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In two previous papers, the Kerman-Klein-mmu-Frauendorf model was used to study rotational bands of
odd deformed nuclei. Here we describe backbending for odd nuclei using the same model. The backbending in
the neighboring even nuclei is described by a phenomenological two-band model, and this core is then coupled
to a large single-particle space, as in our previous work. The results obtained for energhd drahsition
rates are compared with experimental data f8t.u and for energies alone to the experimental data for
179 For the case of®3Lu comparison is also made with previous theoretical wBK556-28186)00308-1

PACS numbeps): 21.60.Ev, 21.10.Re, 27.70q

[. INTRODUCTION In the next section we will present the description of the
cores, including the phenomenological model and the results.
In two previous applicationg1,2], the Kerman-Klein- In Sec. Il the results of the energy calculations ¥\ will
Donau-FrauendorfKKDF) model was used to study rota- be presented, and in Sec. IV the results for both energies and
tional bands of selected odd deformed nuclei. In both appliM 1 transitions will be given for®Lu. There is a brief con-
cations the system was described by an effective interactiocluding section.
which includes a monopole pairing and a quadrupole-
guadrupole interaction. In the first application a large single- Il. CORE PHENOMENOLOGY
particle space coupled was to the ground-state band of the
neighboring nuclei, whereas in the second application the In this section we develop a phenomenological descrip-
same large single-particle space was coupled not only to thi#on of the backbending phenomenon for the even neighbor-
ground-state band but also to some of the excited bands @fig nuclei. It is not our purpose to build a complete and
the core. sophisticated model but to reproduce the energy levels and
As a second class of applications, we want to describéhe values of the quadrupole matrix elements as accurately as
backbending for odd nuclei using the KKDF model. As haspossible, because the results of these calculations will be
been known for more than two decades, deformed nuclgised as input to the calculations for the odd nuclei. The
commonly show a rotational anomalgnown as backbend- purpose of the model is simply to provide input data to our
ing), where the energetically favored, or yrast, collectivetheory when experimental values are not sufficiently abun-
band undergoes an abrupt increase in its moment of inertidant.
(as a function of frequency, for exampl&he generally ac- Consider two bands, the ground-state band, and an excited
cepted interpretation is that backbending of an even nucleusand that “cross” at a certain angular momentdmFrom
occurs when two neutron®r protong with high j break experimental observations we know that if such a situation
their pairing bond and rotationally align perpendicular to theoccurs, the bands repel each otl&voided crossing From
symmetry axig3]. The rotational-aligned sequence of statesthe mixture of the bands, we can conclude that the Hamil-
is called thes band. In this application, instead of following tonian of the system is in general not axially symmetric, and
a microscopic approach to backbending that incorporates thas a result, the projectiok is not a good quantum number.
physics, we have chosen to take a purely phenomenologicilVe write the Hamiltonian of such a system as
approach using a model of two coupled bands. These will
then be coupled to the extra odd particle in order to achieve H=Hgy+H,, (1)
a description of the corresponding phenomena in the neigh-
boring odd nuclei. The reason for utilizing a phenomenologi-whereH,, is the axially symmetric part of the Hamiltonian
cal description of the even cores is that this provides a morand H, is the K quantum number nonconserving Hamil-
accurate fit to the data than existing microscopic calculatonian which gives rise to the avoided crossing. The unper-
tions. turbed HamiltoniarH describes the ground-state rotational
band and one excited band. The excitations in such bands
can have the form of the simple rigid rotor, or of the variable

“Electronic address: pavlos@walet.physics.upenn.edu moment of inertia mode(VMI model) [4], or even more
TElectronic address: aklein@walet.physics.upenn.edu general formg(see below For the uncoupled systems, we
*Electronic address: mccsnrw@afs.mcc.ac.uk take the angular momenturn its projectionM, and the
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projection on the body fixed axis as good quantum num- At this point we have to specify what form the coupling
bers. Therefore, we denote the eigenstates of the unperturbedll take. The exact form of the interband interaction is not
system agIMK). Expressed in the unperturbed basis, theknown. We have chosen to perform the calculations using
Hamiltonian for a given angular momentum will take the the standard band coupling formalig®l. Since the ground
form state ha& =0, the possible cases are limited by the values of
- K chosen for the excited band. In the following we allow
#2| £,(12) 0 0 C() K=0, 1, and 2.

