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In two previous papers, the Kerman-Klein-Do¨nau-Frauendorf model was used to study rotational bands of
odd deformed nuclei. Here we describe backbending for odd nuclei using the same model. The backbending
the neighboring even nuclei is described by a phenomenological two-band model, and this core is then coup
to a large single-particle space, as in our previous work. The results obtained for energies andM1 transition
rates are compared with experimental data for165Lu and for energies alone to the experimental data for
179W. For the case of165Lu comparison is also made with previous theoretical work.@S0556-2813~96!00308-1#

PACS number~s!: 21.60.Ev, 21.10.Re, 27.70.1q
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I. INTRODUCTION

In two previous applications@1,2#, the Kerman-Klein-
Dönau-Frauendorf~KKDF! model was used to study rota
tional bands of selected odd deformed nuclei. In both ap
cations the system was described by an effective interac
which includes a monopole pairing and a quadrupo
quadrupole interaction. In the first application a large sing
particle space coupled was to the ground-state band o
neighboring nuclei, whereas in the second application
same large single-particle space was coupled not only to
ground-state band but also to some of the excited band
the core.

As a second class of applications, we want to desc
backbending for odd nuclei using the KKDF model. As h
been known for more than two decades, deformed nu
commonly show a rotational anomaly~known as backbend
ing!, where the energetically favored, or yrast, collect
band undergoes an abrupt increase in its moment of in
~as a function of frequency, for example!. The generally ac-
cepted interpretation is that backbending of an even nuc
occurs when two neutrons~or protons! with high j break
their pairing bond and rotationally align perpendicular to
symmetry axis@3#. The rotational-aligned sequence of sta
is called thes band. In this application, instead of followin
a microscopic approach to backbending that incorporates
physics, we have chosen to take a purely phenomenolo
approach using a model of two coupled bands. These
then be coupled to the extra odd particle in order to ach
a description of the corresponding phenomena in the ne
boring odd nuclei. The reason for utilizing a phenomenolo
cal description of the even cores is that this provides a m
accurate fit to the data than existing microscopic calc
tions.

*Electronic address: pavlos@walet.physics.upenn.edu
†Electronic address: aklein@walet.physics.upenn.edu
‡Electronic address: mccsnrw@afs.mcc.ac.uk
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In the next section we will present the description of th
cores, including the phenomenological model and the resu
In Sec. III the results of the energy calculations for179W will
be presented, and in Sec. IV the results for both energies a
M1 transitions will be given for165Lu. There is a brief con-
cluding section.

II. CORE PHENOMENOLOGY

In this section we develop a phenomenological descri
tion of the backbending phenomenon for the even neighbo
ing nuclei. It is not our purpose to build a complete an
sophisticated model but to reproduce the energy levels a
the values of the quadrupole matrix elements as accurately
possible, because the results of these calculations will
used as input to the calculations for the odd nuclei. Th
purpose of the model is simply to provide input data to ou
theory when experimental values are not sufficiently abu
dant.

Consider two bands, the ground-state band, and an exci
band that ‘‘cross’’ at a certain angular momentumI . From
experimental observations we know that if such a situatio
occurs, the bands repel each other~avoided crossing!. From
the mixture of the bands, we can conclude that the Ham
tonian of the system is in general not axially symmetric, an
as a result, the projectionK is not a good quantum number.
We write the Hamiltonian of such a system as

H5H01H1 , ~1!

whereH0 is the axially symmetric part of the Hamiltonian
and H1 is the K quantum number nonconserving Hamil
tonian which gives rise to the avoided crossing. The unpe
turbed HamiltonianH0 describes the ground-state rotationa
band and one excited band. The excitations in such ban
can have the form of the simple rigid rotor, or of the variabl
moment of inertia model~VMI model! @4#, or even more
general forms~see below!. For the uncoupled systems, we
take the angular momentumI , its projectionM , and the
638 © 1996 The American Physical Society
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54 639APPLICATION OF A SEMIMICROSCOPIC CORE- . . .
projection on the body fixed axisK as good quantum num
bers. Therefore, we denote the eigenstates of the unpertu
system asuIMK &. Expressed in the unperturbed basis,
Hamiltonian for a given angular momentum will take th
form

H5
\2

2 F f 1~ Î 2! 0

0 E01 f 2~ Î
2!G1F 0 C~ Î !

C~ Î ! 0 G , ~2!

where Î5I (I11) andE0 is the bandhead energy. The pe
turbation has, for the moment, a generalÎ dependence. The
functions f i( Î ) which describe the angular momentum d
pendence of the uncoupled bandi ( i51,2) are often repre-
sented as a polynomial inI (I11),

f i~ Î
2!5

I ~ I11!

