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Three-body calculation of 9Be electromagnetic observables

E. Cravo
Centro de Fı´sica Nuclear, Universidade de Lisboa, Av. Prof. Gama Pinto 2, P-1699 Lisboa, Portugal

~Received 27 March 1996!

A three-body calculation of the electromagnetic observables of the9Be ground state is reported. The nucleus
of 9Be is considered as a three-body system of one neutral plus two charged particles:n1a1a. Simple
two-bodyn-a anda-a potentials, plus Coulomb, constitute the only input to the momentum-space three-body
equations. No adjustable parameters are used. The equations are solved numerically for the ground state,
generating simultaneously the binding energy and wave function. The normalized wave function is then used
in the calculation of the matrix elements of the electromagnetic operators. The neutron and alpha particle form
factors are folded in this calculation. Results are presented for9Be elastic longitudinal and transverse form
factors, and static multipole moments: rms charge radius, electric quadrupole moment, and magnetic dipole and
octupole moments.@S0556-2813~96!02808-7#

PACS number~s!: 21.45.1v, 21.60.Gx, 21.10.Ky
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I. INTRODUCTION

The 9Be nucleus presents a low neutron separation e
ergy. Its low-energy excited states are unstable and break
into one of the forms,a1 5He or n1 8Be, where both5He
and 8Be are unbound nuclei decaying toa1n and a1a,
respectively. All other forms of breakup require excitatio
energies above 16 MeV. These facts suggest a high degre
clustering of the9Be nucleus. The nucleons appear to b
organized as a weak bound state of three clusters consis
of two alpha particles plus one odd neutron. The four nuc
ons in the alpha particle are so strongly bound in proporti
to the neutron separation energy in9Be that, for low excita-
tion energies, one may consider the alpha particle as elem
tary. This assumption sets the ground for a three-body mo
calculation of 9Be, where the neutron and the two alph
particles interact through effective potentials.

So far the models used in theoretical descriptions of th
nucleus have been based essentially on effective one-
two-body dynamical equations—shell model, Nilsson mod
projected Hartree-Fock, cluster model RGM~see referenc-
es in @1–3#!; approximate three-body models—Born
Oppenheimer three-body molecular model@4#; and more re-
cently a variational three-body calculation based on
Gaussian ansatz@5#. In this respect, the present work const
tutes an attempt to represent the9Be nuclear ground state as
a three-body system where the dynamics is determined
exact three-body equations@6#.

The equations derived for the bound state of then1a1
a system are a generalization of the ones presented by L
manet al. @7# for the case of spinless, one neutral plus tw
charged, particles with identical mass. Here the fermion
character of the neutron together with its different mass
taken into account. After separation of the center-of-ma
motion and partial wave expansion, a set of coupl
momentum-space integral equations in two continuous va
ables is obtained. This set of coupled equations is solv
numerically for the ground state, using the method of inver
iteration, producing simultaneously the binding energy a
the wave function components.

Both ground-state energy and three-body wave funct
54556-2813/96/54~2!/523~11!/$10.00
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are completely determined from the solution of the bound-
state equations. They are exclusively dependent on the two
body interactions used, and contain no adjustable parameter
The wave function thus obtained is, after normalization, used
in the calculation of the elastic electromagnetic form factors.
For this purpose, the finite size and nonelementary characte
of the alpha particle and the neutron are taken into accoun
through the use of phenomenological electric and magnetic
form factors for these particles. Finally the ground-state elec-
tromagnetic moments of9Be are evaluated by taking the
static limit of the corresponding multipole terms.

Section II contains a brief survey of the two-bodyn-a
anda-a potentials used in the present calculations. The deri-
vation of the three-body equations and the results obtained
for the binding energy are presented in Secs. III and IV. The
definition of the electromagnetic form factors and their rela-
tion to single-particle operators is introduced in Sec. V. In
Sec. VI the results for the electromagnetic form factors and
observables are presented and discussed. Finally, in Sec. V
some conclusions are summarized.

II. TWO-BODY INTERACTIONS

The phenomenological two-body potentials chosen to rep-
resent the interaction between particles in each pair, repro
duce the low-energy phase shifts, have a simple analytica
expression, and are widely used in the literature for different
applications.

The n-a potential is represented by a set of momentum-
space separable interactions for the dominant partial waves a
low energy (l j )5S1/2, P1/2, andP3/2. The potential opera-
tor, with one separable term in each partial wave, has the
general form

Vna5 (
l jmj

u f l jmj
&l l j^ f l jmj

u, ~1!

in which l l j is the interaction strength, and the operational
form factor has the following representation in momentum
space:
523 © 1996 The American Physical Society
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524 54E. CRAVO
^qu f l jmj
&5 f l j~q!(

ms
^l m 1

2 su jmj&Yl m~ q̂!xs
1/2. ~2!

In the present work, the functional form factorf l j (q) is
given analytically by a simple one-parameter express
which leads to the correct threshold and asymptotic beha
of the phase shifts@8#:

f l j~q!5
ql

~q21b l j
2 ! l 11 , ~3!

whereb l j acts as the inverse range of the interaction.
The particular range and strength parameters of thes

teractions which are of primary interest in the present ca
lations correspond to the designated ‘‘preferred set’’ of L
man, Rai, and Ghovanlou@9#, in their analysis of differen
n-a interactions. They are listed in Table I under the des
nation of LRG. This set of interactions reproduces with gr
accuracy then-a experimental phase shifts up to about
MeV, and was used with great success in the three-b
model study of theA56 systems (6He and6Li ! @8,9#.

