PHYSICAL REVIEW C VOLUME 54, NUMBER 2 AUGUST 1996

Spin M1 excitations in deformed nuclei from self-consistent Hartree-Fock
plus random-phase approximation
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We present a method to study spin magnetic dipole excitations in deformed nuclei within the quasiparticle
random phase approximation based on self-consistent Hartree-Fock mean fields and residual interactions de-
rived from the same effective two-body force. We perform a comprehensive study covering different Skyrme
forces and various mass regions, and discussing the role of the mean field and of the residual interaction. An
overall agreement with experimental data is obtained with the SG2 force. We study the systematics and the
deformation dependence of the spitiL strength distributions dK™=1" excitations. It is found for the first
time that the summed spM 1 strength obeys a quadratic dependence on deformation in the two isotope chains
studied, 142146.148.1Rq gnd 144:148.150.152.1%m [50556-281@6)03908-9

PACS numbdis): 21.60.Jz, 21.10.Re, 27.6G, 27.70+q

I. INTRODUCTION tion of the strength in this energy range exhibits a double-
humped structure in most nuclei. These experiments repre-
The discovery of magnetic dipole excitations in even-sent indeed a significant advantage over the electron
even deformed nuclei by Bohket al. in 1984[1] initiated a  scattering ones since the latter may not be sensitive enough
new line of investigations in nuclear structure that is stillto the expected excitations in this energy region because of
actively pursued. The discovery was done by high-resolutiotackground problems and interference between orbital and
inelastic electron scattering from rare-earth nuclei. The inspin contributions.
vestigations were complemented soon afterwards with other The M1 giant resonance in the spherical nucléd®b
experiments involving different probes and mass regionswas already known frome,e’) and (y,y') reactions. The
Numerous electron scattering experiments have been peshell model predicts strong isovectof £xcitations in nuclei
formed since then to study the systematics and fragmentationhere thej =1=1/2 spin-orbit partners are located at oppo-
of this new low-lying mode(see, for example, the review site sides of the Fermi surface. TREL resonance if%%Pb is
articles in Ref.[2]). Nuclear resonance fluorescen®RF)  spread around 6—8 Mep] and built up essentially by spin-
has been also very useful because it constitutes a highly séip excitations. The theoretical calculations of Chkaal.
lective and sensitive probe to investigate the low-lying di-[10] were able to describe the quenching and the position
pole excitations, showing an important fragmentation of thisand spreading width of the strength distributions by account-
mode[3]. Inelastic proton scattering at forward angles wasing for two-particle—two-hole(2p-2h correlations, meson
performed[4] to study the spin contributions. It confirmed exchange currents, and isobar-hole excitations. If the data on
the predominantly orbital nature of the low-lying" Istates.  2%%b are compared with the inelastic proton scattering data
The combined analysis of all these high-resolution inelastion the M1 giant resonance in deformed nuclei, as done in
scattering experiments established the existence of this modgef. [7], one can see that the deformed nuclei show a much
as a general phenomenon in deformed even-even nuclei. Thgronger fragmentation of strength over a broader energy
basic features of the low-lying excitations are nowadays welfange in comparison with the spherical case. This is due to
known (see, for examplg5,6], and the review articlel,7]).  the higher density of underlying quasiparticle states in the
The (p,p’) measurements were first performed to studydeformed nuclei.
the small spin contributions at low energy, confirming the The experimental spitM1 strength in deformed even-
orbital nature of the low-lying states. More recently, an ex-even nuclei is extracted from inelastip,p’) experiments at
perimental study of the spin magnetic dipole strengths irforward angles after subtracting a huge background, whose
medium heavy and heavy deformed nuclei has been startashape is derived by extrapolation of the low-energy tail of
using both unpolarized and polarized protons. Inelastic scathe giant electric dipole resonance. More recefilg,12,
tering experiment$8] of medium-energy protons at extreme experiments with polarized protons have been done in order
forward angle indicate the existence of considerable spifio eliminate this huge background. In this case, side effects
strength(about 1Ju§) between excitation energies ranging like the Coulomb excitation of the electric giant dipole reso-
from 5 to 10 MeV in several rare-earth nuclei. The distribu-nance do not contribute to the spin-flip probabiliByy .
Therefore, it is possible to deduce thEL strength in a way
less dependent on the details of the background in the cross
“Permanent address: Institute for Nuclear Research and Nucleaection. But the strong background of quasielastic scattering
Energy, Bulgarian Academy of Sciences, BG-1784, Sofia, BulgariaiS present even in the case of polarized protons.
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The analysis of these measurements is still in progresdield plus residual interactions indicates obviously that the
Preliminary data on'®Sm [7] indicate a reduction of the residual interactions are strongly correlated with the choice
strength in the first peak as compared to the previous unpaf the mean field. This correlation is explicitly taken into
larized proton measurements. This reduction is more in line@ccount here. It is important to note that with the procedure
with our previous microscopic resultfl3,14 obtained used in this work there are basically no free parameters, apart
within the quasiparticle random phase approximationfrom the pairing gaps.

(QRPA). These data indicate also the existence of some Experimental and theoretical studies of sprl strength
strength between 10 and 12 MeV, not seen previously. Itlistributions have been so far restricted to a few well de-
should be mentioned that the extraction of the sMi  formed nuclei 3~0.3) from the rare-earth and actinide re-
strength from the experimental data has been done assumiggpns. This is in contrast to the case of the low-lying, pre-
a neutronhyy,-hg;, particle-hole configuration. Hence, the dominantly orbital, M1 excitations that have been
extracted empiricaM 1 strengths could change when includ- extensively investigated and whose systematics is at present
ing other possible configurations. well established(see, for instance[2], and references

The random phase approximation is widely recognized tqherein. A very interesting feature that emerged from these
be a suitable approach for nuclear structure studies, providnvestigations is the quadratic dependence on deformation of
ing a successful formalism for the description of variousthe summed low-lyingi 1 strengthg5,6].
nuclear excitations such as giant multipole resonances or |n this paper we carry out a more extensive study of spin
low-lying particle-hole excitations. Different theoretical M1 strength distributions in the above-mentioned mass re-
frameworks are used in microscopic RPA calculations degjons with the aim of establishing their systematics. In par-
pending on the procedure adopted in selecting the mean-fielgtular, it will be interesting to check whether the observed
basis and the residual interactions. A common procedure igharacteristic two-humped structure is still present in transi-
to take the single-particle energies from experiment and thgonal nuclei with small deformations. It will also be inter-
wave functions from harmonic oscillator or Woods—Saxonesting to see whether the spihl strength may depend on
potentials, and to adjust phenomenologically the residuajiobal properties such as deformation or mass number. To

forces. Conceptually, it is, however, more appealing to fol-siudy the deformation dependence we consider two chains of
low a self-consistent procedure and to derive the mean fielgsotopes in the rare-earth regior44148.150.1521%y gnq

and the residual interaction from the same effective nucleon142146.148.15Q 4 whose shapes vary from spherical to well

nucleon force. _ deformed. These chains have been already investigated ex-
Within the self-consistent approactHartree-Fock +  perimentally[5,6] and theoreticallff14,25—27 by exploring
RPA), the Skyrme forces are among the most commonifthe deformation dependence of the low-lyikiL strength, a
used effective interactions. Although much work has beeReatyre that is well accounted for by the present calculations,
done in this direction, we would like to mention here only g5 shown in Sec. VII.
two of the pioneering studies: the work of Vautherin and  The paper is organized as follows. In the next section we
Brink [15], where the first Hartree-FockHF) calculations  gescribe briefly the deformed HFRPA formalism used in
with Skyrme forces were performed, and the work of Bertschpjs work, as well as the various Skyrme forces considered.
and Tsai[16], where numerical methods for RPA with |5 Secs. 11l and IV we study the role of the mean field and
Skyrme forces were developed. We apply here for the firstesidual interactions by comparing the results from different
time this theoretical framework to the description Mfl  sSkyrme forces. In Sec. V we compare our results with the
excitations in deformed nuclei. Most of the Skyrme forcesayailable experimental data on the spitL strength distri-
have been adjusted to nuclear matter and ground-state propgtions. In Sec. VI we show results for 24 nuclei and discuss
erties only. Therefore, these forces, and particularly in theignejr common and distinguishing features. Finally, in Sec.
original versions, may not be the most appropriate effectiva,|| we present a more detailed study of the Nd- and Sm-
forces to describe spiM1 excitations. For this reason we jsotope chains, where we discuss the deformation depen-
study here several Skyrme forces including the SG2 forcegence of the spiM1 strength distributions as well as of the

which is known to have good spin propert{ds]. summed strengths. The main conclusions are summarized in
The purpose of this work is to study the spitil strength  gec. viII.

