metastable point. One should note, however, thatDg is
smaller than the gap extracted from the even-odd mass d
ference,Dexpt54.4 MeV @35#.

If the system is not in the m.g.s., its evolution will be
given by the set of 14 coupled TDHFB-Langevin equation

(
j51

14

ẋ jv jk
M~c!5

]H
]xk

2
]^cuK uc&

]xk

3Fj~ t !2gK

d^cuK uc&
dt G . ~44!

Here x1,2 denotes the shape variablesp,q and $xj , j53,8%
represents the six occupation probabilitiespr , while
$xj , j59,14% denotes the six BCS anglesf r . The ‘‘environ-
ment’’ could be represented by the neglected degrees of fre
dom (Nr559 whenM56), the core excitations, more com-
plicated shape distortions, or particle emission channe
Because there is no detailed information about the streng
of the coupling between this environment and the quadrupo
dynamics, the coupling operator is chosen to beK and the
spectrum of noise is assumed to be flat~white!.

The symplectic form~Poisson bracket! vpq
M depends on

both shape and internal variables. Therefore, the classi
phase-space structure of the shape dynamics changes in ti
following the changes in the internal structure of the system

Near the m.g.s.,̂K & andvpq are well approximated by

^K &'24.7110.9b2 , vpq
M'\~33.4113.6b2!, ~45!

and without environment coupling (gK50) Eq. ~44! shows
the occurrence of small amplitude shape and pairing vibr
tions. The shape vibrations have two modes, one with hig
and the other with low frequency,Vs519.6 MeV/h, respec-
tively Vp51.9 MeV/h ~@18#, p. 507!. Vp is also the oscilla-
tion frequency of the occupation numberspr . Vs is very
close to the random-phase-approximation~RPA! estimate
A2v0 /2p519.1 MeV/h @36#, the small difference being
produced essentially by pairing. However, the excitation e
ergy in the small amplitude regime, when RPA is a valid
approximation, is too small compared toEGQR. Let us as-
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FIG. 1. Collective Hamiltonian~A! and pairing gap~B!, calculated for the yrast configurationpr
y , as a function of the quadrupole

coordinate and momentum variables.
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sume that the system increases its energy above the m
value by adiabatic deformation. Ifq andp are shifted from
the metastable equilibrium point (pg,qg) in small steps
ep ,eq , then at each node of the lattice (pg1kpep ,q

g

1kqeq), kp,q561,62, . . . , the internal configuration
(pr ,f r) can be determined from the condition of the min
mum for the HamiltonianH(p,q,pr ,f r) in Eq. ~40!. This
restricted minimization problem can be solved by friction
cooling of the intrinsic dynamics at each fixed couple
shape variables (p,q). The solution for this ‘‘yrast’’ internal
configuration is represented by a set of 12 fieldspr

y(p,q) and
f r
y(p,q), r51,6, over the shape phase space, and the t

energy is given by a collective Hamilton functio
Hcol(p,q) [ H(p,q,pry ,f r

y). In this calculation the lattice
constants were fixed atep50.0133 andeq50.033. The fields
pr
y andf r

y are almost constant, such thatpr
y(p,q)'pr

g and
f r
y(p,q)'0. The collective Hamilton functionHcol is repre-

sented in Fig. 1~A!. The pairing gap D
5Gpairu( r51

6 Mrv rur u obtained for the yrast internal configu
ration is represented in Fig. 1~B!. It depends weakly onq,
but decreases strongly for large absolute values of
‘‘shape momentum’’p.

Without pairing,Hcol reduces practically toHquad
g (p,q)

[ H quad(p,q,pr
g), and is represented for comparison in F

2~A!. The surface is almost the same asHcol(p,q) but shifted
upwards by the m.g.s. pairing energy of 4.86 MeV. The sy
plectic form vpq

g [vpq
M(p,q,pr

g ,f r
g) is represented~in \

units! in Fig. 2~B!.
If Gpair50, the evolution takes place without changes

the internal structure along the closed orbits on the surf
pictured in Fig. 2~A! which are fixed by the excitation en
ergy. The trajectories can be found in this case by integra
the reduced system
.g.s.
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ṗvpq
g 5

]Hquad
g

]q
q̇vpq

g 52
]Hquad

g

]p
. ~46!