Ii0
1

@ I ~ I11!#2

Ii1
1•••, ~3!

with expansion coefficientsI0 andI1. This conventional ex-
pansion has poor convergence properties at largeI . A better
expansion of energy as a function of angular momentum
given by thevariable moment of inertiamodel @5# in which
the moment of inertia is a function of angular momentum

E~ I ,I!5
I ~ I11!

2I~ I ! 1
1

2
C@I~ I !2I0#2, ~4!

with two parameters,C and I0 . The variable moment o
inertiaI(I ) is determined through use of the variational co
dition

dE~ I !

dI~ I ! U
I

50. ~5!

This model can be shown to be equivalent@6# to the two-
term approximation to the Harris~cranking! formula@7#. The
latter is an expansion of the energy in powers of the ‘‘ro
tional frequency’’v, given by

E~v!5A0v21A1v41A2v61•••, ~6!

whereA0,A1, etc. are parameters that are fitted to expe
mental values. Since the concept of continuous angular
quency is not well defined for quantum mechanical syste
the definition used is derived from the corresponding cla
cal definition. In classical mechanics we have

v~ I !5
dE~ I !

dI
, ~7!

whereE(I ) is the energy at angular momentumI . In quan-
tum mechanics we take a cue from this definition and cho
the discrete definition

v~ I !5
E~ I11!2E~ I !

Î112 Î
, ~8!

whereI11 is the next angular momentum value that the s
tem can take. In our calculations we choose to use the Ha
formula to the third order.
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At this point we have to specify what form the coupling
will take. The exact form of the interband interaction is no
known. We have chosen to perform the calculations usi
the standard band coupling formalism@8#. Since the ground
state hasK50, the possible cases are limited by the values
K chosen for the excited band. In the following we allow
K50, 1, and 2.

For K50→K51: C~ I !5CAI ~ I11!. ~9!

For K50→K50: C~ I !5CI~ I11!, ~10!

Constant interaction:C~ I !5C. ~11!

For K50→K52: C~ I !5C~ I11!~ I12!~ I21!.
~12!

The actual angular momentum dependence of the coupl
term is not decisive for the following reason: The mixture o
two uncoupled band states with the consequent distortion
the shapes of the energies as functions of the angular m
mentum depends on the strength and the form of the co
pling term as well as on the energy difference of the unpe
turbed states. The bands will be close to each other~in the
energy vs.J plot! only for a single value of angular momen
tum, and therefore the mixture will be insignificant for al
other values of angular momentum. As soon as the stren
of the coupling term is fitted at this angular momentum, th
actual functional dependence of the coupling strength b
comes irrelevant. For the actual calculations we tried diffe
ent forms of the coupling and we state in Table I which on
yield the best fit for the nucleus under study.

At this point we have a complete phenomenological d
scription for the backbending phenomena. If we use to t
expansion Eq.~6! up to the third order, we then have eigh
free parameters to fit, namely, the six coefficients for the tw
uncoupled bands,A1

0 , A1
1 , A2

2 , A2
0 , A2

1 , andA2
2 , the band-

head energyE0 , and finally the couplingC. This is not a
difficult task, and we will describe the details and show th
results in the following section.

To calculate theB(E2)’s we have to express the matrix
elements of the quadrupole operator as a function of the m
trix elements in the uncoupled system. To be more spec
with the notation, states of the unperturbed Hamiltonian th
belong to the ground-state band will be denoted byuIM 0&
and states that belong the excited band byuIMK &. For the
coupled system states have good angular momentumI , and
its projectionM , but K is not a good quantum number any
more. We denote states of the complete system asuIM 1& and
uIM 2&. After diagonalizing the Hamiltonian, we can expres
the eigenstates of the full system as a linear combination
the unperturbed states:

uIM 1&5l0~ I !uIM 0&1l1~ I !uIMK &,

uIM 2&5m0~ I !uIM 0&1m1~ I !uIMK &, ~13!

wherel0(I ), l1(I ), m0(I ), andm1(I ) will be provided from
the diagonalization of the Hamiltonian. Consequently, w
can express the matrix elements of the quadrupole opera
in the coupled case, as a function of the matrix elements
the unperturbed case:
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TABLE I. Values obtained for the parameters for the phenomenological model of the even cores. The subscript ‘‘exc’’ onAexc identifies
the values of the excited bands.

