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The two-nucleon density distributions in states with isospi0, spin S=1, and projectiorM =0 and
+1 are studied irtH, 3He, 87Li, and 0. The equidensity surfaces ftt =0 distributions are found to be
toroidal in shape, while those &l s=+1 have dumbbell shapes at large density. The dumbbell shapes are
generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength
at r<2 fm in all these nuclei. They provide new insights and simple explanations of the structure and
electromagnetic form factors of the deuteron, the quasideuteron model, ardipthéd, and ad L=2
(D-wave components ir*He, “He, and®Li. The toroidal distribution has a maximum-density diameter of
~1 fm and a half-maximum density thickness ©0.9 fm. Many realistic models of nuclear forces predict
these values, which are supported by the observed electromagnetic form factors of the deuteron, and also
predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the
rather small size of this structure, it could have a revealing relation to certain aspects of QCD. Experiments to
probe this structure and its effects in nuclei are suggested. Pair distribution functions it @letrannels are
also discussed; those hS=1,1 have anisotropies expected from one-pion-exchange interactions. The tensor
correlations inT,S=0,1 states are found to deplete the numbeffdd=1,0 pairs in nuclei and cause a
reduction in nuclear binding energies via many-body effd@6556-28136)00708-X]

PACS numbsgs): 13.75.Cs, 21.30.Fe, 21.45v, 27.10+h

I. INTRODUCTION The interactions;; andV;;, are not exactly known, but; is
well constrained by the available scattering data, and binding
Nuclear structure has been discussed mostly in the contegnergies and theoretical considerations place important con-
of the liquid drop and shell models. These models have beestraints oV, . The structure of the ground-state wave func-
extremely useful in explaining many observed nuclear proption ¥, at small interparticle distances is influenced by the
erties. However, they are based on macroscopic concepté€pulsive core and tensor partswiaf . Most realistic models
and do not address the simplest nuclei, hydrogen and heliur®f vij contain these components and, for example, the Reid
Furthermore, recente(e’p) experimentg1] have indicated 3] Paris[4], Urbana[5], and new Argonne ;5 [6] models

that in heavier near-closed-shell nuclei, less than 70% of th&eem to predict similar structures. The three-nucleon interac-

nucleons are in the single-particle orbitals that would be fullygglrlla\t/igt] il?eg]/vuecer]nvl\:?naeli?c: ;r;?dnt\}vrl)&itj)c') d?/ui(ra]t:aoraacl:tlig;ggncearg}es
occupied in the simple shell model. ; D A '
P P it has a significant effect on nuclear binding enerd&sbut

To obtain a more microscopic description of nuclear, ;
structure, we may regard the nucleus as a collection of intelj—ts effect on the structure oF o is much less than that of the

! ; ; better known;; .
acting nucleons described by the Hamiltonjan Due to the strong spin-isospin dependencevgf and

52 Vjj« it is difficult to solve the Schidinger equation with the
H=> —-—VZ+> vij+ > Vij - (1.1  Hamiltonian(1.1). Only recently has it been possible to ob-
i 2m i< i<j<k tain accurate solutions fé&x<7 nuclei[ 7,8] with the Green’s
function Monte Carld GFMC) method. Accurate variational
wave functions¥, , which contain less than 0.5% admixture

*Electronic address: j-forest@uiuc.edu of excited states are known fé&x=3 and 4 nucle{9]. The
"Electronic address: vijay@rsm1.physics.uiuc.edu available¥, for ®Li [10] and 10 [11,12 are certainly not
*Electronic address: spieper@anl.gov as accurate as those f8r=3 and 4, nevertheless they pre-
SElectronic address: wiringa@theory.phy.anl.gov sumably contain most of the important structure of ¥hg.
"Electronic address: schiavilla@cebaf.gov In this paper we examine the short-range structure of
TElectronic address: arriaga@alf1.cii.fc.ul.pt 2H, 3%He, %7Li, and %0 by calculating the two-nucleon
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54 FEMTOMETER TOROIDAL STRUCTURES IN NUCLEI 647
density distributions in states with specified isospinspin  the tensor correlations have near maximal strengttr {02

S, and spin projectioMM . Since the deuteron has only two fm in all these nuclei. The scale factor is identified as the
nucleons, its one- and two-body density distributions are evinger-Bethe quasideuteron number, and its value is com-
trivially related. Variational wave function¥’, and Monte  pared to the ratios of total photof { = 80 to 120 MeVf and
Carlo methods are used fé>2. pion (E,+~ 115 Me\) absorption cross sections.

The two-nucleon distributions in th'E,S=O,1 states have In order to Study the nature of many-body structures in-

a strong dependence on the spin projectibhs. The  duced by these compact two-body structures we study the
equid_ensity sur_faces, spanning the top t_hree-quarters of tI}pp, dd, and ad overlaps with the¥, of 3He, “He, and
density range inMs=0 states, have toroidal shape. Theses iy sec. V. These depend strongly on the spin projection

tori are produced by the joint action of the repulsive core anq; = of the deuteron and indicate the presence of anisotropic

t'\(zns;oi Ttﬁracnc()jns. kl)rt]) CI?nt;aSt the er?u;]dehnsny shapest'g.tiwéqructures in all these nuclei. Experiments to probe these
s=*1 have dumbbell shapes, which have been studied, . res are suggested.

earlier in the deutero13,14. A brief description of the Pair distribution functions in otheF,S,M g states are dis-

two-nucleon interaction iif,S=0,1 states is given in Sec. |I, : B -
and the density distribution of the deuteron is discussed iﬁu_ssed n Sec. V1. Those in,S= 11 Ms=0x1 states are
detail in Sec. Ill. where we show that the dumbbell-shape(f‘”'SOtmp'C as expected from the pion-exchange tensor force.

distributions inM ¢=+ 1 states are produced by rotating tori. "€ !0 find that the number @7, S=1,0 pairs in a nucleus

Commonly used models of;; predict that the maximum is reduced due to many-body effects involving the strong

density torus has a diameter ef1 fm, and the half- T,S=0,1 tensor correlations. This reduction gives a signifi-
maximum density torus has a thickness-e0.9 fm. In Sec. ~ cant contribution to the saturation of nuclear binding ener-
Il we relate these dimensions of the toroidal distribution to9!€S.
the observed electromagnetic form factors of the deuteron. The Skyrme field theory15], related to QCD in the limit
The structures are rather dense; current models predict tt@f large number of colordN.—, has predicted toroidal
maximum one-body density of the torus inside the deuteroshapes for the deutergd6—1§ in the classical limit. Den-
to be ~0.34+0.02 fm~3, i.e., approximately twice nuclear sity distributions of the ground states with 3—6 baryons have
matter density. also been calculatgd 9] in this limit. In Sec. VII, we sum-
The two-nucleonT,S=0,1, Mg=0,%£1 density distribu- marize our results, obtained with conventional nuclear many-
tions in >“He, 8'Li, and %0 are compared with those of the body theory, and indicate their relation to those of the
deuteron in Sec. IV. The distributions fox<2 fm differ only ~ Skyrme field theory in the classical limit, and of the constitu-
by a single scale factor. They indicate that in The O state, ent quark model.
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FIG. 1. The upper four lines show expectation valuesvgﬁjt for Mg=0, #=0, and the lower four lines are favig=0, #=m/2 or
equivalentlyM s=+1, §=0. The expectation values fdds=+1, 6==/2 (not shown are half-way in between.
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FIG. 2. TheS- andD-wave deuteron wave functions for various potential models.