According to the requantization formalism@37#, the closed
orbitsOn selected by the integrality condition

U E
Sn

dpdqvpq
g U5nh, On5]Sn , n51,2,3, . . . ,

~47!

are related to the eigenstates of the many-body system.
n51 and small amplitudes this condition corresponds to
normalization of the RPA quasiboson operators@38#. In the
present case it selects an orbitC with the excitation energy
EC519.1 MeV, very close toEGQR, and the oscillation fre-
quency 15.5 MeV/h. This orbit was calculated choosing a
initial conditionsp050, q050.65 (d521.1), and has the
‘‘phase-space’’ representation shown in Fig. 3~A!.

The closed orbitC is not a realistic correspondent of th
GQR, because is stable, with infinite ‘‘lifetime.’’ In fact, th
vibrational modes of the mean field are not isolated,
coupled with particle emission channels or compou
nucleus configurations. Particle emission from low-lying e
cited states can be well described microscopically within
R-matrix formalism@39#. The GQR has relatively high en
ergy, and the global effect of the interactions responsible
decay will be accounted for phenomenologically by the no
and friction terms in Eq.~44!. With these terms, Eq.~46!
changes into

ṗvpq
g 5

]Hquad
g

]q
2

]^K &
]q Fj~ t !2gK

d^K &
dt G ,
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FIG. 2. Collective Hamiltonian~A! and symplectic form~in \ units! ~B!, calculated atGpair50 for the ground state configurationpr
g , as

a function of the quadrupole coordinate and momentum variables.
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q̇vpq
g 52

]Hquad
g

]p
1

]^K &
]p Fj~ t !2gK

d^K &
dt G . ~48!

The coefficientgK may be related to the friction constan
gb in theb2 coordinate simply equating the dissipation law

gKS d^K &
dt D 25gbS db2

dt D 2. ~49!

Therefore,gK5(d^K &/db2)
22gb , and using Eq.~45!, one

obtainsgK5gb /121. Microscopic estimates of the diffusion
coefficientDb5kBT/gb in thesd shell are presented in Ref
@40#. In these calculationsT.0, andgb is overestimated by
a factor of 10, compared to the fission data.

The dissipation mechanism is beyond the purpose
the present work, but to fix a reference it is convenie
to measuregb in terms of a virtual two-body viscosity coef-
ficient m, using the formulagb55R0

3m55(r 0)
3Am fm3

@41#. Thus, forA528,gb /\5229m/TP ~1 TP51011 N s/m2

56.24310222 MeV s/fm3), and gK can be written as
gK /\51.9m/TP.

If T50 but gK.0, the noise vanishes and the excitatio
energyEx(t) decreases continuously, ressembling the dec
process. The decay law of a quantum state changes in ti
being quadratic for small times, exponential at intermedia
times, and an inverse power at long times compared to
lifetime of the system@42#. The exponential stage is charac
terized by the decay width constantG, and in the present
calculation this constant will be extracted from the excitatio
energyEx(t) by a one-parameter fit with the analytical func
tion

EI~ t !5Ex~0!e2G f t/\. ~50!
t
s,

of
nt

n
ay
me,
te
the
-

n
-

The dependence of the fit parameterG f on m is represented
in Fig. 3~B!. At weak friction the accuracy of the exponenti
fit is very good, and the system has damped oscillations w
G'1.533103m MeV/TP. Nearm;0.01 TP,G f attains a
maximum and then decreases. Atm;0.022 TP (G f56.75
MeV! the behavior changes from damped oscillations to a
riodic motion. The valueG GQR of '4.5 MeV can be there
fore reproduced by two values ofm: one at weak friction,
m150.002 85 TP, and the other in the aperiodic regim
m250.038 TP. For these two casesEx(t) is represented by
dashed line in Fig. 3~C! and Fig. 3~D!, respectively.