.
@ For K=0—K=1: C(1)=C\I(1+1). (9

2| 0 Etfyir)| |CH 0

wherel =1(1+1) andE, is the bandhead energy. The per- For K=0—K=0: C(I)=CI(I+1), (10
turbation has, for the moment, a generalependence. The
functions f;(I) which describe the angular momentum de-
pendence of the uncoupled bandi=1,2) are often repre-
sented as a polynomial ir(l +1),

Constant interaction:C(1)=C. 11

For K=0—K=2: C(I)=C(I+1)(1+2)(1-1).
(12

2
I(Izj:)l) + [ +1)] + 3 The actual angular momentum dependence of the coupling

i Iil ’ term is not decisive for the following reason: The mixture of
_ ) - | ) . two uncoupled band states with the consequent distortion of
with expansion coefficients® andZ". This conventional ex- he shapes of the energies as functions of the angular mo-
pansion has poor convergence properties at largebetter  mentym depends on the strength and the form of the cou-
expansion of energy as a function of angular momentum ig)ing term as well as on the energy difference of the unper-
given by thevariable moment of inertianodel[5] in which  ,rhed states. The bands will be close to each otinethe
the moment of inertia is a function of angular momentum, energy vsJ plot) only for a single value of angular momen-
I+1) 1 tum, and therefore the mixture will be insignificant for all
E(1,7)= ———+ = C[Z(1)— Zo]?, (4)  other values of angular momentum. As soon as the strength
2I(1) 2 of the coupling term is fitted at this angular momentum, the
. . actual functional dependence of the coupling strength be-
W'th ,tWO pgrametersp andZo. The variable moment of comes irrelevant. For the actual calculations we tried differ-
mgruaI(I) is determined through use of the variational con-o+ forms of the coupling and we state in Table | which ones
dition yield the best fit for the nucleus under study.
dE(1) At this point we have a complete phenomenological de-
— | =o. (5) scription for the backbending phenomena. If we use to the
dZ(1) |, expansion Eq(6) up to the third order, we then have eight
free parameters to fit, namely, the six coefficients for the two
This model can be shown to be equival¢6i to the two-  yncoupled bands4?, A}, 42, A9, A%, and.43, the band-
term qpproximatioq to the Harr(sranking formula[7]. The  peaq energyE,, and finally the couplingC. This is not a
latter is an expansion of the energy in powers of the “rota-gficult task, and we will describe the details and show the
tional frequency”w, given by results in the following section.
To calculate theB(E2)'s we have to express the matrix
E(0)=A%®+ Alo+ A0t -, ®  elements of the qua((jrup)ole operator as a ?unction of the ma-
0 41 . . trix elements in the uncoupled system. To be more specific
whereA’, A, etc. are parameters that are fitted to experi with the notation, states of the unperturbed Hamiltonian that

mental values. Since the concept of continuous angular fre- .
: . . elong to the ground-state band will be denoted|Iy 0
guency is not well defined for quantum mechanical system%;nd s?ates tha? belong the excited band| YK ) F|3ryth>e

the definition used is derived from the corresponding classi
cal definition. In classical mechanics we have coupled system states have good angular momenuand
its projectionM, butK is not a good quantum number any
dE(1) more. We denote states of the complete systefha4) and
o)== (7)  |IM2). After diagonalizing the Hamiltonian, we can express
the eigenstates of the full system as a linear combination of

whereE(l) is the energy at angular momentumin quan-  the unperturbed states:
tum mechanics we take a cue from this definition and choose
the discrete definition

fi(12)=

[IM1)=Xo(D)]IMO)+X1(1)]IMK),

|+1_|

w(l)= , 8

wherehg(1), Ni(1), uo(l), andu,(1) will be provided from

the diagonalization of the Hamiltonian. Consequently, we
wherel | 4 is the next angular momentum value that the sys-can express the matrix elements of the quadrupole operator,
tem can take. In our calculations we choose to use the Harris the coupled case, as a function of the matrix elements of
formula to the third order. the unperturbed case:
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TABLE I. Values obtained for the parameters for the phenomenological model of the even cores. The subscript “dx¢identifies
the values of the excited bands.