II. THE TWO-NUCLEON INTERACTION
IN THE T,5S=0,1 STATE

Nuclear forces are not yet quantitatively understood from

(Ms=*1[odq{r)|Ms=£1)=v§ (1) +2vg (1) Po(cosh).
(2.4)

stat

QCD. However, many realistic models have been conTheMs=0 expectation value af,; has the largest variation
structed by fitting the available two-nucleon scattering dataWith ¢ as illustrated in Fig. 1. The static potential has a

The shape of the short-range structures inTt®=0,1 state

repulsive core; outside the core it is very attractive fer

appears to be relatively model independent. The interactioff/2 and repulsive fop=0 andw. Therefore, in this state the
vos in the T,S=0,1 state in Reid, Urbana, and Argonne NP pairs form a toroidal density distribution in tixg/ plane.

models can be expressed as

vo1= 0§11 +vh (NS +vgy(r)L-S+oudy(r)L?
+oga(r)(L-9)2, (2.

while a V2 operator is used instead bf in the Paris poten-

The potential in thevlg==* 1 states is attractive fa#=0 and
7, and equal to that foM =0, 6=/2, while it is repulsive
for #==/2 and half-way between th& =0, 6=0, and
/2 potentials. Thus th#1 == 1 potential has two distinct
minima separated by a barrier, and therefore the density dis-
tributions have a dumbbell shape in this state.

At r>15 fm, thevgs is dominated by the one-pion-

tial. The structures are formed mostly by the static part of theexchange potential, while at smallerit has a significant

interaction:

v3a=v54(r) +vou(1)S; - (22
It is instructive to study the expectation values w3’ in

eigenstates of the position operatowith spin projections
Ms=0 andMg==*1. These depend upanand 6, the polar
angle ofr with respect to the spin-quantization agsand
are given by

(Ms=0[v33(r)|Mg=0)=0v§ ,(r)—4vg (r)Py(cosh),
(2.3

model dependence. Much of this model dependence is can-
celed by the differences in the momentum-dependent terms
in the models. In particular, the deuteron wave functions

calculated from these potentials have much smaller model
dependence. These are commonly written as

WNI(r)=Ro(r) Yoy 8(F) + Ra(N Yy 4(F),

(2.9
whereRy(=u/r) andR,(=w/r) are theS- and D-state ra-

dial wave functions an@)%; are the spin-angle functions.
TheRy andR, calculated from the different potential models
are shown in Fig. 2. The short-range structures are related to
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FIG. 3. The top, middle, and bottom four curves, respectively, show the deuteron density for the indicated vdlyesdf, obtained

from various potential models.

the Ry andR, functions, and therefore we expect them to be

fairly model independent.

However, the “full” Bonn potential[20] offers an excep-
tion. TheRy and R, predicted by this one-boson-exchange
model of theNN interaction are similar to other predictions

at largerr, but they have an additional sharp structure with a

range of~0.2 fm. We will not consider the possibility of
such an additional structure in this work.

Ill. THE DEUTERON

The short-range structure of the deuteron is most obvious

in its density distributiorp(';"d(r ", 8) which depends upon the
projectionM of the total deuteron angular momentum, the
distancer’ from the deuteron center of mass, and the polar
angle 6 of r’; it is independent of the azimuthal angle

pS(r'):%[cc)(zr')—2c2<2r'>Pz<cos9>], (3.3
pil(r')=%[co@r'>+cz<2r'>P2<cose>], (3.4

with
Co(r)=R3(r)+R3(r), (35
Cz(r)z\/ERo(r)Rz(r)_%Rg(r)- (3.6

The interesting structure of these density distributions is
shown in Figs. 3—6. Figure 3 showég' (r') along 6=0

Note that the interparticle distance=2r’,

and the standar

d and 0= /2 directions, noting that

normalizations,

J r2dr[R3(r)+R3(r)]=1, (3.1
0

f a3’ pa(r) =

are used in this work.
s
The pz"d(r’) is given by 161’2"”(2r’)\1f3/'d(2r’), where

(3.2

0 =mwl2)=p3(r',0=0). (3.7
The above densities are the largest whif¢r’, 6 =0) is the
smallest as expected from the propertieSz;éfE‘Lt discussed
in Sec. Il. The small value of the ratio
pd(r’,6=0)/p3(r’,6=m/2) indicates that the deuteron has
near maximal tensor correlation at distance<1 fm or
equivalently ar <2 fm. This ratio is~0 for maximal tensor
correlations.

Figures 4 and 5 show the density distributions predicted

py(r’,

the factor 16 comes from the difference in normalizationsby the Argonnev ;g model in thex’z’ plane. The maximum

(3.1 and(3.2). A simple calculation using Eq2.5) yields

value of pq is fairly model independentFig. 3) and large
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two equidensitypy ! surfaces[Fig. 6(C)], consisting of an
inner surface due to the repulsive core enclosed by an outer.
At very smallpy (<0.05 fm~3) the equidensity surfaces of
pg also have disconnected inner and outer parts, neither close
to spherical in shape.
The toroidal shape of thi1 ;=0 equidensity surfaces is
more compact and persists down to smaligr or equiva-
lently to larger values of ', as can be seen from Figs. 3—6.
2 In the classical Skyrmion field theory only this shape is ob-
tained for the distribution of baryon density in the ground
¢ state for two baryongl5]. The deuteron can be considered to
Z’ (fm) be more deformed in th® =0 state. For example, the ex-
pectation values of the quadrupole operat@¥(r’)
572 =2r'2P,(cosf) obey the relation
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FIG. 4. The deuteron densipyﬁ(x’,z’) obtained from the Ar- 0,., o3y 1, 43
gonneuv ;5 model. The peaks are locatedzit=0 andx’ =*d/2. pd(r)Q(r)d "= =21 pg=(r")Q(r")dr’. 39

(~0.35 fm~3). The maxima ofpg (Fig. 4) form a ring with . It is rather simploe to obtain theaj%(r’) from the
a diameter of-1 fm, denoted by, in thex'y’ plane, while ~ Pd(r’). We rotate the(r’) about they” axis by an angle of

the pjl has two equal maxima on thg axis (Fig. 5 at /2 so that the toroidal ring is ig’z’ plane withx’ as the
7' =+d/2. symmetry axis. This places the deuteron in the superposition

of My==*1 states. Thdl;==* 1 states are obtained by spin-
ning the rotated toroid about the axis, and thepy Yrryis
just the average value of the density of the spinning toroid,

The three-dimensional distributior;s(';"d(r’) can be ob-
tained by rotating the distributions shown in Figs. 4 and 5.
about thez’' axis. They are represented by eqwdensny surI o
faces shown in Fig. 6 fopg=0.24 and 0.08 fm?3; all four o
sections are drawn to the same scale. The maX|mum value of
p3(6=0) is ~0.05 fm~2 (Fig. 3. Therefore the equidensity p;(r’ 0)——J pd[r’,cos X(sindcosp)]de. (3.9
surfaces forpd having p4>0.05 fm~3 cannot intersect the
z' axis, and thus have toroidal shapes shown in FigB) 6 , i )
and D). The central hole in these tori is due to the repulsive! "€L=1, M==1states of the harmonic oscillator, given by
core inv3g, and their angular confinement is due to the $(r)=€" VrZ(X+IY) are obtained in the same way from the
tensor force. In absence of the tensor forBg(r)=0, the  ¢(r)=e " z, L=1, M=0 state. Therefore it is tempting to
p3=p§l, and the equidensity surfaces are concentric
spheres.

