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Nonperturbative derivation of non-Hermitian and Hermitian effective interactions and operators
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Iterative techniques of the solution of the decoupling equation are used to construct various types of
effective Hamiltonians in the framework of nonorthogonal transformations. A general and numerically conve-
nient Hermitization procedure of the non-Hermitian Hamiltonians obtained by such techniques is proposed and
the definition of effective operators with the related normalization problems is reviewed.
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I. INTRODUCTION

One of the central problems in many-body physics is t
necessity of reducing the full space of states to some sma
dimensional model space. This reduction is obtained throu
the use of effective operators, acting within the model spa
only, which embody contributions from the complement
the model space. It is customary in nuclear physics to e
press the derivation of the effective operators in terms o
completely linked perturbation expansion containing bo
nonfolded and folded diagrams@1# for which partial resum-
mations can be obtained by using either the Krencinglow
Kuo ~KK ! technique@2# or the Lee-Suzuki~LS! method@3#.

A noteworthy point is the discussion in Ref.@3# of the
effective interaction theory in terms of similarity transforma
tions which decouple the model space and the complem
tary space components of the Hamiltonian. Further disc
sion of this technique and its connections to quasidegene
perturbation theory can be found in Ref.@4# and references
quoted therein. The authors of Ref.@3#, making use of a
nonorthogonal transformation of the Hamiltonian, show th
the decoupling requirement leads to an equation for t
transformation matrix~decoupling equation!, which is used
to construct two resummations of the perturbative expans
for the effective Hamiltonian in the framework of the
Q-box formalism of Kuo and co-workers@2,5#.

It is, however, interesting in itself to examine the con
struction of effective operators directly in terms of the wav
operator given by the decoupling equation, with no explic
reference to the perturbative expansion. We show in this
per that this is indeed possible, recovering in this way so
tions equivalent to the already known KK and LS resumm
tions, with some new observations on their convergen
conditions, and suggest the possibility of constructing ne
types of solutions.

Since one makes use of nonorthogonal transformations
the Hamiltonian, the resulting effective operators are no
Hermitian. This is simply an artifact of the technique, wit
no particular physical significance, in that the resulting no
Hermitian effective Hamiltonians have by definition real e
genvalues and a nondefective system of eigenvectors. N
Hermiticity can be, however, considered a defect, especia
if one wants to compare the computed matrix element of t
effective Hamiltonians with those obtained from phenom
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enological fits to experimental levels. In addition, the use o
non-Hermitian effective interactions poses normalizatio
problems in the definition of effective operators, which ar
absent for a Hermitian effective interaction@6#.

A definition of a Hermitian effective interaction is there-
fore highly desirable and to this end some Hermitization pro
cedure is required. The usual choice of Brandow’s interm
diate basis@1# has to face intrinsic difficulties inherent in the
definition of the square root of a matrix. Problems of com
parable complexity have to be faced also in the direct co
struction of a Hermitian effective interaction starting from a
unitary choice of the transformation matrix@4,7#.

In this paper a new Hermitization procedure is suggeste
based on the triangular decomposition of a symmetric pos
tive definite matrix, which offers a simple and numerically
convenient alternative to the solutions discussed in Ref.@7#.

The paper is organized as follows. In Sec. II the deriva
tion of the decoupling equation is presented. Iterative sol
tions for the wave operator are explicitly constructed in Se
III. The definition of Hermitian effective interactions is given
in Sec. IV, where the definition of effective operators and th
related normalization problems are also discussed. Som
concluding remarks are given in Sec. V.