-Aés 'Ass -Ags -Aéxc 'Atzaxc Agxc
1’ nt 7° h? t 1° Bandhead
Nucleus keV keV3 keV® keV keV3 keVs (keV)
180y 17.16 —2.19%x1072 1.95x10°° 6.45 4001073 1.7x10°° 1663.50
164yp 18.79 —2.56x1072 2.10x10°° 6.03 2.21x1073 2.10x107° 1603.34
166 20.55 —2.62x1072 1.90x10°° 6.10 —2.62x10° 1.92x107° 1675.34
Nucleus do ak Jok Coupling type Coupling
(b?) (b?) (b?) (keV) (keV)
180y 0.711 0.031 0.66 C(h=c(+1)(1+2)(1—1) 4.21x10°°
184yp 0.540 0.021 0.41 C(h=cCl(+1) 1.30x10°1!
166f 0.560 0.019 0.39 c()=Cl(l+1) 1.37x10°?!
(IML|Q[1"M"1)=xo(Ao(1"){(IMO|Q|1"M"0) For the first application,””W, we need the excitation
R energies and the quadrupole matrix elements of the neigh-
A (DN (I"){IMK|QI'M'K) boring even-even nucléei’®*®. Since we assume particle-
’ e number nonconservation, the difference between the two
+Xo(A1(1"){IMO[Q[I"M'K) neighboring nuclei should be small, and since there are not

enough experimental data faf8w, we did the calculations

for W only. In the special case where the excited band has
odd values of angular momentum the fitting can be simpli-
fied further. These odd angular momentum states do not in-

+X2(DAo(1)(IMK|Q[I'M"0),

(IM1]Q[I"M’2)=Ao(1) o(1"){(IMO[Q|1 "M 0)

, T teract with the states of the ground-state band, and since they
A1 pa(1N)(IMKIQIIM'K) belong to the same band, the parametérsf this band can
+A0(I)M1(I’)<IMO|Q|I’M’K) be calculated independently. First, we fit the parameters
. A%L2for the states with odd values of angular momentum,
+ N1 (1) po(1"){IMK|Q[I"M 0}, and then we fit the other five parameters. For example, the
excited band of'®dW (see Fig. 1 has states with odd value
(IM2|Q[1"M"2) = (1) so(1”)(IMO|Q[1"M " 0) |. Therefore, we fitted the upper band first and when the
. A2L2were found, we fitted the rest. The results are shown in
+ pa(Dpa(1N(IMK[Q[I"M'K) Table | along with Fig. 1.

, T For the B(E2)'s we utilize the few experimental data
*po(Dua(1)(IMOJQ[I'MK) available. As stated above, there are three parameters to fit,
+ g (1) (1 ’)(IMK|Q|I "M’ 0). do, Ok » g_nquo. With these parameters fixed, we_calculated
all transitions that will be needed for the calculations of the
(14 odd nuclei. The results of the fit are given in Fig. 2 and Table
N I
The reduced matrix elements of the quadrupole opei@tor  As a second application we considered the odd proton
for the uncoupled case are taken from the phenomenologicalycleus ®3L.u. The neighboring even nuclei afé*vb and
Bohr-Mottelson model, 166f. There are enough experimental values for both these
nuclei, and therefore we have fitted both nuclei and taken the

(101Q[II"K) = o gPd=PandR 2] + 121" + 1 average values of the excitation energies and quadrupole ma-
L1 2 trix elements for application to the odd nucleus. The calcu-
lation was done as described above ¥, with one modi-
X ( 0 K - K) : (15 fication, however. We realized that the fitting of tBEE2)
values is more sensitive to the strength of the coupling
2. K'£0 C(I) than are the excitat@on_energies.' Therefore, we fjrst doa
o ,:{ ' preliminary fit of the excitation energies. We then adjust the
K 1, K’'=0, wave functions found from these calculations to fit the

BE(2) values by allowingC to vary once more, in addition
are the intrinsic quadrupole moments of to the necessary choice of intrinsic quadrupole moments. The
any inter- or intra-band transitions. Consequently, we haveesults are shown in Fig. 3 and in Table I. Then the excita-
three more parameters to fit, namely, the three intrinsic quadion energies are recalculated with an already fixed coupling
rupole moments. From measurBgE2)’s we fix these three strengthC, and we find new values for thd’s. The results
parameters and then calculate the rest oB(E2)'s that are  of final fitting of the excitation energies are shown in Fig. 4
needed in the calculation but not available experimentally. and in Table I.