The maximum value of)dﬂ(e =1/2) is ~0.19 fm™* as
can be seen from Fig. 3 Therefore the equidensity surfaces
of pg ! for pg=0.19 fm~2 cannot cross th&@=m/2 plane;
they have two disconnected parts forming a dumbbell as
shown in Fig. 6A). At smaller values opy we also obtain

-3

—
®?
£ 1’”” My INM \\
ity I‘N
“— nmm ',’,’,",lu,' :,' ‘
o°
Q

mo
"'n' i

/i g, il
2 ﬂ’mnm, u,
it

-2

FIG. 6. The surfaces havingy Yr')=0.24 fm=% (A) and
2’ (fm) 57 -2 p3(r')=0.24 fm~3 (B). The surfaces are symmetric abattaxis
and have '<0.74 fm, i.e., the length of the dumbbell alongaxis
as well as the diameter of the outer surface of the torus is 1.48 fm.
FIG. 5. The deuteron densipy; *(x’,z') obtained from the Ar-  (C) and (D) are forpZ"d(r’)zo.OS fm~3; the maximum value of
gonneuv g model. The peaks are locatedxdt=0 andz’'==*d/2. r’is 1.2 fm.
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consider the toroidal shape pf} as the basic shape of the the size of the toroidal structure in the deuteron. heal-
deuteron. The expectation value of the current operator iges of these extrema may be shifted-b$0% by corrections

zero in theM 4=0 state, therefore one may regard that as théo the impulse approximation used in the following peda-
“static” state of the deuteron. Note that the toroidal shapesgogical analysis.

cannot be obtained by rotating the dumbbell B§2 about The charge form factors, defined as

the y’ axis and spinning it about the’ axis. This gives

p3(6 =0r")=ps*(6 =m/2,r') which is not true. The = (q)ZEI pMa(rr)glaz g3 (3.10
dumbbell- or cigar-shaped density distribution of the deu- Mg 2) "d ' '

teron in theMy==*1 state has been studied earli&éB,14]. . .
Unfortunately the toroidal distribution of th#l,=0 state are shown in Fig. 7. At largq the F¢ 1(q) gets most of its

HOW -19) ge "
was not studied, and its similarity with the predictions of contribution from the two peaks qfy(r’) (Fig. 9 at z'=

Skyrmion field theory was not noticed. +d/2. The Fourier transform of the sum of twbfunctions
The deuteron electromagnetic structure functidx(g) at z =*d/2 is given by cogfd2) with zeros atqd

electron-deuteron scattering have been extensively studiggPntribution from the two peaks, and they persist even when
experimentally{21-30 and theoreticallf31-34. They are thze peaks have a finite width. The fII’Sl'[ two minima of
usually calculated from th&- andD-wave functionsR, and ~ Fc.a(d), obtained from the Argonne;s p4(r’), occur at
R, obtained from realistic interactions, by including in the 9:=3.6 andq,=12.6 fm™*. The effective valued; esti-
nuclear electromagnetic current, in addition to the dominantnated from the minima; , usingd; =(2i —1)=/q;, are 0.87
impulse approximation(lA) operators, relativistic correc- and 0.75 fm fori=1,2. These values are smaller than the
tions, and two-body meson-exchange contributifts33.  diameterd=1 fm because the dumbbell endsg. 6a)] are
More recently, calculations of these observables based omot spherical. Nevertheless the minimakg , seem to be
guasipotential reductions of the Bethe-Salpeter equation arprimarily determined by the diametel of the maximum-
one-boson-exchange interaction models, constrained to fitensity torus.

nucleon-nucleon data, have also been carried[82{34]. The Fourier transforms of a disc of thicknesswith g
The theoretical predictions for the structure functions baseg@erpendicular to the disc, are proportional to
on both the nonrelativistic and relativistic approaches are irsin(Qt/2)/(qt/2) irrespective of the shape of the disc. These
good agreement with data. Our interest here is not to imhave zeros afit=21,41r, . .., which may be used to obtain
prove upon the present theoretical predictions, but to relatéhe thickness. The first two zeros oF ¢ o(q) atq=9.2 and
the values of the minima and maximaBfy(q) andB(q) to  19.5 fm~ ! (Fig. 7) give values 0.68 and 0.64 fm for the

~-10

10

-12

10

o""5""1|0""15“"20
q (1/fm)

FIG. 7. The square of the calculated deuteron charge form factors.
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FIG. 8. The values of deuteradi,(q) obtained from Eq(3.11) are shown by a full line, whereas the dashed line giugéq) including
magnetic contributions for a 15° electron scattering angle.
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FIG. 9. The square of the deuteron magnetic form factor calculated(fuitHine) and without(dashed linga convection current term.
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effective thickness of the torus. The maximum thickness
along thez axis of the calculated equidensity surface at half-
maximum density is 0.88 fm.

The T,¢(q) form factor of the deuteron has small mag- I
netic contributions which depend upon the electron scatter- £ ‘.~‘"'~‘§~‘§‘\§3\\

N
IR
R “\\\‘\\\

0.15
~ 0.10
?

0
2R

. . o = gy N
ing angled. The extrema of 5o are not significantly affected = 0.05 ‘of«

by this magnetic contribution as can be seen from Fig. 8, and

ignoring it we obtain a rather simple equation: 0
2
F&o(a)—F2(q)
T ~—2—== ; . 3.1
= s e 2

0
Its minima occur WherFél(q)=O, while the maxima have X (fm) %
Féo(q)=0. These minima and maxima correspond to those 2
values ofg at which the recoiling deuteron has ori;=0

i . ; g . ]
or My==1, respectively. The first minimum dfy is ex FIG. 10. The transition density,,(x'z’) for elastic magnetic

. — _1 . _
perlmentally known to occur 51_ 3.5£0.5 fm . n agre.e scattering by deuterons. The peaks are locatedd a0 andx'=
ment with the valuel~ 1 fm predicted by realistic potentials. g 5 .