II. FORMALISM

As usual the Hamiltonian is composed of an unperturbe
zero order partH0 and of a residual interactionV. The eigen-
states ofH0 will be written asut& with eigenvaluese t . The
set of these eigensolutions will be partitioned into two sub
sets

@ t1 ,t2 , . . . ,td#ø@ td11 ,td12 , . . . ,tn#, ~1!

defining the model space@ t1 ,t2 , . . . ,td# and its orthogonal
complement. The projection operator on the model space

P5(
i51

d

ut i&^t i u, ~2!

and that on its orthogonal complement is

Q5 (
j5d11

n

ut j&^t j u. ~3!
684 © 1996 The American Physical Society
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54 685NONPERTURBATIVE DERIVATION OF NON-HERMITIAN . . .
Given any nonsingular matrixV, i.e., a matrix whose
inverseV21 exists, the transformed matrix

H5V21HV ~4!

has the same eigenvalues ofH. Therefore, if we require that
V is such that

QHP50, ~5!

the eigenvalue problem in the full space is broken into tw
separate eigenproblems, one in the model space (P space!
and the other in its orthogonal complement (Q space!.

Condition~5! is not sufficient to determine completely th
matrix V. As an example multiplication ofV by any block
diagonal matrix leaves Eq.~5! unchanged. Supplementar
conditions onV are therefore required, the simplest choic
being, without any loss of generality,

PVP5I p , PVQ50, ~6a!

QVP5v, QVQ5I q , ~6b!

whereI p andI q are unit matrices in theP andQ subspaces,
respectively.

With this choice the transformed matrixH is written

PHP5PHP1PHQv, ~7a!

PHQ5PHQ, ~7b!

QHQ5QHQ2vPHQ, ~7c!

QHP5QHP1QHQv2vPHP2vPHQv, ~7d!

where use has been made of the fact thatvP5Qv5v.
If v is such that the decoupling condition~5! is satisfied,

the d-dimensional eigenproblem for the model space effe
tive Hamiltonian,

p~v!5PHP5PHP1PHQv, ~8!

gives d eigenvalues ofH. The remainingn2d can be ob-
tained by a diagonalization of theQ-space effective Hamil-
tonian

q~v!5QHQ5QHQ2vPHQ. ~9!

The derivation of model space effective interactions is
this way converted to the task of identifying and enumerati
the solutions of the decoupling equation

vPHQv1vPHP2QHQv2QHP50. ~10!

This is a nonlinear matrix equation; i.e., it belongs to
class of equations for which no general solution technique
known, nor is the number of existing solutions@8#. One has
therefore to resort toad hocapproaches, specifically tailored
to the problem at hand.

III. ITERATIVE SOLUTIONS
OF THE DECOUPLING EQUATION

The construction of the solutions of the decoupling equ
tion can be made in a rather simple way, the main po
o
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being the following proposition.
If v1 andv2 are two solutions of the decoupling equatio

(10), their difference y5v22v1 will satisfy

yPHQy1yp~v1!2q~v1!y50, ~11!

where p(v) and q(v) are the P-space and Q-space effectiv
Hamiltonians defined by Eqs.~8! and ~9!, respectively; vice
versa, ifv2 is solution of the decoupling equation~10! and
y satisfies Eq.(11), thenv15v22y is also solution of Eq.
(10).

This proposition can be easily proved by writing Eq.~10!
for v25v11y and requiring thatv1 be a solution of Eq.
~10!.

Some general, but unfortunately nonconstructive cons
erations can be made on the solutions of the decoupl
equation, based on the notion of equivalence class. Two
lutions, say,v1 andv2, will be said equivalent if the result-
ing P-space~and obviouslyQ-space also! effective Hamil-
tonians have the same eigenvalues. This implies that
solutions of Eq.~10! fall in at most (d

n) classes of equiva-
lence. The differencey5v22v1 must satisfy Eq.~11!,
which can be also written as

yp~v2!2q~v1!y50. ~12!

Equation~12! can be satisfied by a nonzeroy if and only if
the set of the eigenvalues ofp(v2) has a nonempty intersec-
tion with the set of the eigenvalues ofq(v1) @8#. Since by
hypothesis the spectra ofp(v1) and ofp(v2) are the same,
the equivalence classes are made of a single element
nondenumerable set of elements, depending on the prese
of degeneracies in the spectrum ofH.

