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Theoretical study of the radiative capture reactions 2H„n,g… 3H and 2H„p,g… 3He
at low energies
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Correlated hyperspherical harmonics wave functions withD-isobar admixtures obtained from realistic in-

teractions are used to study the thermal neutron radiative capture on deuterium, and the2H(pW ,g) 3He and

p(dW ,g) 3He reactions in the center of mass energy range 0–100 keV. The nuclear electromagnetic current

includes one- and two-body components. Results for the2H(nW ,g) 3H cross section and photon polarization
parameter, as well as for the energy dependence of the astrophysical factor and angular distributions of the
differential cross section, vector and tensor analyzing powers, and photon linear polarization coefficient of the
2H(pW ,g) 3He andp(dW ,g) 3He reactions are reported. Large effects due to two-body currents, in particular the
long-range ones associated with the tensor component of the nucleon-nucleon interaction, are observed in the
photon polarization parameter and vector analyzing power. Good, quantitative agreement between theory and
experiment is found for all observables, with the exception of the vector analyzing power for which the
calculated values underestimate the data by about 30%.@S0556-2813~96!03508-X#

PACS number~s!: 21.45.1v, 24.70.1s, 25.40.Lw, 27.10.1h
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I. INTRODUCTION

Very low-energy radiative and weak capture reactions i
volving few-nucleon systems have considerable astrophy
cal relevance for studies of stellar structure and evolution@1#,
and big-bang nucleosynthesis@2#. Three such aspects are~1!
the mechanism for the energy and neutrino production
main sequence stars, in particular the determination of
solar neutrino flux;~2! the process of protostellar evolution
towards the main sequence;~3! the predictions for the pri-
mordial abundances of light elements.

These same reactions are also very interesting from
standpoint of the theory of strongly interacting system
since their cross sections are very sensitive to the model u
to describe both the ground state and continuum wave fu
tions, and the two-body electroweak current operators.
deed, calculations of the2H(n,g) 3H and 3He(n,g) 4He cap-
ture cross sections at thermal neutron energies carried
with realistic wave functions and a single-nucleon electr
magnetic current, the so-called impulse approximation~IA !,
predict only about 50%@3# and 10%@4# of the corresponding
experimental values. This is because the IA transition ope
tor cannot connect the mainS-state components of the deu
teron and triton, or3He and4He, wave functions. Hence, the
calculated cross section in the IA is small, since the reacti
must proceed through the small components of the wa
functions, in particular the mixed symmetryS8-state admix-
ture. Two-body currents, however, do connect the domina
S-state components, and the associated matrix elements
exceptionally large in comparison to those obtained in IA.

The focus of the present study is on the2H(p,g) 3He
54556-2813/96/54~2!/534~20!/$10.00
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reaction with proton laboratory energies in the range 0–1
keV, and the thermal neutron radiative capture on deuteri
The cross section for the latter process was most rece
measured to besT50.50860.015 mb@5#, in agreement with
the results of earlier experiments@6,7#. In the late 1980s,
measurements of both the photon polarization following p
larized neutron capture@8#, andg emission after polarized
neutron capture from polarized deuterons@9# were also car-
ried out.

In an experiment performed last year at TUNL@10,11#,
the total cross section and vector and tensor analyzing p
ers of the2H(pW ,g) 3He andp(dW ,g) 3He reactions were mea
sured at center of mass energies below 55 keV. The as
physicalS factor, extrapolated to zero energy from the cro
section data, was found to beS(E c.m.50)50.16560.014
eV b, where the error includes both systematic and statist
uncertainties@11#. This value forS(0) is about 35% smaller
than that obtained by Griffithet al. @12# more than 30 years
ago, the only other experimental determination ofS(0)
which we are aware of. More recently, in another experim
performed at TUNL, a different group@13# has extended the
study of the2H(pW ,g) 3He andp(dW ,g) 3He reactions at cente
of mass energies between 75 and 300 KeV.

The theory of the2H(n,g) 3H capture reaction has a lon
history. The ‘‘pseudo-orthogonality’’ between the3H
ground state andnd doublet or quartet state inhibiting th
M1 transition in the IA for this process, and thus explaini
the smallness of its cross section when compared to tha
the p(n,g) 2H reaction, sT5334.560.5 mb, was first
pointed out by Schiff@14#. Later, Phillips@15# emphasized
the importance of initial state interactions and two-body c
534 © 1996 The American Physical Society
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54 535THEORETICAL STUDY OF THE RADIATIVE CAPTURE . . .
rents to the capture reaction in a three-body model calc
tion, by considering a central, separable interaction. In m
recent years, a series of calculations of increasing soph
cation with regard to the description of both the initial an
final state wave functions and two-body current model w
carried out @16,17#. These efforts culminated in the 199
Friar et al. @3# calculation of the2H(n,g) 3H total cross sec-
tion, quartet capture fraction, and photon polarization, ba
on converged bound and continuum state Faddeev w
functions, corresponding to a variety of realistic Hamiltoni
models with two- and three-nucleon interactions, and
nuclear electromagnetic current operator, including the lo
range two-body components associated with pion excha
and the virtual excitation of intermediateD resonances.
Within this framework, Friaret al.clearly showed the impor-
tance of initial state interactions and two-body current co
tributions. They also showed that both the calculated cr
section and photon polarization parameter could be in go
quantitative agreement with the experimental values, if
cutoff Lp at thepNN vertices in the two-body currents wa
taken in the range 1050 MeV<Lp< 1200 MeV, depending
on the particular combination of two- and three-body inte
actions considered.

The theoretical description of the2H(p,g) 3He reaction at
low energies is complicated by the presence of the Coulo
interaction. Only relatively recently has theS-wave capture
contribution to the zero-energyS factor of this reaction been
calculated with numerically converged Faddeev wave fu
tions@18#, obtained from realistic Hamiltonians including th
Coulomb interaction. The calculated value forSS(0) has
been found to be 0.108 eV b, in excellent agreement with
most recent experimental determination,SS(0)50.109
60.010 eV b@11#.

The recent, precise measurements of the astrophys
factor, vector and tensor analyzing powersAy(u) and
T20(u), respectively, and photon linear polarizationPg(u) in
the reactions2H(pW ,g) 3He andp(dW ,g) 3He @11,13# are the
main motivation for the present work. The observed line
dependence upon the energy of theS factor as well as the
observed angular distributions of the cross section and po
ization observables indicate that these reactions proceed
dominantly throughS- and P-wave capture@11,13#. Such
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S- andP-wave capture processes have not been previou
theoretically studied at very low energies.

In the present work, the bound trinucleon and continuu
Nd wave functions are obtained from realistic two- an
three-nucleon interactions with a variational method cons
ing in their expansion over a pair-correlated-hyperspheric
harmonics~PHH! function basis@19–21#. The method has
been shown to be very accurate, in the sense that res
obtained for a variety of bound state and low-energy scat
ing observables are very close~typically, within less than
1%! in comparison to those obtained with converged Fa
deev wave functions@22#. We also include one- and two
D-isobar components in the wave functions. These are g
erated with the transition-correlation-operator~TCO!
method, developed in Ref.@23#. Both the PHH expansion
and TCO method are reviewed in Sec. II. The model for t
nuclear electromagnetic current, given in Sec. III, consists
one- and two-body terms. Since explicit expressions for
latter are scattered in a number of Refs.@4,24,25#, we list
them in Appendix A for completeness. Definitions for th
cross section and polarization observables along with th
expansion in electric and magnetic multipoles are given
Sec. IV and Appendix B, while the Monte Carlo calculatio
of the required matrix elements is discussed in Sec. V. R
sults for the2H(nW ,g) 3H reaction at thermal neutron energy
and the2H(pW ,g) 3He and1H(dW ,g) 3He reactions with center
of mass energies in the range 0–100 keV are presented,
compared with data in Sec. VI. Finally, Sec. VII contains
concluding discussion.

II. BOUND- AND SCATTERING-STATE
WAVE FUNCTIONS

A. Bound-state wave functions

In a series of recent papers, a variational technique
calculating the trinucleon bound-state andNd scattering-
state wave functions has been developed@19–21#. The
method consists of the expansion of the three-body w
functions on a basis of pair-correlated hyperspherical h
monic ~PHH! functions, and is briefly reviewed here. For th
trinucleon bound state, the wave function is written as
C3
JJz5 (

a51

Nc

(
K5Km

a

KM
a

uaK~r!

r5/2 (
i jk cyclic

f a~r jk!
~2!PK

l a ,La~f i !Y a
JJz~ jk,i !, ~2.1!

r5Axi21yi
2, ~2.2!

cosf i5xi /r, ~2.3!

where xi5r j2r k and yi5(r j1r k22 r i)/A3, r i denoting the position of particlei . The angle-spin-isospin functions
Ya( jk,i ) are defined as

Y a
JJz~ jk,i !5$@Yla

~ x̂i ! ^YLa
~ ŷi !#La

@sa
jk

^sa
i #Sa

%JJz@ ta
jk

^ ta
i #TTz. ~2.4!
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Eacha channel is specified by the orbital angular momental a andLa coupled to giveLa , and by the spin~isospin! sa
jk

(ta
jk) andsa

i (ta
i ) of the pair jk and the third particlei , coupled to giveSa (T). Since the wave functionC3 is antisymmetric,

l a1sa
jk1ta

jk must be odd; furthermore,l a1La must be even or odd depending on whether the state has even or odd pa
The hyperspherical polynomials(2)PK

l a ,La are given by@26#

~2!PK
l a ,La~f i !5Nn

l a ,La~sinf i !
La~cosf i !

l aPn
La11/2,l a11/2

~cos2f i !, ~2.5!
b

o

i
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s
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s

whereNn
l a ,La is a normalization factor, andPn

(a,b) are Jacobi
polynomials. The grand orbital quantum number is given
K5l a1La12n, n being a non-negative integer. In Eq
~2.1!, Km

a 5l a1La is the minimum grand orbital quantum
number andKM

a is its maximum selected value, so that th
number of basis functions per channel is

Ma5~KM
a 2Km

a !/211. ~2.6!