The first maximum ofT,y has not yet been experimentally
located; it provides a measure of the thickness 1 - _

Ir_1 magnetic_: ela_stic scattering the dguteron spin projection Zg(k) = 4—[C0(k) —2C,(K)Py(cosh)], (3.16
My in the g direction changes by 1 since the photon has 7"
M,==*1. Thus the magnetic form factéi,(q) is a transi- 1
tion form factor. It has convection current and spin-flip terms ~+lN_ & S
[31,33 of which the latter is dominant. ThE,,(q) calcu- pa (K)= 7 [Co(K)+Co(K)P(cost)], (3.7
lated with and without the convection current term are not _ o
too different (Fig. 9). The spin-flip part ofF(q) can be Wwhere 6, is the angle betweek and thez axis, and the
obtained from the transition densipy(r'): CL(k) are defined as in Eq€3.5—(3.6) with R, (r) replaced

by R_ (k). Note that thépy are normalized such that

FH(Q) = (tp+ ptn) f ¢ py(r') &', (312 f d°kp (k) =1 (3.18
Py =4 )

2 1 1 _ —_
pu(r’)= —[ R3(2r')— §R§(2r’)— Sl V2Ry(2r")Ry(2r") The momentum distributionp (k, 6,) and p4-(k, 6)
™ for 6,=0 and /2 are shown in Fig. 11. Note that

+ R§(2r’)]Pz(cos€)]- .13 Sk, 0 =7/2)=p4 (K, 6, =0). (3.19

The zeros ofp, *(k, 6, =0) and pJ(k,6, =0) occur at
k=1.5 fm~! and 5.2 fm !, respectively, and are related to
the spatial dimensions of the torus. In naive estimates these
. . . Y ~ minima occur atr/2d and#/t, respectively. Thus measuring
ir:l]mltrr?slzjr'c?lgyr:ehgisz(;)l Ssct)itr)nsaetre\/:ct[;f%] atq~7fm~, support the positions of the zeros in these momentum distributions
gThe deuteron wave function in mMomentum Space is de\_/vould provide an independent estimate of the spatial dimen-
fined as P sions of the toroidal structure in the deuteron. This informa-
' tion would be complementary to that yielded by elastic form
1 factors measurements.
{quz"d(k):ﬂf d3r e*ik~r\1;'c\j/|d(r) The momentum distributionngd(k,ak) could in prin-
(2) ciple be measured bye(e’p) scattering on polarized deuter-
_ Ro(k)yohﬁ(k)Jr Rz(k)ygﬂl“(k). (3.14 ons. In the one-.pho'Fon-exchange approxmahon the
d(e,e’p)n cross section, in the laboratory frame, is generally
expressed as

This transition density is shown in Fig. 10; it is dominated by
the toroidalpd(r'), and its effective thickness alom axis,
obtained from the zeros &, (q) (Fig. 9), is ~0.85 fm. The

with
dgMd 1
~ > —_—= e + +
RL(k)=i'-\/2/7-rJ drr2j (kr)R.(r). (3.19 dE,dQ.dQ, IMottPpEpRrec(VLRLt v TRyt tRLT
0
+vrRy7), (3.20
The momentum distributions Ede(k), given by
NMS JpMd i H EpEn Eppn,\ ~
W, (k)W d(k), are then easily obtained as RreF? 1- E.p Pp* Pnl» (3.21
nPp
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where My is the target spin projectiorg, and Q) are the  Using, for example, tensor polarized deuterium, it should be
energy and solid angle of the final electron, dig is the  possible to measure the difference betweféé’(pm)
solid angle of the ejected proton. The coefficients are and'ﬁdﬂ(pm), and therefore empirically determine the posi-
defined in terms of the electron variables, while the structuréions of the minima in these momentum distributions.

functionsR, involve matrix elements Clearly, such an analysis is justified if the PWIA is valid.
_ This assumption has been tested by carrying out the full and
(n+pipapp MaMplOLr(@)[d.Mg), (322 pwA calculations of thedSoMa/dE.dQ.dQ, in parallel

kinematics withq fixed at 500 MeV¢, w in the range 290—
390 MeV, and the electron scattering anglg=10°. The
results, shown in Fig. 12, indicate that, while final-state in-
teraction(FSI), two-body current, and relativistic corrections
are not entirely negligible, at least in the kinematical region
which has been studied here, their effect is small compared
to the difference between the cross sectionsMgr=0 and

of the charge ©,) and current O;) operators between the
initial deuteron and finah+ p states. The neutron momen-
tum isp,=q—p,, g is the momentum transfep,,=-p, is
the missing momentum, ard, andM, are the proton and
neutron spin projections, respectivgéB3]. The cross section
for unpolarized deuterons,

ds 1 > d5gMa +1. We therefore conclude that the results of such an ex-
TeranTA0 - 2 — i (3823 periment could be used to empirically study the diameter and
! ! 3 < ! ! ’ I ] - -
Ecdfedf,  3m =01 dEd(edld, thickness of the torus. One might argue that this information
has been measured uppg~500 MeVk, and there is good could be more easily obtained from elastic form factors mea-
agreement between theory and experini&sj. surements, as discussed above. However, it should be real-
In plane-wave impulse approximatidPWIA), obtained ized that, in contrast to thel(e,e’)d data, the double-
by neglecting interaction effects in the finak p states as coincidence data would allow us to ascertain to what extent
well as relativistic corrections and two-body terms in thethis toroidal structure is due to nucleonic degrees of freedom.
charge and current operators, tfig-dependent cross section

is proportional to IV. THE TWO-NUCLEON DENSITY DISTRIBUTIONS
IN NUCLEI
5 Mgy
,d UI ochMd(pm)_ (3.29 The two-nucleon density distributions 1K, S, M, Mg
dEcdQcdQ, two-nucleon states are defined as
10’
107
107°
E
&
107°
107
10-9-\‘..I..-.I..“i‘...L--.‘I\‘/‘.<
0 1 2 3 4 5 6
k (fm™)

FIG. 11. The deuteron momentum distribution for selected values dfithand 6, .
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FIG. 12. The calculated values dfe,e’p)n cross section for the kinematics described in the text. Hollow and full symbols indicate
results of complete calculations without and with meson-exchange currents.
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MT,MS(r) 1 2L+1
T.S Ms __ - == M t
L Arsi0= 3351 an % de\P "(R)
= > <\1fMJ > Py(r,T,SMy,Mg)| ¥ J> 1
2J+1MJ:_ 1<] XE —25(r—rij)PL(Fij~2)
(4.1) =11
XPii(T,SMg)¥Vi(R), (4.6

Here |¥M3) denotes the ground state of the nucleus with

total angular momentumJ and projection M;, and WwhereR represents the coordinates, ... r,. Because of
Pij(r,T,SM1,Mg) projects out the specific two-nucleon the average over the total spin of the nucleus,/ﬂﬁgL are
state withr;—r;=r. For N=Z nuclei, the wave functions zero forL>2, and

used in this study are symmetric under exchange of neutrons .

and protons; hencp#"’g’MS(r) is independent oM. For Aﬁg;i,L:fA?g;;ﬁ:o, (4.7

He, we have

Mg=0 Me==1
ATE: 1L=2"" 2AT,§: 1L=2 (4.8

“IMs_g  FlMs_ 2po,MS 4.2

P1s P1s "T4P1s Mg

For the deuteron, thé 7

M : _
while for larger N#2Z nuclei, theM; dependence is non- (3.3—(3.6) by AO,fK?:Co/48,Aé,1,2— C,/48.
trivial. In the following we discus3>¥§, the average over The shapes gb, (r, #) are very similar at< 2 fm in all
M of pgﬂng_ Thep¥'§ is normalized such that the nuclei considered. In order to study the evolution of
, , MS . A MS .
Po1 with A we divided thepoyl(r,a)A by the ratioR,q4 de-
fined as

are related to theC, of Eqgs.