distributions in even-even deformed nuclei within a self-
consistent HF-RPA formalism with Skyrme forces. Our
theoretical approach follows closely the QRPA used in pre-
vious works[13,14,18-20) except that here it is based on
self-consistent mean fields and spin-spin residual interactions
derived from the same effective two-body force. In the past, As mentioned in the Introduction, the RPA formalism can
QRPA calculations have been done by several groupbe based on different assumptions for the mean field and the
[13,14,18—-24 using phenomenological deformed potentialsresidual interactions. The mean field was taken in previous
and different residual interactions. In particular, in Refs.works[13,14,19,20 from a deformed Woods-Saxon poten-
[13,14,2Q we used deformed Woods-Saxon potentials andial and the coupling constants of the residual spin-spin force
separable residual interactions that were relatively successfulere derived from Brueckner-Hartree-Fock nuclear matter
in describing the phenomenology bfl excitations. Never- calculations. In this paper we adopt a self-consistent ap-
theless, we got systematically less strength than observed proach using the same effective interaction to obtain both the
the first peak of the spin strength distribution. The represenself-consistent mean fieldwith its corresponding single-
tation of the effective nucleon-nucleon interaction as a meaparticle energies and wave functigorend the residual inter-

Il. SELF-CONSISTENT HF + RPA
FOR DEFORMED NUCLEI
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TABLE |. Parameters of the Skyrme forcé® considered in this workt, [MeV fm?], t; [MeV fm5],
t, [MeV fm®], t3 [MeV fm®], W [MeV fm%], xo, X1, X5, X3, anda.

to tl t2 t3 W XO X]_ X2 X3 1l/a

SG2[17] —-2645.0 340.0 -41.9 15595.0 105.0 0.09 -0.0588 1.425 0.06044 6.0
SG1[17] -1603.0 5159 845 8000.0 1150 -0.02 -05 -1.731 0.1381 3.0
Sk3[31] —-1128.75 395.0 -95.0 14000.0 120.0 0.45 0.0 0.0 1.0 1.0
G, [36] —-1800.16 336.23 -85.74 11113.5 121.86 -0.4862 0.0 0.0 -1.0295 3.333
Ska[33] -1602.78 570.88 -67.7 8000.0 125.0 -0.02 0.0 0.0 -0.286 3.0
Skm* [35] -2645.0 410.0 -135.0 15595.0 130.0 0.09 0.0 0.0 0.0 6.0

actions. This approach is described succinctly in the nextvhich is absent in the Woods-Saxon potential. In the present

subsections. work, once the Skyrme interaction is chosen, no free param-
eters are left apart from the pairing gaps. In order to reduce
A. Deformed Hartree-Fock with Skyrme forces the number of parameters, we have used in this work the

same pairing gaps for all the rare-earth nuclei considered

It i Ik that the density-d i-
is well known that the density-dependent HF approxi (A,=A,=1 MeV) and the valuea ;= A,=0.7 MeV for the

mation gives a very good description of ground-state prop:~P ) P
erties for both spherical and deformed nu¢e8] and itis at ~ actinides, unless otherwise specified.

present the most reliable mean-field description. The main Because of the success of HF calculations with Skyrme
features of the deformed Hartree-Fock calculations witHnteractions, attempts were made to generalize the force and

Skyrme forces are described in this subsection. to apply it also to excited states, covering in this way more
Our deformed Hartree-Fock calculations are based on thi®atures of nuclear structure. Different generalizations
formalism developed in Refi15]. We use the McMaster [17,30-37 of the original Skyrme forces have been pro-
code that follows the method described in R@®]. Pairing  posed for this purpose, as well as to avoid spin instabilities
correlations are included in the BCS approximation withassociated with the zero-range three-body interadt&sj.
fixed gap parameters. Some of the generalized forcg32,37 introduce additional
The basis space consists of 11 harmonic oscillator majospin-dependent two-body terms and/or extra velocity-
shells. We work with the full HF bases, i.e., with the whole dependent three-body contributions. The three-body force is
sets of single-particle wave functions and energies for eacteplaced in other approaches by a more general two-body
nucleus as they come out from the calculatiowe do not density-dependent term including usually some power of the
shift any single-particle energy leyel density. An example for this type of extended interaction is
There are remarkable differences with respect to our prethe forces of Van Giai and Sagawa, SG1 and 9GZ|,
vious treatment of the mean field in terms of Woods-Saxorwhere a fractional power of the density was introduced. In
potentials. Among them we can mention the drastic reducaddition to the ground-state properties, these forces give also
tion in the number of input parameters: The quadrupole dequite reasonable descriptions of the Gamow-Teller reso-
formation of the ground statg is, for instance, determined nances and are free of spin instabilities. These latter forces
consistently and no explicit parameter is needed to fit there therefore of particular interest to study the dgifh ex-
guadrupole moment. We can also mention the effect of a&itations, and are considered here.
spin-spin interaction on the self-consistent mean field The two-body density-dependent Skyrme forces used here
through the spin exchange operators of the Skyrme forcéjave the structure,

1
V(ry,ry)=to(1+%P,)8(ri—ry)+ §t1(1+x1PU)(k2+ K'2)8(r1— 1) +t(1+X,P )k - 8(ri—ry)k

1
+ 5lap (1 X3P ;) 8(ry—r2) +iWK'- 6(ry—r3) (oxk), D)

wherek=(2i) "1(k;—k,) andk’=—(2i) " 1(k;—k5) oper- ized Skyrme forces in the sense that they contain more in-
ate to the right and left, respectiveR,, is the spin exchange Volved density dependences.

operator andtg,tq,t5,t5,Xg,X1,X2,X3, W, are parameters
fitted to nuclear ground-state properties. The values of these
parameters for the various forces used in this work are listed The model Hamiltonian used here to solve the RPA equa-
in Table 1. All of these forces except SK31] are general- tions for thel "K=1"1 excitations has the form

B. RPA and residual interactions
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H=Ho+Hqo+ HsstHpy. 2 1 ,

0 QQ SS RV ( ) Vphzé(rl_r2)1_62” [(_1)5—5 o, 0,
It contains a deformed mean fielltyy with BCS correlations et
and separable quadrupole-quadrupolelqg), spin-spin
(Hs9, and rotation-vibration Kig,) residual interactions.
The structure oH is similar to that in our previous works ] ) )
[13,14,20. wheres andt are the third components of the spin and isos-

RPA formalism based on the model Hamiltonié?). We  9uage of the Landau-Migdal theory of Fermi systejm],
solve the RPA equations and a relationship can be establishéd,30,32,34 between

the Landau and Skyrme parameters in nuclear matter. For
completeness we write here the expressions for the Landau
parametersG, and Gy corresponding to the two-body
density-dependent Skyrme forces in Ef):

&°H(p)

+(—1)575’“7t’0' SO T |,
v OpstOpsit/

©6)

[H,TT(vm)]=W,I'T(vm), ©)

[T(vm),TT(»'m")]=8(v,v")S(mm’), (4
Go=—No{7to(1—2x0) + 73t3p*(1—2x3)
in the deformed HF basis. In these equati@sis the exci-
tation energy of the corresponding RPA state, generated by
the RPA phonon creation operafbf(»m). The explicit ex- ) L . 112
pressions of the residual separable forceg§,Hss,Hry) Gp=—Nolzto+ 2at3p“+ gkp(t1—t2)]. ™
used to describ&™K=1"1 excitations can be found in our

previous publicationfsee, for instance, Eq&2)—(4) in Ref. ~ We recall here thaB, andG, are the Landau parameters for
[14]]. the isoscalar and isovector spin-spin interactions, respec-

The coupling constants iHoo and Hgy are self- tively. We also note that thig term in Sk3 can b_e written as
consistently determined from the condition of rotational in-& contact three-body force that leads to a different depen-
variance following a method described in detail in Rag].  dence of the Landau parameters on the parantgter
First, the coupling constants ¢foo are determined in the  Finally, in order to find the coupling constars; andg
quasiboson approximation by the condition Of Hss, we have to relate the contact Landau-Migdal force
[Ho+Hoo,d(m)]=0, inspired by the work of Baznat and with the separable spin-spin interactidfy. (3) in Ref.[14]].
Pyatov[39]. Then, to ensure thdtHgpa,J(M)]=0 is ful-  ASsuming aco/r;stant density distribution inside a sphere with
filed exactly, we impose the constraint radius R=roA"* (r=1.3 fm), we integrate the Landau-
Migdal interaction over this volumgl9]. This procedure
provides a connection between the parameters of our sepa-
rable spin-spin forc&Ks andq and the Landau parameters,
and therefore connects§s and g with the Skyrme param-
The coupling constants dfir, are determined microscopi- eters. In this way we obtain, for the overall strenégth of
cally by this constraint which ensures the orthogonality ofH g, the relation
the RPA wave functions to the spurious rotational state.