The pair-correlation functionsf a(r i j ) take into account
the strong state-dependent correlations induced by
nucleon-nucleon interaction, and are obtained as the s
tions of suitable two-body zero-energy Schro¨dinger equa-
tions, with a technique outlined in Ref.@19#. They improve
the behavior of the wave function at small interparticle d
tances, thus accelerating the convergence of the calcul
quantities with respect to the required number of basis fu
tions in Eq. ~2.1!. With the f a set equal to one, as in th
original hyperspherical-harmonic expansion approach@27#,
the convergence rate slows down considerably, making
calculations very difficult for systems, such as nuclei, hav
strongly repulsive interactions at short distances.

The Rayleigh-Ritz variational principle

^duC3uH2EuC3&50, ~2.7!

is used to determine the hyperradial functionsuaK(r) in Eq.
~2.1!. HereduC3 represents the change in the wave functi
y
.

e
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n

due to variations of the functionsuaK(r). For a givenNc and
KM

a the resulting set of coupled second-order differential
equations is solved by using standard numerical methods
Typically, Nc510–18 andMa55–8. Finally, we note that
inclusion of the Coulomb interaction is straightforward in the
present approach, since no partial wave decomposition i
performed.

B. Scattering-state wave functions

The variational approach based on the PHH function basis
has been extended to study scattering states. The wave fun
tion for anNd scattering state is written as

C211
LSJJz5CC

LSJJz1CA
LSJJz, ~2.8!

whereJ and Jz are, respectively, the total angular momen-
tum and itsz projection,L is theNd relative orbital angular
momentum, andS the channel spin quantum number. The
first termCC must guarantee an accurate description of the
system in the region where theN andd clusters are close to
each other, and interparticle interactions are large; it vanishe
in the limit of largeNd distances. As for the bound-state
problem,CC is expanded in terms of PHH functions.

The second termCA in Eq. ~2.8! describes the asymptotic
configurations of the system, where the nuclear interactions
between the two clusters are negligible. For apd state, it is
written as@20#
CA
LSJJz5

1

A3 (
i jkcyclic

(
L8S8

$@si ^ fd~xi !#S8^YL8~ ŷi !%JJz@ t
i
^ @ t j ^ tk#0#~1/2!Tz

3FdLL8dSS8
FL8~prpd!

prpd
1JRLS

L8S8
GL8~prpd!

prpd
g~r pd!G , ~2.9!
wherefd is the radial-spin part of the deuteron wave fun
tion, p the magnitude of the relative momentump between
deuteron and proton, andFL and GL are the regular and
irregular Coulomb functions, respectively. Fornd scattering,
FL(x)/x @GL(x)/x# is replaced by the regular~irregular!
spherical Bessel function. The functiong(r pd) modifies the
GL(prpd) at small r pd by regularizing it at the origin, and
approaches one forr pd.10 fm, thus not affecting the asymp
totic behavior ofC211

LSJJz. The sum overL8S8 is over all
values compatible with a givenJ and parity.

TheR-matrix elementsJRLS
L8S8 and the functionsuaK(r)
c-

-

in the PHH expansion ofCC are determined variationally by
finding the stationary points of the functional@20#

@JRLS
L8S8#5JRLS

L8S82 K c211
LSJJzUH2Ed2

p2

2m Uc211
LSJJzL ,

~2.10!

with respect to variations in theJRLS
L8S8 anduaK ~Kohn varia-

tional principle!. Here Ed5–2.225 MeV is the deuteron
ground-state energy, andm theNd reduced mass. As in the
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TABLE I. Binding energies and scattering lengths corresponding to the AV14, AV14/VIII, and AV18/IX Hamiltonian models. Th
AV14 results obtained with the PHH expansion are compared with those calculated by solving the Faddeev equations in configu
~Faddeev/R) and in momentum~Faddeev/Q) space. The measured scattering lengths are from@35#.

3H nd 3He pd

Hamiltonian Method B 2a 4a B 2a 4a
~MeV! ~fm! ~fm! ~MeV! ~fm! ~fm!

PHH 7.683 1.196 6.380 7.032 0.954 13.779
AV14 Faddeev/Q 7.680a 1.200b 6.388b

Faddeev/R 7.670c 1.200d 6.372d 7.014c 0.965d 13.764d

AV14/VIII PHH 8.48 0.59 6.37 7.80 –0.14 13.8
AV18/IX PHH 8.49 0.63 6.33 7.75 –0.02 13.7

expt. 8.48 0.65~2! 6.33~3! 7.72

aReference@32#.
bReference@22#.
cReference@33#.
dReference@34#.
r

o
p

,
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bound-state problem, the hyperradial functionsuaK(r) are
required to vanish in the limit of larger.

C. Ground-state energies andNd scattering lengths

The calculations carried out in the present study are
the following combinations of realistic two- and three
nucleon interactions:~1! the Argonnev14 two-nucleon inter-
action ~AV14! @28#; ~2! the Argonnev14 two-nucleon and
Urbana model-VIII three-nucleon@29# interactions~AV14/
VIII !; ~3! the Argonnev18 two-nucleon @30# and Urbana
model-IX three-nucleon@31# interactions~AV18/IX !. The
v18model contains explicit charge-independence and cha
symmetry breaking terms, as well as a complete treatmen
theNN electromagnetic interaction, including magnetic m
ment, two-photon-exchange, Darwin-Foldy, and vacuum
larization corrections to the Coulomb interaction. It also h
a weaker tensor component than the older Argonnev14
model.

The calculated3H and 3He binding energies, andnd and
pd doublet and quartet scattering lengths are reported
Table I, along with the~available! experimental values. We
note that the strength of the three-nucleon interaction is
each case, adjusted to reproduce the triton anda-particle
experimental binding energies in converged Faddeev@29,36#
and Green’s function Monte Carlo@31,37# calculations. As
the value of the doubletnd scattering length is correlate
with that of the triton binding energy@38#, both the AV14/
VIII and AV18/IX Hamiltonian models predict very well the
measured2a. Without the three-nucleon interaction, the2a
value is overestimated by almost a factor of 2. In contra
the quartet scattering length4a has very little dependence o
the Hamiltonian model, since in that channel the proces
dominated by repulsive Pauli principle effects.

D. Nuclear wave functions with explicitD-isobar components

Following a method originally proposed in Ref.@23#, ex-
plicit D-isobar components are approximately included in
nuclear wave functions by writing
for
-

ge-
t of
-
o-
as

in

in

st,

is

he

C5FS)
i, j

~11Ui j
TR!GCN, ~2.11!

whereS is the symmetrizer,CN contains only nucleon de-
grees of freedom, and the transition operatorsUi j

TR are de-
fined as

Ui j
TR5Ui j

ND1Ui j
DN1Ui j

DD, ~2.12!

Ui j
ND5@ustII~r i j !s i•Sj1uttII~r i j !Si j

II #t i•T j , ~2.13!

Ui j
DD5@ustIII ~r i j !Si•Sj1uttIII ~r i j !Si j

III #T i•T j . ~2.14!

Here, Si and T i are transition spin and isospin operators,
which convert nucleoni into a D isobar;Si j

II and Si j
III are

tensor operators in which the Pauli spin operators of particle
i ~or j ), and particlesi and j are replaced by corresponding
spin-transition operators. TheUi j

TR vanishes in the limit of
large interparticle separation, since noD components can
exist asymptotically.

In principle, theUi j
TR andCN could be determined varia-

tionally by using a Hamiltonian such as the Argonnev28Q
model @23,28#, that contains both nucleon andD-isobar de-
grees of freedom. Instead we use transition correlations
ustII(r i j ), etc. ~shown in Fig. 1! that approximately repro-
duce two-body bound-state and low-energy scattering wave
functions for the Argonnev28Q model, and take the PHH
wave functions given above as theCN in Eq. ~2.11!. The
validity of such an approximation has been discussed at
length in Ref. @23#. Here we only note that~1! since the
correlation functionsust II , etc., are short-ranged, they are
expected to be weaklyA dependent;~2! it is important that
theCN used in Eq.~2.11!, obtained from thev14 interaction
~phase equivalent to thev28Q interaction!, be proportional to
that projected out from the full wave function for thev28Q
interaction. This has been explicitly verified by direct calcu-
lation in the two-body problem@23#. Finally, we note that the
new Argonnev18 ~nucleons only! interaction has no avail-
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able phase-equivalent nucleon and delta counterparts. Th
we insist on using theUi j

TR obtained from thev28Q model
even when using in Eq.~2.11! the CN from the v18. It is
expected that this inconsistency has no significant impact o
the results reported in the present work.

D-isobar components in nuclear wave functions are com
monly estimated using first-order perturbation theory, an
neglecting the kinetic energies in the denominators. Suc
calculations are equivalent to using Eq.~2.11! for the nuclear
wave function with the components ofUi j

TR given by

Ui j
ND,PT5

vNN→ND

m2mD
, ~2.15!

Ui j
DD,PT5

vNN→DD

2~m2mD!
, ~2.16!

where vNN→ND and vNN→DD are transition interactions
~taken, in the present work, from the Argonnev28Q model!.
This perturbative treatment has been shown to be inaccura
and may lead to a substantial overprediction of the impo
tance ofD degrees of freedom in nuclei. For example, the
cross section for the3He(n,g) 4He reaction has been calcu-
lated to be, respectively, 112mb and 86mb @23# depending
on whetherD admixtures in the nuclear wave functions are
included perturbatively or nonperturbatively, as outlined
above.