1
> @T+1) [ pfYndr=ZAA-1), (43
5, T o= Max(pi (1, 0)0)

AT Max(po1(r,0)q)

(4.9
which is the number of pairs in the nucleus. It is a function
of r and ¢ independent of the azimuthal angfe _ The densities so normalized are compared in Fig. 13, and
It can be verified from Eq93.3—(3.6) and (4.1 that in 1o values of Rag are listed in Table I. Figure 13
the deuteron shows pgyl(r,0=0)A/RAd, pgj(r,az m/2)pIRaq, and
11 po(r,0=mI2)pIRaq for 2H, *He, and 0. Note that
po(r) = 3 prgﬂ(r '=1/2). 4.4  poar, o=ml2) = pa,i(r ,0=0) by virtue of Eqs(4.4), (4.6),
and(4.7) in all nuclei. After normalization byR,4, the vari-
_ _ ous densities for’He lie between those ofH and “He,
Note that the spin-dependent two-body density on the lefivhile those for®Li are in between théHe and*®O results.
(Ms=M) is an average over projectiods; in the deuteron, |t is obvious from Fig. 13 that the equidensity surfaces of the
while the polarized —one-body ~ density osn. tr;e right two-body densitypo'v"lS are very similar to those of the deu-
(Mg=M) has been summed over spins. T;h':és in **He,  teron density shown in Figs. 3—61at 2 fm (r'< 1 fm). At
®ILi, and *°O have been calculated from variational waver < 2 fm the ratiop? (r,#=0)/pQ(r, 6= m/2) is very small,
functions using Monte Carlo techniques. For &7 nu- indicating that the tensor correlations have near maximal
clei, these wave functions minimize the expectation value Ofstrength in all the nuclei considered. O thepMS becomes
a Hamiltonian consisting of the Argonnegg two-nucleon . : - 01
approximately independent & g only for r=3 fm.

s s e o el o o BN e Leviger Suggesied i 1958t at sl
y P distances the relativé,S = 0,1 neutron-proton wave func-

detailed description of the form of the wave functions Stion in a nucleus is likely to be similar to that in the deuteron.

i i i 16,
given n Refs.[9,1()]. The wave function for .O was qb- We find that this is a good approximation. The expectation
tained from the variationally best wave function by slightly value of any short-ranged two-body operator that is large

increasing the radius of the smgle-part_|cle part of the yvave?nIy in the T,S=0,1 state scales @®,4. In Table | we list
function so as to reproduce the experimental rms radius o
180. The details of thé®®0 wave function will be published

X . X TABLE I. The calculated values d®,4 and other ratios.
elsewhere[12]. A cluster-expansion including up to four-

body clusters with Monte Carlo integratiohl] was used to  Nycleus Rny (v.)a o A PRI NA,
compute the two-body densities 0. W Ui' O_ay ’ ’
To reduce statistical fluctuations in the calculation, we i ab,d ab.d P v,
write
*He 20 21 2.40) ~2 15 1.49
“He 47 51 4.%) ~4 3 2.99
M M :
pra(n= 2> AL'S ()P (cos), (45 L 63 6.3 55 546
L=02 L 72 7.8 6.55) 6.75 6.73
%0 188 22 10 16(3) 30 30.1

and directly compute tha(r) as
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values of the ratios of the calculated expectation values of The p¥=°(r,6==/2) has its half-maximum value at
the one-pion exchange part of the Argonng potential, the r~1.8 fm (Fig. 13. If we identify the region witlr <1.8 fm
observed low-energy118 MeV for *He [37] and “He[38],  as the “quasideuteron,” then the probability that thg pair
and 115 MeV for®0 [39]) pion absorption cross sections in a deuteron is in the guasideuteron regior-8.25, and the
and the average value of the observed photon absorptiotumber of quasideuterons in a nucleus~iR,4/4. In the
cross sections in the range, = 80-120 MeV. All these past, howeverR, itself has been interpreted as the number
processes are dominated by fgs=0,1 pairs, and seem to of quasideuterons in the nucleus.

scale aRpq.

While comparing these ratios in detail it should be real-
ized that(v ) in nuclei has a relatively small contribution
from T,S+0,1 states, absent in the deuteron, which makes The strong spin-dependent anisotropies of the two-
(v al{v g slightly larger tharR,y. The(v,)qg = —21.3  nucleon densities suggest that three-nucleon and higher dis-
MeV for the Argonnev ;5 model, and it accounts for most of tribution functions in nuclei could also be anisotropic. A
the deuteron potential energfy)y = —22.1 MeV. Also in  general study of these higher distributions is beyond the
larger nuclei, the{v ), gives a large fraction of the total scope of this work; however the two-cluster distribution
two-body interaction energhl1]. Direct comparison of the functionsdp in 3He,dd in “He, andad in °Li are simple to
ratio of pion absorption cross sections witay may not be  study with the Monte Carlo methdd5]. They provide some
strictly valid. The scattering and absorption of pions by specinformation on the higher distribution functions, and may be
tator nucleons, absent in the deuteron, is expected to red”?@latively accessible bye(e’d) and (e,erﬁ) experiments.

the ratioo 3, a/ o3, 4 » While three-body and higher-order ab-  The two-cluster overlap function can be written generally
sorption mechanisms, also absent in the deuteron, will inyg

crease it. After correcting for final-state interactions of the

two outgoing protons, the two-bodyr(",pp) part is esti- A (Mo Mo M- o) =(ATMagMb My
mated to account for-76% of the total absorption cross an(Ma,Mp, My, Fap) = (AW W, 0, rap¥759)
section for 115 MeVir* by %0 [39]. In 2He about 20% of

V. TWO-CLUSTER DISTRIBUTION FUNCTIONS

the 118 MeV =+ absorption cross section has three-body = > (LM SM¢IM,)
characte37], however a part of this 20% must be due to LMLSMs
initial- and final-state interactions. X (JIaM 2JpM | SMg)
Results of Mainz experimen{l0] on ‘Li and %O are A
used to calculate the average value «gf, in the energy XRL(Tap)Yim (Tap),  (5.1)

interval E,=80-120 MeV. Theo}, 4 averaged over the
same energy interval is 0.072 mb[41]. The only available Wherer,y, is the relative coordinate between the centers of
data for 3He in this energy range are from the experimentsmass of the two clusters and is an antisymmetrization
done in the 1960$42] and 1970943]. The average cross operator for the two-cluster state. TRg(r,,) radial func-
section of the two-body photodisintegration difle, in the tions can be evaluated from
energy range 80—120 MeV, is0.03 mb[43], and that for
the three-body process is0.10 mb[42], giving total cross
section of ~0.13 mb. The average cross section for totalRL(rab):,\,I >
absorption of photons byHe in the same energy range is
crudely estimated from Fig. 1 if44] to be ~0.3 mb.