Hence, the coupling constants o andHgy are derived Kee8 N Gt G 8
from the deformed mean field and, therefore, they depend on s~ mro o (GotGo) ®
the Skyrme force used to get the self-consistent mean field.

However, the coupling constants Hiss are not constrained and, for the ratiog of the n-p to then-n (or p-p) strengths

+ 5KE[ty(1—2x1) —to(1+2x,) 1},

([3(m), T (vm")])=0. ©)

by the above conditions. in Hgg, the relation
In Refs.[13,14,2Q we studied the role of the different
residual interactions and their influence on the different types g=(Gy—Gy)/(Go+Gyp). (9)

of K™=1" excitations using a Woods-Saxon for the de-
formed field. We found the spin-spin interaction to be theClearly,q=+1 (—1) corresponds to a purely isoscaes-
most important one to describe spin excitations and spil®vecto) Hss interaction. _ _
M1 strength distributions. In those works the spin-spin in- We list in Table Il the values of the saturation density
teraction was not connected to the mean field but its coupling. Fermi momentunke , effective massn*, and the normal-
strengths were taken from nuclear matter calculations. A reization coefficientNg* for various Skyrme forces used in
view of possible choices for the coupling constants of thethis work, as well as the corresponding values for the Landau
Hgg interaction Ks and q) can be found if19]. In what  parameter§, andG,, Eq.(7), and the spin-spin parameters
follows we derive the coupling constants of the spin-spinof the separable interactidis, Eg. (8), andqg, Eg. (9). In
residual interaction consistently from the same Skyrme forc¢he case of Sk3 we also give within parentheses the values
used to generate the mean field. obtained when the three-body version of the force is used.
Following the standard proceduf#6], we start from the One may question how reliable the separable force in
Hartree-Fock ground state. The spin-dependent particle-holeomparison with the Landau-Migdal interaction for studying
residual interaction is defined in terms of second derivativespin M1 excitations is. This point has been considered in
of the Hamiltonian densityH(p) with respect to the one- Ref. [41], where a comparison has been made ¥&iSm
body densitiegpy;, between the spidM 1 strength distributions obtained from a
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TABLE Il. Saturation densityp, Fermi momenturkg, effective massn*, normalization coefficient
N, ', Landau parametei@, andG}, Eq.(7), and the coupling strengthés, Eq. (8), andg, Eq. (9), of the
separable spin-spin residual interaction derived from various Skyrme interactions through the Landau-Migdal
force. Values within parentheses correspond to the three-body version of Sk3.

p Ke m*/m No* Gy G} Ks q
[fm~%] [fm™ Y] [MeV fm?] [MeV]
SG2[17] 0.158 1.328 0.786 196.0 0.013 0.505 88 -0.95
SG1[17] 0.154 1.317 0.608 255.5 0.072 0.502 128 -0.75
Sk3[31] 0.145 1.291 0.763 207.8 0.052 0.460 92 -0.80
(-1.579 (-0.3594 (=349 (0.60
G, [36] 0.158 1.326 0.784 196.8 —0.099 0.463 62 -1.54
Ska[33] 0.155 1.320 0.608 254.7 -0.015 0.324 68 -1.10
Skm* [35] 0.160 1.334 0.788 194.5 -0.297 0.315 3 -34.0

contact interaction and a corresponding separable spin-spinclude in Fig. 1 the results obtained from a deformed
force. The very similar results obtained have led to the conWoods-Saxon potential with the parametrization of Tanaka
clusion[41] that, although less realistic, the separable interet al. [44] used in Refs[13,14,2Q. In this figure, as well as
action contains the essential features of the zero-range forcg the remaining figures to be discussed later, the strength
An important advantage of using separable interactions ig _(M1) is summed over energy bins of 80 keV to facilitate
that one can avoid the drastic basis cutoff necessary fahe comparison to experiment. We have folded the theoreti-
heavy deformed nuclei when using a Landau—M|g:jaI forceca strength distributions with Gaussians whose widths are
Our basis includes all the configurations witiT=1" and  gnergy dependent. This has been done to simulate the further
two-quasiparticle energies up to 30 MeV, i.e., about 150Q;53mentation of the strength expected from the coupling to
irreducible two-quasiparticle configurations in each rareq, . g asiparticle states not taken into account in the RPA.
earth nucleus. Since the density of these states increases with erjdfjy
the widths of our Gaussians increase linearly frbrs 0.5
MeV atE=4 MeV toI'=1.5 MeV atE=12 MeV in a way
similar to other workd21-23. The microscopic origin of

As already mentioned, except for the three-body versiorthese widths has been studied in Rdf].
of SK3, all the Skyrme forces studied in this work are two- The purpose of Fig. 1 is to compare the effect of the
body density-dependent interactions of the tyfi¢ Their different mean fields on the spiM 1 strength distributions
parameters are listed in Table I. The force $B3], repre-  before including the spin-spin residual interaction.
sentative of the first generation Sk1-Sk6, is a simple one and There is a remarkable difference between the results ob-
usually regarded as a standard reference. The remaining imained with self-consistent and Woods-Saxon mean fields.
teractions in Table | are generalizations including a fractionafThe spinM1 strength is distributed in the former case over
power of the densitya<1 in Eq.(1). They are designed to an extended energy range, while in the latter case the
fit more extensive sets of data. All the Skyrme forces instrength is concentrated in a narrower range. One can see
Table | lead to similar ground-state propertiinding ener-  that the profile of the spiM 1 strength distribution is rather
gies, rms radii, et¢.In particular, the SG forcefsl7] are of  similar for all the Skyrme interactions considered. The main
special interest for our present study since they provide alifference is that the strength is displaced in energy for the
reasonable description of Gamow-Teller strength distribudifferent Skyrme interactions. This is due to the spin-orbit
tions. The intrinsic quadrupole moments and rms radii of theforce. The position of the peaks is strongly correlated with
nuclei considered here obtained from SG2 agree also venpe value of the spin-orbit parametéf (1), shown in Table
well with the corresponding experimental data from Refs.| where the Skyrme forces are listed in ascending order of
[42,43 as one can see from Table IIl. their W values. The larger i8V, the more shifted to higher

All the results presented in this paper have been obtaineghergy theM 1 strength is. That the spin-orbit force plays an
using effective spin gyromagnetic factag§"=0.7g"¢. By important role in the spitM 1 strength distribution was also
doing this we account in an effective way for the quenchingnoticed in Refs[14,2( in the context of the Woods-Saxon
of the M1 strength caused by additional degrees of freedonpotential. The strongest peak located around 6 MeV contains
not considered here. much more strength than experimentally obser(ezt Fig.

The unperturbedH ss=0) spinM1 strength distributions 2). These qualitative features are common for all the nuclei
obtained with the various Skyrme interactions from Table Iconsidered in this paper. They also hold for other Skyrme
are plotted in Fig. 1 in the example 6?‘Sm. In the absence interactions of the typ€él) not shown here.
of a spin-spin residual interaction, the spitl strength dis- The detailed structure of the unperturbed spin excitations
tribution originates almost exclusively from the mean field.obtained with SG2 is shown in Fig. 2 as an example. The
The spinM 1 distribution is rather insensitive to the other same folded distribution as in Fig. 1 is displayed in the top
residual interactiondoq and Hgy and it is close to the plot together with the experimental ddf&. One can see in
particle-hole strength distribution. Also, for comparison, wethe middle plot of Fig. 2 the individual spil 1 excitations,

IIl. MEAN-FIELD PROPERTIES WITH VARIOUS
SKYRME FORCES
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TABLE lll. Intrinsic quadrupole moment, and root-mean-square charge radii calculated from the HF
mean field with the force SG2 including BCS with fixed pairing gappg€A,=1 MeV for the rare earths
andA,=A,=0.7 MeV for the actinidgs They are compared with the experimental values from Ré&.
and[43], respectively. The theoretical RPA spihl strengths summed up to 12 MeV and the corresponding
energy-weighted sums are listed in the two last columns.