III. THE NUCLEAR ELECTROMAGNETIC CURRENT

The nuclear electromagnetic current is expanded into
sum of one- and two-body terms that operate on the nucleo
andD-isobar degrees of freedom@23#:

j ~q!5(
i
j i
~1!~q!1(

i, j
j i j
~2!~q!, ~3.1!

where q is the photon momentum. The one-body term is
written as

FIG. 1. Transition correlation functions obtained for the Ar-
gonnev28Q interaction model.
us

n

-

h

te,
-

a
n

j i
~1!~q!5 (

B,B85N,D

j i
~1!~q;B→B8!, ~3.2!

with

j i
~1!~q;N→N!5

1

4m
$pi ,e

iq•r i%~11tz,i !2
i

4m
eiq•r iq

3s i~ms1mvtz,i !, ~3.3!

j i
~1!~q;N→D!52

i

2m
mgNDe

iq•r iq3SiTz,i , ~3.4!

j i
~1!~q;D→D!52

i

24m
mgDDe

iq•r iq3S i~11Qz,i !,

~3.5!

whereS (Q) is the Pauli operator for theD spin ~isospin!,
and the expression forj i

(1)(q;D→N) is obtained from that
for j i

(1)(q;N→D) by replacing the transition spin and isospin
operators by their Hermitian conjugates. Herems50.88mN
and mv54.706mN are the isoscalar and isovector nucleon
magnetic moments in terms of nuclear magnetonsmN ;
mgND is taken equal to 3mN , as obtained from an analysis of
gN data in theD resonance region@39#; mgDD54.35mN by
averaging the values recently obtained from a soft-photon
analysis of pion-proton bremsstrahlung data near theD11

resonance@40#. Excitation of theD isobar via an electric
quadrupole transition is neglected in the current
j i
(1)(q;N→D), since the associated pion photoproduction
amplitude is experimentally found to be small at resonance
@41#. We also note that in Eq.~3.5! theD-convection current
is neglected.

Only NN→NN two-body terms are included inj i j
(2)(q).

These are separated into ‘‘model-independent’’~MI ! contri-
butions, determined from theNN interaction~the Argonne
v14 or v18 models in the present study! following a prescrip-
tion originally proposed by Riska@42#, and ‘‘model-
dependent’’ ~MD! ones associated with therpg andvpg
electromagnetic couplings:

j i j
~2!5 j i j ,MI

~2! 1 j i j , MD
~2! . ~3.6!

Since the expressions for these MI and MD currents are scat
tered in a number of references@4,24,25#, they are listed in
Appendix A of this work for completeness. In principle,
there are also two-body currents associated with the
NN↔ND and NN↔DD transitions. However, these have
not been included in the present study.

The MD currents are purely transverse, and depend on a
set of cutoff parameters and coupling constants only approxi-
mately known. Their contribution for momentum transfers
<1 GeV/c is small when compared to that of the MI cur-
rents@24#. The latter are constructed from theNN interaction
so as to satisfy current conservation,

q• j i j
~2!5Fv i j ,eiq•r i 11tz,i

2
1 i→ j G , ~3.7!
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exactly @24,42#. While such a prescription cannot obviously
be unique, it does lead to two-body currents, which ha
been shown to provide, at low and moderate values of m
mentum transfers~typically, below 1 GeV/c), a satisfactory
description of the deuteron threshold electrodisintegrati
@25#, 1H(n,g) 2H capture cross section at thermal neutro
e
o-

n
n

energies@25#, and magnetic moments and form factors of t
trinucleons@24,29#.

The most important of the MI currents are those asso
ated with the vct(r i j )t i•t j , vst(r i j )s i•s jt i•t j , and v tt

(r i j )Si j t i•t j components of the interaction. The correspon
ing current operators are given in momentum space by@24#
j i j ,PS
~2! ~k i ,k j !52 i ~t i3t j !zFvPS~kj !s i~s j•k j !2vPS~ki !s j~s i•k i !

k i2k j
ki
22kj

2 @vPS~ki !2vPS~kj !#~s i•k i !~s j•k j !G , ~3.8!

j i j ,V
~2! ~k i ,k j !52 i ~t i3t j !zFvV~kj !s i3~s j3k j !2vV~ki !s j3~s i3k i !2

vV~ki !2vV~kj !

ki
22kj

2

3@~k i2k j !~s i3k i !•~s j3k j !1~s i3k i !s j•~k i3k j !1~s j3k j !s i•~k i3k j !#1
k i2k j
ki
22kj

2 @vVS~ki !2vVS~kj !#G ,
~3.9!
whereq5k i1k j , andvPS(k), vV(k), andvVS(k) are related
to the Fourier transforms of the radial functionsvst(r ),
v tt(r ), andvct(r ), as defined in Appendix A, by

vPS~k!52v tt~k!2vst~k!, ~3.10!

vV~k!5v tt~k!1vst~k!, ~3.11!

vVS~k!5vct~k!. ~3.12!

In a one-boson-exchange~OBE! interaction model, in which
the isospin-dependent central, spin-spin, and tensor com
nents are due top and r exchanges,vPS(k), vV(k), and
vVS(k) are given by

vPS~k!→
f p
2

mp
2

1

k21mp
2 , ~3.13!

vV~k!→2
gr
2

4m2

~11k!2

k21mr
2 , ~3.14!

vVS~k!→gr
2 1

k21mr
2 , ~3.15!

wheremp andmr are the meson masses,fp , gr , andk are
the pseudovectorpNN, the vector and tensorrNN coupling
constants (fp

2 /4p50.075,gr
2/4p50.55, andk56.6!, respec-

tively. The resultingj i j ,PS
(2) and j i j ,V

(2) ~suitably modified by the
inclusion of form factors at thepNN andrNN vertices! then
have the standard forms commonly used in the literatu
@3,18,43#. The Argonnev14 and v18 interactions are not
strictly OBE models. However, thevPS(k), vV(k), and
vVS(k) components, projected out from thevct, vst, and
v tt interactions, are quite similar to those due top and r
exchanges@24#. This is illustrated in Fig. 2 for thevPS(k)
component, associated to which is the leading MI curre
operator.
po-

re

nt

Additional but far less important MI two-body currents
are obtained from the momentum-dependent terms of the
interaction. They are predominantly isoscalar and give small
contributions to the magnetic moment and structure function
B(q) of the deuteron@25,30#, and to the isoscalar combina-
tion of the magnetic moments and form factors of the tri-
nucleons@24,29#.

IV. CROSS SECTION AND POLARIZATION
OBSERVABLES

A. Definitions

In the center of mass~c.m.! frame, the radiative transition
amplitude between an initialdN continuum state with deu-
teron and nucleon spin projectionss2 ands, respectively,
and relative momentump, and a final trinucleon bound state
with spin projections3 is given by

FIG. 2. The pseudoscalar components of the Argonnev14
~AV14! and v18 ~AV18! interactions are compared with the one-
pion-exchange potential, Eq.~3.13!.
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j s3s2s
l ~p,q!5^C3

~1/2!s3u êl* ~q!• j†~q!uCp,s2s
~1 ! &, ~4.1!

where el(q), l561, are the spherical components of th
photon polarization vector. For adp state the wave function
C (1) is related to the wave functionsC211

JJzLS introduced in
Sec. II via

Cp,s2s
~1 ! 54p(

SSz
^ 1
2s,1s2uSSz&

3 (
LMJJz

i L^SSz ,LM uJJz&YLM* ~ p̂!C̄211
LSJJz,

~4.2!

C̄211
LSJJz5eisL (

L8S8
@12 i JR#LS,L8S8

21 C211
L8S8JJz, ~4.3!

wheresL is the Coulomb phase shift. For adn state the
factoreisL is omitted. The wave functionC (1) satisfies out-
going wave boundary conditions, and is normalized to un
flux, while the two- and three-nucleon bound-state wa
functions are normalized to one.

The cross section and polarization observables are ea
obtained from the transition matrix elementsj s3s2s

l (p,q).
e

it
e

sily

The unpolarized differential cross section is written as

su~u!5
1

6
s0 (

ls3s2s
u j s3s2s

l ~p,q!u2, ~4.4!

where the factor 1/6 comes from the average over the initia
state polarizations,u is the angle betweenp andq ~the vec-
torsp andq define thexz plane!, and

s05
1

8p2v rel

q

11q/m3
. ~4.5!

Herev rel is thedN relative velocity andm3 the mass of the
trinucleon. The c.m. energy of the emittedg ray is given by

q5
B32B21p2/2m

@A122~B32B21p2/2m!/m311#/2
, ~4.6!

whereB2 andB3 are the binding energies of the deuteron
and trinucleon. The differential cross sections f i(u) for a
process in which an initial state with polarization defined by
the density matrixr i leads to a final polarization state with
density matrixr f , can be expressed as
s f i~u!54 s0 (
ls3s2s

(
l8s38s28s8

@ j s3s2s
l ~p,q!#~r i !s2s,s

28s8@ j s
38s

28s8
l8 ~p,q!#* ~r f !l8s

38 ,ls3
. ~4.7!
r

s

r

The initial density matrix is given by the product of the
nucleon and deuteron density matrices:

~r i !s2s,s
28s8

@PN ,Pd
lm

#
5
1

2
@11s•Pp#s,s8

1

3 F(
lm

Pd
lmtlmG

s2 ,s28

,

~4.8!

where PN and Pd
lm are the polarizations of the spin-1/2

nucleon and spin-1 deuteron beams, respectively. The mat
cestlm are defined as

ts2s
28

lm
5A3(

s2s28
~2 !12s2^1s28 ,12s2ulm&. ~4.9!