The total number of pairs with giveR,S in nuclei can be
computed as

(JaMaJsMp|SMs)(LM SMg|IM;)

aMpM Mg
% [ dRLAW R YR 1 Vi ()

5(r_rab)
X——

ab

TMYR), (5.2

Npg=> (2T+ 1)277J r2dr d cosfpy Y(r,0)a . o
Ms whereR,, represents the coordinates of particles in cluster
a(b). We note that in the PWIA thee(e’a)b cross section
=(2T+1)(25+ 1)47rf redr A%S’O(r), (4.10 is  proportional to the momentum  distribution
|A6(Ma,Mp,Mj,k)|? obtained from the Fourier transform
of the overlap functiorA,p(M,,M,,M3,r4p).
the values forT,S=0,1 and the corresponding naive In the present work, the integrations have been made with
independent-particle model values are also shown in Table Monte Carlo techniques akin to Rd#5], but with some
We see that the correlations induced by the potentials do natprovements. Configurations are sampled with the weight
significantly change thelg\vlfrom their independent-particle function |\If'uv'3|2 containing the full variational wave func-
(IP) values; however, as will be discussed later, this is notion. In Ref.[45] only a single term in the antisymmetric
true forT=1 pairs. For few-body nucleRyq is significantly  product in Eq.(5.2) is calculated. The efficiency of the
larger thanNg ;, however, in'®0 Ng; has a large contribu- Monte Carlo sampling has been improved by evaluating all
tion from pairs with larger and Rpq4 is smaller tharNQJ. possible partitions of the nucleus into clustersand b at
The calculated value oR,4 for %0 is much smaller than each configuratiofR. We also use a much larger sample of
Levinger's estimatdr,q~8NZ/A [36]. configurations than in the previous calculations.



658 J. L. FORESTet al. 54

We can define a two-cluster wave function, in analogyHere h, is the spherical Hankel function of first kind and
with the deuteron wave function of E.5), using the radial  «,, is the wave number associated with the separation en-
overlap functions ergy of the nucleus into clustessandb. We must point out

that the present variational method, as well as the GFMC

M M method, determine the wave functions by energy minimiza-
‘I’abj(fab):LZS RL(rap) Y sxTab) tion, to which long-range configurations contribute very

little. Therefore these methods are not very sensitive to the
3 My My asymptotic part of the wave fl_mctions, and cons_equently our
Y M, Aan(Ma,Mp,My,rap) x"ax e, (53 values forn,, should be considered only as estimates.
@ The two-cluster density distribution for a given set of spin

. rojections is defined as
where yMa and yMv denote spin state3,M, and J,M,, of projections 1 !

a andb. For the caseab = dp, dd, andad there are both Ma.Mp,
S- and D-wave states in the two-cluster wave function. In Pab
these cases the well-knovw, parameter can be defined by
means of theRy(r) andRy(r) radial functiong46]:

"1 ap)=[Awp(Ma, My, My T2 (5.6

In each of the cases studied here, it exhibits spin-dependent
spatial anisotropies which are easily understood in terms of
4 the toroidal or dumbbell structure of the polarized deuteron.
Dab_ JRa(rap)randrap (5.4 The density is enhanced in the direction corresponding to the
2 15f Ro(rab)ribdrab' ' most efficient or compact placement of the deuteron with the
remaining cluster, and reduced in those directions that would
Although in the present paper we emphasize the short-randgad to very extended structures. o
structure of nuclei, it is also interesting to study the asymp- Finally, we are also interested in the tptal'normahzatlons
totic behavior of the overlap radial functions. Of particular NL of the S- andD-wave two-cluster distributions:
interest is the asymptotiD/S ratio 7,,=C3%C3°, where
Co and C, are the asymptotic normalization constants of Nsz fxrgbdrabRE(rab)- (5.7)
Ro(r) andRy(r), respectively:

RL(fap)= lim —iLCfth(iaabrab)- (5.5 T_hese guantities can be related to spectroscopic factors and
ab—o give the totalS- and D-state fractions. All the results pre-

08 ———————.——

0.6

0.4

0.2

RL (fm—3/2)

g (fM)

FIG. 14. Ry(r 4p) andRy(rgp) for 3He. The points show results of Monte Carlo calculations in configuration space, and the curves are
smooth fits. The asymptoti, given by Eq.(5.5 are shown by dashed lines.
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FIG. 15. Density distribution ofdp clusters in *He with FIG. 16. Density distribution ofdp clusters in 3He with

M,=1/2, Mq=0, andM,=1/2. The peaks are located &,=0  \; _1/5 \ =1, andM,=—1/2. The peaks are located z,=0
andzg,~=*1 fm. andxgp~=*1 fm.

sented here are obtained from the Argomngtwo-nucleon parallel kinematics is predicted farparallel toz. The mini-
and Urbana model IX three-nucleon interactions. mum for the momentum distribution along threaxis for
My=+1/2 occurs at ~1.4 fm~1, while that for
My=—-1/2 is at ~2.4 fm~1. Thus the spin asymmetry,
o (ny—ny)/(n;+n)), of the protons ejected from polarized
The calculatedRo(r4p) andRy(rqp) are shownin Fig. 14, 3ye changes from- —1 to +1 as the missing momentum
the Ry(rqp) is negative and smaller in magnitude than theyaries from~1.4 to 2.4 fm ! in parallel kinematics and
R, in deuteron(Fig. 2). The D5® value obtained with these pw/|A. The dp momentum distribution in unpolarizetHe
radial functions is—0.15+0.01 fm?, a little smaller than has been studied at Saclp8] up to ~2.5 fm~ 1. The ob-
experimental estimates, ranging from-0.20£0.04 to  served distribution is generally smaller than the PWIA pre-
—0.25-0.04, obtained through DWBA analysis of diction [35] indicating attenuation due to FSI. However, a
(d, *He) transfer reactionf46]. In Fig. 14 we also show our part of the FSI attenuation will cancel in the asymmetry, and
asymptotic fit to theS and D waves. The result is moreover, it is now possible to perform continuum Faddeev
ngp=—0.035, somewhat smaller than the Faddeev resulgalculationg49] including FSI.
[47], —0.043+0.001. Experimental estimates, also obtained

A. dp distribution in 3He

through DWBA analysis ofd, *He) transfer reactions, range B. dd distribution in “He
from —0.042+0.007 to— 0.035+0.006[46]. o
The total normalizations and$P=1.31 andN3P=0.022. The calculatedRo(r 4q) andR,(r4q) are shown in Fig. 18.