Ags
1 Ags

2 Ags
3 Aexc

1 Aexc
2 Aexc

3

Nucleus S \2

keVD S \4

keV3D S \6

keV5D S \2

keVD S \4

keV3D S \6

keV5D Bandhead
~keV!

180W 17.16 22.1931022 1.9531025 6.45 4.0031023 1.731026 1663.50
164Yb 18.79 22.5631022 2.1031025 6.03 2.2131023 2.1031025 1603.34
166Hf 20.55 22.6231022 1.9031025 6.10 22.623102 1.9231025 1675.34

Nucleus q0 qK q0K Coupling type Coupling
(b2) (b2) (b2) ~keV! ~keV!

180W 0.711 0.031 0.66 C(I )5C(I11)(I12)(I21) 4.2131025

164Yb 0.540 0.021 0.41 C(I )5CI(I11) 1.3031021

166Hf 0.560 0.019 0.39 C(I )5CI(I11) 1.3731021
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^IM 1uQ̂uI 8M 81&5l0~ I !l0~ I 8!^IM 0uQ̂uI 8M 80&

1l1~ I !l1~ I 8!^IMK uQ̂uI 8M 8K&

1l0~ I !l1~ I 8!^IM 0uQ̂uI 8M 8K&

1l1~ I !l0~ I 8!^IMK uQ̂uI 8M 80&,

^IM 1uQ̂uI 8M 82&5l0~ I !m0~ I 8!^IM 0uQ̂uI 8M 80&

1l1~ I !m1~ I 8!^IMK uQ̂uI 8M 8K&

1l0~ I !m1~ I 8!^IM 0uQ̂uI 8M 8K&

1l1~ I !m0~ I 8!^IMK uQ̂uI 8M 80&,

^IM 2uQ̂uI 8M 82&5m0~ I !m0~ I 8!^IM 0uQ̂uI 8M 80&

1m1~ I !m1~ I 8!^IMK uQ̂uI 8M 8K&

1m0~ I !m1~ I 8!^IM 0uQ̂uI 8M 8K&

1m1~ I !m0~ I 8!^IMK uQ̂uI 8M 80&.

~14!

The reduced matrix elements of the quadrupole operatoQ̂
for the uncoupled case are taken from the phenomenolog
Bohr-Mottelson model,

^I0iQ̂i I 8K&5sK8q
band1→band2A2I11A2I 811

3S I I 8 2

0 K 2K D , ~15!

sK85HA2, K8Þ0

1, K850,

whereqband1→band2 are the intrinsic quadrupole moments
any inter- or intra-band transitions. Consequently, we ha
three more parameters to fit, namely, the three intrinsic qu
rupole moments. From measuredB(E2)’s we fix these three
parameters and then calculate the rest of theB(E2)’s that are
needed in the calculation but not available experimentall
cal

f
ve
d-

.

For the first application,179W, we need the excitation
energies and the quadrupole matrix elements of the ne
boring even-even nuclei178,180W. Since we assume particle
number nonconservation, the difference between the
neighboring nuclei should be small, and since there are
enough experimental data for178W, we did the calculations
for 180W only. In the special case where the excited band
odd values of angular momentum the fitting can be simp
fied further. These odd angular momentum states do not
teract with the states of the ground-state band, and since
belong to the same band, the parametersA of this band can
be calculated independently. First, we fit the paramet
Aexc
0,1,2 for the states with odd values of angular momentu

and then we fit the other five parameters. For example,
excited band of180W ~see Fig. 1! has states with odd value
I . Therefore, we fitted the upper band first and when
Aexc
0,1,2were found, we fitted the rest. The results are shown

Table I along with Fig. 1.
For the B(E2)’s we utilize the few experimental dat

available. As stated above, there are three parameters t
q0 , qK , andqK0 . With these parameters fixed, we calculat
all transitions that will be needed for the calculations of t
odd nuclei. The results of the fit are given in Fig. 2 and Tab
I.