For example, an unpolarized deuteron beam hasPd
lm

5dl0dm0. Since in the final state we are interested in pro-
cesses for which only the polarization of the emitted photon
is detected,r f can be written as

~r f !ls3 ,l8s
38

@Pl ,Pc# 5
1

2
@dl,l81Pl dl,2l81lPcdl,l8#

1

2
ds3 ,s38

,

~4.10!

where Pl (Pc) is the linear~circular! polarization of the
emitted photon. Note thatPl 5Py2Px .
i-

With the density matrices given in Eqs.~4.8! and ~4.10!
the initial and final state polarizations are defined by assign-
ing the quantitiesPN , Pd

lm , Pl , andPc . Polarization ob-
servables are then obtained from differences of cross section

s f i~u![s~u;PN ,Pd
lm ,Pl ,Pc!. ~4.11!

Thus the proton and deuteron vector and tensor analyzing
powersAy(u) andT20(u) are given, respectively, by

su~u!Ay~u!5
1

2
@s~u;PN5 ŷ,dl0dm0,0,0!

2s~u;PN52 ŷ,dl0dm0,0,0!#, ~4.12!

su~u!T20~u!5
1

2
@s~u;0,1dl2dm0,0,0!

2s~u;0,2dl2dm0,0,0!#. ~4.13!

Expressions for more complicated double polarization ob-
servables are obtained in similar fashion. The photon linea
polarization coefficientPg(u) is defined as

su~u!Pg~u!5
1

2
@s uu~u!2s'~u!#, ~4.14!

where
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s'~u!5s~u;0,dl0dm0 ,Pl 51,0!, ~4.15!

s uu~u!5s~u;0,dl0dm0 ,Pl 521,0!. ~4.16!

Heres uu(u) @s'(u)# corresponds to a capture cross sectio
in which an unpolarized initial state leads to emission of
photon with polarization parallel~perpendicular! to the reac-
tion plane. The observation of circular polarizationPG(u),

su~u!PG~u!5
1

2
@s~u;PN ,dl0dm0,0,Pc51!

2s~u;PN ,dl0dm0,0,Pc521!#,

~4.17!
-

i

-
t

n
a

requires the polarization of the initial proton~or neutron!
beam. If the process is dominated byS-wave capture, as is
the case for the2H(n,g) 3H reaction at thermal neutron en
ergies, thenPG(u) is simply given by

PG~u!5RcPN•q̂ ~S-wave capture only! , ~4.18!

whereRc is the so-called polarization parameter.

B. Expressions in terms of electric and magnetic multipoles

The expansion of the transition matrix eleme
j s3s2s
l (p,q) in terms of electric and magnetic multipole

El
LSJ(q) andM l

LSJ(q), respectively, is given by@44#
j s3s2s
l ~p,q!52p (

LSJJzl m
l̂ L̂ iL~2 i! l ^ 1

2s,1s2uSJz&^SJz ,L0uJJz&^JJz ,l mu 12s3&Dm,2l
l ~0,u,0!@2lM l

LSJ~q!2El
LSJ~q!#,

~4.19!
tic
e
red

ic
al
where Dm,2l
l are standard rotation matrices@45#, and

L̂[A2L11 and similarly for l̂ . The angleu is defined as
that between thep direction~which is also taken as the quan
tization axis of the initial and final nuclear spins! and theq
direction. We have adopted a different spin coupling ord
between the channel spin and orbital angular momentum
the initial state with respect to that used in Ref.@46#. Regard-
ing the choice of phase between the electric and magne
multipole components of the transverse vector potential, o
definition is equivalent to the choice of the positive sign
Eq. ~17! of Ref. @46#.

By evaluating the sums in Eqs.~4.4! and~4.7!, and using
the product property of theD matrices, the angular depen
dence of the unpolarized cross section as well as that of
vector and tensor analyzing powers and photon linear co
ficient of interest in the present study are made explicit@46#:

su~u!5 (
k>0

akPk~cosu!, ~4.20!

su~u!Ay~u!5 (
k>1

bkPk
1~cosu!, ~4.21!
er
of

tic
ur
n

he
ef-

su~u!T20~u!5 (
k>0

ckPk~cosu!, ~4.22!

su~u!Pg~u!5 (
k>2

dkPk
2~cosu!, ~4.23!

wherePk (Pk
m) are Legendre polynomials~associated Leg-

endre functions!, and the coefficientsak , bk , ck , and dk
denote appropriate combinations of electric and magne
multipoles. Expressions for the leading coefficients in th
expansions above for each of the observables conside
here are listed in Appendix B of the present work.

V. CALCULATION

In this section we discuss the evaluation of the electr
and magnetic multipole matrix elements. By using the parti
wave decomposition of the wave functionC (1) in Eq. ~4.2!,
we write
j s3s2s
l ~p,q!54p(

SSz
^ 1
2s,1s2uSSz& (

LMJJz
i L^SSz ,LM uJJz&YLM* ~ p̂! j ls3

LSJJz~q!, ~5.1!

where

j ls3

LSJJz~q!5^C3
~1/2!s3u êl* ~q!• j†~q!uC̄211

LSJJz&. ~5.2!

In a frame where theq direction also defines the quantization axis for the nuclear spins, the matrix elementj ls3

LSJJz has the

multipole expansion@44#
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j ls3

LSJJz~q!5Ap (
l 51

`

l̂ ~2 i! l ^JJz ,l 2lu 12s3&@2lM l
LSJ~q!2El

LSJ~q!#. ~5.3!
v

m

,

h

-
,

s
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n
s
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nd

ll
We note that the expansion above is different from that gi
in Eq. ~4.19!, since in the latter the quantization axis for th
nuclear spins was taken as that defined by the relative
mentump direction, andq made an angleu with p.

Using Eq. ~5.3!, the El
LSJ andM l

LSJ are obtained from
linear combinations of thej ls3

LSJJz matrix elements. We find

for example,

M1
0~1/2!~1/2!~q!5

i

A2p
j21~1/2!
0~1/2!~1/2!2~1/2!~q!, ~5.4!

M1
0~3/2!~3/2!~q!5

i

2A2p
@ j21~1/2!

0~3/2!~3/2!2~1/2!~q!

2A3 j11,~1/2!
0~3/2!~3/2!~3/2!~q!#. ~5.5!

The problem is now reduced to the evaluation of t
j ls3

LSJJz matrix elements, which we write schematically as

j f i5
^C f u j uC i&

@^C f uC f&^C i uC i&#1/2
. ~5.6!

The initial and final statesuCx& (x5 i or f ) have the form of
Eq. ~2.11!. It is convenient to expand these as@23#

uCx&5CN
x 1(

i, j
Ui j
TRCN

x 1••• ~5.7!

and the matrix element of the current operator becomes

FIG. 3. Diagrams included inj (D). Wavy, thin, thick, and
dashed lines denote photons, nucleons,D isobars, and transition
correlationsUi j

TR respectively.
en
e
o-

e

^C f u j uC i&5^CN
f u j ~N only!uCN

i &1^CN
f u j ~D!uCN

i &,
~5.8!

where j (N only) denotes all one- and two-body contribu
tions toj (q) which only involve nucleon degrees of freedom
i.e., j (N only)5 j (1)(N→N)1 j (2)(NN→NN). The opera-
tor j (D) includes terms involving theD-isobar degrees of
freedom, coming from the explicitD currents j (1)(N→D),
j (1)(D→N), and j (1)(D→D), and the transition operator
Ui j
TR The operatorj (D) is illustrated in Fig. 3. The terms in

Figs. 3~a!–3~g! are two-body current operators. Those
Figs. 3~h!–3~l! are to be interpreted as normalizatio
corrections to the ‘‘nucleonic’’ matrix element
^CN

f u j (N only)uCN
i &, due to the presence ofD-isobar com-

ponents in the wave functions. We note that not included
j (D) are all remaining connected three-body contributions
the type shown in Fig. 4. These are neglected in the pres
work, since they are expected to be significantly smaller th
those considered in Fig. 3.

Each of the terms in Fig. 3 is expressed as an opera
acting on the nucleon coordinates. For example, the term
Figs. 3~a! and 3~b! have the structure@23#

(
i j

j i~D→N!Ui j
DN1Ui j

DN† j i~N→D!, ~5.9!

which can easily be reduced to operators involving on
Pauli spin and isospin matrices by use of the identity

S†•AS•B5
2

3
A•B2

i

3
s•~A3B!, ~5.10!

whereA andB are vector operators that commute withs,
but not necessarily with each other. Expressions for the o
terms in Fig. 3 are obtained in a similar fashion@23#.

The normalization of the wave function is given by@23#

FIG. 4. Diagrams associated with connected three-body ter
which are neglected in the present work. Wavy, thin, thick, a
dashed lines denote photons, nucleons,D isobars, and transition
correlationsUi j

TR respectively, while the dotted line represents a
two-body current contributions included inj i j

(2) .
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^CuC&5^CNuCN&1K CNU(
i, j

@2Ui j
DN†Ui j

DN1Ui j
DD†Ui j

DD#UCNL 1~ three-body terms!, ~5.11!
i

i

e

d

-

-

-

and the three-body terms have been neglected consiste
with the approximation introduced in Eq.~5.8!.

The matrix elements in Eqs.~5.8! and ~5.11! are com-
puted by Monte Carlo integration. The wave functions a
written as vectors in the spin-isospin space of the thr
nucleons for any given spatial configurationR5$r1 ,r2 ,r3%.
For the given R, we calculate the state vecto
@ j (N only)1 j (D)#uCN

f & by performing exactly the spin-
isospin algebra with the techniques described in Re
@24,47#. The spatial integrations are carried out with th
Monte Carlo method by sampling theR configurations
according to the Metropolis algorithm@48#. Finally,
we note that the statistical errors in the Monte Car
evaluation of matrix elements of the type

^C (1/2)s3u ê* (q)• j†(q)uC̄211
0(1/2)(1/2)Jz& are significantly re-

duced by explicitly enforcing the orthogonality between th
initial dN S-wave doublet continuum state and the final tr
nucleon bound state, namely

uC̄211
0~1/2!~1/2!Jz&→uC̄211

0~1/2!~1/2!Jz&

2(
s38

uC
3
~1/2!s38&^C3

~1/2!s38uC̄211
0~1/2!~1/2!Jz&.