Their sum, 1.33, can be interpreted as the number of deutefne D3 value obtained with these radial functions is
ons in ®He [45]. It is less than 1.49Table ), the number of —0-12+0.01 f. In Fig. 18 we also show our asymptotic
T,S=0,1 pairs, because the pairs are not always in the dedit to the S andD waves. The result isjqq= —0.091. The
teron state. It is also smaller tha®y,=2.0 inferred from integrals of these functions yieldNG’=0.98 and
short range distribution functior(&ig. 13 and Table)l This N3%=0.024. The number of deuterons present is greater than
is probably becauséHe is more compact than the deuteron. twice the sum of these quantities, 2.0, when one allows for
Thepgg/?'l/zandptljgllellzare shown in Figs. 15 and 16. the additional presence ofi+p+n configurations. The
WhenM =0, theM ,= +1/2 proton is preferentially along pgd" andpgy ° are large in*He and their anisotropies, in-
thez axis; in contrast, wheMy=1, theM,= — 1/2 proton is duced by the tensor interaction and the shapes of deuterons,
more likely to be in thexy plane. In the first density distri- are shown in Fig. 19. Thel9Cis largest wherm 4 is along
bution the S- and D-wave amplitudes interfere construc- the z axis, i.e., when the deuterons are in the toroidal shape
tively, to enhance the probability of finding the proton alongand have a common axis. It is smallest whgpis transverse
the z axis, whereas in the latter the interference is construcftwo tori side by sidgand equal to that fo;.a(l,'d’l'o with 144
tive on the transversay plane. Consequentlir, and R, parallel toz (two dumbbells in a ling The latter distribution

have opposite signs ar[mgp and 54, are both negative. The is of intermediate strength wheg is transversétwo dumb-

spin-dependentip anisotropies are favored by both tensor Pells side by side Again in the first(second density distri-

and central forces, and lead to more compact three—bod?Ution theS- andD-wave amplitudes interfere constructively
destructively along thez axis. ThereforeR, and R, have

states.

The momentum distribution ofdp clusters in M,  Opposite signs an®3" and 744 are both negative.
=1/2 3He is shown in Fig. 17 foMg, M,=0,1/2 and The momentum distributions are also anisotrofitg.
1, — 1/2 for momenta parallel and transverse to#texis. In ~ 20). In particular thép 5> Yk2) has a dip ak~1.7 fm~* that

PWIA the 3He(e,e’p)d cross section is directly related to iS absentin th@qq (k2. It may be possible to study these

these momentum distributions. A large spin dependence ofith (e,e’d) reactions. The unpolarizetHe(e,e’d)d reac-
the missing-momentum distribution for protons ejected intion has been studied at NIKHE[B0]. The observed cross
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FIG. 17. Momentum distribution cciﬁ clusters in®He in M ;=1/2 state for momenta parallel and transverse tozthgis.

sections are much smaller than estimates usingdtheno-  consequence of the toroidal shape of the deuteron in the

mentum distribution and either PWIA or DWIA. M4=0 state.
C. ad distribution in °Li VI. OTHER T,S CHANNELS
The calculatedRy(r ,q) andRy(r ,q) are shown in Fig. 21. In this section we discuss the properties in nuclei of pairs

The Ry(r,qg) and Ry(r,q) both exhibit nodes at short dis- of nucleons withT,S=0,0, 1,0, and 1,1. Like th&,S=0,1
tances and have opposite signs almost everywhere. Thihannel discussed in the previous sections, The=1,1
nodal structure has been predicteddan-d and a+p+n channel also has a tensor potential, but it has the opposite
cluster models, but not always with the correct relative sigrsign of that forT,S=0,1. Therefore the role oflg is re-

[51]. The asymptotic behavior is correlated with the quadruversed compared to that ii=0 states;Mg=0 pairs have
pole moment Q; obtaining the experimental value of maximum density along the axis, while Mg=+1 pairs
—0.08 fm? has been a long-standing problemdn+p+n  have maximum density in they plane as can be seen in Fig.
c[uster Lnodels. The v2ar|.at|onal wave fun.ctlon used here3s which ShOW&’Tf(r:@)/Rﬁlfor 4He, SLi, and 0. The
givesQ=—0.8+0.2 fm%, i.e., the correct sign but far too . es forMs=+1, 9= /2 are between the two sets of
large in magnitude. Small changes in the long-range part of ryes shown in the figure; to reduce clutter they are not

6 . .
the °Li wave function have effects of order 1 fimon the  shown. The curves fofHe and®Li have been renormalized
guadrupole moment. Thus the values of the asymptotic propﬁy the factorsR’;l to have the same peak height as for

. ad__ 2 [ I
erties, D;7=—0.29 fm” and 7,4=—0.07+0.02, obtained 18, thege factors are shown in Table Il. We see that the
with this wave function may not be very accurate. The total

= o g i shapes of thd,S=1,1 density profiles are quite different in

normalizations arély”=0.82 andN3"=0.021. The resulting he gifferent nuclei and that the anisotropy decreases as the
spectroscopic factor, 0.84, is in good agreement with th,umper of nucleons increases.
value of 0.85 obtained in radiative capture experim¢hgs. The analog of the deuteron in theS= 1,0 channel is the

The two-cluster densitiep’y @ (r), multiplied by r?, 15, virtual bound statéVBS). For the Argonne ;5 poten-
are shown in Fig. 22. They have two peaks; the smaller innefial, this is a pole on the second energy sheet at
peak atr ~0.9 fm is almost spherically symmetric, while the E=—0.098 MeV ork=—0.049 fm ~. Although the wave
larger peak atr~4 fm is anisotropic. In particular function is not normalizable, it has a local peak which we
p2%99rz) is much larger thap®$qrx) for r>2 fm. In the  scale to compare to the unpolarized deuteron in Fig. 24. We
former configuration the is along the axis of the torus, see that it peaks at a slightly larger radius and is broader. The
while in the latter it is transverse. This anisotropy is also &figure also shows th;agyo(r)/R’l*’O of “He, 5Li, and °0; the
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FIG. 20. Momentum distribution afid clusters in*He in parallel ¢=0) and transversef==/2) directions.
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FIG. 22. Density distribution okd clusters in®Li in parallel (#=0) and transversed=/2) directions.
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curve for *He is between those dfHe and ®Li, while the TABLE II. The calculated values oRf 5 and N% ¢ in various
curve for ’Li is very close to that of’Li. Again the curves nuclei.
have been normalized to the peak height of tf@ density. " A " A " A
We see that the short-range shapes offigin nuclei are ~ Nucleus Ry, N1o Roo  Noo  Riy N1
well reproduced by the VBS density. Finally, Fig. 25 shows L § L P W,
tlrgse densities for thd,S=0,0 channel, again normalized to 3, 0087 15 135 00016 O 0.01 0012 O 0.14
O. As is the case fof,S=1,1, there is no common shape. ., 022 3 25 00085 O 0.0l 0060 O 0.47
Table Il also shows the number of paINTS, in _these 6L 024 45 40 0061 05 052 0104 45 4.96
T,S channels and the corresponding IP values. As is the casg; 037 675 6.1 0118 075 0.77 018 6.75 7.41
for T,S=0,1 (Table ), the number of pairs increases more 160 1 30, 285 1 6 6.05 1 54 555
rapidly with A than doesRT s, because of the increasing
proportion of pairs with Iarge separation.
Using the projection operators {l7-7)/4 and