Nucleus 5 Qg (rHue (Hge I,B,(M1p)  I,E,B,(M1y)
[eb] [eb] [fm] [fm] (&) [MeV u}]
146Nd 2.772 2.76(60) 4.966 4.970 8.2 58.8
148\ d 3.720 3.72640) 5.006 5.002 8.9 64.4
150N d 4.953 5.2588) 5.053 5.048 10.2 77.3
1505m 4.013 3.68411) 5.028 5.04%) 9.0 64.1
1529m 5.577 5.88(B4) 5.080 5.09%) 10.5 80.3
1595m 6.624 6.62(89) 5.133 5.1268) 11.4 92.8
156Gd 6.773 6.83(87) 5.145 5.068 11.5 90.7
158Gd 7.068 7.1085) 5.174 5.1796) 11.8 94.3
160Gd 7.274 7.26812) 5.200 - 11.9 95.6
160Dy 7.234 7.1810) 5.190 - 11.4 89.1
py 7.460 7.2810) 5.216 - 12.2 93.9
164Dy 7.635 7.50834) 5.242 - 12.2 95.1
166y 7.804 7.65633) 5.258 5.23716) 12.2 94.6
168y 7.929 7.63060) 5.282 - 12.4 98.0
170y 7.931 7.6%) 5.302 - 12.7 101.8
172y 8.116 7.79%45) 5.319 - 12.8 102.8
%yvp 7.937 7.72839) 5.336 5.413) 13.0 103.5
176yp 7.714 7.377) 5.353 5.443 13.0 102.6
183y 6.909 6.468) 5.393 - 12.5 92.9
184y 6.657 6.126) 5.409 5.427) 12.7 96.4
186y 6.347 5.885) 5.423 5.404) 12.9 97.3
2321 9.201 9.65M7) 5.826 5.7723 14.9 106.9
238y 10.586 10.807) 5.870 - 15.2 112.3
238y 10.635 11.00) 5.885 5.854 15.1 110.8

revealing better the structure hidden behind the folding proresidual interactionsi oo and Hgy have a negligible influ-

cedure. . ence on it. In this section we study the effect of the spin-spin
The ratioR;, , residual interactiorHgg derived from the various Skyrme
Sf forces. We focus this study on the two-body density-
R,==—, S_is:<1;rlsn|>i<l;rlsp|>, (10) dependent_Skyrr_ne forces. The effectl-bgscgn be best seen
SistSi, v by comparing Figs. 2 and 3. The theoretical results in the

presence of the spin-spin residual interaction are shown in

defined as in Ref.14], is shown for each spin excitation with Fig. 3 for the same nucleu%sm and the same Skyrme

E(('\(/)I)lf);o'z’;gl m.g:)eg;g&rgoﬂg;ﬁa;tzeggifﬁghf ra;[:oe|s force SG2, as in Fig. 2. The coupling constant$igkare in
purely 1sov ' xcriations. A valle ;g caseK =88 MeV andg= —0.95(see Table I\

R;,=0.5 indicates a pure proton or neutron excitation, i.e., a Comparison between the upper two plots of Figs. 2 and 3

mlxgd .|soscalar and isovector chgracter. The structure of thSemonstrates that the excessive unperturbed strength below 7
excitations, revealed by analyzing thHe, values, has a MeV in Fig. 2 is moved to higher energies whéhss is

mixed character with values scattered around the pure prOtOQNitched on in Fig. 3. The agreement with experiment is

or neutron excitationR;, =0.5). improved substantially by inclusion of the residual interac-
tion Hgs. This is due to the predominantly isovector charac-
ter (g~—1) of the Hgg interaction, derived from the SG2
The spin-spin residual interaction can produce substantidbrce. This repulsive interaction moves the isovector strength
redistribution of the spirM1 strength, while the remaining to higher energy, as revealed by the comparison of the bot-

IV. ROLE OF THE RESIDUAL SPIN-SPIN INTERACTION
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FIG. 1. Unperturbed igc=0) energy distribution of the spin 06|

M1 strength wittK”=1" in %%Sm for various Skyrme interactions

from Table I. Also shown for comparison is the result obtained with 0.4

the Woods-SaxorfWS) potential used in Ref.14]. The units are ‘ ’
6

0.2
12/80 keV and the curves have been folded with Gaussians, whose
widths increase linearly from'=0.5 MeV at E=4 MeV to 0.04 o s

8
=15 MeV atE=12 MeV. E (MeV)

tom plots in Figs. 2 and 3, where the rafl, , Eq. (10), is FIG. 2. Top plot: unperturbedHss=0) energy distribution of

Sho"Y” only for excitations WltrBU(Ml)>O'2MN, One can the spinM1 strength withK™=1* obtained with the force SG2 in
see in Table Il that all the Skyrme forces considered, exceptssg, Units and Gaussian widths of the theoretical cusid

the three-body version of Sk3, share this common feature qfne) are as in Fig. 1. Experimental datdots with error bafsare

a repulsive character for the isovector spin-spin interactionfom Ref.[7]. Middle plot: spinM1 spectrum of individual excita-
One can learn from the rati®;, that the peak at 6 MeV in  tions before the folding procedure. Bottom plot: Spin isovector ratio

Fig. 3 has an isoscalar charactéR;(<0.2). The broader (10) for the excitations wittB,(M1)>0.2 u,.

peak at higher energies in Fig. 3 is built up from excitations

with a clearly marked isovector natur&(>0.7). In sum-  tion. QRPA results foM 1 spin strength distributions have

mary, the spin-spin residual interaction shifts the strength talso been reported in R421,22. They were obtained with

higher energies and reinforces the isoscalar and isovecter deformed Woods-Saxon potential and a zero-range

character of the lower- and higher-lying peaks, respectivelyLandau-Migdal residual interaction. The first peak’6fsm

The position and strength of the two peaks agree well withat around 6 MeV was overestimated[22—24 by a factor

experiment. of about 2 and the higher-energy peak at around 8 MeV was
Spin M1 strength distributions in rare-earth and actinidealso overestimated in Rdf22].
nuclei were studied in Ref$13,14,2Q within a QRPA ap- From Figs. 2 and 3 and the analysis made in terms of the

proach using a deformed Woods-Saxon potential and sepaatiosR;,, one can see that in the unperturbed case the in-
rable residual interactions. In particular, the two peaks wergerpretation of the peaks is compatible with that of R28];
obtained for®*Sm at the right position, the lower one con- i.e., the peaks are built by predominantly proton or neutron
taining less strength than experiment and the higher one withpin M1 excitations. Nevertheless, in the full calculation
the correct strength. The two peaks were interpreted as isosshen the self-consistent residual spin-spin interaction is ac-
calar and isovector. SpiM 1 strength distributions in rare- tive, we recover our former interpretatiph3,14,2Q for the
earth nuclei have also been studied in other microscopic capredominantly isoscalar or isovector nature of the two peaks.
culations. Results within the Tamm-Dancoff approximation Theoretical QRPA results obtained with the various two-
using a deformed Nilsson potential, quadrupole-quadrupolehody Skyrme forces from Table | are displayed in Fig. 4 and
spin-spin, and Coriolis residual interactions were presentedompared to experimental data for the same nuclétgm.