We are, however, interested in constructing explicitly
certain number of solutions of the decoupling equation, usi
specific iterative techniques. In this way some consideratio
on the convergence conditions are necessary and alterna
inversion techniques can be explored for the computation
effective interactions. Furthermore, the preceding argum
on the number of solutions in a given equivalence cla
shows that, aside from quite exceptional circumstances, o
can resort to different techniques to construct the same so
tion of the decoupling equation, a significant advantage
the presence of divergences in the iterative procedures.

The general technique used to construct iterative solutio
is the following. Suppose thatv satisfies the decoupling
equation~10! and define

v5x01y1,

y15x11y2 , ~13!

•••,

yn215xn211yn ,

wherex0 is some suitably chosen starting point for the iter
tion and thexn satisfy a recurrence relationxn5g(xn21).
Successive substitutions of Eq.~13! in the decoupling equa-
tion give a chain of equations fory1, . . . ,yn . At the
(n11)th step one obtains
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686 54FRANCESCO ANDREOZZI
yn11PHQyn111yn11p~x01x11•••1xn!

2q~x01x11•••1xn!yn111xnf ~x0 ,x1 , . . . ,xn!

5 0, ~14!

where the form of the functionf depends on the recurrenc
relation that has been chosen.

Then, if xn→0, defining

s5(
i50

`

xi

andy5y` , one has

v5s1y,

wherey satisfies

yPHQy1yp~s!2q~s!y5 0,

which coincides with Eq.~11!, so that by the preceding
propositions is a solution of the decoupling equation.

A. LS-type solutions

We call the class of solutions presented in this sect
LS-type solutions essentially because of the similarity, a
strict equivalence in one case, of the recurrence relati
from which they originate to that used in Ref.@3# to con-
struct the LS resummation technique.

The x’s are given successively by

x05
21

QHQ
QHP,

x15
1

q~x0!
x0p~x0!,

x25
1

q~x01x1!
x1p~x01x1!, ~15!

•••,

xn5
1

q~x01x11•••1xn21!
xn21p~x01x11•••1xn21!,

and the functionf in Eq. ~14! is

f ~x0 ,x1 , . . . ,xn!5p~x01x11•••1xn!. ~16!

In any matrix norm@9# i•i[i•ip , we have, from the
definitions~15!,

ixni<ixn21i
ip~sn21!i

ulqmu
, ~17!

where

sn215x01x11•••1xn21

andlqm is the eigenvalue ofq(sn21) of minimum absolute
value. Moreover, again in any matrix norm,ip(sn21)i is
e

ion
nd
ons

greater than the absolute value of any of the eigenvalues
p(sn21). Therefore the conditionxn→0 implies, through
inequality ~17!,

ulpMu,ulqmu, ~18!

wherelpM is the eigenvalue ofp(sn21) of maximum abso-
lute value, giving as a necessary condition for the conve
gence that the eigenvalues ofp(s) be thed eigenvalues of
H of smallest absolute value. Obviously a suitably chos
shift of the eigenvalues, i.e., subtracting fromH a multiple of
the identity,cIn , will make the procedure convergent to th
set of d eigenvalues nearest to the chosen constantc. It is
worth noting that no hypothesis of a degenerate model sp
is necessary in the preceding proof.

The iterative solution defined by the definitions~15! is
easily shown to be equivalent to the LS vertex renormaliz
tion solution@3#. In fact we have

sn5sn211
1

q~sn21!
xn21p~sn21! ~19!

or

sn5
1

q~sn21!
@xn21p~sn21!1q~sn21!sn21#, ~20!

so that, using the definitions ofp andq, we obtain the re-
currence relation

sn5
1

q~sn21!
@xn21PHP1q~sn22!sn21#. ~21!

Equation~21! can finally be iterated giving

sn5
1

q~sn21!
@sn21PHP2QHP#, ~22!

which is equivalent to the iterative relation from which th
LS solution is derived in Ref.@3#.

A noteworthy point is that the solution defined by itera
tion ~15! is not the only existing solution of this type. In fac
making use of the iteration defined by

x05QHP
1

PHP
,

•••, ~23!

xn5q~sn21!xn21

1

p~sn21!
,

we obtain at the (n11)th step an equation foryn11 of the
type ~14!.