where qbandl—» band2
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Ill. CALCULATIONS AND RESULTS FOR "W to the two previous cases. In the previous calculations, be-
cause we assumed axial symmetly,was independent of

The equations of motiofEOM), as well as the normal- 1 Inthi lication th - ith implicati
ization conditions, for the case of backbending are not for= n t, IS app_lcatlon the symmetry is lost, with implications
that will be discussed later.

mally different from those presented in the two previous ap-""<" """ ,
plications[1] and therefore will not be repeated. In contrast _ Similarly to the previous two examples, we used a large
to these applications, the quadrupole fiElavill not take one ~ Single-particle spaceincluding all states from five major
of the simplified forms of the Bohr-Mottelson theory, such asShellS. The energies and matrix elements of these single-
Eq.(15). Instead, it will take values that are determined fromparticle levels were calculated using the Woods-Saxon po-
the calculation described in the previous section, culminatingential. The core excitations, were taken from calculations
in Eq. (14). The form ofI" is given by for the core described in the previous section. At this point
all input parameters are fixed and the only thing remaining to
2 o be done is to solve the eigenvalue problem given by the
JJ<In||Q||I n’), EOM. In the same way as before, the strength of the quad-
(16)  rupole field is treated as a free parameter and the values of
) the single-particle energies found from Woods-Saxon calcu-
wheren=1,2,n'=1,2, and th.e quadrupple matrix ebmef‘tslations are allowed to vary by 5%.
(In|Q[1"n") were calculated in the previous section. Notice  Tyq remaining technical problems should be discussed
thatl” depends on the total angular momentdimn contrast  pefore we present the results of the calculations. The first
difficulty in solving the EOM is that the set of solutions is
overcomplete by a factor of 2, as has previously been dis-

L el e
Faln,cl’n’;J:_EK(—)IC+|+J[|II

4

® Experiment; ground-state band

® Experiment; excited band

Theory; ground-state band
- Theory; excited band

— — - Theory; inter-band

w

N
T

—_
T

B(E2:I->1-2) [107(eb)’]

I[h]

FIG. 2. Experimental and theoretida(E2) values for the yrast

band and first excited band.

cussed. This is a consequence of the fact that the basis states
form an overcompletdand, therefore, nonorthogonadet.
Consequently, half of the states found by solving the EOM
are not physical and have to be removed. A technique has
been developed to do so and was presentéd]inn [2], an
extension of the technique to the case of avoided crossings
was discussed. In this paper, we summarize only the essen-
tial points. The Hamiltonian is first decomposed into anti-
symmetric and symmetric parts with respect to particle-hole
conjugation. If only the antisymmetric part is diagonalized,
then for every positive energy eigenvalue there is a negative
partner. From the BCS theory we know that the positive
eigenvalues are the physical solutions and the negative solu-
tions the nonphysical ones. Then the symmetric part was
turned on “slowly” and at every step the physical solutions
were identified using the projection operator for the physical
space built from the wave functions of the previous step. The
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FIG. 3. B(E2) values from experimeritircles and theoretical fitsolid line) of 1®4vb.

projection operator has an eigenvalue 1 for all real states angrator just prior to the crossing would classify a physical
0 for the nonphysical states. Since this operator is constate as unphysical and vice versa when used in coarse steps
structed from wave functions of the previous step, we expednvolving the near crossing. Therefore, when this occurs, we
that it will give an expectation value close to 1 for physical adjust the projection operator appropriately in order to make
and close to 0 for nonphysical states of the current step. Thighe correct identification in future steps. The problem is now
procedure continues until the symmetric part is turned orreduced to determining if there is a crossing. This was done
fully. In [2], we explained the case where physical and nonby comparing the energy differences between two states at
physical states of the same angular momentum come vemwo consecutive steps. This method worked extremely well
close to each other, and consequently the correspondirgpth in the example of the previous wofk,2] and in the
wave functions change rapidly. In this instance the projectiorpresent case.