in Ref.[23]. The peaks of the spimM1 strength distribution Results obtained from a Woods-Saxon potential and a phe-
were interpreted there as corresponding to proton or neutromomenological spin-spin interaction wiks=200 MeV and
spin-flip configurations. A similar interpretation was pro- g=—0.5[14] are also plotted for comparisdshort-dashed
posed in Ref.[24] within the QRPA using a deformed curve in the upper plot Looking at Fig. 4 one can see that
Woods-Saxon potential with separable residual interactionghe structure of the strength distribution is qualitatively simi-
The absence of substantial neutron-proton mixing is due ttar for all the Skyrme forces considered. This resembles the
the smallg value, common to these works. This means arsituation for the unperturbed strength in Fig. 1. In spite of the
almost vanishing neutron-proton spin-spin residual interacfact that the Skyrme forces studied lead to different coupling
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0.5 : isoscalar spin gyromagnetic factor. We recall here that the
Biarn  ge2 (Ks=88MeV,q=—0.95) | suppression of the isoscalar spin strength with respect to the
o4 isovector one is dictated by the Morpurgo facia7]

e+gd? 1
(gi g§)2~—- 11
(9s—9s)= 30
Thus, the effect oHggon the spinM1 strength distribution
is determined mainly from its isovector part. Hence, the shift
of isovector strength to higher energies, discussed above for

et SG2, takes place in the same way for the other Skyrme two-
= body forces considered, because the valugsjodre similar.
10 In addition, comparison of the values¥f in Table | and
5; G, in Table Il demonstrates that a stronger shift to higher
=05 ¢ ] energy produced by a stronger spin-orbit interactianger
d I| . H Al i W) is compensated to some extent by the smaller shift pro-
o1 duced by a smaller value @;. This explains why the re-
sults with different Skyrme forces in Fig. 4 are so similar.
08 r Nevertheless, the SG2 force seems to provide a better overall
. 0.6 description of experimental data when the above comparison
o> : of various Skyrme two-body forces is extended to the whole
04 set of nuclei considered here.
0.2 It is interesting to remark that the strength of the spin-spin
| ‘ residual interaction obtained from the two-body Skyrme
0.0, 8 8 10 12 forces is significantly smaller than that of the phenomeno-
E (MeV) logical Hgg interaction needed when the Woods-Saxon po-

tential is used. This reflects the fact that the self-consistent
FIG. 3. Same as in Fig. 2 but with the self-consistent residuaHF mean field, derived from the two-body Skyrme forces,
spin-spin interactiotd g included. Its coupling constants are listed contains already an effect from the Skyrme spin-spin inter-
in the first row of Table II. action andH sgbehaves truly as a residuaveak) interaction,
while this effect is not contained in the Woods-Saxon poten-
constantsKs and q, the values of the isovector coupling tial.
constants3, are close to each othésee Table Ii. The iso-
scalar coupling constaii, is about one order of magnitude V. COMPARISON WITH EXPERIMENT
smaller thanG(, except for Skni. The value ofG, affects

the isoscalar strength distribution whose contribution to In this section we compare to experiment the theoretical
) SLreng results obtained with the SG2 force. This comparison can be
B,(M1) is negligible because of the very small value of the

seen in Figs. 5-8 covering all the nuclei for which experi-
mental data are available. The unperturbétkd=0) spin

0.4 M1 strength distribution is displayed in each plot by a short-
154qm Sk3 dashed curve, while that obtained with the consistent spin-
0.3 ---- 5G2 spin residual interaction from Table IKc=88 MeV,
fod

= . # fﬁ g=—0.95) is shown with a solid line. As is well known, the
so=R ) energy splitting of the HF states around the Fermi level is too
= large. This has an effect on the sgihl distributions that
ot can be roughly compensated by reducing khevalue. To
£ illustrate this effect, we show in Figs. 5—8 by long-dashed
—o0.0 lines the results corresponding to a purely isovector spin-spin
g residual interactiond= —1) whose strengtiK s=50 MeV

0.3 ; ; -
E; : has been slightly decreased with respect to the original self-

consistent valuK =88 MeV. The main effect from this
reduction is a slight shift of the second bump to lower en-
ergy, which improves in some nuclei the agreement with
experiment.

The results for the rare earths are shown in Fig. 5 for
150Nd, '%%Sm, and in Fig. 6 for!®%'5%Gd and '%r. The
results for the actinide$*’Th and %38 are displayed in Fig.

7. Finally, we show results for®Fe in Fig. 8. The experi-

FIG. 4. Same as in Fig. 1 but with the self-consistent residuaimental data exhibit in most nuclei a double-humped structure
spin-spin interaction$dss included. In the case of the Sk3 force, that is well described theoretically. The data fofNd and
Hssis obtained from the two-body version. 154Sm in Fig. 7 exhibit a third bump beyond 10 MeV. It has
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FIG. 5. Energy distribution of the spiM1 strength with
K™=1" obtained with the force SG2 if°Nd and '%Sm. Units
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FIG. 7. Same as in Fig. 5 but f6f2Th and ?%®U. Experimental
data(dots with error barnsare from Ref[12].

and Gaussian widths are as in Fig. 1. Results obtained with the

self-consistent spin-spin residual interactigolid lines, Ks=88
MeV, q=—0.95 from Table I}, with the valuesKs=50 MeV,
g=—1 (dashed lines and withHss=0 (short-dashed lings Ex-

perimental datddots with error barnsare from Refs[7,12].
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FIG. 6. Same as in Fig. 5 but fa*®*5%Gd and 1%%r. Experi-
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mental datgdots with error barsare from Ref[8,12].

been seen in recent analyses pf{’) experiments which
are still preliminary. A survey of Figs. 5—-8 indicates that
only the small experimental strength beyond 10 MeV in
150Nd and *%*sm is missing in our theoretical description. A
possible explanation for its origin could be that it arises from
AK=0 excitations not considered in this work. It was found
in [41] that this strength is located beyond 8 MeV and it is
considerably smaller than the strength wittK =1|.

It is remarkable that the mean-field results contain already
in most cases the basic features of the strength distributions,
although the concentration of the strength below typically 7
MeV is larger than experimentally observed. In this respect,
the spin-spin residual interaction acts in the right-direction
moving part of this strength to higher energies. We note that
the agreement with experiment after inclusion of the spin-
spin residual interaction is particularly improved in the case
of ®Sm. This may be significant because the data for this
nucleus, being measured with polarized protons, are more
reliable.

We should also mention that the spM1 strengths
summed up to 12 MeV agree with the experimental values
[7,8,17. This is discussed in more detail in the next sections,
where we also study energy-weighted sums and their char-
acteristic features.

0.5 :
B | 56 —_ (Ks=88MeV,q=-0,95)
S04l Fe SGR  ___ (Ke=50MeV,q=-1)
s | e ss=
(=]
Ros|
3
0.
2o.
b
m

FIG. 8. Same as in Fig. 5 but féfFe. Experimental datéhis-
tograms$ are from Ref[7].
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0.4 — shown in the previous sections, the SG2 force describes suc-
03} 8G2 (88,-0.95) — 1a]d cessfully spin excitations.
0.2 ::_—_ - 150Nd

In Fig. 9 we show the spiM1 strength distributions ob-
tained from our calculation. There is a common feature to all
the nuclei from Fig. 9: the existence of two bumps, particu-
larly pronounced in the actinides and in some of the rare
earths. In the rare-earth region, the low-energy peak is lo-
cated between 5 and 7 MeV and the high-energy peak ap-
pears between 7 and 9 MeV. The two peaks are slightly
shifted to lower energies in the actinide nuclei.

Richter made the observati¢n] that the center of gravity
of the excitation energy of the two experimentally observed
peaks obeys a simpla~Y3 law, characteristic for spin-flip
excitations between shells of spin-orbit partners. Studying
the dependence of the location of the peaks with the mass
number in Fig. 9, we find that the excitation energy corre-
sponding to the centroids of the two peaks is roughly pro-
portional to A=, in agreement with experimefi7]. This
approximateA~ 3 law is also valid if one includes the
nucleus®Fe, which is far beyond the rare-earth and actinide
regions.

In most cases there is a striking similarity of the spin
M1 strength profiles shown within a given isotope chain.
This is true for the Gd, Dy, Er, Yb, W, and U isotopes. In
these cases the intrinsic quadrupole moments of the isotopes
considered within each chain are very clgsee Table ).

On the contrary, for the Nd and Sm isotope chains, the spin
E (MeV) M1 profiles shown vary substantially from one isotope to the
other within each chain, and so do the quadrupole moments.

