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Three-body calculation of °Be electromagnetic observables
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A three-body calculation of the electromagnetic observables olBeeground state is reported. The nucleus
of °Be is considered as a three-body system of one neutral plus two charged partictes:«. Simple
two-bodyn-a anda-a potentials, plus Coulomb, constitute the only input to the momentum-space three-body
equations. No adjustable parameters are used. The equations are solved numerically for the ground state,
generating simultaneously the binding energy and wave function. The normalized wave function is then used
in the calculation of the matrix elements of the electromagnetic operators. The neutron and alpha particle form
factors are folded in this calculation. Results are presentedBerelastic longitudinal and transverse form
factors, and static multipole moments: rms charge radius, electric quadrupole moment, and magnetic dipole and
octupole moment4.S0556-281®6)02808-7

PACS numbgs): 21.45:+v, 21.60.Gx, 21.10.Ky

[. INTRODUCTION are completely determined from the solution of the bound-
state equations. They are exclusively dependent on the two-
The °Be nucleus presents a low neutron separation enbody interactions used, and contain no adjustable parameters.
ergy. Its low-energy excited states are unstable and break ufhe wave function thus obtained is, after normalization, used
into one of the formsa+ °He or n+®Be, where both°He in the calculation of the elastic electromagnetic form factors.
and ®Be are unbound nuclei decaying totn and a+a, For this purpose, the finite size and nonelementary character
respectively. All other forms of breakup require excitationof the alpha particle and the neutron are taken into account
energies above 16 MeV. These facts suggest a high degree tbough the use of phenomenological electric and magnetic
clustering of the®Be nucleus. The nucleons appear to beform factors for these particles. Finally the ground-state elec-
organized as a weak bound state of three clusters consistifigpmagnetic moments ofBe are evaluated by taking the
of two alpha particles plus one odd neutron. The four nuclestatic limit of the corresponding multipole terms.
ons in the alpha particle are so strongly bound in proportion Section Il contains a brief survey of the two-bodya
to the neutron separation energyBe that, for low excita- anda-a potentials used in the present calculations. The deri-
tion energies, one may consider the alpha particle as elememation of the three-body equations and the results obtained
tary. This assumption sets the ground for a three-body modébr the binding energy are presented in Secs. Il and IV. The
calculation of °Be, where the neutron and the two alphadefinition of the electromagnetic form factors and their rela-
particles interact through effective potentials. tion to single-particle operators is introduced in Sec. V. In
So far the models used in theoretical descriptions of thissec. VI the results for the electromagnetic form factors and
nucleus have been based essentially on effective one- ampservables are presented and discussed. Finally, in Sec. VII
two-body dynamical equations—shell model, Nilsson modelsome conclusions are summarized.
projected Hartree-Fock, cluster model RGBEe referenc-
es in [1-3]); approximate three-body models—Born-
Oppenheimer three-body molecular mof€], and more re-
cently a variational three-body calculation based on a The phenomenological two-body potentials chosen to rep-
Gaussian ansafs]. In this respect, the present work consti- resent the interaction between particles in each pair, repro-
tutes an attempt to represent tfBe nuclear ground state as duce the low-energy phase shifts, have a simple analytical
a three-body system where the dynamics is determined bgxpression, and are widely used in the literature for different
exact three-body equatiofi§]. applications.
The equations derived for the bound state of thiea + The n-a potential is represented by a set of momentum-
a system are a generalization of the ones presented by Lelkpace separable interactions for the dominant partial waves at
manet al. [7] for the case of spinless, one neutral plus twolow energy ¢’;)=S,/,, Py, andP3,. The potential opera-
charged, particles with identical mass. Here the fermionicor, with one separable term in each partial wave, has the
character of the neutron together with its different mass igjeneral form
taken into account. After separation of the center-of-mass
motion and partial wave expansion, a set of coupled
momentum-space integral equations in two continuous vari- Vie= 2 It/ im I/ /im (D)
ables is obtained. This set of coupled equations is solved Zim; : :
numerically for the ground state, using the method of inverse
iteration, producing simultaneously the binding energy andn which A /; is the interaction strength, and the operational
the wave function components. form factor has the following representation in momentum
Both ground-state energy and three-body wave functiorspace:

Il. TWO-BODY INTERACTIONS
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TABLE |. Parameters for the dominant partial-wave interactionspartial waves/=0, 2, and 4, with the radial dependence
in the two-bodyn-« potential, extracted from Ref9]. represented by the sum of two Gaussian functions. The po-
tential operator has the general form

