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Nonperturbative derivation of non-Hermitian and Hermitian effective interactions and operators
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Iterative techniques of the solution of the decoupling equation are used to construct various types of
effective Hamiltonians in the framework of nonorthogonal transformations. A general and numerically conve-
nient Hermitization procedure of the non-Hermitian Hamiltonians obtained by such techniques is proposed and
the definition of effective operators with the related normalization problems is reviewed.
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I. INTRODUCTION enological fits to experimental levels. In addition, the use of
non-Hermitian effective interactions poses normalization

One of the central problems in many-body physics is thgproblems in the definition of effective operators, which are
necessity of reducing the full space of states to some small@bsent for a Hermitian effective interactipfy.
dimensional model space. This reduction is obtained through A definition of a Hermitian effective interaction is there-
the use of effective operators, acting within the model spacéore highly desirable and to this end some Hermitization pro-
only, which embody contributions from the complement tocedure is required. The usual choice of Brandow’s interme-
the model space. It is customary in nuclear physics to exdiate baSISEl] has to face intrinsic difficulties inherent in the
press the derivation of the effective operators in terms of #lefinition of the square root of a matrix. Problems of com-
completely linked perturbation expansion containing bothparable complexity have to be faced also in the direct con-
nonfolded and folded diagranig] for which partial resum-  struction of a Hermitian effective interaction starting from a
mations can be obtained by using either the Krencinglowat!nitary choice of the transformation matifis,7].

Kuo (KK) techniqud 2] or the Lee-Suzuk{LS) method[3]. In this paper a new Hermitization procedure is suggested

A noteworthy point is the discussion in RéB] of the  based on the triangular decomposition of a symmetric posi-
effective interaction theory in terms of similarity transforma- tive definite matrix, which offers a simple and numerically
tions which decouple the model space and the complemer§onvenient alternative to the solutions discussed in R@f.
tary space components of the Hamiltonian. Further discus- The paper is organized as follows. In Sec. Il the deriva-
sion of this technique and its connections to quasidegeneraté®n of the decoupling equation is presented. Iterative solu-
perturbation theory can be found in R@4] and references tions for the wave operator are explicitly constructed in Sec.
quoted therein. The authors of R¢B], making use of a Ill. The definition of Hermitian effective interactions is given
nonorthogonal transformation of the Hamiltonian, show thath Sec. IV, where the definition of effective operators and the
the decoup“ng requirement leads to an equa’[ion for thée|at6d normalization problems are also discussed. Some
transformation matriXdecoupling equation which is used concluding remarks are given in Sec. V.
to construct two resummations of the perturbative expansion
for the effective Hamiltonian in the framework of the Il. FORMALISM
Q-box formalism of Kuo and co-workef2,5].

It is, however, interesting in itself to examine the con- ) . ) .
struction of effective operators directly in terms of the waveZ€r° order paFHo and _Of a reS|duaI_|nteract|dm. The eigen-
operator given by the decoupling equation, with no explicitStates ofHo W'!I be written aS|F> with aggnvalug&t. A
reference to the perturbative expansion. We show in this pas_et of these eigensolutions will be partitioned into two sub-
per that this is indeed possible, recovering in this way soluS€tS
tions equivalent to the already known KK and LS resumma- [t t t,]U[t t t] 1)
tions, with some new observations on their convergence iz e ndliLid L Rd 2y e e in

conditions, and suggest the possibility of constructing NeWefining the model spade; ,t,, . . . ty] and its orthogonal

types of solutions. _ complement. The projection operator on the model space is
Since one makes use of nonorthogonal transformations of

the Hamiltonian, the resulting effective operators are non- d

Hermitian. This is simply an artifact of the technique, with P=> |t (t], 2
no particular physical significance, in that the resulting non- =1

Hermitian effective Hamiltonians have by definition real ei-
genvalues and a nondefective system of eigenvectors. No
Hermiticity can be, however, considered a defect, especially n

if one wants to compare the computed matrix element of the Q= 2 It (). 3)
effective Hamiltonians with those obtained from phenom- joghe