~5.12!

VI. RESULTS

In this section we present our estimates for the cross s
tion and photon polarization parameter of the thermal ne
tron radiative capture on2H, and for theS-factor, vector and
tensor analyzing powers, and photon linear polarization c
efficient of the2H(pW ,g) 3He andp(dW ,g) 3He reactions in the
center of mass energy range 0–100 keV. In Table II we g
the results for the two- and three-body bound-state wa
function normalizationŝCuC&/^CNuCN&.

In Tables III–VIII, the impulse-approximation~IA ! re-
sults have been obtained by using the ‘‘nucleonic’’ on
body current in Eq.~3.3!, while the IA1PS results include in
addition the leading two-body current contribution assoc
ated with the ‘‘model-independent’’~MI ! jPS term, Eq.
~3.8!. The IA1MI and IA1MI1MD results correspond to
calculations in which, respectively, only the MI and both th
MI and ‘‘model-dependent’’~MD! two-body current contri-
butions are included~in addition to the IA contribution!. Fi-
nally, the IA1•••1D results correspond to the complet
calculations includingD-isobar components in the nuclea
wave function.

In these tables as well as in Figs. 7–11, the cumulat
nucleonic contributions are normalized as

@ IA1•••1MD#5
^CN

f u j ~N only!uCN
i &

@^CN
f uCN

f &^CN
i uCN

i &#1/2
. ~6.1!
ntly
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ee
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e
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However, when the isobaric contributions are added to th
cumulative sum, the normalization changes to

@ IA1•••1D#5
^C f u j ~N only!1 j ~D!uC i&

@^C f uC f&^C i uC i&#1/2
. ~6.2!

In the previous equations, the normalization of the initial
scattering state is the same as that ofd, up to corrections of
order ~volume! 21.

We also report results, denoted with IA1•••1DPT, in
which theD components in the nuclear wave functions are
treated in perturbation theory, as discussed in Sec. II D, an
the j (D) only includes the operators in Figs. 3~a! and 3~b!
~in fact, this approach is most commonly used to study the
effect ofD degrees of freedom in nuclei@3,18#!. In this case,
the cumulative contributions@IA1•••1D PT# are normal-
ized as in Eq.~6.1!.

As already mentioned in Sec. IV, three-body terms have
not been retained in the evaluation of either the matrix ele
ments ^C f u j (D)uC i& or the normalization, Eq.~5.11!, as
they are expected to provide a small correction@23#.

A. Thermal nd radiative capture

At thermal energies the reaction proceeds through
S-wave capture predominantly via magnetic dipole transi
tions M1

0(1/2)(1/2) and M1
0(3/2)(3/2) from the initial doublet

J51/2 and quartetJ53/2 dn scattering states. In addition,
there is a small contribution due to an electric quadrupole
transitionE2

0(3/2)(3/2) from the initial quartet state.
The calculations have been carried out with wave func

tions obtained from the AV14/VIII and AV18/IX Hamil-
tonian models. The calculated values for theM̃1

0(1/2)(1/2),
M̃1

0(3/2)(3/2), and Ẽ2
0(3/2)(3/2) reduced matrix elements

~RME’s!, which are related to those defined in Eq.~5.3! via

X̃ l
LSJ5

A6p

qmN
A4pXl

LSJ, ~6.3!

are listed in Table III. Here,X stands for eitherE or M , and
mN is nuclear magneton. In terms of theX̃l

LSJRME, the total
cross section is given by

sT5
2

9

a

v rel

q3

4m2 (
l LSJ

uẼl
LSJu21uM̃ l

LSJu2, ~6.4!

wherea5e2/4p.
Inspection of Table III shows the following.

TABLE II. The wave function normalization ratios
^CuC&/^CNuCN& for the two- and three-body systems.

Hamiltonian 2H 3H

AV14/VIII 1.004 1.024
AV18/IX 1.004 1.025
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TABLE III. Reduced matrix elements~RME’s! in fm3/2 calculated with the AV14/VIII and AV18/IX Hamiltonian models for the
2H(n,g) 3H reaction at thermal energies. See text for notation. Note that theM1 RME’s are purely imaginary, whereas theE2 RME is purely
real. The statistical errors associated with the Monte Carlo integrations are less than 1% for theM1 RME, and about 10% for theE2 RME.

AV14/VIII AV18/IX

M̃1
0(1/2)(1/2) M̃1

0(3/2)(3/2) Ẽ 2
0(3/2)(3/2) M̃1

0(1/2)(1/2) M̃1
0(3/2)(3/2) Ẽ 2

0(3/2)(3/2)

IA –10.7 13.2 –1.3 –10.7 13.4 –0.17
IA1PS –19.3 12.4 –1.0 –18.3 12.6 –0.16
IA1MI –22.2 12.3 –1.0 –21.6 12.6 –0.13
IA1MI1MD –22.5 12.1 –1.0 –21.8 12.5 –0.14
IA1•••1DPT –26.6 11.6 –1.0 –25.9 12.0 –0.14
IA1•••1D –25.1 11.8 –1.0 –24.4 12.2 –0.14
t
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~1! As expected, the electric quadrupole (E2) RME is
much smaller, in absolute value, than both the doublet
quartet magnetic dipole (M1) RME.

~2! In IA the quartetM1 RME is, in absolute value, abou
23% larger than the doubletM1. However, two-body curren
and D degrees of freedom contributions~row labeled IA
1•••1D) are large and interfere constructively with the I
contribution for the doubletM1, while they are much smalle
and interfere destructively with the IA contribution for th
quartetM1. Consequently, the IA1•••1D doubletM1 is
found to be larger than the quartetM1 by more than a factor
of 2.

~3! In IA both the doublet and quartetM1 RME are found
to be rather insensitive to the Hamiltonian model used; ho
ever, in the IA1PS calculation, the AV14/VIII prediction for
the doubletM1 RME is, in absolute value, about 5% larg
than that obtained with the AV18/IX Hamiltonian. Thev18
has a weaker tensor force than thev14, leading to a weaker
PS current~the dominant two-body current!. However, the
AV14/VIII result for the doubletM1 RME is only 3% larger
than the AV18/IX result in the approximation IA1•••1D.

~4! The predicted values for theE2 RME, in contrast to
those for theM1 RME, are found to be very sensitive to th
Hamiltonian model used, even in IA. The reason for su
sensitivity is discussed below.

The results for the cross section and photon polariza
parameter are presented in Table IV, along with the exp
mental data. The cross section in IA is calculated to be
proximately a factor of 2 smaller than the measured va
while the IA1•••1D calculations based on the AV14/VII
and

t
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ap-
ue,
I

and AV18/IX Hamiltonians overestimate the experimen
value by 18 and 14 %, respectively. It should be noted, h
ever, that the common perturbative treatment ofD-isobar
degrees of freedom~row labeled IA1•••1DPT) leads to a
significant increase of the discrepancy between theory
experiment.

The photon polarization parameter is very sensitive
two-body currents. For example, for the AV18/IX Ham
tonian their inclusion produces roughly a sixfold increase
absolute value, of the IA prediction~rows labeled IA and
IA1MI1MD in Table IV!. Contributions associated wit
D components in the nuclear wave functions lead only t
further 7% increase~absolute value! of the IA1MI1MD re-
sults. More interesting is the sensitivity displayed byRc to
the smallE2 RME, particularly for the AV14/VIII Hamil-
tonian. InS-wave capture this matrix element is predom
nantly due to transitionsS(2H)→ D(3H) and D(2H)→
S(3H), whereS andD denoteS- andD-wave components in
the bound-state wave functions. In the case of the AV18
Hamiltonian, the contributions associated with these tra
tions interfere destructively, thus producing a smallE2
RME; in contrast, for the AV14/VIII Hamiltonian the inter
ference between these contributions is constructive. Th
most clearly seen by considering the functi
Ẽ 2

0(3/2)(3/2)(q;r dn) such that

Ẽ2
0~3/2!~3/2!~q!5E

0

`

drdnẼ 2
0~3/2!~3/2!~q;r dn!, ~6.5!

wherer dn is thedn relative distance. This function is easi
Carlo
TABLE IV. Cumulative contributions to the cross section~in mb! and photon polarization parameterRc of the reaction2H(n,g) 3H at
thermal energies calculated with the AV14/VIII and AV18/IX Hamiltonian models.Rc(M1) @Rc(M11E2)# has been calculated without
~with! inclusion of the electric quadrupole contribution. See text for notation. The statistical errors associated with the Monte
integrations are less than 2%. The experimental values forsT andRc are from Refs.@5,8#, respectively.

sT Rc(M1) Rc(M11E2)
AV14/VIII AV18/IX AV14/VIII AV18/IX AV14/VIII AV18/IX

IA 0.225 0.229 –0.089 –0.083 0.029 –0.068
IA1PS 0.409 0.383 –0.422 –0.397 –0.345 –0.385
IA1MI 0.502 0.481 –0.460 –0.446 –0.389 –0.437
IA1MI1MD 0.509 0.489 –0.464 –0.452 –0.394 –0.442
IA1•••1DPT 0.658 0.631 –0.492 –0.487 –0.430 –0.478
IA1•••1D 0.600 0.578 –0.485 –0.477 –0.420 –0.469
Expt. 0.50860.015 –0.4260.03
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TABLE V. RME in fm3/2 calculated with the AV14/VIII and AV18/IX Hamiltonian models for the reaction2H(p,g) 3He at zero energy.
See text for notation. Note that theM1 andM2 RME’s are purely imaginary, whereas theE1 andE2 RME’s are purely real. The statistical
errors associated with the Monte Carlo integrations are less than 1% for theM1 and doubletE1 RME, about 5% for the quartetE1 RME,
and of the order of 10~50! % for theE2 (M2) RME.