Different parametrizations of the variousn-a partial wave
interactions were tested in order to estimate the sensitivit
the model to the two-body input. Alln-a interactions de-
scribed in the above references with form factors presen
the proper asymptotic behavior~3! were considered in thes
tests. In partial waveS1/2, interactions GL1 and GL2 repre
sent improvements to the LRG fit but in limited energy
gions: GL1 fits the very low-energy phase shifts, while G
fits the 10–15 MeV region. Extensively used in the past,
interactions designated byS, from Shanley@10#, in both
P1/2 andP3/2 partial waves, produce comparatively poor fi
to the phase shifts. The results showed no particular se
tivity of either the binding energy or the electromagne
observables to the various interactions used in partial wa
S1/2 andP1/2 ~the variations in most observables did not e
ceed 2%!. Although not as accurately fitted to the two-bo
experimental data as the LRG, the interactionS, in the domi-
nantP3/2 partial wave, has the advantage of producing a v
good result for the9Be ground-state energy, and thus p
mitting the observation of the scaling of the electromagn
properties with the binding energy.

The nuclear interaction between the two alpha particle
represented by the well-known Ali-Bodmer~AB! potential
@11#. This is a configuration-space local potential acting

TABLE I. Parameters for the dominant partial-wave interactio
in the two-bodyn-a potential, extracted from Ref.@9#.

l j Name

2mna

4p
ll j

~fm2322l )

b l j

~fm21)

S1/2 LRG 0.6373 0.7496
GL1 0.3 0.7
GL2 0.2 0.6

P1/2 LRG 21.1040 1.1770
S 20.1640 0.8505

P3/2 LRG 24.8310 1.4490
S 21.3671 1.1352
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partial wavesl 50, 2, and 4, with the radial dependence
represented by the sum of two Gaussian functions. The po
tential operator has the general form

Vaa5(
l m

E drr 2ur l m&Vl ~r !^r l mu, ~4!

with

Vl
AB~r !5Vr l exp~2m r l

2 r 2!1Val exp~2mal
2 r 2!. ~5!

In order to determine the sensitivity of the results to the
particular two-body interaction, an alternativea-a potential
is also tested: the Chien-Brown~CB! potential@12#. This is
also a configuration-space local potential in each partia
wave ~4!, with a distinct analytical form for the attractive
term, and acting also inl 56. In both potentials the attrac-
tive term is common to all partial waves.

The use of these potentials in a momentum space calc
lation like the present one requires their Fourier transforma
tion:

Vaa5(
l m

E dqq2dq8q82uql m&Vl ~q,q8!^q8l mu, ~6!

where

Vl ~q,q8!5
2

pE drr 2 j l ~qr !Vl ~r ! j l ~q8r !. ~7!

This Fourier transformation can be performed numerically
with great accuracy, however, for the Ali-Bodmer potential
one is able to obtain an analytic expression for the potentia
terms in momentum space:

Vl
AB~q,q8!5 (

i5r ,a

Vi l

2m i l
2 Aqq8

3expS 2
q21q82

4m i l
2 D I l 1 1/2S qq82m i l

2 D , ~8!

where I l 11/2(x) is the Bessel function of imaginary argu-
ment @13#.

The Coulomb potential between the alpha particles is rep
resented by its partial wave expansion in momentum spac
~6!, expressed in terms of the Legendre function of the sec
ond kind:

Vl
C~q,q8!5Za

2e2
1

pqq8
Ql S q21q82

2qq8 D , ~9!

whereZae is the total charge of the alpha particle.
In order to keep the calculation amenable, this expansio

is truncated after partial wavel 58. This option is justifieda
posteriori by the calculation of the contributions to the
bound-state Coulomb energy from the various partial waves
It is found that these contributions decrease very rapidly fo
l .2, with the l 58 term representing less than 0.02% of
the total.
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54 525THREE-BODY CALCULATION OF 9Be . . .
III. THREE-BODY BOUND-STATE EQUATIONS

The primary purpose of the three-body formulation of th
momentum-spacen1a1a bound-state equations, with Cou
lomb interaction between the two alpha particles, is to obta
both the binding energy and the wave function.

The Coulomb interaction between the pair of charged p
ticles is included in the three-body equations using a meth
that is independent of the form of the nuclear interaction.
this method, presented by Lehmanet al. @7#, the equations
for the bound-state wave function components do not
volve the Coulombt matrix, but only the Coulomb potential.
A set of two-variable integral equations is obtained after pa
tial wave projection, even with the use of separable tw
body nuclear potentials, because of the local character of
Coulomb potential. However, these two-variable equatio
are easily solved numerically permitting the direct constru
tion of the bound-state wave function.

The method described in Ref.@7# is generalized here in
order to include unequal-mass particles and spin degrees
freedom, and also to allow the use of nonseparable nucl
potentials.

Considering particle 1 to be the neutron and designati
the alpha particles by 2 and 3, in the present three-bo
model of 9Be the Hamiltonian is expressed by

H5H01V11V1
C1V21V3 , ~10!

whereH0 is the free-particle Hamiltonian,Vi denotes the
nuclear potential between the particles of pairi , andV1

C rep-
resents the Coulomb potential between the alpha partic
The bound-state wave functionC, which is a solution of the
eigenvalue equation

HC5EC ~E,0!, ~11!

is decomposed into the three standard Faddeev compon
corresponding to the three possible two-cluster partitions
the system

C5C1
C1C21C3 . ~12!

The equations that determine these components are

~H02E!C i52ViC ~ i52,3!, ~13!

~H02E!C1
C52~V11V1

C!C. ~14!