We have now, from Eq.~23!,

ixni<ixn21i
iq~sn21!i

ulpm
u

, ~24!

wherelpm
is the eigenvalue ofp(sn21) of minimum abso-

lute value.
The convergence conditionxn→0 then implies
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54 687NONPERTURBATIVE DERIVATION OF NON-HERMITIAN . . .
ulqMu,ulpmu, ~25!

wherelqM is the eigenvalue ofq(sn21) of maximum abso-
lute value, giving as a necessary condition that the iterati
~23! define aP-space effective Hamiltonian whose eigenva
ues are thed eigenvalues ofH of greatest absolute value.

Clearly both Eqs.~15! and~23! offer a practicable way for
computing effective Hamiltonians through matrix inversio
techniques, aside from the quite exceptional case of an a
dental degeneracy in the eigenvalues ofH. Which one
should be used in realistic calculations is merely a matter
convenience and balance of contrasting computing requ
ments. As an example, while both iterations can be ma
convergent to the set ofd lowest eigenvalues ofH, iteration
~23! tends to be slower in convergence, since it usually r
quires a greater shift in the eigenvalues; on the other ha
since the dimensions of the model space are much sma
then that of theQ space, by far less numerical work is re
quired in the inversion of thep(sn21) matrices as compared
to the inversion of theq(sn21) matrices implied in solution
~15!.

The iteration schemes discussed until now can giv
through the eigenvalue-shifting technique, only sets ofd
consecutive eigenvalues ofH, supposed ordered in nonde
creasing order. These procedures can, however, be gene
ized in a way essentially similar to that presented in Re
@10#.

Given any matrixA, with elementsamn , let us define
(A) i as a matrix of the same dimensions ofA, whose ele-
ments areamndni , i.e., a matrix whose only nonzero column
is thei th, which coincides with thei th column ofA. Clearly,

A5(
i

~A! i . ~26!

If M is any d-dimensional diagonal matrix,M
5diag(m1 , . . . ,md), one has

v~M ! i5mi~v! i . ~27!

The decoupling equation~10!, making use of Eq.~26!, can
be decomposed as

vPHQ~v! i1v~PHP2M ! i2~QHQ2miI q!~v! i

2~QHP! i50 ~ i51, . . . ,d!. ~28!

The set of equations~28! can then be solved using any of th
preceding iteration schemes; if to be definite we use iterat
~15!, we have, for thei th equation and with obvious meaning
of the symbols,

~xn! i5
1

q~sn21!2miI q
xn21~p~sn21!2M ! i , ~29!

and the corresponding convergence condition gives, us
Gershgorin bounds on the eigenvalues@11#,

ulpi
2mi u<ulqm

2mi u ; i ,m, ~30!

which shows that convergence implies that the eigenvalu
of p(s) be thed eigenvalues ofH nearest to the numbers
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mi . Of course, if the matrixM is a multiple ofI p—i.e., all
themi are equal—the preceding results are recovered.

Two points deserve further discussion, being relevant
practical applications. The first one is that both Eqs.~10! and
~14! are invariant with respect to the choice of the numbe
mi , which therefore may be changed at any step of the iter
tion; as a consequence, if we take them at thenth step as the
eigenvalues ofp(sn22), the convergence of the iteration can
be made faster.

To illustrate the second point, let us note that the arg
ments leading to Eqs.~28! and~29! can also be made using a
row decomposition, i.e., defining matricesj (A) whose only
nonzero row is thej th, which coincides with thej th row of
A. Then, if M is an (n2d)-dimensional diagonal matrix,
M5diag(a1 , . . . ,an2d), the decoupling equation is decom-
posed as

j~v!PHQv1 j~v!@PHP2a j I p#2 j~QHQ2M !v

2 j~QHP!5 0 ~ j51, . . . ,n2d!, ~31!

where use has been made ofj (M )v5 j (v)a j .
Using iteration ~23! to solve the set of equations~31!

gives as convergence condition that the eigenvalues of
P-space effective Hamiltonian,lpi

, are those eigenvalues of

H for which the differencesulpi
2a j u,; j are maxima. Then,

if we take asa j the eigenvalues ofQHQ, the eigenvalues of
the effectiveP-space Hamiltonian will have maximum dis-
tance from theQHQ eigenvalues, i.e., are those whose fu
space eigenvectors have greatestP-space components. This
means that the solution just discussed corresponds to the
obtained by theQ-box resummation of Krencinglowa and
Kuo @2#.