FIG. 9. Energy distributions of the spiM1 strength with  This suggests that there is a correlation between the spin
K7=1" obtained with the force SG2 for various rare-earth andM 1 distributions of theK "=1" excitations and the quadru-

actinide iSOtOpeS. Results obtained with the self-consistent Spin-Spiﬁo|e deformation. This point deserves further attention and
residual interactioni{ ;=88 MeV, q= —0.95 from Table I). Units will be discussed in the next section.

and Gaussian widths are as in Fig. 1. The energy-weighted and non-energy-weighted summed
VI. SYSTEMATICS OF THE SPIN M1 spinM 1 strengths are given in the two last columns of Table
STRENGTH DISTRIBUTION . All the K™=1" excitations up to 12 MeV have been

included in the sums. The non-energy-weighted sums in
The results shown in the previous sections give confi-Table Il are in agreement with the available experimental
dence in the predictive power of the method with the SG2nformation: 11 2#% [7,8] and ~18,u,2\‘ [12] for the
force when applying it to other, experimentally yet unex-summed spin strength in rare-earths and actinides, respec-
plored, nuclei. Results from systematic calculations in sevefjvely. A certain correlation of both energy-weighted and
isotope chains from the rare-earth region and one chain gion-energy-weighted sums with the quadrupole moments

actinides are displayed in Fig. 9 and Table IIl. can be observed in this table. It will be discussed in the next
In Table Il we show the ground-state propertigsadru-  section.

pole moment§), and rms radji of these nuclei together with

their experimental values from Refgl2,43. Also shown in

the two last C(_)Iumns_ are cal_culated summ_ed sMi VIl. DEFORMATION DEPENDENCE

strengths that will be discussed in the next section. As can be

seen from Table Il, the quadrupole moments and rms radii The dependence of the spM1 strength distribution on
are well reproduced by the HF calculations with the SG2the deformation had not been studied in detail until now. The
force. The agreement is remarkable since no parameters hat@pic was considered first by Zamiaddt al. [48] within a
been used to fit these quantities in the present self-consisteathematic model. It was concluded that the dyih strength
approach, contrary to what was done in the p&a8t14 with  decreases with increasing deformation and vanishes in the
Woods-Saxon potentials, where the deformation parametetsrge deformation limit for nuclei with only two neutrons
of the potentials were chosen to reproduce the experimentaind/or two protons outside closed shells. It should be
qguadrupole moments. It is well known that the calculationsstressed that this conclusion was reached by varying at will
with Skyrme forces describe successful3g] the ground- the deformation of the valence nucleons. Thus, the above
state properties of both spherical and deformed nuclei. Theigonclusion does not necessarily hold in our case, where re-
ability to describe excited states and in particular unnaturalalistic calculations for more complex nuclei are performed.
parity states is more questionable. Nevertheless, as alreadyctually, it was also found in Refl48] that the spinM1
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TABLE IV. Gap parameters for neutrons, and protonsA,. Intrinsic quadrupole momenty, and
root-mean-square charge raglif)'/? calculated from the HF mean field with the force SG2. The quadrupole
deformationsBy, are calculated from Eq12). The theoretical RPA spikl1 strengths summed up to 12 MeV
and the corresponding energy-weighted sums are listed in the two last columns.

Nucleus A, A, Qi (r3)¥2 Bin s,B,(M1y)  =,E,B,(M1y)
[Mev]  [MeV] [eb]  [fm] [uR] [MeV u{]
142\d 1.4 1.2 0.041 4.902 0.002 6.5 53.2
146N d 0.9 1.2 2.764 4.967 0.148 8.2 64.9
148\ d 1.1 1.4 3.673 5.007 0.194 8.5 68.3
150N d 1.2 1.3 4.884 5.053 0.253 9.8 77.4
1445m 1.1 1.1 0.043 4.921 0.002 7.2 56.8
1485m 1.0 1.4 2.667 4.987 0.137 7.8 62.7
1505m 1.2 1.6 3.899 5.030 0.197 8.3 68.2
1525m 1.2 1.3 5.507 5.081 0.273 10.0 78.8
1545m 1.1 1.2 6.599 5.133 0.320 11.1 85.8

strength remains finite at any deformation if more nucleonghese two nuclei because the simple rotational model used in
are added to the open shell. [42] to extract intrinsic quadrupole moments from the ex-
Calculations using a Nilsson mean field and the quasiparperimentalB(E2) values is not meaningful for spherical nu-
ticle Tamm-Dancoff approximation with Coriolis and sepa- clei, whereB(E2) corresponds to a vibrational excitation
rable spin and quadrupole residual interactions were perand not to a static ground-state deformation. The quadrupole
formed in Ref.[23] for rare-earth nuclei ranging from deformation parameters, listed in Table IV, are derived from
14%Ce to %pt. Results from QRPA calculations with a the relationship
Woods-Saxon mean field and zero-range Landau-Migdal

[22] or separabl¢13,14] residual interactions were reported T Qf
for rare-earth nuclei front>*sm to ¥4 and for nuclei from B= 57(1%)" (12
150Nd to 238U, respectively. Although the systematics of the P

spinM1 ;trength distribution was studied in th"’?t regipn, itsusing the theoretical values of the quadrupole moments and
deformation dependence was not discussed in said refefms radii. The last two columns in Table IV contain the

ences. Common to _these Wofks is the appearance (_)f a Wz culated spirM 1 strengths summed up to 12 MeV, as well
humped structure in the spiM1 strength distributions. ¢ ihe corresponding energy-weighted sums.

HoweV(her, .dlffr(]arent aé)proaches prﬁdmt dq#'te dlfferenltl The available experimental information ofi Excitations
strengths in the two bumps, as well as difterent overalt, hese chains of isotopes cove(® the summedM1

strengths. ) . . .
. . . strength below 4 MeV in each isotop®,6] and (ii) the spin
To study in detail the dependence on deformation, Wevi1 strength distributions of the most deformed nucleus in

focus the discussion on the two isotope chains that have &ach chain®Nd and 5%sm [7,19]. The experimental data
lﬂrZQSE’MQ/, ?%zzuon d ||144’1t£18]e150'§i5e2f’?%manc|):n ;t)r?rargeie;_?’ ’ q (i) are successfully described by our calculations. As already

anc m. ror his detaled mentioned, it has been demonstrated experimentally that the
study we use pairing gaps chosen individually for each iso-

. - . summedM 1 strength below 4 MeV is predominantly orbital
tope instead of the uniform constant values used in the pre-

X ; : ; and proportional tg32. Hence, before discussing the defor-
vious section. The adopted values, listed in Table 1V, hav : ‘ :
been derived from the experimental odd-even mass diffe ation dependence of the spitl strength, we would like

r- . K . .
. . heck that this property is al nfirmed in the presen
ences. The corresponding new valuesQyf and rms radii, to check that this property Is aiso co ed in the present

obtained with these pairing gaps from our deformed self—theoretmlI framework.

consistent calculations, are also listed in Table IV. These ) o
theoretical values can be compared with the experimental A. Low-lying excitations

data from Table III. The theoretical spirforbital) M1 strength is obtained by
The agreement of these global properties with experimengutting the orbital(spin gyromagnetic factors in thél1
is similar to the previous case of constant gaps, presented Wperator equal to zero. The total strength is obtained with the
Table Ill. Three of the isotopes“¥Nd, **/Sm, and*®Sm)  full M1 operator containing both spin and orbital terms. We
considered in this section are not included in Table Ill. Weyse the already mentioned effective spin gyromagnetic fac-
quote here for completeness their experimental valuesgrs and bare orbital onegP=1, g7=0.
Q5P=2.690(60) e b [42] and (r?)g%,="5.002(6) fm[43] Our results obtained from the present model are compared
for 48Sm, (r?)12=4.920 fm [43] for 2Nd, and in Fig. 10 to the available experimental data on summed
(r2)42=4.947(9) fm[43] for *44Sm. The intrinsic quadru- low-lying 1* excitations. The orbitaisolid dot$ and total
pole moments of the spherical nucl¥?Nd and **Sm are  (star$ M1 strengths summed up to 4 MeV are plotted versus
zero. We do not quote the experimental value®g{42] for B2 for the Sm and Nd isotopes. They are compared to the
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5 in the present case. This means that at low energy the spin
admixtures are enhanced with respect to our previous calcu-
. lations. The reason for this enhancement is twofold. On the
3t . one hand, the single-particle Hartree-Fock wave functions
g contain more spin mixing due to the spin-spin terms of the
Skyrme interaction. On the other hand, the smaller coupling

Yy ] constant of the self-consistent spin-spin residual interaction
= g 142,146,148,150N1q (Kg=88 MeV instead oK =200 MeV in Ref.[14]) moves
—~ ' less spin strength to higher energies.
Se Teers %ﬁ‘t’ 8:%:: ﬁ‘;‘,’ e To illustrate this effect, one can look at the ratRys) of
544044 0rb O<E<12 MeV -~ the orbital to the spitM 1 transition matrix elements, as de-
L14 ‘ N fined in Eq.(9) of Ref.[18]. The strongest 1 excitation in
3 - 1%4Sm with B(M1)=0.9u2 at E=3.2 MeV in our calcula-
2 AT 5] tions has a ratid?g,s= 3.5, which is about 3 times smaller
il /‘,{;’l -k 144,148,150,152, 154, than the ratio obtained with a Woods-Saxon potential in Ref.
iy = ' ' ' [14]. The present value is also compatible with the experi-
0.00 002 004 006 ,008 010 0.12 mental datd4] (Rg,s>0.8).
I It is worth pointing out that all the RPM1 transitions

are included in the summed theoretical values shown in Fig.