The componentC1
C , corresponding to partition (aa)n, is

now further decomposed into a ‘‘Coulomb-modified’
nuclear partC1, and a ‘‘pure’’ Coulomb componentC4,
satisfying the equations

~H02E!C152V1C, ~15!

~H02E!C452V1
CC. ~16!

The full bound-state wave function is given now by the su
of four components

C5C11C21C31C4 . ~17!
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Each of the equations for the nuclear components can be
expressed in terms of the nuclear two-bodyt matrix for the
corresponding pairTi(E), and the free-particle resolvent
G0(E)5(E2H0)

21. Thea-a t matrix embedded in three-
body space is a function of the Jacobi momenta of partition 1
~the appropriate to represent thea-a interaction!, of the form

^1:qQuT1~E!u1:q8Q8&5d~Q2Q8!(
l m

Yl m~ q̂!Yl m* ~ q̂8!

3t l SE2
Q2

2m1
;q,q8D , ~18!

where the two-bodyt matrix results from the Lippmann-
Schwinger equation:

t l ~E~2! ;q,q8!5Vl ~q,q8!1E
0

`

dq9q92
Vl ~q,q9!

E~2!2q92/2n1

3t l ~E~2! ;q9,q8!. ~19!

Then-a t matrix is obtained in a separable form

^2:qQuT2~E!u2:q8Q8&5d~Q2Q8!^qu f l jmj
&t l j SE2

Q2

2m2
D

3^ f l jmj
uq8&, ~20!

with

t l j~E~2!!5S l l j
212E

0

`

dq9q92
u f l j~q9!u2

E~2!2q92/2n2
D 21

. ~21!

The two- and three-body reduced masses, appearing in the
above equations, are defined asn i5mjmk /M jk ,
m i5miM jk /M , where (i , j ,k) represent any permutation of
~1,2,3!, and with the pair and total masses:M jk5mj1mk
andM5mn12ma .

Hence, the coupled equations that are solved in momen-
tum space for the bound-state wave function components of
the system take the form

C i5G0~E!Ti~E!~C j1Ck1C4!, ~22a!

C45G0~E!V1
C~C11C21C31C4!, ~22b!

with i , j ,k51,2,3; iÞ jÞkÞ i .
Notice that in the equation for the Coulomb component

C4, the Coulombt matrix is not introduced. It is an impor-
tant feature of this formulation that the equations involve
only the Coulomb potentialV1

C between the pair of charged
particles and not the Coulombt matrix. A different approach
to the momentum space three-body problem with two
charged particles, that includes the Coulombt matrix in the
equations, was described by Kok and van Haeringen@14#.

It is convenient to introduce at this point the total angular
momentum representation of the Jacobi coordinates. For
each partition this representation is made up of all three-body
channel states resulting from the partial wave expansion of
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526 54E. CRAVO
the Jacobi momenta coupled with the spin of the neutron
total angular momentumJ and projectionMJ . The channel
states are

Y
l ~1/2! jL
JMJ ~ q̂,Q̂![^ i :qQu i :qQ;~ l ~1/2! jL !JMJ&

5 (
msmjM

^l ~1/2!msu jmj&

3^ jLmjM uJMJ&Yl m~ q̂!YLM~Q̂!xs
1/2.

In the present notationl represents the relative orbital an
gular momentum of the particles that form the pair in th
partition considered,j is the channel spin which results from
the coupling ofl with the spin of the neutron, andL repre-
sents the relative orbital angular momentum between the p
and the third particle.

In order to lighten the notation it is usually represented
g ( i ) , the complete set of angular momentum variabl
@ l (1/2)jL # ( i ) that uniquely identifies each channel state f
fixed total angular momentumJ and projectionMJ in a
given partition i . If the partition is specified elsewhere th
subscript may be omitted. The basis states of this repres
tation u i :qQ;@ l (1/2)jL #JMJ& may be more compactly de-
noted byu i :qQ;g&. The four components of the wave func
tion are projected onto the angular momentum representa
associated with the corresponding partition. Notice that t
partition in whichC4 is projected, called partition 4 for no-
tation consistency, is the same as partition 1. The projec
wave function components are denoted by

C ig~q,Q![^ i :qQ;guC i&.

The characteristics of the wave function with respect
symmetry and parity are easily analyzed in this represen
tion. The wave function must be symmetric upon interchan
of the two alpha particles~particles 2 and 3!. This inter-
change transforms partition 2 into partition 3 and vice vers
From the condition of symmetry it follows that the depen
dence of the wave function on the variables of partitions
and 3 is identical:̂ 3:qQ;guC&5^2:qQ;guC&. Thus, the
equation forC3 may be eliminated in Eq.~22a! as it is
identical to the equation forC2. In partition 1 the exchange
of the two alpha particles corresponds to changing the p
relative momentumq into 2q. The symmetry of the wave
function leads to the condition ^1:qQ;guC&5
(21)l ^1:qQ;guC&, from which it is straightforward to con-
clude that the bound state of the system allows only ev
relative angular momenta between the alpha particles.
nally, from the conservation of parityP, one obtains the
following condition involving the two orbital angular mo-
mental andL, in every partition: (21)l 1L5P.

Introducing the explicit form of the two-body interaction
operatorsTi andV1

C , and the appropriate partitions of unity
the equations for the bound-state wave function compone
~22! become, in the total angular momentum representati
to
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C2g~q,Q!5
1

E2~Q2/2m2!2~q2/2n2!

3 f l j~q!t l j~E2Q2/2m2!