B. KK-type solutions

Although the technique discussed in the preceding pa
graph allows one in principle to obtain any desired solutio
we discuss here, for the sake of completeness, other iterat
schemes more closely related to the standard form of the K
technique.

Let us consider a first example of this kind of iteration. In
this case thex’s are solution of the linear equations

x0PHP2QHQx02QHP50,

x1p~x0!2QHQx11x0PHQx050, ~32!

•••,

xnp~sn21!2QHQxn1sn21PHQxn2150,

andyn11 satisfies the equation

yn11PHQyn111yn11p~sn!2q~sn!yn111snPHQxn5 0.
~33!

This kind of iteration has already been discussed in Re
@3# where it is used to obtain the KK resummation of th
perturbative series. We reformulate it in our formalism jus
to show explicitly the existence of different iteration
schemes which converge to the same effective Hamiltonia
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688 54FRANCESCO ANDREOZZI
This point can be of great practical relevance, since the c
vergence rates of the alternative schemes can be very dif
ent.

Using the definition of theQ-space effective interaction
q(s), we have, from Eq.~32!,

xnp~sn21!2QHQxn5@q~sn21!2QHQ#xn21 . ~34!

Let ha,n21 and mq be the eigenvalues ofp(sn21) and
QHQ, respectively, andufa,n21& andujq& their correspond-
ing eigenvectors. Then Eq.~33! gives

~ha,n212mq!^jquxnufa,n21&

5^jqu@q~sn21!2mq#xn21ufa,n21&. ~35!

The eigenvectorŝjqu can be expanded in terms of the le
eigenvectors ofq(sn21),

^cb,n21uq~sn21!5lb,n21^cb,n21u, ~36!

so that

^jqu@q~sn21!2mq#xnufa,n21&<Dq,n21^jquxn21ufa,n21&,
~37!

where

Dq,n215maxb~lb,n212mq!. ~38!

Finally, from the convergence condition and Eq.~35! it fol-
lows that

Dq,n21,ha,n212mq ;a,q, ~39!

which means that iteration~32! gives an effective Hamil-
tonian whose eigenvalues have maximum distance from
QHQ eigenvalues.

Also in this case iteration~32! is not the only existing
solution of this type. In fact, it can be shown, using tec
niques similar to Eqs.~35!–~39!, that the iteration defined by
the first of Eqs.~32! and

xnPHP2q~sn21!xn1xn21PHQsn2150 ~40!

converges to a solution of the decoupling equation whi
defines aP-space effective Hamiltonian whose eigenvalu
are thed eigenvalues ofH nearest to thePHP eigenvalues.

IV. CONSTRUCTION OF HERMITIAN EFFECTIVE
INTERACTIONS AND OPERATORS

The effective Hamiltonians obtained from the solutions
the decoupling equation are obviously non-Hermitian. Th
is in principle not a problem since very efficient technique
of solution of nonsymmetric eigenproblems are known a
coded in mathematical libraries.

The construction of Hermitian effective interactions i
however, a problem not only interesting in itself but also
practical relevance, since many shell model computer co
make use of the symmetry of the Hamiltonian matrix. Th
relation between Hermitian and non-Hermitian forms of th
effective interaction has already been discussed in Ref.@7#,
where an explicit, rather complex expansion for the Herm
ian effective interaction has been given. The present use
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nonperturbative techniques, however, makes this constr
tion very simple. The essential point has already been ma
in @12#, where the quasi-Hermitian character of the effectiv
interaction has been evidenced, but the Hermitization proc
dure suggested is in our context unnecessarily complicat
A much simpler construction can be obtained in the follow
ing way. From the definition~4! of the transformed Hamil-
tonian one has

VH5HV ~41!

or, making use of the symmetry ofH,

V†VH5H†V†V, ~42!

whoseP-space part can be written as

Tp~v!5p†~v!T. ~43!