As usual the Hamiltonian is composed of an unperturbed,

ﬁl_nd that on its orthogonal complement is
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Given any nonsingular matrif), i.e., a matrix whose being the following proposition.

inverse) ! exists, the transformed matrix If w, and w, are two solutions of the decoupling equation
(10), their difference ¥ w,— w; will satisfy
H=Q"THQ (4
YPHQy+yp(w;) —a(w,)y=0, (11)

has the same eigenvaluestdf Therefore, if we require that

() is such that where ) and o{w) are the P-space and Q-space effective

QHP=0 (5) Hamiltonians defined by Eq$8) and (9), respectively; vice
' versa, ifw, is solution of the decoupling equati¢h0) and
the eigenvalue problem in the full space is broken into twoy satisfies Eq(11),thenw;=w,—Y is also solution of Eq.
separate eigenproblems, one in the model sp&cepace  (10).
and the other in its orthogonal complemefit §pace. This proposition can be easily proved by writing E0)
Condition(5) is not sufficient to determine completely the for w,=w;+Yy and requiring thatw; be a solution of Eq.
matrix Q. As an example multiplication of} by any block  (10).
diagonal matrix leaves Eq5) unchanged. Supplementary ~ Some general, but unfortunately nonconstructive consid-
conditions onQ) are therefore required, the simplest choiceerations can be made on the solutions of the decoupling

being, without any loss of generality, equation, based on the notion of equivalence class. Two so-
lutions, say,w; andw,, will be said equivalent if the result-
PQP=1,, PQQ=0, (6a  ing P-space(and obviouslyQ-space alspeffective Hamil-
tonians have the same eigenvalues. This implies that the
QOP=w0, QQQ=l, (6b)  solutions of Eq.(10) fall in at most {) classes of equiva-

lence. The differencey=w,—w; must satisfy Eq.(11),

wherel , andl are unit matrices in th® andQ subspaces, which can be also written as

respectively.
With this choice the transformed matriX is written

yp(wz) —q(w1)y=0. (12)
= +
PHP=PHP+PHQo, (78 Equation(12) can be satisfied by a nonzeyaif and only if
PHQ=PHQ (7b) the set of the eigenvalues p{w,) has a nonempty intersec-
' tion with the set of the eigenvalues qfw;) [8]. Since by
QHQ=QHQ—wPHQ, (70) hypothesis the spectra p{w;) and ofp(w,) are the same,

the equivalence classes are made of a single element or a
QHP=QHP+QHQw— wPHP—wPHQw, (7d) nondenumerable set of elements, depending on the presence
of degeneracies in the spectrumidf
where use has been made of the fact hBt=Quw= w. We are, however, interested in constructing explicitly a
If w is such that the decoupling conditi¢) is satisfied, certain number of solutions of the decoupling equation, using
the d-dimensional eigenproblem for the model space effecspecific iterative techniques. In this way some considerations

tive Hamiltonian, on the convergence conditions are necessary and alternative
_ B inversion technigues can be explored for the computation of
p(w)=PHP=PHP+PHQo, ®) effective interactions. Furthermore, the preceding argument

on the number of solutions in a given equivalence class
shows that, aside from quite exceptional circumstances, one
can resort to different techniques to construct the same solu-
tion of the decoupling equation, a significant advantage in
J(w)=QHQ=QHQ— wPHQ. (99  the presence of divergences in the iterative procedures.
The general technique used to construct iterative solutions
The derivation of model space effective interactions is inis the following. Suppose thab satisfies the decoupling

this way converted to the task of identifying and enumeratingequation(10) and define
the solutions of the decoupling equation

givesd eigenvalues oH. The remainingh—d can be ob-
tained by a diagonalization of th@-space effective Hamil-
tonian