3E dq9q92f l j~q9! (
i51,3,4

(
g~ i !8

3E dq8q82dQ8Q82

3^2:q9Q;gu i :q8Q8;g8&C ig8~q8,Q8!, ~23a!

C1g~q,Q!5
1

E2~Q2/2m1!2~q2/2n1!

3E dq9q92t l ~E2Q2/2m1 ;q,q9!

3 (
i52,3,4

(
g~ i !8

E dq8q82dQ8Q82

3^1:q9Q;gu i :q8Q8;g8&C ig8~q8,Q8!,

~23b!

C4g~q,Q!5
1

E2~Q2/2m1!2~q2/2n1!
E dq9q92Vl

C~q,q9!

3 (
i51,2,3,4

(
g~ i !8

E dq8q82dQ8Q82

3^4:q9Q;gu i :q8Q8;g8&C ig8~q8,Q8!. ~23c!

Each sumation indexg ( i )8 [@ l 8(1/2)j 8L8# ( i ) represents one
channel of partitioni included in the equations. The summa-
tions are extended to all the channels compatible with th
terms of the two-body interactions acting between the pa
ticles of the pair in the given partition.

The structure of Eq.~23! points out to the following form
of the wave function components:

C2g~q,Q!5
1

E2~Q2/2m2!2~q2/2n2!
f l j~q!G2g~Q!,

~24a!

C ig~q,Q!5
1

E2~Q2/2m1!2~q2/2n1!
C̃ig~q,Q! ~ i51,4!.

~24b!

ForC2, the component associated with partitions of the type
(na)a, the dependence on the two Jacobi momenta is fac
torized due to the separable nature of then-a interactions.
The spectator functionG2g(Q) gives theg-channel momen-
tum distribution of one of the alpha particles relative to the
center of mass of the pair formed by the other alpha particl
and the neutron.
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The matrix elements that represent the overlap of t
channel states of any two partitions have the general form

^ i :qQ;gu i 8:q8Q8;g8&5E dq̂dq̂8dQ̂dQ̂8Y
l ~1/2! jL
JMJ* ~ q̂,Q̂!

3Y
l 8~1/2! j 8L8

JMJ ~ q̂8,Q̂8!

3^ i :qQu i 8:q8Q8&, ~25!

where the matrix elementŝi :qQu i 8:q8Q8& are given by
Dirac d functions relating the Jacobi momentum coordinat
of the two partitionsi and i 8.

The situation in which the left and right partitions are th
same (i5 i 8) is trivial. For iÞ i 8 it is convenient to consider
he

s

e

two forms of establishing this relation, depending on the m
mentum variables that are taken as independent:

^ i :qQu i 8:q8Q8&5d„q2ki i 8~Q,Q8!…d„q82ki i 8
8 ~Q,Q8!…

5d„q82 k̄i i 8~Q,q!…d„Q82K̄i i 8~Q,q!…,

wherek, k8, k̄, andK̄ designate certain vector composition
of the Jacobian momenta with coefficients involving th
masses of the particles. After introducing either of these t
forms in Eq.~25!, expanding the arguments of the chann
state functions, recoupling the angular momentum coe
cients and performing the possible angular integrations,
arrives at the following expressions for the overlap of tw
channel states:
ther
^ i :qQ;gu i 8:q8Q8;g8&5E
21

11

duPgg8
i i 8 ~Q,Q8,u!

d„q2kii 8~Q,Q8,u!…

q2
d„q82kii 8

8 ~Q,Q8,u!…

q82

5E
21

11

duPgg8
i i 8 ~Q,q,u!

d„q82 k̄i i 8~Q,q,u!…

q82
d„Q82K̄ ii 8~Q,q,u!…

Q82
.

The integration variableu represents the cosine of the angle between the directions of the two independent momenta, ei
Q̂•Q̂8 or Q̂•q̂. The functional form of the scalar coefficientsP and P̄ and the magnitude of the composed momenta are
presented in the Appendix.

Finally, a set of coupled homogeneous integral equations for the spectator functionG2 and the redefined wave function
componentsC̃1 andC̃4 are obtained in the form

G2g~Q!5t l jS E2
Q2

2m2D E0`dQ8Q82E
21

11

duF f l j~k22!

E2~Q82/2m2!2~k228
2/2n2!

(
g~2!8

Pgg8
22

~Q,Q8,u! f l 8 j 8~k228 !G2g8~Q8!

1
f l j~k21!

E2~Q82/2m1!2~k218
2/2n1!

(
i51,4

(
g~ i !8

Pgg8
2i

~Q,Q8,u!C̃ig8~k218 ,Q8!G , ~26a!

C̃1g~q,Q!5E
0

`

dq8q82t l S E2
Q2

2m1
;q,q8D F2E

21

11

du(
g~2!8

Pgg8
12

~Q,q8,u!
f l 8 j 8~ k̄12!

E2~K̄12
2 /2m2!2~ k̄12

2 /2n2!
G2g8~K̄12!

1
1

E2~Q2/2m1!2~q82/2n1!
(
g~4!8

dgg8C̃4g8~q8,Q!G , ~26b!

C̃4g~q,Q!5E
0

`

dq8q82V1g
C ~q,q8!F2E

21

11

du(
g~2!8

Pgg8
42

~Q,q8,u!
f l 8 j 8~ k̄12!

E2~K̄12
2 /2m2!2~ k̄12

2 /2n2!
G2g8~K̄12!