FIG. 10. Theoretical orbita(solid dot$ and total(starg M1 10 but it would be also meaningful to sum only those con-
strengths obtained with the SG2 force and summed up to 4 MeV fofributions withB(M 1) larger than the threshold below which

the two chains of Nd and Sm isotopes versus the quadrupole defofhe transitions cannot be distinguished experimentally from

mation 8, Eq. (12), squared. Triangles: theoretical orbit1  the hackground. The introduction of such a threshold in our

strengths summed up to 12 MeV. The lines are least-squares fits {0 cylations would reduce the theoretical strength. A reduc-

the theoretical points. The experiment_al data for the tddl tion of the summed strength by typically 10% is found if one
strength summed up to 4 Melgircles with error barsare from restricts the sums to excitations wiB{M1)>0 ]#2
AN

Refs.[5,6] for Nd and Sm, respectively.

experimental totaM 1 strength below 4 Me\[5,6] (circles B. Spin M1 strength distributions

with error barg. One can see from Fig. 10 thatat depen- We proceed now to the study of the systematics of the
dence is exhibited to a good approximation by the theoreticadpin M1 strength distributions in the two chains of Sm and
orbital and total summeM 1 strengths. The agreement with Nd isotopes. In order to understand better the general pat-
experiment is at the same level as in different former apterns of these distributions, it is advantageous to start first
proacheq14,25,27; see Ref[7] for a recent review. considering the unperturbed case where no spin-spin residual
Small deviations from th@? behavior take place in some interaction is active yetHss=0). This allows us to study

isotopes. They are caused by the particular choice of theeparately the effect of the residual spin-spin interaction and
cutoff energy adopted for the summation of the strengththe effect of deformation.

Small variations in the cutoff energy can have a local influ- |n Fig. 11 one can see the unperturbads&=0) spin
ence on the summed strength of some nuclei. A typical exm1 strength distributions for Nd and Sm. Observation of
ample of this situation on the experimental side is the case gfig. 11 reveals some interesting features when moving from
142Nd, which has an excitation at 4095 keV with gimost spherical 1(‘2Nd' 4sm) to strongly deformed
B(M1)=(0.42+0.08)u§ [6]. This B(M1) value is, never- (350Nd, 154Sm) nuclei. We discuss further only the results for
theless, usually included in the reportéd. strength below 4 Nd since the two chains of isotopes share common features
MeV. In order to avoid such fluctuations we also plot in Fig. and exhibit similar trends. The first typical feature is the
10 the theoretical orbitaM1 strength summed up to 12 existence of a small bump at about 3.5 MeV, which spreads
MeV, where such effects have been washed out, as seen fraim energy as the deformation increases. Most of the spin
the reduced deviations of the triangles from the short-dashestrength resides, however, at about 8 MeV in the spherical
straight lines. limit. The strength of this peak decreases with increasing
Our calculated totaM 1 strength summed up to 4 MeV deformation. A new bump appears at 6 MeV in the presence
(stars in Fig. 1D does not go to zero in the spherical nuclei of deformation. It evolves with deformation in the opposite
142Nd and *%Sm as the orbital strength does. The nonvan<irection; i.e., its strength increases with the deformation.
ishing low-lying strength at zero deformation originates ob-This peak carries a considerable amount of strength in the
viously from spinM1 excitations, which are also present in most deformed case df°Nd.
spherical nuclei. We will consider this strength in more de- The origin of this behavior has to be found in the micro-
tail below when discussing the sgihl strength distribution.  scopic structure of the individual excitations building the
If one compares now the results in Fig. 10 with the cor-bumps. Looking at the structure of the QRPA wave functions
responding results from Refl14] obtained with a Woods- one can learn that the bump at 3.5 MeV originates mainly
Saxon potential, one can see that the discrepancy with exfrom the proton shell transitiond;-2ds;, (When denoting
periment is reduced in some casé¥d) but it still persists  particle-hole configurations, we specify the hole shell on the
in other nuclei. The comparison reveals also that the differfirst position. As the deformation increases, further two-
ence between the orbital and the tot&ll strength is larger quasiparticle configurations become active and the transition
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FIG. 11. Energy distributions of the theoretical unperturbed FIG. 12. Same as in Fig. 11 but with included residual spin-spin
(Hss=0) spinM1 strength withK™=1" obtained with the SG2 interactionHgg.
force for the Nd and Sm isotopes. Units and Gaussian widths are as

in Fig. 1. . . .
g total spinM 1 strength is reduced due to the conservation of

the energy-weighted sum rule in RPA.

becomes more fragmented. The peak at 6 MeV originates Therefore, the small bump at 3.5 MeV is slightly moved
mainly from the proton transitiondy-19;,,. The fact that to higher energies and its strength is reduced. The strength
these excitations are not present in the spherical limit is eagontained in this peak in the spherical nucféfNd and
ily understood since in this case both shells are below thé*‘Sm is the totaM 1 strength below 4 MeV shown for them
Fermi level. Hence, it is not possible to build such a particlein Fig. 10. TheM1 strength found experimentally at 4095
hole excitation, apart from a small mixing caused by thekeV in Nd [6] corresponds in the present model to a spin
pairing smearing of the Fermi surface. As the deformatiorexcitation.
increases, the degeneracy of the spherical shells is removed The situation in the peak at 6.5 MeV is qualitatively simi-
and their components with differeit numbers spread in lar. The behavior with respect to deformation found without
energy. Some of thedk,, components cross the Fermi level, spin-spin force(Fig. 11) is preserved now in Fig. 12 in the
enhancing quite dramatically thd1 strength. When the de- presence of this force, although the strength of the peak is
formation is large enough this protorgdi,-1g,, dominant  reduced for all the isotopes. The original proton structure of
structure becomes more and more mixed with other configuthis peak has almost disappeared because of deformation and
rations including neutrons. because of the spin-spin interaction which makes it isoscalar.

The peak at 8 MeV originates in the spherical case from Concerning the second peak at 8 MeV, we have two op-
the neutron hy4-1hg, transition. It is a single peak, al- posite effects which cancel more or less each other: first, the
though the folding procedure makes it wider. The strength ireffect originating from the unperturbed case, where the in-
this peak becomes smaller and smaller with deformationcrease in deformation results in a strength reduction. The
The reason for this behavior is similar to the mechanisnsecond effect is the extra strength coming from the first peak,
producing the opposite effect in the peak at 6 MeV. In thewhich is transferred by the isovector spin-spin force. Since
spherical case thehtq;, (1hg;) shell is below(above the  more strength is transferred when the nucleus is more de-
Fermi level. On the other hand, the deformation and the informed, this effect compensates the former one with a net
creasing number of neutrons make the loWecomponents result of an almost steady peak at 8.5 MeV independent of
of the 1hg, shell move below the Fermi level in the de- deformation. Again, this peak changes its original neutron
formed isotopes. The strength of thk,1,-1hg,, transition is  character, inherent to the spherical unperturbed case, to a
therefore reduced. Again, when the deformation is larganarked isovector character due to the deformation and the
enough, a lot of extra proton and neutron configurations beisovector spin-spin interactiofcompare Figs. 2 and)3
come active in this energy region and the leadiry}- It should be mentioned that the excitations Wi =0
1hg, transition becomes less important. and|AK|=1 are degenerate in the spherical case. Therefore,