®=XotY1,
wPHQw+ wPHP—-QHQw—QHP=0. (10
This is a nonlinear matrix equation; i.e., it belongs to a Yi=X1tya, (13
class of equations for which no general solution technique is
known, nor is the number of existing solutiof8. One has T
therefore to resort tad hocapproaches, specifically tailored
to the problem at hand. Yn-1=Xn-1F¥n,

wherex, is some suitably chosen starting point for the itera-
tion and thex, satisfy a recurrence relatiox,=g(X,_1)-
Successive substitutions of E{.3) in the decoupling equa-

The construction of the solutions of the decoupling equation give a chain of equations foy,,...Yy,. At the
tion can be made in a rather simple way, the main poin{n+ 1)th step one obtains

lll. ITERATIVE SOLUTIONS
OF THE DECOUPLING EQUATION
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Vs 1PHQVYns 1+ Yns 1P(Xo+ X1+ - - - +Xp) greater than the absolute value of any of the eigenvalues of
p(o,_1). Therefore the conditiorx,—0 implies, through
—g(Xo+ Xyt -+ FXp)Yna1 T Xnf (X0, Xg, - Xp) inequality (17),

-0 (14 ol <gnl, (19
where the form of the functiofi depends on the recurrence where\ ,y is the eigenvalue ab(a,;) of maximum abso-
relation that has been chosen. lute value, giving as a necessary condition for the conver-

Then, ifx,—0, defining gence that the eigenvalues pfo) be thed eigenvalues of
o H of smallest absolute value. Obviously a suitably chosen
o= Z X; shift of the eigenvalues, i.e., subtracting fréira multiple of
i=0 the identity,cl,, will make the procedure convergent to the

set ofd eigenvalues nearest to the chosen constart is
andy=y.., one has worth noting that no hypothesis of a degenerate model space
is necessary in the preceding proof.
The iterative solution defined by the definitiofk5) is
easily shown to be equivalent to the LS vertex renormaliza-
tion solution[3]. In fact we have

w=0ctY,
wherey satisfies
yPHQy+yp(o)—d(ao)y= 0,

which coincides with Eq.11), so that by the preceding
propositiono is a solution of the decoupling equation.

1
mxn—lp(an—l) (19

on=0n-1t

or
A. LS-type solutions

We call the class of solutions presented in this section O-n_q(o-ni_l)[Xn*lp(o-nfl)+q(0'n71)0'n71]1 (20)
LS-type solutions essentially because of the similarity, and
strict equivalence in one case, of the recurrence relationso that, using the definitions qf and g, we obtain the re-
from which they originate to that used in R¢8] to con-  currence relation
struct the LS resummation technique.
The x’s are given successively by

1
Ufm[xn—lPH P+qa(on-2)on-1]. (21
XOZWQHP' Equation(21) can finally be iterated giving
=——[o,_1PHP—QHP], 22
Xl:—XOp(XO)v On q(a-n—]_)[a-n 1 Q ] ( )
a(Xo)
which is equivalent to the iterative relation from which the
Xy=—————X1p(Xo+X1), (15 LS solution is derived in Ref3]. _ _ _
d(Xo+X1) A noteworthy point is that the solution defined by itera-
tion (15) is not the only existing solution of this type. In fact
Ty making use of the iteration defined by
! HP 1
T ) L %= QHP e
and the functiorf in Eq. (14) is S (23
f(Xg, X1, « . Xp)=P(Xg+ Xy + -+ +X,). (16)
XnZQ(Un—l)Xn—lm,
In any matrix norm[9] [|-||=]|-[|,, we have, from the n-1
definitions(15), we obtain at therf+ 1)th step an equation foy,,,, of the
Ip(on P e
”Xn”s”Xn—l”ﬁv (17) We have now, from Eq(23),
qm)
laton-1)l
where ||Xn||$||xn—1”—|)\n o (24)
Pm