1
1

E2~Q2/2m1!2~q82/2n1! S (
g~1!8

dgg8C̃1g8~q8,Q!1C̃4g~q8,Q!D G . ~26c!
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The partial wave projection of the Coulomb potentia
Vl
C(q,q8) is responsible for the presence of a logarithm

singularity in the integrand of the last equation. This singu
larity is handled using a subtraction method introduced b
Landé@15,7#.

IV. SOLUTION OF THE EQUATIONS

Once the three-body equations are established, one p
ceeds to its numerical solution. The integrations are pe
formed by introducing Gegenbauer quadratures in the m
mentum variablesQ8 andq8, and a Legendre quadrature fo
the integration in variableu. The values of the variables that
represent the magnitude of the Jacobi momentaQ andq are
set at the same mesh points as the Gegenbauer quadrat
The unknown functionsG2, C̃1, and C̃4 on the right-hand
side of the equations are interpolated with the use of splin
The set of integral equations then become a system of al
braic equations of the formAX5X. This is simply a special
case of the matrix eigenvalue problemAX5lX, which is
solved by the method of inverse iteration, as described in
application to three-body problems by Glo¨ckle @16#. The to-
tal energy is varied until an eigenvalue of 1 is found for th
matrix equation. The energy thus encountered is the bindi
energy and the corresponding eigenvector is formed by t
bound-state wave function components. From these com
nents one goes back to Eqs.~24! and ~17!, and obtains the
full bound-state wave function. After normalization this
wave function is available for future applications.

The ground state of9Be is characterized by total spin and
parity JP5(3/2)2. The present calculation includes all three
body channels that couple to this total spin and parity, a
are compatible with the two-body interactions described
Sec. II. This makes up a total of 30 channels, when the A
potential is used.

The binding energies resulting from different two-bod
interactions are presented in Table II. It is immediately re
ognizable that the energies obtained with the AB potent
are in all cases closer to the experimental value than tho
resulting from the CB potential. Remarkably, the same sit
ation was verified with respect to most other observables. O
the other hand, the use of then-a P3/2 interactionS results in
a binding energy much closer to the experimental value th
the LRG. Nevertheless, this situation seems to be acciden
since further tests indicated that the value of the electroma

TABLE II. Results for the ground-state binding energy, in th
three-body model of9Be, obtained with different two-body interac-
tions.

a-a

n-a AB CB

LRG 22.090 22.156
GL1(S1/2) 22.093 22.165
GL2(S1/2) 22.051 22.114
S(P1/2) 22.070 22.134
S(P3/2) 21.530 21.449
Expt. 21.5735a

aReference@17#.
l

-
y

ro-
r-
o-

res.

s.
e-

ts

g
e
o-

d
n
B

-
l
se
-
n

n
al,
g-

netic observables obtained with the corresponding wave
function are farther away from the experimental values. No
significant differences are encountered by changing then-a
S1/2 andP1/2 interactions.

The bound-state energy of then1a1a system obtained
with the interactions of primary interest isEB522.090
MeV. This result is not very close to the experimental value
of 21.5735 MeV@17#. However, the binding energy results
from the near cancellation of two dynamical terms with op-
posite sign and very large absolute value: the kinetic and
potential energies. This fact explains how a small impreci-
sion in the two-body potential term, like for instance of the
order of 2%, is accountable for the large relative difference
in the resulting binding energy. In conclusion, the failure to
reproduce the correct binding energy is by no means an in
dication that the dynamics of the system has been missed ou
or that the wave function is inadequate. The behavior of the
wave function and how it reproduces the dynamics of the
nuclear state is the most important concern; this may be
tested in greater detail through the application of the electro-
magnetic multipole operators.

V. ELECTROMAGNETIC FORM FACTORS

The experimental elastic electron scattering angular dif-
ferential cross section is parametrized, in the plane-wave
Born approximation, in terms of the longitudinal and trans-
verse form factors, both dependent on the momentum trans
fer @18,1#:

ds

dV
5Z2sM fR$VL~u!uFL~q!u21VT~u!uFT~q!u2%. ~27!

These form factors represent the effect on the cross sectio
due to the internal structure of the target nucleus. Once the
ground-state target nuclear wave function is known, the elas
tic longitudinal and transverse form factors can be theoreti-
cally evaluated.

All nonzero matrix elements of the charge~Coulomb! and
magnetic multipole operators

FCL~q!5
1

Z S 4p

2J11D
1/2

^C~J!uuM̂L
C~q!uuC~J!&, ~28!

FML~q!5
1

Z S 4p

2J11D
1/2

^C~J!uuM̂L
M~q!uuC~J!&, ~29!

contribute, respectively, to the longitudinal and transverse
form factors

uFL~q!u25 (
L50

2J

uFCL~q!u2 ~L even!, ~30!

uFT~q!u25 (
L51

2J

uFML~q!u2 ~L odd!. ~31!

The 9Be ground state, havingJ53/2, possesses only charge
monopole and quadrupole, and magnetic dipole and octupol
form factors. The multipole operators are defined in terms of
the charge and current density operators in the usual form:
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M̂LM
C ~q!5E dr j L~qr !YLM~ r̂!r̂~r!, ~32!

M̂LM
M ~q!5E dr j L~qr !YLLM~ r̂!• Ĵ~r!. ~33!

The 9Be nuclear charge and current densities are assu
to be the sum of the charges and currents due to each o
three particles in the system; i.e., the operatorsr̂ and Ĵ are
expressed in terms of single-particle operators. The cur
density can be decomposed into a convection current
and a magnetization part due to the neutron spin@19,20#:

r̂~r!5 (
j5n,a,a

r̂ j~r2r j !, ~34!