Once we understand the trends of the unperturbethe AK=0 spin M1 strength(not shown in Fig. 1P is
strength distribution, it is easy to explain the more realistic50% of the strength displayed fdf?Nd and *4*Sm. Hence,
results in Fig. 12, where the spin-spin interaction is includedthe total spinM1 strengths for'*Nd and *‘Sm can be
The spin-spin interaction transfers strengtiminly isovector  obtained from those depicted in Fig. 12 by multiplying with
strength becausg= —0.95) from the first peak at 6 MeV to the scale factor 1.5. The contribution of theSK =0 exci-
the second at 8 MeV. The whole strength is shifted also tdations is much smaller in the deformed case, as shown in
higher energies, because this interaction is repulsive. ThRefs.[21,22,4]. Another remark to be made is that the spin
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whereJ is the total angular momentum operator. It follows

12 + 142,146,148,150Nd that
<1Z|S+|0>:_<1Z|L+|O> (149
and
e ! 0 Aoann 7<B<ls Moy
---------- AAAA T<E< e
L oo QOO0 0<E<7  MeV | > S[0)2=2] [(1F|L|0)|2. (15)
~ 0 , a a
i
z 2

The left-hand side in Eq15) is proportional to the summed
isoscalar spin strength

; 3 n +
; Ba(Ml;ls,S)=E(gs+9§)2§ (1}]S.|0)[2,
(16)

which in turn is also proportional to the isovector spin
2 strength. On the other hand the right-hand side in(E§). is

B proportional to{L?) (the mean value in the intrinsic ground

FIG. 13. Theoretical spitM1 strength withk"=1* obtained state of the normal component of the orbital angular momen-

with the SG2 force and summed up to 12 Méstarg versus the tum op'erator sguareﬁ49]), ,Wh'(?h has been shown to be
quadrupole deformatio, Eq. (12), squared. Also shown is the Proportional tog” [25]. This implies that the totaisovector
theoretical spinM1 strength contained in the energy rangesarz‘d isoscalgrspin M1 strength should be proportional to
0<E<7 MeV (open circley and 7<E<12 MeV (triangles. The B

straight lines are least-squares fits to the theoretical points. The

measured spiM 1 strengths in®Nd and '%Sm[7] are displayed VIIl. SUMMARY AND CONCLUSIONS

by dots with error bars. ) ) o ) )
We have studied spiM1 excitations in deformed nuclei

M1 strength withAK=0 appears at about 10 MeV when a within the QRPA formalism. What is new in the present
separable spin-spin residual interaction is use@titj on the  approach is that we use a self-consistent mean field and re-
example of*®>*Sm. Since our present calculations do not con-sidual interactions derived from the same two-body effective
tain excitations withAK =0, this strength could be an expla- interaction of the Skyrme type. Once the Skyrme parametri-
nation for the small bump at around 10 MeV seen experization is chosenby previous fits to nuclear matter and
mentally. Work in this direction is in progress. ground-state properties of spherical nuckad the gap con-

It is now worth looking in more detail at the dependencestants of the pairing force are specified, there are no free
on the deformation of theAK|=1 spin strength. The spin parameters in the model Hamiltonian. The coupling strengths
M1 strength contained within the energy range®<12  of theHoq andHgy interactions are determined microscopi-
MeV (starg is plotted in Fig. 13 for the two isotope chains. cally from the condition of rotational invariance. Those of
These strengths are plotted versus the deformation squardiee spin-spin residual interaction are derived from the param-
(B?) and the solid lines correspond to least-square fits to theters of the Skyrme force. Therefore, there is not a single
theoretical points. We have plotted also the spin strengthparameter in the present approach fitted to the observables
summed in the intervals QE<7 MeV (open circles and  described here.
7<E<12 MeV (triangles, which correspond roughly to the We compare the results on spihl strength distributions
energy intervals of the first and second bumps in the spimbtained with different two-body density-dependent Skyrme
M1 strength distribution, respectively. The measured spinnteractions with and without inclusion of the spin-spin re-
M1 strengths for'®™Nd and 1%*Sm are shown as dots with sidual interactioHsg. We find that before includingl ssthe
error bars. profiles obtained with the various forces are qualitatively

One can see in Fig. 13 a cle@® dependence of the similar but the strength is displaced to higher energies for the
|AK|=1 spin M1 strength that originates mainly from the Skyrme forces with larger spin-orbit interactions. When the
first peak below 7 MeV. Above this energy the strength re-Hgg interaction is turned on the spM1 strength is shifted
mains almost independent of deformation, as seen from thisom low to higher energy for all the two-body density-
almost horizontal long-dashed lines. It would be interestingdependent Skyrme forces considered here. The reason for
to see whether this conclusion is modified wheli=0 spin  this effect is that in all cases the isovector spin-spin residual
excitations are also included. interaction is repulsive sinc&| takes positive values be-

As a final remark, we would like to point out that the tween 0.3 and 0.5. The isoscalar spin-spin residual interac-
proportionality to 8° of the summed spin strength with tion changes substantially for different Skyrme forces, but its
|AK]|=1 is consistent with the corresponding behavior of theeffect on the spirM1 strength distribution is negligible be-
summed orbitaM 1 strength. To see this we notice that for cause of the Morpurgo factor. Onkhgis included, the spin
any nonspurious 1 excitation one has M1 strength distributions obtained with the various two-

body density-dependent Skyrme forces do not differ much,
(1,134l0)=0, (13)  but on the overall the force SG2 provides a better description
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of the available experimental data. The dependence on deformation is studied in more detail
We compare the results on spihl strength distributions in the two chains of isotopes#21461481Rd and
obtained with the SG2 force with experimental data for the!**181°%15218m_we have first checked that the present
eight nuclei where the spiN 1 strength has been measured.theoretical approach provides a very reasonable description
There is a general agreement with the structure of the obPf the g dependence of the summed low-lyiigredomi-
served strength distribution for each nucleus. The twohantly orbita) M1 strength. Then, we have analyzed the de-
humped structure in most nuclei is in agreement with experiPendence on deformation of the spiti strength. We find a
ment. The only feature missing in our results is the smalduadratic dependence on the deformation parangeterthe
bump in the 10 MeV region, observed #iNd and %%sSm,  SPIn M1 strength summed up to 12 MeV. This energy range
which can be regarded as preliminary data. The two-humpelficludes practically the whole spiM1 strength obtained in

structure is already present in the mean-field calculations b4 microscopic QRPA calculations. The” dependence
the weak residual interactioH g5 improves the agreement arises .mamly from the s_trepgth CO“ta"?ed in the first bump of
with experiment in most cases the spinM1 strength distribution. While the second bump

Hence, we can conclude that the self-consistent formalisfF®MaINS re_ltr:\edr stable_ W'tg Seformatlor_ll_,hthe ?rst bump de-h
used here describes successfully the phenomenology of spfi€aS€s With decreasing deformation. These features are the
excitations in deformed nuclei and that the agreement founget resqlt from the _mterplay betwgen.the defo.rmat.lon and the
between theory and experiment constitutes a new piece SPin-spin residual interaction acting in opposite directions.

evidence in favor of the two-body density-dependent !t Would be very interesting to extend the,p’) experi-
Skyrme-type effective interactions ments to other regions, and particularly to less deformed iso-

We present theoretical results on spirl strength distri- tOPeS in ordgr tp obtain a more cqmplete sysf[ematic_s of the
butions of I"K=1"1 excitations for 27 nuclei in various SPINM1 excitations. In particular, it would be interesting to

mass regions to study their common and distinguishing feaLESt experimentally the new theoretical predictions presented

tures. ere.
We find that there are generally two peaks in the spin
M1 strength distribution separated by 2—3 MeV, though in
detail the structure of the profiles changes for each isotopic Thanks are due to A. Faessler, D. Frekers, A. Richter, and
chain and the strength tends to be displaced to higher ener.J. Watche for encouraging discussions. The work is sup-
gies as the mass number decreases. We also observe that flagted by the EC program “Human Capital and Mobility”
strength of the first peak tends to decrease with decreasingnder Contracts No. CHRX-CT 93-0323 and CHRX-CT 94-
deformation. This is in qualitative agreement with the experi-0562. P.S. and E.M.G. are indebted to DGIC¥3pain) for
mental observations iR°Pb[9]. partial financial support under Contract No. 92/0021-C02-01.
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