(Tn,1:XO+X1+"'+Xn,1 ) A .
where)\pm is the eigenvalue op(op,_1) of minimum abso-

and\ 4 is the eigenvalue ofi(oy,—;) of minimum absolute lute value.
value. Moreover, again in any matrix norfip(o,_4)| is The convergence conditiag,— 0 then implies
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|)\qM|<|)\pm|, (25) m; . Of course, if the matriM is a multiple ofl ,—i.e., all
them; are equal—the preceding results are recovered.
where\ 4y is the eigenvalue ofi(o,, ;) of maximum abso- Two points deserve further discussion, being relevant in

lute value, giving as a necessary condition that the iteratiopractical applications. The first one is that both E3¢) and

(23) define aP-space effective Hamiltonian whose eigenval- (14) are invariant with respect to the choice of the numbers

ues are thal eigenvalues oH of greatest absolute value. m;, which therefore may be changed at any step of the itera-
Clearly both Egs(15) and(23) offer a practicable way for tion; as a consequence, if we take them atrttiestep as the

computing effective Hamiltonians through matrix inversion eigenvalues op(o,,_>), the convergence of the iteration can

techniques, aside from the quite exceptional case of an acdbe made faster.

dental degeneracy in the eigenvalues f Which one To illustrate the second point, let us note that the argu-

should be used in realistic calculations is merely a matter ofnents leading to Eq$28) and(29) can also be made using a

convenience and balance of contrasting computing requireow decomposition, i.e., defining matricgA) whose only

ments. As an example, while both iterations can be madeonzero row is theth, which coincides with th¢th row of

convergent to the set af lowest eigenvalues dfi, iteration ~ A. Then, if M is an (h—d)-dimensional diagonal matrix,

(23) tends to be slower in convergence, since it usually reM =diag(a;, . . . ,@,_g), the decoupling equation is decom-

quires a greater shift in the eigenvalues; on the other hanghosed as

since the dimensions of the model space are much smaller

then that of theQ space, by far less numerical work is re- j(0)PHQw+(w)[PHP—a;l ;] —;(QHQ-M)w

quired in the inversion of thp(o,,_41) matrices as compared .

to the inversion of thej(o,,_;) matrices implied in solution —i(QHP)=0 (j=1,...n=d), (3D

(15).
. . . . . where use has been made -()M)w—— -(w)a- .
T J J J
he iteration schemes discussed until now can give, llsing iteration (23) to solve the set of equatio 81)

::rgr?:g?utti\r/]g ;'g::\\//;wgs'sgf'mgg te()‘;lrgqgr%'e;)endlyinsitsggg_ gives as convergence condition that the eigenvalues of the
. 9 » SUpp P-space effective Hamiltonian,, , are those eigenvalues of
creasing order. These procedures can, however, be general- i

ized in a way essentially similar to that presented in RefH for which the differencef\, —aj|,Vj are maxima. Then,
[10]. if we take ase; the eigenvalues dQHQ, the eigenvalues of
Given any matrixA, with elementsa,,,, let us define the effectiveP-space Hamiltonian will have maximum dis-
(A); as a matrix of the same dimensions A&f whose ele- tance from theQHQ eigenvalues, i.e., are those whose full
ments are,,d,;, i.€., @ matrix whose only nonzero column space eigenvectors have greateéstpace components. This
is theith, which coincides with théth column ofA. Clearly, means that the solution just discussed corresponds to the one
obtained by theQ-box resummation of Krencinglowa and
A=3 (A). 20 Kuol2l
B. KK-type solutions
If M is any d-dimensional diagonal matrix, M

—diag(m,., . . . .mg), one has Although the technique discussed in the preceding para-

graph allows one in principle to obtain any desired solution,
o(M),=mi(w);. (27 We discuss here, for the sake of completeness, other iteration
schemes more closely related to the standard form of the KK
The decoupling equatiof.0), making use of Eq(26), can  technique.
be decomposed as Let us consider a first example of this kind of iteration. In
this case the’s are solution of the linear equations