It is interesting to note that in the aperiodic regime the
provided byEI(t) is not very accurate, andEx(t) is closer to
a quadratic function of time,

EII~ t !5Ex~0!e2s2t2/\2. ~51!

The dashed line in Fig. 3~D! is reproduced well byEII with
s53.75 MeV. A quadratic dependence similar toEII was
observed for the wave packets with a Gaussian strength
tribution and the variance of the energys2 @43#.

At T.0 the thermal random forces lead to a Browni
diffusion of the shape variables. A typical orbit calculat
with temperature and friction for the initial conditions ofC is
represented in Fig. 3~A!. In this calculationkBT52 MeV,
m50.038 TP, and the time step of the numerical integrat
in Eq. ~48! was dt50.0012\/MeV. At the moment
tn5ndt, the noisej(t) was expressed by

j~ tn!5A2kBTgK

dt
Rn , ~52!

whereRn , n51,2,3, . . . is a sequence of Gaussian rand
numbers with 0 mean and variance 1. This choice ens
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FIG. 3. Quadrupole shape dynamics without pairing. Phase-space orbits~A!, decay constant as a function of the friction coefficient~B!,
^^Ex&&d ~solid line! andEx ~dashed line! at m50.0028 TP as a function of time~C!, and ^^Ex&&d ~solid line! andEx ~dashed line! at
m50.038 TP as a function of time~D!.
r

-
t

re
the
k
e.
ne-
the
n
ed
te

be-
olu-
s

on,
the discrete form of the fluctuation-dissipation theorem
^^j(t j )j(tk)&&d52kBTgKd t j tk /dt, with ^^•••&&d denoting
the average over an ensemble of trajectories.

With noise the excitation energy fluctuates instead of d
creasing continuously, but the average over a long time
terval iskBT, proving that thermalization occurs. Howeve
Ex(t) along a single trajectory is not relevant for the calculu
of the decay width, and instead it is necessary to use
averagê ^Ex&&d(t) of Ex(t) over many trajectories, gener
ated using different sequences of random numbers. The
function for the fit in this case,

EIII ~ t !5Ef1@Ex~0!2Ef #e
2G f t/\, ~53!

depends on two parametersG f andEf .
The averagê^Ex&&d(t) was calculated over 100 trajecto

ries atkBT52 MeV, for m50.002 85 TP@Fig. 3~C!, solid
line#, and m50.038 TP@Fig. 3~D!, solid line#. The fit by
EIII (t) gives in both casesEf very close to 2 MeV, while
,

e-
in-
,
s
the

rial

-

G f is 4.7 MeV and 3.8 MeV, respectively. These results a
interesting, because they indicate that in the presence of
thermal environmentG f remains almost unchanged at wea
friction, but decreases definitely in the overdamped regim

The numerical results presented above were obtained
glecting the effects of the pairing interaction and keeping
occupation probabilitiespr fixed at the m.g.s. values. Whe
the pairing interaction is switched on, instead of the reduc
system of Eq.~48!, in 2 variables, it is necessary to integra
the full system of Eq.~44!, in 14 variables. The excitation
energyEC is obtained for the same initial conditions (p50,
q50.65,pr5pr

g , f r5f r
g), and the corresponding orbitCp of

the shape variables, without friction atT50, is pictured by
the dashed line in Fig. 4~A!. By contrast toC, this trajectory
is not closed, proving the existence of energy transfer
tween the pairing and shape degrees of freedom. The ev
tion of b2 in the two cases, with and without pairing, i
compared in Fig. 4~B!. With pairing, the periodic quadrupole
vibration acquires an amplitude and frequency modulati
but the effect is small. As in the case of a Toda lattice@44#,
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FIG. 4. Pairing effects on quadrupole shape dynamics. Phase-space orbits~A!, b2 as a function of time forGpair51.23 MeV~solid line!
andGpair50 ~dashed line! without environment coupling~B!, b2 as a function of time forGpair51.23 MeV~solid line! andGpair50 ~dashed
line! whenG f54.5 MeV ~C!, andEx as a function of time forGpair51.23 MeV ~solid line! andGpair50 ~dashed line! whenG f54.5 MeV
~D!.
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the relatively large number of variables and the highly no
linear coupling do not produce necessarily a random beh
ior.