operator method is not valid unless the steps taken are ex- The second technical problem is the classification of
tremely small, making the actual calculation numericallystates into different bands. In the first two applications where
very slow. In this case we utilized the fact that states of thek was a good quantum number, the identification of bands
same angular momentum cannot actually cross. As statadas done based on thé value of the band. The technique
previously, the two bands involving the near crossing interwas explained if1] and again we repeat only essential as-
change the characters of their wave functions as they paggects. In the case that the core is approximated as a rigid
near each other. Since the projection operator method is baetor, and the formulas of the geometrical model are valid, it
sically a comparison of wave functions, the form of this op-turns out that the quadrupole field is independent of the total

40 T T T T T 40 T T T l
g5 | &~ Experiment i A4 Experiment y
Theory —— Theory &

30 . 30 A
25 | 1

L) 2} 1 L) 2 1
15} 1
10 10 + 4
5 |
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FIG. 4. Energy levels of®¥Yb (left) and ®%Hf (right). Both experiment and theory are shown.
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angular momentund. This is because of the assumed axial 20 —— ——————
symmetry. As a result, when only the antisymmetric part of O Experiment
the Hamiltonian is considered the Hamiltonian hasinde- —— Theory
pendence. It follows that for a givef, i.e., a given band, all 15
eigenstates with differedtare degenerate. We first solve our
equation for a minimum possible angular momenturs,3.
This identifies theK =3 bands. AtJ=$%, we find a set of
energies equal to those previously found and possibly addi-
tional solutions identified as the bandheadsKor 2. Con-
tinuing in this way, we assemble all solutions into a series of
flat bands with identifieK values.
In the case that backbending occurs, even when the core
excitations are neglectedymmetric part ofH set to zer,
the remaining Hamiltonian i dependent. Therefore, we 0.0
cannot use the method described above. We can however, T o 13 17 21 25 29 33 37 a1 45 49 53
take the additional steps of turning off the coupling between 24 ]
the two core bands to return to the axially symmetric case.
The_n. the PfeV'OPS procedure_can be used, but there is the FIG. 5. Comparison of theoretical results to observed energy
additional complication of having to turn on both the sym-gyels of 179.
metric part and the coupling between the two core bands. We
can do that in any order, i.e., we can first turn on the couprincipal axes of the intrinsic prolate spheroidal shapv-
pling between the core bands and then the core excitatiogrtheless, we have chosen to try the standard two-band
(symmetric part of the Hamiltonian or the other way model.
around. We choose to do the former. First we turn on the Energy levels of!’W calculated from the present work
band coupling slowly, and as a result we break the axiahre presented in Fig. 5. As can be seen from the figure, the
symmetry. At every step we compare the wave functions ayrast band K=7/2) is reproduced with high accuracy. The
two consecutive steps by calculating the overlap integral. Isame can be said of the first excited baKd=(7/2) or tilted
turns out that even though tledegeneracy is lifted the wave band. Then follow twdK = 1/2 bands which agree very well
functions of the axial and nonaxial casgmt including the  with the theory. The most striking feature is the exact repro-
core excitationsare very similar. Only for a few eigenstates duction of the staggering nature of the fiks& 1/2 band. At
was the mixture between states belonging to differiént about 1 MeV above the ground state, theory predicts a
bands so big that we had to turn on the coupling slowly. InK=5/2 band, which experimentally is not observed. We be-
most cases large steps were sufficient. lieve that this is a weakness of the fitting routine for the
The first application made was to the nuclelf8V. Re-  following reasons. The relative bandhead energies were fit-
cent observation§9,10] have been interpreted as showing ted, using a standard fitting routine, to the observed values
that for this odd neutron nucleus, an alignment to an axidy varying the strength of the quadrupole figld The fitting
intermediate between the deformation axis and the collectivevas done by minimizing thg?. In the absence of an experi-
rotational axis(Fermi alignmen{11]) gives rise to a back- mental value and the presence of a theoretical prediction the
bending atJ~ 3. (Frauendor{11] has called the associated contribution to they? is 0. In other words, for the fitting
rotational structure & band, since the cranking-model de- routine(at least for the one we usgdf the theory predicts a
scription requires &lting of the cranking axis away from the band at low energy that is not observed experimentally, it

E-9*I(1+1) (MeV)
5

]

|

40 T T T T

40 . : : .
—Theoy | . .
« - - 4Experiment A _I;:zs:lyment
30 =7 Theoy (Chenand Semmes) 7" 1 30 } === Theory (Chen and Semmes)A,
s/ emimes)
L) 20} | Lt a0l |
10 | 0k
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FIG. 6. Comparison of the observed yrast band®tu with theory. On the left are the negative signature states { 1/2) and on the
right are the positive signature states<1/2).
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does not increase thg’. We are currently working to build

a better fitting routine which will be able to avoid such a
problem. The result shown in Fig. 5 already represents some
improvement over the fitting procedure used initially.