2/‘Lna
N B/
417 o1
7 Name (fm =372 (fm™1) Vozoz:;1 drrer/ZmV, (r){r/m|, 4
Si LRG 0.6373 0.7496 _
GL1 0.3 0.7 with
GL2 0.2 0.6
P LRG ~1.1040 1.1770 VIB(r) =V, exp(— uf 1%+ Vo exp —uir?).  (5)
S —0.1640 0.8505 . s
= LRG 48310 1.4490 In order to determine the sensitivity of the results to the
32 S _13671 11352 particular two-body interaction, an alternatiwea potential

is also tested: the Chien-Browi€B) potential[12]. This is

also a configuration-space local potential in each partial

wave (4), with a distinct analytical form for the attractive

<q|f/jmj)=f/j(q)2 (/m3s[im)Y, (x¥?. (20  term, and acting also in'=6. In both potentials the attrac-
ms tive term is common to all partial waves.

The use of these potentials in a momentum space calcu-

In the present work, the funcﬂonal form factéy;(q) is ._lation like the present one requires their Fourier transforma-
given analytically by a simple one-parameter expressionjy .

which leads to the correct threshold and asymptotic behavior
of the phase shiftg3]:

, Vaa= 2 fdqqqu’q’zlq/mw/(q,q’)<q’/ml, Q)

»
KRG @
/]

where3,; acts as the inverse range of the interaction.

The particular range and strength parameters of these in-
teractions which are of primary interest in the present calcu-
lations correspond to the designated “preferred set” of Leh-
man, Rai, and Ghovanlolf], in their analysis of different This Fourier transformation can be performed numerically
n-« interactions. They are listed in Table | under the desig-with great accuracy, however, for the Ali-Bodmer potential
nation of LRG. This set of interactions reproduces with greabne is able to obtain an analytic expression for the potential
accuracy then-a experimental phase shifts up to about 15terms in momentum space:

MeV, and was used with great success in the three-body

f i(a)
where

' 2 2; H !
V(9,9 ):;f drréj A(qr)V(r)j(q'r). (7)

model study of theA=6 systems {He and®Li) [8,9]. V.,
Different parametrizations of the varionsa partial wave V28(q,0)= 2 ———
interactions were tested in order to estimate the sensitivity of =ra 2"‘i/‘/ﬁ
the model to the two-body input. Alh-« interactions de- 9?+q’2 qq’
scribed in the above references with form factors presenting Xexp{ - |1 1,2( —2> , (8
the proper asymptotic behavi@) were considered in these iy 2piy

tests. In partial wavé,;,, interactions GL1 and GL2 repre- , ) i i

sent improvements to the LRG fit but in limited energy re-Wherel .1(x) is the Bessel function of imaginary argu-

gions: GL1 fits the very low-energy phase shifts, while GL2Ment[13]. _ o

fits the 10—15 MeV region. Extensively used in the past, the 1he Coulomb potential between the alpha particles is rep-

interactions designated b§, from Shanley[10], in both resented by |ts_part|al wave expansion in mo_mentum space

P,,, and Py, partial waves, produce comparatively poor fits (6), e>_<pressed in terms of the Legendre function of the sec-

to the phase shifts. The results showed no particular sens?nd kind:

tivity of either the binding energy or the electromagnetic

observables to the various interactions used in partial waves VC(q,q’) =222 1 Q

Sy;» and P4, (the variations in most observables did not ex- . « mqq </

ceed 2%. Although not as accurately fitted to the two-body

experimental data as the LRG, the interact®n the domi- whereZ e is the total charge of the alpha particle.

nantP;, partial wave, has the advantage of producing a very In order to keep the calculation amenable, this expansion

good result for the’Be ground-state energy, and thus per-is truncated after partial wavé= 8. This option is justifiec

mitting the observation of the scaling of the electromagnetigposteriori by the calculation of the contributions to the

properties with the binding energy. bound-state Coulomb energy from the various partial waves.
The nuclear interaction between the two alpha particles idt is found that these contributions decrease very rapidly for

represented by the well-known Ali-BodméAB) potential />2, with the /=8 term representing less than 0.02% of

[11]. This is a configuration-space local potential acting inthe total.

q2+q12
2qq’