As a second application we considered the odd pro
nucleus 165Lu. The neighboring even nuclei are164Yb and
166Hf. There are enough experimental values for both the
nuclei, and therefore we have fitted both nuclei and taken
average values of the excitation energies and quadrupole
trix elements for application to the odd nucleus. The calc
lation was done as described above for180W, with one modi-
fication, however. We realized that the fitting of theB(E2)
values is more sensitive to the strength of the coupl
C(I ) than are the excitation energies. Therefore, we first d
preliminary fit of the excitation energies. We then adjust t
wave functions found from these calculations to fit th
BE(2) values by allowingC to vary once more, in addition
to the necessary choice of intrinsic quadrupole moments.
results are shown in Fig. 3 and in Table I. Then the exci
tion energies are recalculated with an already fixed coupl
strengthC, and we find new values for theA’s. The results
of final fitting of the excitation energies are shown in Fig.
and in Table I.
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FIG. 1. Fit of the ground-state band and th
first excited band of180W to a phenomenological
two-band model. Solid lines represent the theo
retical values with coupling equal to 4.331025

keV. The experimental values are represented
circles.
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III. CALCULATIONS AND RESULTS FOR 179W

The equations of motion~EOM!, as well as the normal
ization conditions, for the case of backbending are not f
mally different from those presented in the two previous
plications@1# and therefore will not be repeated. In contra
to these applications, the quadrupole fieldG will not take one
of the simplified forms of the Bohr-Mottelson theory, such
Eq. ~15!. Instead, it will take values that are determined fro
the calculation described in the previous section, culmina
in Eq. ~14!. The form ofG is given by

GaIn,cI8n8;J52
1

2
k~2 ! j c1I1JH j a j c 2

I 8 I J J ^IniQi I 8n8&,

~16!

wheren51,2, n851,2, and the quadrupole matrix elemen
^IniQi I 8n8& were calculated in the previous section. Noti
thatG depends on the total angular momentumJ, in contrast

FIG. 2. Experimental and theoreticalB(E2) values for the yrast
band and first excited band.
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to the two previous cases. In the previous calculations, be
cause we assumed axial symmetry,G was independent of
J. In this application the symmetry is lost, with implications
that will be discussed later.

Similarly to the previous two examples, we used a large
single-particle space~including all states from five major
shells!. The energies and matrix elements of these single
particle levels were calculated using the Woods-Saxon po
tential. The core excitationsv I were taken from calculations
for the core described in the previous section. At this poin
all input parameters are fixed and the only thing remaining t
be done is to solve the eigenvalue problem given by th
EOM. In the same way as before, the strength of the quad
rupole field is treated as a free parameter and the values
the single-particle energies found from Woods-Saxon calcu
lations are allowed to vary by65%.

Two remaining technical problems should be discusse
before we present the results of the calculations. The firs
difficulty in solving the EOM is that the set of solutions is
overcomplete by a factor of 2, as has previously been dis
cussed. This is a consequence of the fact that the basis sta
form an overcomplete~and, therefore, nonorthogonal! set.
Consequently, half of the states found by solving the EOM
are not physical and have to be removed. A technique ha
been developed to do so and was presented in@1#. In @2#, an
extension of the technique to the case of avoided crossin
was discussed. In this paper, we summarize only the esse
tial points. The Hamiltonian is first decomposed into anti-
symmetric and symmetric parts with respect to particle-hol
conjugation. If only the antisymmetric part is diagonalized
then for every positive energy eigenvalue there is a negativ
partner. From the BCS theory we know that the positive
eigenvalues are the physical solutions and the negative so
tions the nonphysical ones. Then the symmetric part wa
turned on ‘‘slowly’’ and at every step the physical solutions
were identified using the projection operator for the physica
space built from the wave functions of the previous step. Th
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FIG. 3. B(E2) values from experiment~circles! and theoretical fit~solid line! of 164Yb.
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projection operator has an eigenvalue 1 for all real states
0 for the nonphysical states. Since this operator is c
structed from wave functions of the previous step, we exp
that it will give an expectation value close to 1 for physic
and close to 0 for nonphysical states of the current step. T
procedure continues until the symmetric part is turned
fully. In @2#, we explained the case where physical and n
physical states of the same angular momentum come
close to each other, and consequently the correspon
wave functions change rapidly. In this instance the project
operator method is not valid unless the steps taken are
tremely small, making the actual calculation numerica
very slow. In this case we utilized the fact that states of
same angular momentum cannot actually cross. As st
previously, the two bands involving the near crossing int
change the characters of their wave functions as they
near each other. Since the projection operator method is
sically a comparison of wave functions, the form of this o
nd
n-
ct
l
his
n
n-
ery
ing
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ex-
y
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erator just prior to the crossing would classify a physic
state as unphysical and vice versa when used in coarse s
involving the near crossing. Therefore, when this occurs,
adjust the projection operator appropriately in order to ma
the correct identification in future steps. The problem is no
reduced to determining if there is a crossing. This was do
by comparing the energy differences between two states
two consecutive steps. This method worked extremely w
both in the example of the previous work@1,2# and in the
present case.