AV14/VIII

IA IA 1PS IA1MI IA 1MI1MD IA1•••1DPT IA1•••1D

M̃1C
0(1/2)(1/2) –18.7 –30.4 –32.7 –33.6 –39.1 –36.1

M̃1C
0(3/2)(3/2) 27.2 25.7 24.9 25.0 24.1 24.4

Ẽ2C
0(3/2)(3/2) 0.86 1.12 1.07 1.08 1.08 1.06

Ẽ1C
1(1/2)(1/2) –19.2 –19.7 –20.2 –20.2 –20.2 –19.9

Ẽ1C
1(3/2)(1/2) –1.30 5.85 4.21 4.27 4.27 4.20

Ẽ1C
1(1/2)(3/2) 28.3 31.5 32.4 32.4 32.4 31.9

Ẽ1C
1(3/2)(3/2) –0.01 3.73 3.07 3.10 3.11 3.06

M̃2C
0(1/2)(3/2) –0.14 –0.14 –0.12 –0.12 –0.12 –0.12

M̃2C
0(3/2)(3/2) 0.20 0.20 0.19 0.19 0.19 0.19

AV18/IX

IA IA 1PS IA1MI IA 1MI1MD IA1•••1DPT IA1•••1D

M̃1C
0(1/2)(1/2) –19.4 –30.1 –32.1 –32.9 –38.4 –35.4

M̃1C
0(3/2)(3/2) 28.1 26.7 25.9 25.9 25.1 25.3

Ẽ2C
0(3/2)(3/2) 0.85 1.10 1.06 1.07 1.07 1.05

Ẽ1C
1(1/2)(1/2) –21.1 –21.8 –22.2 –22.2 –22.2 –21.7

Ẽ1C
1(3/2)(1/2) –1.27 5.32 3.74 3.79 3.79 3.71

Ẽ1C
1(1/2)(3/2) 29.5 32.6 33.3 33.3 33.3 32.6

Ẽ1C
1(3/2)(3/2) –0.01 3.43 2.84 2.87 2.87 2.81

M̃2C
0(1/2)(3/2) –0.15 –0.14 –0.15 –0.15 –0.15 –0.15

M̃2C
0(3/2)(3/2) 0.26 0.28 0.28 0.29 0.29 0.28
h

c
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nd-
f the
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n

e

obtained by binning the appropriate combination ofj ls3

0JJJz

matrix elements as function ofr dn in the Monte Carlo calcu-
lation @49#.

The functionsẼ 2
0(3/2)(3/2)(q;r dn), as obtained in IA, are

shown in Fig. 5 by the solid curves for the AV14/VIII and
AV18/IX Hamiltonian models. We also show the results ob
tained by switching off either the deuteron or tritium
D-state components. By inspecting Fig. 5, we see that for t
AV18/IX model theE2 RME results from the delicate can-
cellation between positive and negative contributions asso
ated, respectively, with the deuteron and tritiumD states.
-

e

i-

However, no such cancellation is obtained for the AV14/V
model. Thus, theE2 RME appears to be very sensitive up
the D-state content of the two- and three-nucleon bou
state wave functions and, therefore, upon the strength o
tensor force, as reflected in the large difference between
AV14/VIII and AV18/IX predictions. It is unfortunate tha
due to the large two-body current contributions affecting
photon polarization parameter, the sensitivity displayed
this observable to theE2 RME cannot be exploited to gai
information on the tensor interaction.

Finally, we note that the AV14/VIII prediction for th
cross section in the approximation IA1PS1DPT is 0.545 mb.
n
he
TABLE VI. Doublet and quartetE1 RME in fm3/2 calculated with the AV14 and AV14/VIII Hamiltonian models for the reactio
2H(p,g) 3He at zero energy in IA and in the approximations IA1MI and LW. See text for notation. Statistical errors associated with t
Monte Carlo integrations are in the range 1–5 %.

AV14 AV14/VIII
IA IA 1MI LW IA IA 1MI LW

Ẽ1C
1(1/2)(1/2) –24.1 –25.5 –27.7 –19.2 –20.2 –23.5

Ẽ1C
1(3/2)(1/2) –0.9 4.6 3.0 –1.3 4.2 3.1

Ẽ1C
1(1/2)(3/2) 32.5 36.5 37.1 28.3 32.4 33.5

Ẽ1C
1(3/2)(3/2) –0.6 2.5 1.3 –0.0 3.1 1.4
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This result is about 15% smaller than that reported by F
and collaborators@3# for the same Hamiltonian. The differ
ence, however, is mostly due to the different value used
the N→D transition magnetic moment: we usemgND

53mN , while Friar et al. usedmgND53.993mN from the
quark model. Indeed, if we use the latter value formgND , our
result becomes 0.630 mb, in much better agreement with
reported in Ref.@3#. As a last remark, we note that theRc
parameter, obtained in the IA1PS1DPT approximation by
only including theM1 RME, is calculated to be20.49, again
in excellent agreement with the value obtained in Ref.@3#.

B. Thermal pd radiative capture

In Tables V and VI we present the results for the ze
energy RME and in Fig. 7 and Table VII the results for t
astrophysicalS factor of the2H(p,g) 3He reaction. The latte
quantity is defined as

S~Ec.m.!5Ec.m.sT~Ec.m.!e
2pa/v rel, ~6.6!

wheresT(Ec.m.) is the total cross section. We note that
Table V, the zero-energy RME are related to those define
Eq. ~5.3! via

TABLE VII. Cumulative contributions in eV b to theS- and
P-wave capture zero energyS factor of the reaction2H(p,g) 3He
calculated with the AV14/VIII and AV18/IX Hamiltonian models
See text for notation. The statistical errors associated with
Monte Carlo integrations are less than 2%. The experimental va
are taken from Ref.@11#.

SS SP
AV14/VIII AV18/IX AV14/VIII AV18/IX

IA 0.0605 0.0647 0.0650 0.0731
IA1PS 0.0880 0.0900 0.0794 0.0876
IA1MI 0.0939 0.0943 0.0822 0.0900
IA1MI1MD 0.0971 0.0972 0.0824 0.0901
IA1•••1DPT 0.117 0.117 0.0824 0.0901
IA1•••1D 0.105 0.105 0.0800 0.0865
Expt. 0.10960.01 0.07360.007
riar
-
for

that

ro-
he

in
d in

X̃ l C
LSJ5A v rel

2pa
exp~2pa/v rel!

A6p

qmN
A4pXl

LSJ. ~6.7!

The quantitiesX̃ l C
LSJ are easily shown to remain finite in the

limit v rel→0; in terms of these theS factor is written as

S~Ec.m.50!5
p

9
a2m

q3

4m2 (
l LSJ

uẼl C
LSJu21uM̃ l C

LSJu2,

~6.8!

wherem is thedp reduced mass.
The predicted angular distributions of the differential

cross sectionsu(u), vector and tensor analyzing powers
Ay(u) andT20(u), and photon linear polarization coefficient
Pg(u), obtained for the

2H(pW ,g) 3He and1H(dW ,g) 3He reac-
tions are compared with the experimental data of@11# in
Figs. 8–11. The calculations are based on the AV18/IX
Hamiltonian. For selected observables, however, results co
responding to the AV14/VIII Hamiltonian will also be
shown. The observed linear dependence upon the energy
the S factor and the observed angular distributions o
su(u), Ay(u), T20(u), andPg(u) indicate that the reaction
proceeds throughS- andP-wave captures. The contributing
RME in the limit of zero incident energy are listed in Table
V. We note thatM2 transitions from theL,S,J51,3/2,5/2
initial dp continuum state have been neglected. As in th
dn capture, the effects due to two-body currents andD de-
grees of freedom are large on theM1 RME, particularly the
doubletM1. TheE2 RME is very small, and the calculated
value appears to be rather insensitive to the model Ham
tonian used.

Among theE1 andM2 RME from P-wave capture, the
leading RME are the doubletE1

1(1/2)J with J51/2, 3/2. The
quartetE1

1(3/2)J (M2
1(3/2)J) are about 1 order~2 orders! of

magnitude smaller~in absolute value! than theE1
1(1/2)J .

While two-body current contributions for the doubletE1 are
small and have the same sign as the IA matrix element, the
are found to be large, in fact dominant, for the quartetE1,
and of opposite sign than the IA contribution. Effects due to
D isobar degrees of freedom are small, since the associat

.
the
lues
at

TABLE VIII. Leading coefficientsak , bk , ck , and dk in nb in the Legendre expansions ofsu(u), Ay(u), T20(u), and Pg(u),

respectively, for the2H(p,g) 3He capture reaction. The coefficients have been calculated with the AV18/IX Hamiltonian model
Ep510, 25, 45 80, and 150 keV.

Ep

10 25 45 80 150

a0 IA 0.0946 1.81 6.48 16.2 35.4
IA1•••1D 0.130 2.44 8.49 20.7 45.2

a2 /a0 IA –0.619 –0.686 –0.769 –0.842 –0.900
IA1•••1D –0.536 –0.604 –0.694 –0.777 –0.850

b1 /a0 IA 0.438 0.346 0.258 0.182 0.124
IA1•••1D 0.145 0.114 0.0838 0.0575 0.0429

c0 /a0 IA 0.0257 0.0266 0.0307 0.0328 0.0353
IA1•••1D –0.0814 –0.0908 –0.104 –0.117 –0.127

c2 /a0 IA 0.242 0.192 0.131 0.0781 0.0297
IA1•••1D 0.361 0.328 0.284 0.245 0.213

d2 /a0 IA 0.309 0.343 0.384 0.421 0.450
IA1•••1D 0.269 0.303 0.347 0.389 0.426
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currents illustrated in Fig. 3@with the exception of those
arising from Figs. 3~f! and 3~h!–3~l!# are transverse.