: (€)
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Ill. THREE-BODY BOUND-STATE EQUATIONS Each of the equations for the nuclear components can be
expressed in terms of the nuclear two-bddwyatrix for the
corresponding pairT;(E), and the free-particle resolvent
Go(E)=(E—H;) L. The a-a t matrix embedded in three-

The primary purpose of the three-body formulation of the
momentum-space+ «+« bound-state equations, with Cou-

lomb interaction between the two alpha particles, is to obtairbOdy space is a function of the Jacobi momenta of partition 1

both the binding energy and the wave function. . . .
The Coulomb interaction between the pair of charged pargthe appropriate to represent thex interaction, of the form

ticles is included in the three-body equations using a method

that is independent of the form of the nuclear interaction. In . PN A ANk (A
this method, presented by Lehmahal. [7], the equations (L:aQTu(B)[1:q'Q")=3(Q-Q )Z‘] Yol @Y7n(d)
for the bound-state wave function components do not in-
volve the Coulomh matrix, but only the Coulomb potential.
A set of two-variable integral equations is obtained after par-
tial wave projection, even with the use of separable two-
body nuclear potentials, because of the local character of thghere the two-bodyt matrix results from the Lippmann-
Coulomb potential. However, these two-variable equations$Schwinger equation:

are easily solved numerically permitting the direct construc-

tion of the bound-state wave function. © , VAa,9")

The method described in Rdf7] is generalized here in  tA(E( ;q,q’):V/(q,q’)+f da"9" e —om25,-
order to include unequal-mass particles and spin degrees of 0 @4 !
freedom, and also to allow the use of nonseparable nuclear Xt (E2:9",9'). (19
potentials.

Considering particle 1 to be the neutron and designatinghe n-« t matrix is obtained in a separable form
the alpha particles by 2 and 3, in the present three-body

Xt,

< )
E 2Ml,q,q : (18

model of °Be the Hamiltonian is expressed by Q2
<2:QQ|T2(E)|2:q/Q,>:5(Q_Q,)<Q|f/jmj>7'/j<E_ 2—>
H=Ho+V;+VS+V,+ Vs, (10) K2
X{fim|d'), (20
where H, is the free-particle Hamiltoniany; denotes the < /'m1|q )
nuclear potential between the particles of paiandv(f rep-
resents the Coulomb potential between the alpha patrticles.
The bound-state wave functioh, which is a solution of the " IF,:(q)2 |2
eigenvalue equation , _[y-1_ new2 _VZRH T
9 q 7,i(E(2) (7\/1 fo dg’q E(z)—Q"Z/ZVz) . (2D

HY=E¥ (E<O0), (12) o
The two- and three-body reduced masses, appearing in the
is decomposed into the three standard Faddeev componerstgove equations, are defined asg;=mm/M,
corresponding to the three possible two-cluster partitions oft;=m;M;, /M, where (,],k) represent any permutation of

the system (1,2,3, and with the pair and total massed;,=m;-+m
andM=m,+2m,.
w:\p(13+qf2+qf3, (12) Hence, the coupled equations that are solved in momen-
tum space for the bound-state wave function components of
The equations that determine these components are the system take the form
(Ho—B)¥i=-Vi¥ (i=23), (13 Vi=Go(E)TI(E)(Vj+ W+ Wy, (223
(Ho—E)¥E=— (Vi + VD)V, (14) U,=Go(E)VS(W,+V,+ W+ W,), (22D
The component?$, corresponding to partitiona(@)n, is with i,j,k=1,2,3; i#]#k#i.
now further decomposed into a “Coulomb-modified”  Npotice that in the equation for the Coulomb component
nuclear part¥,, and a “pure” Coulomb componer¥,,  , the Coulombt matrix is not introduced. It is an impor-
satisfying the equations tant feature of this formulation that the equations involve
only the Coulomb potentiaw(f between the pair of charged
(Ho—B)¥ =-V, ¥, (15 particles and not the Coulonttmatrix. A different approach
to the momentum space three-body problem with two
(Ho—E)¥,=—VS$W. (16)  charged particles, that includes the Coulomiatrix in the

equations, was described by Kok and van Haerirlgeih
The full bound-state wave function is given now by the sum It is convenient to introduce at this point the total angular
of four components momentum representation of the Jacobi coordinates. For
each partition this representation is made up of all three-body
V=v+¥,+¥;+W¥,. a7 channel states resulting from the partial wave expansion of
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the Jacobi momenta coupled with the spin of the neutron to
total angular momenturd and projectionM ;. The channel ‘I’zy(Q.Q)=E_(Q2/2 Y (q%2vy)
states are 2 2