(3+ 7+ 7)/4 for T=0 and 1 pairs we find that the total num- SAzz 50, (6.3
ber of T=0 and 1 pairs in a nucleus depends only on its '
mass numbeA and isospiriT,: were to be a good quantum number we would have similar
relations,
A 2
Nog+Noa= s[A FAAATATA+ D) (6 NA o+ N2 o= 8[A2+2A 4S\(Sat D), (69
Nf o+ N7 = 8[3A2 BA+ATA(TA+1)]. (6.2 No1+N7.= 8[3A2 6A+4SA(Sa+1)], (6.9

for the total number of pairs with spin 0 and 1. They are
The above relations are obeyed Ib9 s obtained from either obeyed by theNy T s Calculated for the IP states which have
the IP or correlated wave functions, since, in the presenS,=1,1/2,0,1,1/2, and 0 fofH, 3He, “He, bLi, Li, and
study, both are eigenstates Df . 180, respectively. Howeve, is not a good quantum num-
If the total spin, ber; tensor correlations admix states with lar@grin the

0.08

0.02

000 o L
0 1 2 3 4

r(rm)

FIG. 24. p‘io(r)/R’iO for various nuclei. The(r) of an unpolarized deuteron, normalized to have the same maximum value, is shown for
comparison by the dotted line.
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FIG. 25. pg (r)/R5 for various nuclei.

ground state. These reduce g, and increase thaly'; by tori is large, due to which the peak one-body density in deu-
the same amount due to E@.2). In ®He (*He) the N%, is  terium exceeds 0.3 fm® in most models.
given by 1.9, (3Pp), where Py, is the fraction ofL=2, (i) The more familiar dumbbellor cigap shaped density
Sp=3/2 (Sp=2) state in the nuclear ground state. distribution of the deuteron iM == 1 states can be consid-
The interaction in thd,S= 1,0 state is much more attrac- ered as that produced by a rotating torus.
tive than that in theT,S=1,1 state. Hence the depletion of  (iii) The diameter of the maximum density torus, and the
T,S=1,0 pairs by tensor correlations reduces the bindinghickness of the half-maximum density torus are predicted to
energy of nuclei significantly. For example, ifHe the be~1.0 and 0.9 fm, respectively; these values are supported
T,S=1,0 interaction gives-14.2 MeV per pair, while the by the observed elastic electron-deuteron scattering.
T,S=1,1 interaction gives only —0.8 MeV per pair. Thus the  (iv) The pair distribution functions iff,S=0,1 states in-
conversion of 0.4 =1 pairs fromS=0 to S=1 state raises dicate that the tensor correlations have near maximal
the energy of*He by ~6.3 MeV. It should be stressed that strength in all nuclei considered here foc2 fm.
this is a “many-body” effect absent in the two-body cluster  (v) The pair distribution functions iT,S=0,1 and 1,0
approximation of either Brueckner or variational methods states in different nuclei, can be scaled to lie on universal
The tensor interaction between nucledrd] can flip their  surfaces for <2 fm. These universal surfaces are predicted
spins and convert paii& and/orjl from S=0 to S=1. by the density distributions of the deuteron and {i$g vir-
tual bound state. The scaling factBp4 for the T,S=0,1
densities provides a rigorous definition of the Levinger-
VII. CONCLUSIONS Bethe quasi-deuteron number of the nucleus. The calculated

The main conclusions of this study of nuclear structure, ayalues ofR,q are significantly different from estimates based
predicted by realistic models of nuclear forces, are the folon independent-particle models, and in qualitative agreement
lowing. with photon and pion absorption data.

(i) The static part of the two-nucleon potential in the (Vi) The many-body distribution functions are also pre-
T,S,Ms=0,1,0 state has a large angular dependence due f§cted to be anisotropic. In particular the anisotropies of the
the tensor interaction dominated by one-pion exchange. Adip, dd, and ad distributions in 3He, “He, and °Li are
r~1 fm the difference between this potentialtat= w/2 and  strongly influenced by the toroidal structure of the deuteron.
0 is ~300 MeV in most models(Fig. 1). It confines (vii) Tensor correlations convelit=1 pairs of nucleons
T,S,Ms=0,1,0 pairs to the sma#l region producing toroidal from S=0 to S=1 state. This many-body effect reduces the
distributions. The central hole in these tori is due to the rebinding energies of nuclei. It does not appear as if many-
pulsive core inNN interaction. The maximum density in the body effects reduce the magnitude of tensor correlations for
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the range of nuclei studied heré to 0. solutions are highly anisotropic. However, the nucleon
Due to the small size of this toroidal structure it may beequidensity surfaces of th&"=1% and 0" 3He and *He
worthwhile to attempt to understand it from the more basicmust be spherically symmetric, thus a direct comparison is
quark degrees of freedom. Within the constituent quarknot possible. Nevertheless the anisotrogifcanddd distri-
m0de|[53,54] It reqUIreS a SO|utI0n of the S|X'quark problem butions in 3He and 4He may have some re'ation to the

with a suitably chosen Hamiltonian. Many attempts haveparyon density distributions in the Skyrme model.
been maddsee Refs[55—57 for example to calculate the

nucleon-nucleon interaction from approximate solutions of
the six-quark Hamiltonian. A direct coupling of the pions to
the quarks is used to obtain the tensor part of the interaction. The authors wish to thank Brian Pudliner for many inter-
The toroidal structure is presumably very sensitive to thisesting discussions. A.A. wishes to thank A. M. Efos use-
coupling and to the tensor part of the quark-quark interactiorful discussions on the two-cluster overlap functions. R.B.W.
in the framework of the constituent quark model. wishes to thank Dieter Kurath for useful comments on con-
As is well known, toroidal structure for the ground state structing wave functions fo®’Li. The calculations were
of the deuteron was predicted many years Eifg17] using made possible by grants of computer time from the Math-
classical Skyrme field theorj15] related to QCD in the ematics and Computer Science Division of Argonne National
N.— limit. In the classical limit one obtains a toroidal Laboratory, the Pittsburgh Supercomputing Center, the Cor-
shape of~1 fmin size and a binding energy 6f150 MeV.  nell Theory Center and the National Energy Research Super-
From Fig. 1 it is obvious that in the classical limit realistic computer Center. The work of J.L.F, V.R.P., and A.A. was
models of nuclear forces would also give a deuteron bindingpartially supported by U.S. National Science Foundation via
energy in the 100—-200 MeV range. There have been atsrant No. Phy94-21309, that of S.C.P. and R.B.W. by the
tempts to include quantum corrections to this theory. A reU.S. Department of Energy, Nuclear Physics Division under
cent calculation 18] obtains an energy of-6.18 MeV for  Contract No. E-31-109-ENG-38, that of A.A. by Univer-
the deuteron in this model. Ground states of the classicadidade de Lisboa, Junta de InvestigacCientfica e Tecno-
Skyrme field with baryon numbers 3—6 have also been studégica under Contract No. PBIC/C/CEN/1108/92, and that of
ied [19]. The baryon equidensity surfaces of these classicaR.S. by the U.S. Department of Energy.
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