We show in Fig. 6 the functionsẼ1
1(1/2)(1/2)(q;r dp)

and Ẽ1
1(3/2)(1/2)(q;r dp) ~defined as in the previous subsec

tion!: the empty~solid! symbols correspond to the IA~IA
1•••1D) results. The doubletJ51/2 E1 function is long-
ranged, and is little affected by two-body current contrib
tions. In contrast, the quartetJ51/2 E1 function is fairly
short-ranged, and changes sign when two-body currents
included. Similar features are exhibited by the doublet a
quartetJ53/2 E1 functions. The quartetE1 RME are there-
fore sensitive to the short-range part of the nuclear wa
functions, which is presumably the least accurately det
mined in the present variational calculations. Furthermore,
can be seen from Table V by comparing the IA1PS and
IA1MI results for the quartetE1 RME, the MI two-body
currents of shorter range, particularly those associated w
the momentum dependence of theNN interaction, give sig-
nificant corrections. The precise form of these currents
rather uncertain@24#.

To check the calculation of theE1 RME, we have evalu-
ated the appropriate combinations ofj ls3

LSJJz matrix elements

making use of the identity valid in the long-wavelengt
~LW! approximation~which is justified in the energy range
under consideration here!

j ls3

LSJJz~q;LW!5^C3
~1/2!s3u2E dxe* ~q!•x¹• j ~x!uC̄211

LSJJz&

5 i ~Ef2Ei !^C3
~1/2!s3u

3E dxe* ~q!•xr~x!uC̄211
LSJJz&, ~6.9!

wherej (x) andr(x)5( id(x2r i8)(11tz,i)/2 are the current
and charge density operators, withr i85r i2Rc.m., andEi and
Ef are the c.m. energies of the initial and final states.

FIG. 5. The functionsẼ 2
0(3/2)(3/2)(q;r dn) calculated with the

AV14/VIII ~top panel! and AV18/IX ~bottom panel! Hamiltonian
models in the IA~solid lines!. The functions obtained by switching
off either the deuteron~dot-dashed lines! or tritium ~dashed lines!
D states are also displayed.
-

-

are
d

ve
r-
as

ith

is

h

In

Table VI the results for theE1 RME in the LW approxima-
tion are compared with those obtained by direct evaluation
Eq. ~5.2!. The two sets of results listed in Table VI corre
spond to the AV14 and AV14/VIII Hamiltonian models. The
MI two-body currents, by construction, exactly satisfy cu
rent conservation with the AV14 interaction. Therefore, th
degree of agreement between the LW and IA1MI AV14
results simply reflects the extent to which the present var
tional wave functions are truly exact eigenstates of the AV
Hamiltonian. While the LW and IA1MI predictions for the
doubletE1 RME are quite close, those for the quartetE1

RME are significantly different. Finally, as can be seen fro
Table VI by comparing the AV14 and AV14/VIII results, the
effect of the three-nucleon interaction is not negligible. It
interesting to note that the continuity equation requires,
principle, the presence of three-body currents associated w
it. The lack of these three-body currents is presumably p
tially responsible for the differences between the LW an
IA1MI results, obtained with the AV14/VIII Hamiltonian.

We note that the numerically uncertain values of theE1

RME impact our predictions for theS-factor and polarization
observables at the 10% level. For example, atE c.m.516 keV
and u530° the proton analyzing power is 0.095 or 0.08
depending on whether the IA1•••1D or LW values are
used for these RME’s.

The calculatedS- andP-wave capture contributions to the
zero-energyS factor are compared with the most recent e
perimental determinations@11# in Table VII. The
SS(E c.m.50) is found to be 0.105 eV b, in good agreeme
with experiment, SS

expt(Ec.m.50)50.10960.01 eV b, and
with the value reported in Ref.@18#, 0.108 eV b. However,
the experimentalP-wave S factor, SP

expt(Ec.m.50)50.073
60.007 eV b, is 15~10! % smaller than calculated with the
AV18/IX ~AV14/VIII ! Hamiltonian.

Results for theS factor in the energy rangeEp50–150
keV (Ec.m.50–100 keV! are shown in Fig. 7, where they are
compared with the recent TUNL data@11,13# and the much
older data of Ref.@12#. Both the absolute values and energ
dependence of the TUNL data are well reproduced by the

FIG. 6. The functionsẼ1
0(1/2)(1/2)(q;r dp) and Ẽ1

0(3/2)(1/2)(q;r dp)
obtained with the AV18/IX Hamiltonian model in IA~empty sym-
bols! and in the IA1•••1D approximation~solid symbols!.
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1•••1D calculation. The enhancement due to two-bo
current andD-isobar contributions is substantial: the rati
@S~IA1•••1D) –S~IA !#/S~IA ! for theS- andP-waveS fac-
tors are found to be, respectively, 0.62 and 0.18 at 0 k
and increase to 0.75 and 0.22 atEp5150 keV. The Griffith
et al.data@12# have large errors, and appear to be at varia
with the TUNL data.

The angular distributions of the energy-integrated rela
cross section, vector and tensor analyzing powers, and
ton linear polarization@11# are compared with theory in Figs
8–11. As discussed in Ref.@11#, the energy binning of the
data would substantially increase the statistical errors.
cordingly, we have integrated the theoretical calculatio
weighted by the energy dependence of the cross section

FIG. 7. TheS factor of the2H(p,g) 3He reaction, obtained with
the AV18/IX Hamiltonian model in the IA~long-dashed line! and in
the IA1•••1D approximation~solid line! is compared with ex-
perimental results from Refs.@11–13#.

FIG. 8. The energy-integrated relative cross sections,s(u)/a0
(4pa0 is the total cross section!, obtained with the AV18/IX
Hamiltonian model in the IA ~dashed line! and in the IA
1•••1D approximation~solid line!, are compared with experi
mental results from Ref.@11#. Note that this plot only shows dat
with Ep50–40 keV (Ec.m.50–27 keV!. This is done to allow the
(d,g) data withEd50–80 keV (Ec.m.50–27 keV! and the (p,g)
data to be shown in the same graph@with the (d,g) data reflected#.
dy
s

eV,

ce

ive
ho-
.

Ac-
ns,
and

the target thickness, for the purpose of comparing them wi
experiment@50#. However, it should be emphasized that th
energy dependence of these observables is anyway rat
weak.

The overall agreement between theory and experiment
satisfactory for all observables with the exception o
Ay(u). This latter observable is particularly sensitive to two
body current contributions: their effect is to reduce the re
sults obtained in IA by about a factor of 3, bringing them
into better agreement with the data. However,a. 30% dis-
crepancy between the predicted and measuredAy remains
unresolved. It is important to recall here that these obser
ables, unlike thermal cross sections, are independent of n
malization issues in both theory and experiment.

The relative cross section and polarization observabl
appear to be rather insensitive to the Hamiltonian used. Th

FIG. 9. The energy-integrated vector analyzing powers of th
2H(pW ,g) 3He reaction, obtained with the AV18/IX Hamiltonian
model in the IA~dashed line! and in the IA1•••1D approxima-
tion ~solid line!, are compared with experimental results from Ref
@11#.

FIG. 10. The energy-integrated tensor analyzing powers of th
1H(dW ,g) 3He reaction, obtained with the AV18/IX Hamiltonian
model in the IA~dashed line! and in the IA1•••1D approxima-
tion ~solid line!, are compared with experimental results from Ref
@11#.
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is shown in Figs. 12 and 13, where the vector and ten
analyzing powers calculated with the AV18/IX model a
compared with those obtained from the AV14/VIII mod
However, these observables, in particular theAy(u), are
found to be sensitive toD-state components in either th
initial or final states. This is shown in Figs. 14 and 15 for
Ay(u) andT20(u) by switching off theD-state component in
either the deuteron~dot-dashed line! or 3He ~dotted line!
wave functions.

Finally, in Table VIII we list for completeness the valu
for the coefficients in the Legendre expansion ofsu(u),
Ay(u), T20(u), andPg(u). We note that the total cross se
tion is given by 4pa0.

VII. CONCLUSIONS

Cross sections and polarization observables for
2H(pW ,g) 3He and 1H(dW ,g) 3He reactions belowEc.m.5100
keV, and for the thermal neutron radiative capture on de
rium have been calculated with accurate variational w
functions obtained from realistic interactions and an elec

FIG. 11. Same as in Fig. 9, but for the photon linear polariza
coefficient.

FIG. 12. The vector analyzing powers obtained with the AV
VIII and AV18/IX Hamiltonian models in the IA and in the ap
proximation IA1•••1D at Ep5 25 keV.
sor
re
l.

e
he

s

c-

the

te-
ave
tro-

magnetic current operator consisting of one- and two-bo
parts. The wave functions include both nucleon a
D-isobar degrees of freedom. The one-body currents con
N→N, N→D, andD→D couplings, while onlyNN→NN
terms have been retained in the two-body currents. The la
satisfy, by construction, current conservation exactly w
theNN interaction.

Comparison between the theoretical results obtained w
the more recent~and preferred! AV18/IX Hamiltonian model
and data shows the following.

~1! The predicted values for the total cross sectionsT and
photon polarization parameterRc of the

2H(n,g) 3H reaction
are within 15% of the measured values.

~2! The predicted energy dependence of theS factor and
angular distributions of the cross sectionsu(u)/sT , tensor
analyzing powerT20(u), and photon linear polarization co
efficient Pg(u) for the radiative capture of protons on de
terons in the center of mass energy range 0–100 keV
quite close to the experimental ones. However, the obse
vector analyzing powerAy(u) from

2H(pW ,g) 3He measure-
ments is 30% larger than calculated.

The cross sections and polarization observables, in
ticularRc andAy(u), are substantially affected by two-bod
currents, specifically the isovector ones associated with
tensor interaction. TheRc and Ay(u) observables are als
sensitive toD-state components in the deuteron and3He
wave functions, and hence show an interesting interplay
tween two-body current effects andD-state admixtures in the
ground state wave functions, both of which are induced
the tensor force.