Xf/j(Q)T/j(E_QZ/ZMZ)

Vo (8Q=(i:aQli:qQ;(/(1/2)jL)IMy) X f dq”q”zf/jm”)i:%,”ﬁ,
(i)

=, (V2 mim) ><f dq'q2dQ' Q2

X(GLMM[IMY /(@Y m(Qxe?. X(2:q"Q;/i:q'Q" 3y )Wy, (q',Q), (233
In the present notatiod” represents the relative orbital an-

gular momentum of the particles that form the pair in the V1,(9,Q)= E—(Q%21,) — (%2vy)
partition considered, is the channel spin which results from

the coupling of/ with the spin of the neutron, arld repre- 2 > o
sents the relative orbital angular momentum between the pair X | da"q"t(E—Q%2u4:0,9")
and the third particle.

In order to lighten the notation it is usually represented by % J da’'q’2d0’ 0’2
Yy, the complete set of angular momentum variables i=§2,:3,4§_: dardQQ
[/(1/2)jL];) that uniquely identifies each channel state for ®
fixed total angular momenturd and projectionM; in a X(1:9"Q;7]i:q'Q";¥")¥i,(q",Q"),

given partitioni. If the partition is specified elsewhere the
subscript may be omitted. The basis states of this represen-
tation |i:qQ;[/(1/2)jL]IM;) may be more compactly de-
noted byl|i:qQ;y). The four components of the wave func- 1
tion are projected onto the angular momentum representation? 4,(d,Q) = E=(0%21,) — (4212 )f dq'q"?VS(a.q9")
associated with the corresponding partition. Notice that the #) = Qe

partition in which¥, is projected, called partition 4 for no- L oy 12

tation consistency, is the same as partition 1. The projected Xizng f dg'q’“dQ'Q

wave function components are denoted by Y

(23b

(i)
X(4:9"Q;%]i:q'Q";¥")¥i,(q",Q"). (230

Vi@ Q=(:qQ:¥y). Each sumation index(,=[/"(1/2)j'L"];; represents one

channel of partition included in the equations. The summa-
The characteristics of the wave function with respect talionS are extended to all the channels compatible with the
symmetry and parity are easily analyzed in this representd€Ms of the two-body interactions acting between the par-
tion. The wave function must be symmetric upon interchangd!c/€s of the pair in the given partition. _
of the two alpha particlegparticles 2 and B This inter- The structure o_f Eq(23) points out to the following form
change transforms partition 2 into partition 3 and vice versa®f the wave function components:
From the condition of symmetry it follows that the depen-
dence of the wave function on the variables of partitions 2
and 3 is identical(3:qQ;y|¥)=(2:qQ;y|¥). Thus, the ¥,,(9,Q)= >
equation for¥; may be eliminated in Eq(229 as it is E-(Q%2uz)=(q
identical to the equation fo¥,. In partition 1 the exchange
of the two alpha particles corresponds to changing the pair
relative momentunyg into —q. The symmetry of the wave 1
function leads to the condition (1:qQ;y|¥)= Vi (0,Q)==——=2 ——
(—1)7(1:qQ; y|¥), from which it is straightforward to con- ’ E=(Q%2u1)—(q/2vy)
clude that the bound state of the system allows only even
relative angular momenta between the alpha particles. Fi-
nally, from the conservation of paritP, one obtains the For¥,, the component associated with partitions of the type
following condition involving the two orbital angular mo- (na)a, the dependence on the two Jacobi momenta is fac-
menta/ andL, in every partition: 1)” "-="P. torized due to the separable nature of the interactions.
Introducing the explicit form of the two-body interaction The spectator functio,,(Q) gives they-channel momen-
operatorsT; andV$, and the appropriate partitions of unity, tum distribution of one of the alpha particles relative to the
the equations for the bound-state wave function componenizenter of mass of the pair formed by the other alpha particle
(22) become, in the total angular momentum representatiorand the neutron.