The matrix

T5I p1v†v ~44!

is manifestly symmetric and positive definite; it therefor
admits the Cholesky decomposition@11#

T5LLT, ~45!

whereL is a lower triangular matrix andLT is its transpose.
Rewriting Eq.~43! as

LLTp~v!5p†~v!LLT, ~46!

multiplying by L21 on the left and by (LT)215(L21)T on
the right, gives

L21p†~v!L5LTp~v!~L21!T5@L21p†~v!L#T. ~47!

Equation~47! shows thatLTp(v)(L21)T is a Hermitian ma-
trix which has the same eigenvalues ofp(v), since L is
nonsingular; i.e., it is the required Hermitian form of the
effective interaction. The present procedure of Hermitizatio
is numerically much more convenient with respect to th
solutions suggested in Refs.@7,13#, which require the con-
struction of eigenvalues and eigenvectors ofv†v.

The main advantage in using a Hermitian form of th
effective Hamiltonian is, however, related to the constructio
of effective operators in the chosen model space. The pro
lem with non-Hermitian Hamiltonians, as thoroughly dis
cussed in Refs.@6,14#, is connected to the fact that left and
right eigenvectors can be independently normalized. This
not the case with Hermitian effective Hamiltonians; on th
contrary we will show that one has only to compute matri
elements of a suitably defined operator between normaliz
P-space eigenstates.

Let @la# (a51, . . . ,d) be the set of eigenvalues of the
full Hamiltonian H reproduced by theP-space effective
Hamiltoniansp, non-Hermitian, andpe , the Hermitian trans-
form defined by Eq.~47!. Let uCa&, ufa&, anduxa& be their
corresponding eigenvectors, respectively.

By definition, these eigenvectors are connected by t
transformations

uCa&5Vufa&5~ I p1v!ufa&, ~48a!
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ufa&5~LT!21uxa&. ~48b!

If Ô is any operator defined in the full space, we have, usi
normalized full space eigenvectors^CauCa& 5 1, ;a,

^CauÔuCb&5^fau~ I p1v†!Ô~ I p1v!ufb&

5^xauL21~ I p1v†!Ô~ I p1v!~LT!21uxb&. ~49!

Normalization problems are in this case absent; in fact w
have

^CauCa&5^fau~ I p1v†v!ufa&5^fauLLTufa&5^xauxa&,
~50!

and the correct procedure requires only the calculation
matrix elements of the effective operator

Ôeff5L21~ I p1v†!Ô~ I p1v!~LT!21 ~51!

between normalizedP-space eigenvectors.

V. CONCLUDING REMARKS

We have presented in this paper matrix inversion tec
niques which offer a viable alternative to the well
established perturbative construction of the shell model e
fective interaction.

A number of iterative schemes have been explicitly co
structed which converge to any desired subset of the eig
n

g

e

of

h-

f-

-
n-

values of the Hamiltonian matrix in the full space of state
The main advantage of the present techniques relies

the fact that the direct solution of the decoupling equatio
allows the construction of the wave operatorv. It is pre-
cisely its knowledge that makes very simple the constructi
of the Hermitian transform of the Hamiltonian and of effec
tive operators.

It is worth noting the rather strict connection of the non
perturbative techniques of the construction of effective inte
actions shown in this paper to other well-known ones,
particular to the large matrix diagonalization technique pi
neered by Lo Iudiceet al. @15#. This point, together with a
diagrammatic analysis of the solutions presented in this p
per, is currently under study.

While being aware of the difficulties intrinsic to these
nonperturbative approaches, especially the presence of so
unlinked terms due to space truncation effects@16,17#, one
should not underestimate the possibility, offered by th
present techniques, to obtain a well-converged solution. Co
vergence problems have been very often underestimated
common practice being rough evaluations or qualitative o
der of magnitude arguments, in contrast to the strict cont
on convergence offered by the methods discussed here.
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