When gK.0, the integration of Eq.~44! with pairing
shows a high sensitivity of the orbits with respect to t
initial conditions. Thus, within a set of 100 trajectories sta
ing at the same excitation energy from initial conditions ch
sen at random alongCp , 92 are bounded and 8 are ope
Along the bounded orbits the system evolves towards
m.g.s. ‘‘adiabatically,’’ dissipating energy without majo
changes of the occupation probabilitiespr . In the other case
before reaching the m.g.s.,pr has an irreversible evolution
towards a prolate configurationpr* when Hcol* (p,q) [
H(p,q,pr* ,f r* ) has no finite minimum.

The adiabatic regime ressembles the case without pair
though there is no clear transition from damped oscillatio
to aperiodic relaxation. Always there is a residual vibrati
of the shape and pairing variables with a frequency;12.3
MeV/h, which is practically not affected by the friction forc
n-
av-

e
t-
o-
.
he
r

ng,
ns
n

considered here. A similar situation was noticed in@9# where
it was shown that the center of mass and squeezing deg
of freedom of the Gaussian wave packets require differe
dissipative terms. The decay constantG f is calculated using
the trial functionEIII (t). For the initial conditions ofC, the
width G f of 4.5 MeV is reproduced whenm50.028 TP. This
value is smaller thanm2, but very close to the one extracte
from fission data,mexpt50.0360.01 TP @45#. The change
produced by pairing on the adiabatic orbit having the initi
excitation energy and the widthG f of the GQR is presented
in Figs. 4~C! and 4~D!. In general, for the adiabatic orbits
calculated with pairing and frictionG f are below the curve of
Fig. 3~B!, and the residual energy does not exceed 1.5 Me

Along the unstable trajectories the shape variables ha
both an oscillatory and drift motion, whilepr evolves from
the oblate configurationpr

g to a prolate one, denoted gener
cally bypr* . For instance, with the initial conditions ofC and
m50.002 85 TP the oblate-prolate inversion of populatio
occurs at a timet inv;0.5\/MeV, when the excitation energy
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FIG. 5. Collective Hamiltonian~A! and symplectic form~in \ units! ~B!, generated adiabatically for the prolate configurationpr* , as a
function of the quadrupole deformation and momentum variables.
i
a

he
ed.
arrives below 5 MeV. At the transition timet*;2\/MeV, pr
becomes practically constant,p(2,0,0)* 50.21, p(1,0,1)* 50.72,
p(0,0,2)* 50.93. After this moment the shape evolution
nonoscillatory, being produced by the new Hamiltoni
s
n

structure$Hcol* (p,q),vpq* %, pictured in Fig. 5.
The present study is completed by calculations for t

case when pairing, friction, and temperature are all includ
A typical orbit for the initial conditions ofC with kBT5 2
FIG. 6. Temperature effects on shape and internal dynamics.b2 as a function of time forGpair51.23 MeV ~solid line! andGpair50
~dashed line! ~A!, and occupation probabilities in thesd shell as a function of time~B!.
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54 717DISSIPATIVE SHAPE DYNAMICS IN THEsd SHELL
MeV andm50.028 TP is represented in Fig. 4~A! by a solid
line. The noise was chosen to be the same as in the calc
tion of the Brownian orbit shown in Fig. 3~A!. The diffuse
orbits of Figs. 3~A! and 4~A! are rather similar until
t;10\/ MeV, but after this moment the orbit calculated wi
pairing escapes towards large prolate deformations, as ca
seen from the trajectory plot of Fig. 6~A!. This behavior is
explained by the evolution of the occupation probabilit
shown in Fig. 6~B!, which change frompr

g to a prolate con-
figuration similar topr* . The histogram of the transition tim
t* for 300 trajectories calculated with random initial cond
tions alongCp andkBT5 2 MeV is shown in Fig. 7.