The predictions based on the explicit inclusion
D-isobar degrees of freedom in the nuclear wave functi
are found to be in significantly better agreement with expe
ment than those obtained from perturbation theory estima

To conclude, the overall, quantitative agreement betw
theory and experiment suggests that the nuclear dynamic
play in these complicated low-energy processes is fairly w
understood. The remaining discrepancies between theory
experiment, such as the 30% underprediction of the m
sured vector analyzing power for the2H(pW ,g) 3He reaction,
indicate that further refinements are necessary in the pre

ion

4/
-

FIG. 13. Same as in Fig. 12, but for the tensor analyzing po
ers.
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theoretical framework. Examples of these are~1! the inclu-
sion of three-body current contributions and~2! the inclusion
of additional relativistic corrections of pionic range in th
two-body current operators@55,56#. Work along these lines
is being vigorously pursued. Furthermore, the measurem
of other polarization observables, such as theT11 and T22
analyzing powers, which is currently under way at TUN
@13# will provide a new testing ground for theory.

Low-energy reactions remain an important area for stu
ing nuclear dynamics, and a rich field for both theory a
experiment.
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APPENDIX A: EXPRESSIONS FOR THE TWO-BODY
CURRENT OPERATORS

In this appendix we provide complete expressions for t
‘‘model-independent’’ ~MI ! and ‘‘model-dependent’’~MD!
current operators. A thorough discussion of them can
found in Refs.@4,24,25#.

The j i j ,MI
(2) operators are constructed from theNN interac-

tion. The Argonnev14 @28# and the charge-independent pa
of the new Argonnev18 @30# interaction models can be cas
into the form

4/ FIG. 15. Same as in Fig. 14, but for the tensor analyzing po
ers.
v i j5 (
p5c,s,t,so,so2,l l ,l l s

@vp~r i j !1vpt~r i j !t i•t j #Oi j
p , ~A1!

Op5c, . . . ,l l s51, s i•s j ,Si j , L•S,
1

2
@s i•Ls j•L1H.c.#, L2,L2s i•s j . ~A2!

HereSi j , L andS are the tensor, orbital angular momentum and total spin operators of pairi j , respectively. Correspondingly
we write

j i j ,MI5 (
p5PS,V,SO,SO2,LL

j i j ,p, ~A3!

wherej i j ,PS and j i j ,V have already been given in Eqs.~3.8! and ~3.9!, and

j i j ,SO~k i ,k j !52
i

8m2 @P~ j !@vc~ki !12m2vso~ki !#@~s i1s j !3k i2 i ~pi1pi8!#1Q~ i !@vct~ki !12m2vsot~ki !#

3@~s i1s j !3k i2 i ~pi1pi8!#1P~ j !@3vc~ki !22m2vso~ki !#@s j3q2 i ~pj1pj8!#1 i
 j #, ~A4!
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j i j ,SO2~q!5
1

8
@vso2~r i j !D1~q!1vso2t~r i j !D18 ~q!#s i•~r i j3q!s j3r i j

1
1

4
@vso2~r i j !D2~q!1vso2t~r i j !D28 ~q!#$s i•L ,s j3r i j %1 i
 j , ~A5!

j i j ,LL~q!5@v l l ~r i j !1v l l s~r i j !s i•s j #@D2~q!~ i uP!r i j2r i j3L !2
1

4
D1~q!r i j3~r i j3q!]1@v l l t~r i j !1v l l st~r i j !s i•s j #

3FD28 ~q!~ i r i j2r i j3L !2
1

4
D18 ~q!r i j3~r i j3q!G , ~A6!

wherepi andpi8 are the initial and final momentum of nucleoni . We have also defined

P~ i ![
11tz,i
2

, ~A7!

Q~ i ![
t i•t j1tz,i

2
, ~A8!

D6~q![P~ i !eiq•r i6P~ j !eiq•r j , ~A9!

D68 ~q![Q~ j !eiq•r i6Q~ i !eiq•r j . ~A10!

The momentum-space components of the interaction, in terms of which are defined the current operators in Eqs.~3.8!, ~3.9!,
and ~A.4!, are given by

vst~k!5
4p

k2 E0
`

drr 2@ j 0~kr !21#vst~r !, ~A11!

v tt~k!5
4p

k2 E0
`

drr 2 j 2~kr !v
tt~r !, ~A12!

vp~k!54pE
0

`

drr 2 j 0~kr !v
p~r !, p5c,ct, ~A13!

vp~k!52
4p

k E
0

`

drr 3 j 1~kr !v
p~r !, p5so,sot. ~A14!

The MD two-body current operator consists of the terms associated with therpg andvpg contributions:

j i j ,MD
~2! ~k i ,k j !5 j i j ,rpg~k i ,k j !1 j i j ,vpg~k i ,k j ! ~A15!

with

j rpg~k i ,k j !5 i
f pgrgrpg

mpmr
t i•t jk i3k jF s i•k i

~ki
21mp

2 !~kj
21mr

2!
2

s j•k j
~ki

21mr
2!~kj

21mp
2 !G , ~A16!

jvpg~k i ,k j !5 i
f pgvgvpg

mvmp
k i3k jF s i•k i

~ki
21mp

2 !~kj
21mv

2 !
t i ,z2

s j•k j
~ki

21mv
2 !~kj

21mp
2 !

t j ,zG . ~A17!

For therpg, vpg, andvNN coupling constants we use the values 0.56 and 0.63~from the measured widths ofr→p1g
@51# andv→p1g @52#! and 14.6~from the Bonn potential@53#!, respectively. We introduce monopole form factors at the
pion and vector meson vertices in therpg andvpg two-body current operators withLp50.75 GeV, andLr5Lv51.25
GeV. The values used forLp andLr have been taken from a study of therpg current contribution to theB(q) structure
function of the deuteron@54#.

Finally, the configuration-space expressions for the current operators in Eqs.~3.8!, ~3.9!, and~A.4! are obtained from@24#

j i j ,a~q!5E dxeiq•xE dk i
~2p!3

dk j
~2p!3

eiki•~r i2x!eik j •~r j2x!j i j ,a~k i ,k j !. ~A18!
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APPENDIX B: EXPRESSIONS FOR Rc AND FOR THE LEADING COEFFICIENTS
IN THE LEGENDRE EXPANSIONS OF THE OBSERVABLES

In this appendix we list the expressions for the photon polarization parameterRc and for leading coefficientsak , bk ,
ck , anddk in the Legendre expansions Eqs.~4.20!–~4.23! of the cross section and polarization observables. In the energy
range of interest in the present study, the leading contributions are those associated with electric and magnetic d
transitions, while the contributions due to higher order multipoles, although included in the results reported in Sec. VI,
found to be numerically very small and, therefore, are not explicitly displayed in the formulas below for ease of presentat
~with the exception ofRc). We also use the notation

m2S11 2J115M̃1
0SJ, ~B1!

p2S11 2J115Ẽ1
1SJ, ~B2!

and

s15
1

4p

2

9

a

v rel

q3

4m2 . ~B3!

The leading coefficients in the expansion forsu(u) area0 anda2, and their expressions are

a05s1@ um22u21um44u21up22u21up42u21up24u21up44u2#, ~B4!

a25
1

10
s1@10A2Re~p22p24* !22A5Re~p42p44* !25up24u214up44u2#. ~B5!

In the expansion for the vector analyzing powerAy the leading coefficient isb1, and its expression is

b15
A2
6

s1Re@m22* ~2A8p2214p421p241A20p44!#1
1

6
s1Re@m44* ~2A8p2225p42110p241A20p44!#. ~B6!

In the expansion for the tensor analyzing powerT20 the leading coefficients arec0 andc2, and their expressions are

c05A2

6
s1Re@10A2Re~p22p42* !25up42u222A5Re~p24p44* !14up44u2#, ~B7!

c25s1F2Re~m22m44* !1A1

8
um44u22A1

5
Re~p22p44* !1A2 Re~p42p24* !1A 1

10
Re~p42p44* !1A 1

10
Re~p24p44* !1A1

8
up44u2G .

~B8!

In the expansion for the photon linear coefficientPg the leading coefficient isd2, and its expression is

d25s1F2A1

2
Re~p22p24* !1A 1

20
Re~p42p44* !1

1

4
up24u22

1

5
up44u2G . ~B9!

The photon polarization parameterRc for S-wave capture is given by

Rc52
1

3 F12
~7/2!um44u21A8Re~m22m44* !1~5/2!ue44u21A24Im~m22e44* !2A3Im~m44e44* !

um22u21um44u21ue44u2
G . ~B10!

Here the contribution of the electric quadrupolee445Ẽ 2
0(3/2)(3/2) is explicitly included. Finally, we note a misprint in Ref.@3#,

the interference term Re(m22m44* ) between the doublet and quartetM1 transitions inRc is erroneously multiplied by a factor
A2 rather thanA8.
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@22# D. Hüberet al., Phys. Rev. C51, 1100~1995!
@23# R. Schiavillaet al., Phys. Rev. C45, 2628~1992!.
@24# R. Schiavilla, V.R. Pandharipande, and D.O. Riska, Phys. R

C 40, 2294~1989!.
@25# R. Schiavilla and D.O. Riska, Phys. Rev. C43, 437 ~1991!.
@26# M. Fabre de la Ripelle, Ann. Phys.~N.Y.! 147, 281 ~1983!.
-

v.

@27# G. Erens, J.L. Visschers, and R. van Wageningen, Ann. Phys
~N.Y.! 147, 281 ~1971!.

@28# R.B. Wiringa, R.A. Smith, and T.L. Ainsworth, Phys. Rev. C
29, 1207~1984!.

@29# R.B. Wiringa, Phys. Rev. C43, 1585~1991!.
@30# R.B. Wiringa, V.G.J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 ~1995!.
@31# B.S. Pudlineret al., Phys. Rev. Lett.74, 4396~1995!.
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