2/21/2) f/](q)GZ'y(Q)r
(249

V,0,Q (=14,
(24b
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The matrix elements that represent the overlap of thdéwo forms of establishing this relation, depending on the mo-
channel states of any two partitions have the general form mentum variables that are taken as independent:

(i:00li":q' Q)= 6k (QQ)NS(A ~k; . (QQ")
s =80’ ki (Q)SQ ~ K (Q),

%V e (9Q) wherek, k', k, andK designate certain vector compositions

x(i:qQi":q'Q"), (25) of the Jacobian momenta with coefficients involving the

masses of the particles. After introducing either of these two

where the matrix elementéi:qQli’:q'Q’) are given by forms in Eq.(25), expanding the arguments of the channel
Dirac ¢ functions relating the Jacobi momentum coordinatesstate functions, recoupling the angular momentum coeffi-
of the two partitiond andi’. cients and performing the possible angular integrations, one

The situation in which the left and right partitions are thearrives at the following expressions for the overlap of two

same (=i") is trivial. Fori#i’ it is convenient to consider channel states:

(i:qQHli"a'Q";y)= f dadg'dQdQ' V)75, (6,Q)

5@~k (Q,Q",u)) 4@’ —k;; (Q.Q",v)
q2 q12

+1 -,
(i:aQiyli":a'Q"1y") = Jfl duP},(Q.Q".u)

8@’ — ki (Q,q,u)) Q' —K;i(Q,q,u))
qr2 Q!Z .

i
=ﬁldqu,(Q,q,u)

The integration variable represents the cosine of the angle between the directions of the two independent momenta, either

Q-Q’ or Q-g. The functional form of the scalar coefficien®s and P and the magnitude of the composed momenta are
presented in the Appendix.

Finally, a set of coupled homogeneous integral equations for the spectator fuBgtiand the redefined wave function
componentsV; and¥, are obtained in the form

G — Q2 * 'y’ 2 il f/j(kzz) 22 ' ’ ’
Q=74 E-5 - | dQ'Q? | dul gmmmp S a2 P QRN (ki) Gay(Q)
Y(2)
f/i(kan) 2i ' '
E—(Q’2/2,ul)—(kéf/2y1) i—21,4%> Pw’(Q’Q ’u)\pi“/’(kﬂ'Q )1' (263
~ g Q? Qo f0(ks2) —
— ry!2 < . ’ 12 ’ J ,
7,00~ [ dog t/(E i3 ){2]101% P Q) e e Ga(Ka
1 ar !
+ E_(Q2/2M1)_(q12/2]}1)2 5'y'y’qj4'y’(q !Q) ’ (26b)
Y(4)

Y f00(Ky:
ZJ’ duz P42’(Q1q’1u) _2 /j ( 12)_2
-1 A E—(K1o/2pp) — (K1 2v5)

Y(2)

\Tawm,Q):Jo dg'q'?vi(a.q")

GZ)/’(KlZ)

1 ~ ~
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TABLE II. Results for the ground-state binding energy, in the netic observables obtained with the corresponding wave
three-body model ofBe, obtained with different two-body interac- function are farther away from the experimental values. No

tions. significant differences are encountered by changingntlae

S;;» and P4, interactions.

a-a The bound-state energy of theta+a system obtained
n-a AB CB with the interactions of primary interest iEg=—2.090

MeV. This result is not very close to the experimental value
LRG —2.090 —2.156 of —1.5735 MeV[17]. However, the binding energy results
GL1(Syp) —2.093 —2.165 from the near cancellation of two dynamical terms with op-
GL2(Sy)) —2.051 —2.114 posite sign and very large absolute value: the kinetic and
S(Py) —2.070 —2.134 potential energies. This fact explains how a small impreci-
S(Pap) —1.530 —1.449 sion in the two-body potential term, like for instance of the
Expt. —1.5735? order of 2%, is accountable for the large relative difference

in the resulting binding energy. In conclusion, the failure to
°Referencd17]. reproduce the correct binding energy is by no means an in-

dication that the dynamics of the system has been missed out
The partial wave projection of the Coulomb potential or that the wave function is inadequate. The behavior of the
Vv%(q.,q’) is responsible for the presence of a logarithmicwave function and how it reproduces the dynamics of the
singularity in the integrand of the last equation. This singu-nuclear state is the most important concern; this may be
larity is handled using a subtraction method introduced bytested in greater detail through the application of the electro-
Lande[15,7]. magnetic multipole operators.