Ĵ~r!5 (
j5n,a,a

\

mjc

1

2
@ p̂j r̂ j~r2r j !1 r̂ j~r2r j !p̂j #

1
\

2mnc
¹3ŝnm̂n~r2rn!. ~35!

Meson exchange currents are not taken into considera
but the finite particle sizes are accounted for by introduc
phenomenological particle form factors. If the constitue
were point particles the corresponding densities would
represented by Dirac delta functions:r̂ j (r2r j )
5Zjd(r2r j ), and m̂n(r2rn)5mnd(r2rn), where Zj and
mn are, respectively, the charge number of particlej and the
magnetic moment of the neutron in nuclear magnetons.
finite size of the neutron and the alpha particles and th
nonelementary nature are described by the Fourier tr
forms of the corresponding electric and magnetic form f
tors @19#:

r̂n~r2rn!5E dq

~2p!3
GE

~n!~q2!exp@2 iq•~r2rn!#, ~36!

m̂n~r2rn!5E dq

~2p!3
GM

~n!~q2!exp@2 iq•~r2rn!#, ~37!

r̂a~r2ra!5ZaE dq

~2p!3
GE

~a!~q2!exp@2 iq•~r2ra!#,

~38!

m̂a~r2ra!50. ~39!

Phenomenological expressions for these particle form
tors are obtained from the literature. The neutron charge
magnetic form factors are taken from the work of Gari a
Krümpelmann@21#. For the alpha particle charge form fa
tor, the simple parametrization of Froschet al. @22# is used.
These phenomenological form factors, together with the tw
body potentials described in Sec. II, are the only exter
input used in the present work.
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VI. RESULTS AND DISCUSSION

After normalization, the three-body wave function is use
in the calculation of the ground-state elastic Coulomb an
magnetic form factors, and in the estimation of the electro
magnetic observables. The latter, namely rms charge radi
electric quadrupole moment, and magnetic dipole and oct
pole moments are related to the static limit of the former:

r c526
dFC0~q!

d~q2! U
q50

, ~40!

Q56 Zelim
q→0

FC2~q!

q2
, ~41!

m5
3 Z

A10
lim
q→0

2 iFM1~q!

q
, ~42!

m35
3 ZA15

2
lim
q→0

2 iFM3~q!

q3
. ~43!

The results obtained for these quantities, using the tw
body preferred interactions LRG and AB, are presented
Table III. The values generally accepted for the same qua
tities which result from analysis of different experimenta
results are also presented for comparison.

These theoretical results are remarkably good having
mind the simplicity of the model used and the fact that
contains no adjustable parameters.

The electric and magnetic observables associated with t
lowest multipoles present a very small relative difference t
the corresponding experimental values. The magnetic dipo
moment differs from the experimental value, which is know
to an extraordinary degree of precision, by less than 2.5%.
the case of the charge radius the difference is less than 2

For the highest multipole moments the relative differenc
is not so small but the results are still quite approximate. Th
value of the electric quadrupole moment is not very far from
the limit of the experimental error interval. In what concern
the magnetic octupole it is important to point out that it is
very difficult to establish a reliable experimental value, sinc
this depends to a great extent on the process of analyzing
data and also on the data that are being analyzed. The va
estimated by different authors has been varying at least by
factor of 2 over the years. The experimental result used f
comparison is taken from the thorough analysis of this qua

TABLE III. Results obtained with the present three-body mode
of the 9Be ground state, and generally accepted experimental valu
for rms charge radius (r c), electric quadrupole moment (Q), and
magnetic dipole (m) and octupole (m3) moments.

Present results Expt. values Ref.

r c ~fm! 2.477 2.5260.01 @23#
Q (e fm2) 4.791 5.360.3 @17#
m (m

N
) 21.151 21.177860.0009 @17#

m3 (mN
fm2) 6.01 561 @2#
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tity made by Lapika´s et al. @2#. The value of 561m
N
fm2

results from the analysis of their experimental scattering d
together with older data presented by other authors. H
ever, if the same analysis is applied solely to their data
value they obtain is 662m

N
fm2. If this, on the one hand,

coincides exactly with the present theoretical result, on
other hand it clearly states the difficulty in establishing
rigorous experimental value.

For comparison, the results for the electromagnetic m
ments obtained with different sets of two-body interactio
are presented in Table IV. Like for the binding energy, t
CB potential performs generally worse, and theS1/2 and
P1/2 parametrizations of then-a interaction have limited in-
fluence on the value of the observables. TheP3/2 interaction
S, despite the limitations mentioned in Sec. II, gives a be
result for the electric quadrupole moment. However, t
magnetic moments, particularly the octupole, are not w
reproduced. As expected, the size related observables, ch
radius and quadrupole moment, show a scaling with
binding energy in the right direction, but the magnetic o
servables are oversensitive to a shift in this energy.

It is interesting to examine the single-particle contrib
tions to the matrix elements of the charge and magnetic m
tipole operators,FCL(q) and FML(q). These contributions
are associated with the various terms in the charge and
rent density operators~34! and~35!. In the case of the charge
multipole matrix elements the only appreciable contributi
comes from the term representing the charge density of
alpha particles. As would be expected, the influence of
finite size of the neutron is negligible. The single-partic
contributions to the matrix elements of the magnetic dip
and octupole operators are represented in Fig. 1. It is ap
ent that the dominant contribution to eitherFM1(q) or
FM3(q) comes from the spin of the neutron, through t
magnetization term in Eq.~35!. The orbital motion of the
charged alpha particles also offers an important contribut
especially to the dipole term in which it has, for lowq, the
opposite sign to the dominant spin part. As expected,
orbital motion of the neutron presents a negligible effect
both multipole matrix elements.