V. SUMMARY AND CONCLUSIONS

In this work the problem of dissipative shape dynam
was treated within a TDHFB-Langevin formalism. The ba
equations~7! were derived from the time-dependent var
tional principle, assuming a bilinear coupling between
quantum many-body system and a thermal environm
~bath! composed of classical harmonic oscillators. In gene
the coupling produces a memory friction term, but here
consider only the case of Ohmic dissipation@Eq. ~8!#. This
approach distinguishes between the friction~dissipation! and
noise~temperature! effects on the many-body dynamics, an
can be applied to the study of phenomena of decay, therm
ization, or both.

For applications to the GQR dynamics, the manifoldS of
HFB trial functions is resticted toM, of lower dimension,
where only the quadrupole deformation and occupation n
ber degrees of freedom are considered. The model spa
also restricted to thesd shell, and numerical results are o
tained for the case of28Si.

By construction,M is suited for the treatment of th
quadrupole plus pairing Hamiltonian, and Eq.~8! related to
this system was solved numerically for situations of incre
ing complexity: for the metastable g.s., small amplitude
brations, and large amplitude GQR vibrations with or wit

FIG. 7. Histogram of the configuration transition timet* for
300 trajectories calculated withm50.028 TP andkBT52 MeV.
ula-

th
n be

es

i-

ics
ic
a-
he
ent
ral,
we

d
al-

m-
ce is
-

as-
vi-
h-

out pairing, friction, or temperature.
The ground state of28Si was generated by frictional cool

ing, and the test of self-consistency for the quadrupole a
pairing mean fields was positive. The result is confirmed
the study of small amplitude quadrupole shape vibratio
which have the frequency expected for a self-consistent
culation.

Without pairing the internal configuration is fixed and th
orbit of the shape variables is closed. Therefore, the sys
can be requantized by the Bohr-Wilson-Sommerfeld in
grality condition of Eq.~47!. The energy of the first excited
state predicted by this method is very close to the GQR
ergy in 28Si.

The decay constant was related to dissipation, and its
pendence on the phenomenological friction coefficient
given in Fig. 3~B!. At weak friction the decay is clearly
exponential, as expected for a Breit-Wigner resonance, bu
strong friction ressembles the decay of a state with a Gau
ian strength distribution. This remark may be useful in t
analysis of the experimental data.

At T.0 the shape variables have a Brownian trajecto
~‘‘shape diffusion’’! and in the final stage of decay the mo
tion is thermalized. The average over trajectories shows
before thermalization the decay law remains close to ex
nential, but the constant is different than atT50. For
kBT52 MeV thermalization occurs within;1\/MeV @Figs.
3~C! and 3~D!#.

With pairing, the occupation probabilities may change
time adiabatically, namely, remaining near the oblate co
figuration of the metastable ground state, or they can h
transitions to a prolate configuration. For an initial excitatio
energy of 19.1 MeV the evolution is definitely adiabatic
there is no dissipation@Fig. 4~B!#. With dissipation the evo-
lution can be adiabatic or not, depending upon the magnit
of the friction coefficient and the initial conditions. The adi
batic dissipation carries the system close to the metast
ground state, but keeping a small residual excitation ene
~stored in a pairing vibrational mode!, which is weakly in-
fluenced by the present friction force@Fig. 4~D!#. For the
nonadiabatic dissipative orbits, oblate→ prolate configura-
tion transitions occur relatively fast, within a timet*
;2\/MeV.

WhenT.0, the stage of adiabatic evolution is genera
followed by the configuration transition, and consequen
t* becomes spread over a wide interval~Fig. 7!.

The results presented above indicate that transitions
tween different internal configurations during decay may
produced by dissipation alone, or by the combined effect
dissipation and noise. Extended investigations w
temperature-dependent or memory friction may lead to re
istic estimates of the shape diffusion coefficient.
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