IV. RESULTS FOR 1%y

The second backbending application we tried was to the
proton spectra of®Lu. This nucleus was studied previously
by methods related to those of this paper by Céeal.[12].
Since it is generally accepted that teeband in an even
nucleus is formed by the decoupling of a pair of quasiparti-
cles from the ground-state band, these authors, among others,
decided that it was necessary to use a semimicroscopic de-
scription of the backbending in the neighboring even nuclei.
However, their fit to the spectra above the backbend leaves
something to desired. For this reason, we have chosen to
separate the problem of fitting the backbend in the even nu-
clei from that of fitting the corresponding spectra in the odd
nuclei by using a phenomenological two-band mixing model
for the even nuclei, which allows, simultaneously an accu-

B(M1) [p’]

—

rate fit to the the spectrum of the crossing bands and to all «

observedB(E2) values(see previous sectignin Fig. 6, we :%

compare our fit for both negative and positive signature :
(a=—3, a=13) crossed bands if®Lu with those of Chen -
et al. The closeness of our fit compared to that of the previ- E
ous authors appears simply to reflect corresponding devia- &R
tions in the spectra of the even neighbors.

We next study magnetic transitions of the yrast band and
compare the result to experiment and other theorie$l]n
we have presented the equations for kh& matrix element
and calculations for th&(M1) transitions of the ground-
state band of*>'°Gd. To calculateB(M1) rates, we must
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FIG. 7. Calculatedg factors for the yrast
states of'8%Hf. Squares are calculations from the
cranking model, the circles are from the two-
quasiparticle plus rotor model, and the diamonds

are from[13].
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FIG. 8. B(M1) transitions rates imﬁ. On the top are the

first evaluate the matrix element of thél operator between pqsitive signature states & — 1/2) and on the bottom are the nega-

states of the even neighboring coégM||I) and the matrix

tive signature statesa(=1/2). Experimental datd15] are solid

elements of the same operator between single-particle stategmbols, strong coupling model is the chain lines, our work is rep-
(m,o). In the case ofI|M||1), and because of the limitation resented with the solid lines, and the work of Clegral.[12] is the
on the availability of the experimental data, we have chosemlashed lines.
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to use a phenomenological model for the valuggahat is V. CONCLUSIONS

derived in[13], namely, In this paper we have presented yet another distinct appli-

9=0r+(9;—9R)I/, (17) (iéition of the KKDF model. Calculations fof®Lu and
W were performed starting from a phenomenological de-

wheregg refers to the ground band,is the aligned angular scription of the neighboring even nuclei. The results are suf-
momentum, andy; is the single-particleg factor for thej ficiently satisfactory to encourage us to consider still more
shell in which alignment occurs. For the;, level, g; takes  sophisticated applications of the model utilized. A funda-
the value of—0.20 andgr=0.31. In Fig. 7 we show thg = mental approximation that all applications so far shared was
factors for the yrast band of®®Hf obtained from the crank- that the incorporation of particle-number conservation into
ing model, from the two-quasiparticle plus rotor model, andthe equations has little effect on the results, because the
from the simple formula shown above. For the single-particleproperties of the neighboring nuclei are so smooth and
matrix elements we used a simple formula fr¢f#], Eq.  slowly varying with particle number. It therefore behooves
(44 of [1]. us to study a case where the incorporation of exact number

Results from different calculations &(M1) rates of the conservation is essential because we are in a transitional re-
yrast band oft®*Lu are summarized in Fig. 8. Figure 8 shows gion. Such an example has been worked [a6].
experimental values frorfil5], the result from the cranking
calculatjon of[12], a core-patrticle cou_pling model also pre- ACKNOWLEDGMENTS
sented in12], and finally our calculations. Our work repro-
duces the experimental values quite well, and clearly better This work was supported in part by the U.S. Department
than the other works. of Energy under Grant No. 40264-5-25351.
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