©PHQ(0);+w(PHP—M);—(QHQ—ml¢)(w), <oPHP—QHOY— QHP—0
0 — Y,

—(QHP);=0 (i=1,...4d). (28
X1P(Xg) —QHQxX; +X,PH =0, (32
The set of equation&@8) can then be solved using any of the 1P(Xa) ~ QR+ xPH%
preceding iteration schemes; if to be definite we use iteration .
(15), we have, for theth equation and with obvious meaning
of the symbols, XoP(0- 1)~ QHQX, + oy 1PHQX, 1 =0,

_ — M. and satisfies the equation
(Xn)l_q(a_n_l)_miqunfl(p(o'nfl) M)I ’ (29) Yn+1 q
. . . . Yn+1PHQYn1+Yn+1P(on) —A(0)Yn+1+ 0 PHQX,= 0.
and the corresponding convergence condition gives, using (33
Gershgorin bounds on the eigenvalji4],
This kind of iteration has already been discussed in Ref.
[Ap—mi[<[Ng —mi| Vi,m, (300 [3] where it is used to obtain the KK resummation of the
perturbative series. We reformulate it in our formalism just
which shows that convergence implies that the eigenvalue® show explicitly the existence of different iteration

of p(o) be thed eigenvalues oH nearest to the numbers schemes which converge to the same effective Hamiltonians.
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This point can be of great practical relevance, since the comonperturbative techniques, however, makes this construc-
vergence rates of the alternative schemes can be very diffetion very simple. The essential point has already been made

ent. in [12], where the quasi-Hermitian character of the effective
Using the definition of theQ-space effective interaction interaction has been evidenced, but the Hermitization proce-
g(o), we have, from Eq(32), dure suggested is in our context unnecessarily complicated.

A much simpler construction can be obtained in the follow-
XaP(0n-1) = QHQX=[0d(0-1) = QHQIX-1. (34  ing way. From the definitiori4) of the transformed Hamil-

. tonian one has
Let 7, ,-1 and uy be the eigenvalues gé(o,-;) and

QHQ, respectively, andl, ,—1) and|£,) their correspond- QH=HQ (41)
ing eigenvectors. Then E33) gives

or, making use of the symmetry &f,
(ﬂa,n—l_ﬂq)<§q|xn|¢a,n—l>

ator=H'a'Q, (42
:<§q|[q(0n—l)_ﬂq]xn—l|¢a,n—l>' (395
_ _ whoseP-space part can be written as
The elgenvector$§q| can be expanded in terms of the left
eigenvectors of|(o,,_1), Tp(w)=p'(w)T. (43
(Wpn-1la(on-1)=Ngn-1(¥gn-1l, (36)  The matrix
so that T=l,+o' (44)

(&qllaton—1) = ugq)Xnl Pan-1)=<Agn-1{&q|Xn-1 Pan-1) is manifestly symmetric and positive definite; it therefore
(37 admits the Cholesky decompositifhl]

where T=LLT, (45)
Agn-1=Maxs(Agn-1~ Hq)- (38 \whereL is a lower triangular matrix antd™ is its transpose.

Finally, from the convergence condition and Eg5) it fol- Rewriting Eq.(43) as

lows that LLTp(w)=p'(w)LLT, (46)
Aq,n—l< Nan—-1— Mq Va,q, (39

multiplying by L™* on the left and by KT) "*=(L")T on

which means that iteratiof32) gives an effective Hamil- the right, gives

tonian whose eigenvalues have maximum distance from the 1t T STy —1at T

QHQ eigenvalues. L™ p(@)L=L p(o)(L"7)'=[L "p'(w)L]". (47)
Also in this case iteratiori32) is not the only existing  £.ation(47) shows that.™ LT

solution of this type. In fact, it can be shown, using tech- d “7 Plw)(L)

niques similar to Eq935—(39), that the iteration defined by nonsingular; i.e., it is the required Hermitian form of the