The squared longitudinal and transverse elastic form f
tors uFLu2 and uFTu2 are represented, respectively, in Figs.

TABLE IV. Results for the ground-state electromagnetic o
servables, in the three-body model of9Be, obtained with different
two-body interactions.

r c Q m m3

a-a n-a ~fm! (e fm2) (m
N
) (m

N
fm2)

AB LRG 2.477 4.791 21.151 6.01
GL1(S1/2) 2.476 4.789 21.156 6.03
GL2(S1/2) 2.477 4.817 21.136 5.88
S(P1/2) 2.477 4.865 21.081 5.97
S(P3/2) 2.558 5.103 21.243 9.73

CB LRG 2.450 4.612 21.130 5.74
GL1(S1/2) 2.449 4.604 21.137 5.76
GL2(S1/2) 2.450 4.637 21.116 5.63
S(P1/2) 2.450 4.680 21.059 5.71
S(P3/2) 2.559 5.063 21.254 9.82
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and 3, as function of the momentum transfer~solid lines!.
The two Coulomb and two magnetic multipole contributions
to these form factors are also represented: the lowest orde
uFC0u2 and uFM1u2 ~dashed lines!; and the highest order
uFC2u2 and uFM3u2 ~dot-dashed lines!. The experimental
points are taken from some of the most representative elasti
electron scattering results for9Be that span different regions
of momentum transfer. These results were published by dif-
ferent authors over the years, since 1966, and culminate in
the recent work by Glickmanet al. @18# where results for

-

FIG. 1. Single-particle contributions to the matrix elements of
the magnetic dipole and octupole operators: neutron spin (s), or-
bital motion of the alpha particle (a), and orbital motion of the
neutron (n).

FIG. 2. Squared longitudinal~Coulomb! elastic form factor of
9Be in function of the transfer momentum. The curves represent the
present theoretical calculations: total form factoruFLu2 ~solid line!,
monopole contributionuFC0u2 ~dashed line!, and quadrupole contri-
bution uFC2u2 ~dot-dashed line!. The experimental data were ex-
tracted from Ref.@18# ~circles!, Ref. @24# ~triangles!, and Ref.
@3# ~stars!.
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both longitudinal and transverse form factors are presen
~solid circles!.

The calculated longitudinal~Coulomb! form factor de-
scribes extremely well the general behavior of the exp
mental points over the whole region of momentum trans
where data are available. Special mention should be mad
the region of the zero of the monopole form factor, where
quadrupole part dominates. The good description also of
region allows the conclusion that the absolute strengths
both quadrupole and monopole terms are very well descr
by the three-body dynamics of then1a1a system.

In the case of the transverse form factor, the experime
data are reasonably reproduced in the low-q region. The first
maximum of the magnetic dipole term has approximately
right height. However, for higher momentum, the second
maximum at about 1.9 fm21 is too small in amplitude to
reproduce the bump observed in the experimental d
points. Also, the analysis of the region where the dipole te
has its zero indicates a too small strength of the octup
contribution. This result is extremely interesting, as it in
cates that the dynamics of the three-body system, des
reproducing the general trend, is missing something in
description of the high-momentum magnetic scattering pr
erties of 9Be. The same type of discrepancy, between
calculated transverse form factor and the experimental
at large transfer momentum, is found in the case of the th
bodya1p1n model of 6Li presented by Eskandarianet al.
@26#. In fact, these authors obtain for the magnetic dip
term, which constitutes the only contribution to the tran
verse form factor of6Li, a reasonable agreement with th
experimental data at lowq, but their calculation largely un
derestimates the value of the form factor for higher m
menta. These authors attribute part of this discrepancy to
fact that they neglect the convection current contributio

FIG. 3. Squared transverse~magnetic! elastic form factor of
9Be in function of the transfer momentum. The curves represen
present theoretical calculations: total form factoruFTu2 ~solid line!,
dipole contributionuFM1u2 ~dashed line!, and octupole contribution
uFM3u2 ~dot-dashed line!. The experimental data were extracte
from Ref. @18# ~circles!, Ref. @2# ~diamonds!, and Ref.
@25# ~squares!.
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and also to disregarding the Coulomb potential in the dy
namical equations of the three-body system. In the prese
model of 9Be, where both these factors were taken into a
count, the same kind of disagreement appears, even if not
pronounced. This seems to indicate a common cause, nam
the influence of the internal magnetic structure of the alph
particles.

VII. CONCLUSION

The present work constitutes a consistent nonrelativist
three-body calculation of the electromagnetic properties
9Be. In this formulation of the three-body problem, which
allows the inclusion of the Coulomb potential, the bound
state wave function depends exclusively on the low-energ
parametrization of the underlying two-body interactions be
tween the constituent particles. Except for the use of ph
nomenological electromagnetic form factors for the indi
vidual particles, which is, of course, necessary in th
determination of the electromagnetic properties, no furth
parametrization is introduced and the results obtained for t
physical observables are direct predictions of the three-bo
model.