The second technical problem is the classification
states into different bands. In the first two applications whe
K was a good quantum number, the identification of ban
was done based on theK value of the band. The technique
was explained in@1# and again we repeat only essential a
pects. In the case that the core is approximated as a r
rotor, and the formulas of the geometrical model are valid,
turns out that the quadrupole field is independent of the to
FIG. 4. Energy levels of164Yb ~left! and 166Hf ~right!. Both experiment and theory are shown.
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54 643APPLICATION OF A SEMIMICROSCOPIC CORE- . . .
angular momentumJ. This is because of the assumed ax
symmetry. As a result, when only the antisymmetric part
the Hamiltonian is considered the Hamiltonian has noJ de-
pendence. It follows that for a givenK, i.e., a given band, all
eigenstates with differentJ are degenerate. We first solve ou
equation for a minimum possible angular momentum,J5 1

2.
This identifies theK5 1

2 bands. AtJ5 3
2, we find a set of

energies equal to those previously found and possibly a
tional solutions identified as the bandheads forK5 3

2. Con-
tinuing in this way, we assemble all solutions into a series
flat bands with identifiedK values.

In the case that backbending occurs, even when the
excitations are neglected~symmetric part ofH set to zero!,
the remaining Hamiltonian isJ dependent. Therefore, w
cannot use the method described above. We can howe
take the additional steps of turning off the coupling betwe
the two core bands to return to the axially symmetric ca
Then the previous procedure can be used, but there is
additional complication of having to turn on both the sym
metric part and the coupling between the two core bands.
can do that in any order, i.e., we can first turn on the co
pling between the core bands and then the core excita
~symmetric part of the Hamiltonian!, or the other way
around. We choose to do the former. First we turn on
band coupling slowly, and as a result we break the ax
symmetry. At every step we compare the wave functions
two consecutive steps by calculating the overlap integra
turns out that even though theJ degeneracy is lifted the wave
functions of the axial and nonaxial cases~not including the
core excitations! are very similar. Only for a few eigenstate
was the mixture between states belonging to differentK
bands so big that we had to turn on the coupling slowly.
most cases large steps were sufficient.

The first application made was to the nucleus179W. Re-
cent observations@9,10# have been interpreted as showin
that for this odd neutron nucleus, an alignment to an a
intermediate between the deformation axis and the collec
rotational axis~Fermi alignment@11#! gives rise to a back-
bending atJ; 31

2 . ~Frauendorf@11# has called the associate
rotational structure at band, since the cranking-model de
scription requires atilting of the cranking axis away from the
al
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principal axes of the intrinsic prolate spheroidal shape.! Nev-
ertheless, we have chosen to try the standard two-ba
model.

Energy levels of179W calculated from the present work
are presented in Fig. 5. As can be seen from the figure, t
yrast band (K57/2) is reproduced with high accuracy. The
same can be said of the first excited band (K57/2) or tilted
band. Then follow twoK51/2 bands which agree very well
with the theory. The most striking feature is the exact repr
duction of the staggering nature of the firstK51/2 band. At
about 1 MeV above the ground state, theory predicts
K55/2 band, which experimentally is not observed. We b
lieve that this is a weakness of the fitting routine for th
following reasons. The relative bandhead energies were
ted, using a standard fitting routine, to the observed valu
by varying the strength of the quadrupole fieldk. The fitting
was done by minimizing thex2. In the absence of an experi-
mental value and the presence of a theoretical prediction
contribution to thex2 is 0. In other words, for the fitting
routine~at least for the one we used!, if the theory predicts a
band at low energy that is not observed experimentally,