the first of Egs(32) and effective interaction. The present procedure of Hermitization
- is numerically much more convenient with respect to the
XPHP=0(on-1 )Xt X0-1PHQon -1 =0 (40 ) ions sug}(/gested in RefiZ,13], which require the con-
converges to a solution of the decoupling equation whictstruction of eigenvalues and eigenvectorsudfo.
defines aP-space effective Hamiltonian whose eigenvalues The main advantage in using a Hermitian form of the
are thed eigenvalues oH nearest to th@HP eigenvalues. effective Hamiltonian is, however, related to the construction
of effective operators in the chosen model space. The prob-
IV. CONSTRUCTION OF HERMITIAN EFFECTIVE lem With non—Hermitign Hamiltonians, as thoroughly dis-
INTERACTIONS AND OPERATORS qusseq in Refd.6,14], is connected to the fact thgt left ar'ld'
right eigenvectors can be independently normalized. This is
The effective Hamiltonians obtained from the solutions ofnot the case with Hermitian effective Hamiltonians; on the
the decoupling equation are obviously non-Hermitian. Thiscontrary we will show that one has only to compute matrix
is in principle not a problem since very efficient techniqueselements of a suitably defined operator between normalized
of solution of nonsymmetric eigenproblems are known andP-space eigenstates.
coded in mathematical libraries. Let[\,] (a=1,...d) be the set of eigenvalues of the
The construction of Hermitian effective interactions is, full Hamiltonian H reproduced by theP-space effective
however, a problem not only interesting in itself but also of Hamiltoniansp, non-Hermitian, ang,, the Hermitian trans-
practical relevance, since many shell model computer codefgrm defined by Eq(47). Let |¥ ), |¢,), and|x,) be their
make use of the symmetry of the Hamiltonian matrix. Thecorresponding eigenvectors, respectively.
relation between Hermitian and non-Hermitian forms of the By definition, these eigenvectors are connected by the
effective interaction has already been discussed in Hé&f.  transformations
where an explicit, rather complex expansion for the Hermit-
ian effective interaction has been given. The present use of |V, =0]d,)=(l,+w)|d,), (483

is a Hermitian ma-
trix which has the same eigenvalues pfw), sincel is
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|¢a>=(LT)71|Xa>- (48b) values of the Hamiltonian matrix in the full space of states.
R The main advantage of the present techniques relies on
If O is any operator defined in the full space, we have, usinghe fact that the direct solution of the decoupling equation

normalized full space eigenvectof¥ .|V ,) = 1, Ve, allows the construction of the wave operator It is pre-
. . cisely its knowledge that makes very simple the construction
(W [OlW g)=( ol (Ip+ 0" O(I,+ )| ¢ g) of the Hermitian transform of the Hamiltonian and of effec-
. tive operators.
=(XolL (1 p+ 0O+ @) (LT) " xp). (49 It is worth noting the rather strict connection of the non-

o ) ) ) perturbative techniques of the construction of effective inter-
Normalization problems are in this case absent; in fact W& ctions shown in this paper to other well-known ones, in
have particular to the large matrix diagonalization technique pio-

_ + _ T _ neered by Lo ludiceet al. [15]. This point, together with a
(Vo Vo) = (ol (Ip+ @' 0)|¢0) = (ol LL T bo) <X“|X(‘é>d diagrammatic analysis of the solutions presented in this pa-
per, is currently under study.

and the correct procedure requires only the calculation of While being aware of the difficulties intrinsic to these

matrix elements of the effective operator nonperturbative approaches, especially the presence of some
. ~ unlinked terms due to space truncation effdd6,17], one
Oe=L (I, + 0O+ 0)(LT) ! (51)  should not underestimate the possibility, offered by the
_ ) present techniques, to obtain a well-converged solution. Con-
between normalize€-space eigenvectors. vergence problems have been very often underestimated, a
common practice being rough evaluations or qualitative or-
V. CONCLUDING REMARKS der of magnitude arguments, in contrast to the strict control

We have presented in this paper matrix inversion techON convergence offered by the methods discussed here.

nigues which offer a viable alternative to the well-
esta}bllghed pe'rturbatlve construction of the shell model ef- ACKNOWLEDGMENTS
fective interaction.
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