This model is very successful in describing the low mo
mentum transfer behavior of the elastic electromagnetic for
factors of 9Be. Even beyond its expected domain of validity
for higher values ofq, the model is able to reproduce the
correct shape of the longitudinal form factor, where bot
monopole and quadrupole contributions are importan
Therefore, the nuclear ground-state charge distribution is e
tirely compatible with a three-particle structure, where th
internal charge distribution of each particle is described b
the corresponding charge form factor. The theoretical resu
obtained for the transverse form factor are physically ver
interesting because they indicate that, although the mod
gives a reasonable description of the electron scattering e
perimental results for low values of momentum transfer, fo
higher momenta the simple three-body model becomes ina
equate. This situation is easily understandable if one has
mind the fact that the greater the penetration of the electro
inside the nucleus, the more the experimental results are g
ing to be sensitive to the details of the internal structure o
the alpha particles, and particularly to the distribution o
magnetic moments of the nucleons that compose them. T
nuclear magnetic moment distribution has to include contr
butions from configurations other than that of a neutron~with
its spin! plus two orbiting charged spinless alpha particles
Many-body correlations play an important role in this cas
specially at high momentum transfer.

The static properties of the9Be ground state, which are
extracted from the form factors, are predicted with an acc
racy comparable and in some cases superior to other th
retical models. The moments of lowest multipolarity, charg
radius and magnetic dipole moment, in particular, have the
experimental values reproduced within about 2%.

The study of different two-body interactions revealed th
importance of having a parametrization of then-a dominant
P3/2 partial wave that very well reproduces the low-energ
phase shifts. On the other hand, the results demonstrat
large stability with respect to the particular representation
the nondominant partial waves in then-a system. In the

the
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a-a two-body system, there is not a very marked differen
between the use of Ali-Bodmer and Chien-Brown potentia
but it turned out to be the former that produces better res
for the static observables as well as for the form factors.

One possible future refinement of the present model m
be the attempt to include the nucleonic structure of the al
particles in the wave function of the system, after the so
tion of the basic three-body problem. This procedure wo
perhaps correct the discrepancies found in the transv
form factor at high momentum transfer, by introducing t
spin correlations that would affect the matrix elements of
magnetic multipole operators, without destroying the und
lying three-body structure of the system.
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APPENDIX: COEFICIENTS INVOLVED
IN THE THREE-BODY EQUATIONS

The magnitude of the composed momenta appearin
the final three-body equations~26! have the following defi-
nitions:
ce
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k22~Q,Q8,u!5U ma

Mna
Q1Q8U, ~A1!

k228 ~Q,Q8,u!5UQ1
ma

Mna
Q8U, ~A2!

k21~Q,Q8,u!5U mn

Mna
Q1Q8U, ~A3!

k218 ~Q,Q8,u!5uQ1 1
2Q8u, ~A4!

k̄12~Q,q8,u!5U M

2Mna
Q1

mn

Mna
q8U, ~A5!

K̄12~Q,q8,u!5u 12Q1q8u, ~A6!

where variableu represents eitherQ̂•Q̂8 or Q̂•q̂8.

The channel state projection coeficientsPii 8 andPii 8 that
result from the overlap of channel states in different parti
tions, are given by the following expressions:
Pgg8
22

~Q,Q8,u!5 (
l50

l

(
l850

l 8

(
L50

Lmax

Qgg8ll8L
22

~21! l 1l 8S ma

Mna
D l 2l1l8S Qk22D

l S Qk228 D l 8SQ8

Q D l1l8 1

2
PL~u!, ~A7!

Pgg8
2i

~Q,Q8,u!5 (
l50

l

(
l850

l 8

(
L50

Lmax

Qgg8ll8L
2i

~21! l 8S 12D l8S mn

Mna
D l 2lS Qk21D

l S Qk218 D l 8SQ8

Q D l1l8 1

2
PL~u!, ~A8!

Pgg8
i2

~Q,q8,u!5 (
l850

l 8

(
l950

L8

2 (
L50

max

Qgg8l8l9L
i2

~21!L81l8Smn

M D l8S MQ

2Mnak̄12
D l 8S Q

2K̄12
D L8S 2q8

Q D l81l9 1

2
PL~u!, ~A9!

wherePL(u) is the Legendre polynomial of degreeL. The limits of the summations inL in the above expressions are
Lmax5min(L81l1l8,L1l 2l1l 82l8), andLmax5min(l 1l81l9,L1l 82l81L82l9). The angular momentum cou-
pling coeficientsQ andQ have the definitions

Qgg8ll8L
i i 8 5~21! l 1l 82 j2 j 821l̂ l̂ 8 ĵ ĵ 8L̂L̂8~ l 2

^
l!~ l 82

^
l8!L̂2S 2l 11

2l D 1/2S 2l 811

2l8
D 1/2

3(
L8

L̂82S L8 l8 L8

0 0 0 D S L8 l L

0 0 0D (
ABC

Â2B̂2Ĉ2S l 2l C L

0 0 0D SC l 82l8 L

0 0 0D H L A l 8

j l 1
2

J L8 j 8
J

3H L B L8

A l L8

l 8 l 82l8 l8
J H L C l 2l

L8 L l

B l 82l8 l
J , ~A10!
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Qgg8l8l9L
i i 8 5~21! l 1l81 j1 j 821l̂ l̂ 8 ĵ ĵ 8L̂L̂8~ l 82

^
l8!~L82

^
l9!L̂2S 2l 811

2l8
D 1/2S 2L811

2l9
D 1/2

3(
L8

L̂82S l9 l8 L8

0 0 0 D S L8 l L

0 0 0D(AB Â2B̂2S L B L82l9

0 0 0 D S L B l 82l8

0 0 0 D H L A l 8

j l 1
2

J L8 j 8
J

3H B L L82l9

l8 L8 l9

A l L8
J H l8 l 8 l 82l8

L B A J , ~A11!

wherex̂5A2x11, and the summations are extended to all possible values compatible with the triangular conditions imp
by the Wigner symbols.
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