FIG. 5. Comparison of theoretical results to observed ener
levels of 179W.
FIG. 6. Comparison of the observed yrast band of165Lu with theory. On the left are the negative signature states (a521/2) and on the
right are the positive signature states (a51/2).
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FIG. 7. Calculatedg factors for the yrast
states of166Hf. Squares are calculations from the
cranking model, the circles are from the two-
quasiparticle plus rotor model, and the diamond
are from@13#.
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does not increase thex2. We are currently working to build
a better fitting routine which will be able to avoid such
problem. The result shown in Fig. 5 already represents so
improvement over the fitting procedure used initially.

IV. RESULTS FOR 165Lu

The second backbending application we tried was to t
proton spectra of165Lu. This nucleus was studied previously
by methods related to those of this paper by Chenet al. @12#.
Since it is generally accepted that thes band in an even
nucleus is formed by the decoupling of a pair of quasipar
cles from the ground-state band, these authors, among oth
decided that it was necessary to use a semimicroscopic
scription of the backbending in the neighboring even nucle
However, their fit to the spectra above the backbend leav
something to desired. For this reason, we have chosen
separate the problem of fitting the backbend in the even n
clei from that of fitting the corresponding spectra in the od
nuclei by using a phenomenological two-band mixing mod
for the even nuclei, which allows, simultaneously an acc
rate fit to the the spectrum of the crossing bands and to
observedB(E2) values~see previous section!. In Fig. 6, we
compare our fit for both negative and positive signatu
(a52 1

2, a5 1
2! crossed bands in165Lu with those of Chen

et al.The closeness of our fit compared to that of the prev
ous authors appears simply to reflect corresponding dev
tions in the spectra of the even neighbors.

We next study magnetic transitions of the yrast band a
compare the result to experiment and other theories. In@1#
we have presented the equations for theM1 matrix element
and calculations for theB(M1) transitions of the ground-
state band of155,157Gd. To calculateB(M1) rates, we must
first evaluate the matrix element of theM1 operator between
states of the even neighboring cores^I iM i I & and the matrix
elements of the same operator between single-particle sta
(mac). In the case of̂ I iM i I &, and because of the limitation
on the availability of the experimental data, we have chos
e
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FIG. 8. B(M1) transitions rates inmN
2 . On the top are the

positive signature states (a521/2) and on the bottom are the neg
tive signature states (a51/2!. Experimental data@15# are solid
symbols, strong coupling model is the chain lines, our work is r
resented with the solid lines, and the work of Chenet al. @12# is the
dashed lines.



pli-

e-
uf-
re
a-
as
to
the
nd
s
ber
re-

nt

54 645APPLICATION OF A SEMIMICROSCOPIC CORE- . . .
to use a phenomenological model for the value ofg that is
derived in@13#, namely,

g5gR1~gj2gR!i /I , ~17!

wheregR refers to the ground band,i is the aligned angular
momentum, andgj is the single-particleg factor for the j
shell in which alignment occurs. For then13/2 level,gj takes
the value of20.20 andgR50.31. In Fig. 7 we show theg
factors for the yrast band of166Hf obtained from the crank-
ing model, from the two-quasiparticle plus rotor model, an
from the simple formula shown above. For the single-partic
matrix elements we used a simple formula from@14#, Eq.
~44! of @1#.

Results from different calculations ofB(M1) rates of the
yrast band of165Lu are summarized in Fig. 8. Figure 8 show
experimental values from@15#, the result from the cranking
calculation of@12#, a core-particle coupling model also pre
sented in@12#, and finally our calculations. Our work repro
duces the experimental values quite well, and clearly bet
than the other works.
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-
ter

V. CONCLUSIONS

In this paper we have presented yet another distinct ap
cation of the KKDF model. Calculations for165Lu and
179W were performed starting from a phenomenological d
scription of the neighboring even nuclei. The results are s
ficiently satisfactory to encourage us to consider still mo
sophisticated applications of the model utilized. A fund
mental approximation that all applications so far shared w
that the incorporation of particle-number conservation in
the equations has little effect on the results, because
properties of the neighboring nuclei are so smooth a
slowly varying with particle number. It therefore behoove
us to study a case where the incorporation of exact num
conservation is essential because we are in a transitional
gion. Such an example has been worked out@16#.
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