IV. SOLUTION OF THE EQUATIONS V. ELECTROMAGNETIC FORM FACTORS

Once the three-body equations are established, one pro- Thg experimenta! elqstic electron scat_tering angular dif-
ceeds to its numerical solution. The integrations are perterenual cross s_ectlo_n is parametrized, in f‘he plane-wave
formed by introducing Gegenbauer quadratures in the moBorn approximation, in terms of the longitudinal and trans-
mentum variable€’ andq’, and a Legendre quadrature for Verse form factors, both dependent on the momentum trans-
the integration in variable. The values of the variables that fer [18.1:
represent the magnitude of the Jacobi momé&ntandq are do
set at the same me;h points as theNGegenbaugr quadratures. d_Q:ZZUMfR{VL(0)|FL(q)|2+VT( 0)|FH(q)]2. 27)

The unknown functionss,, ¥,, and¥, on the right-hand

side of the equations are interpolated with the use of splines.

The set of integral equations then become a system of a|g%'_hese f(;lrm_ factorls represent ]Ehﬁ effect on thle crosg sectir?n
braic equations of the forrAX=X. This is simply a special 2u€ o the internal structure of the target nucleus. Once the

case of the matrix eigenvalue problefX=\X, which is ground-state target nuclear wave function is known, the elas-

solved by the method of inverse iteration, as described in itiC longitudinal and transverse form factors can be theoreti-
application to three-body problems by @kte [16]. The to- cally evaluated. .

tal energy is varied until an eigenvalue of 1 is found for the Al nc'mzero'matnx elements of the charg@oulomp and
matrix equation. The energy thus encountered is the bindinamgnetIC multipole operators

energy and the corresponding eigenvector is formed by the

12
bound-state wave function components. From these compo- FCL(Q):%

(PIME(Q] P, (29

nents one goes back to Eq&4) and (17), and obtains the 2J+1
full bound-state wave function. After normalization this o
wave function is available for future applications. _* DM (3
The ground state ofBe is characterized by total spin and Fuc(@)=7 2J+1 (PEIME(@[[¥T), (29

parity J”=(3/2). The present calculation includes all three-

body channels that couple to this total spin and parity, andontribute, respectively, to the longitudinal and transverse
are compatible with the two-body interactions described irform factors

Sec. Il. This makes up a total of 30 channels, when the AB

potential is used. 2J

The binding energies resulting from different two-body |FL(Q)|2:;0 [Fec(a)® (£ even, (30
interactions are presented in Table Il. It is immediately rec-
ognizable that the energies obtained with the AB potential 23
are in all cases closer to the experimental value than those = 2_ = 2 (r od 31
resulting from the CB potential. Remarkably, the same situ- IF+(@] £§=:1 Fuc(@I 9. 3

ation was verified with respect to most other observables. On

the other hand, the use of thea Py, interactionSresultsin ~ The °Be ground state, having=3/2, possesses only charge

a binding energy much closer to the experimental value thamonopole and quadrupole, and magnetic dipole and octupole
the LRG. Nevertheless, this situation seems to be accidentdhrm factors. The multipole operators are defined in terms of
since further tests indicated that the value of the electromaghe charge and current density operators in the usual form:
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. . TABLE Ill. Results obtained with the present three-body model

M gM(q) = f drj (qr)Y () p(r), (32 of the °Be ground state, and generally accepted experimental values
for rms charge radiusr(), electric quadrupole momeng)), and
magnetic dipole &) and octupole £3;) moments.

M%M(Q):f drj 2(anY gea(r)-I(r). (33 Present results Expt. values Ref.
re (fm) 2.477 2.52-0.01 [23]
The °Be nuclear charge and current densities are assumegl (e fm?) 4.791 5.3-0.3 [17]
to be the sum of the charges and currents due to each of the(, ) ~1.151 ~1.1778-0.0009  [17]
three particles in the system; i.e., the operatorade are g, (M fm?) 6.01 51 (2]

expressed in terms of single-particle operators. The current
density can be decomposed into a convection current part
and a magnetization part due to the neutron $pB2Q: VI. RESULTS AND DISCUSSION

After normalization, the three-body wave function is used
- - in the calculation of the ground-state elastic Coulomb and
p(r):j:;w pi(r=ry), (3% magnetic form factors, and in the estimation of the electro-
magnetic observables. The latter, namely rms charge radius,
electric quadrupole moment, and magnetic dipole and octu-

- Al pole moments are related to the static limit of the former:
\](r)z' m_z[pjp](r I’)+pJ(I’ r)p]]
|=n,a,a |
dFco(Q)
h re= 6| 40
+ Zmncvxo'n:u’n(r_rn)- (39 q q=0
Meson exchange currents are not taken into consideration, Q=62Zelim cz(CI) (41)
but the finite particle sizes are accounted for by introducing q—0

phenomenological particle form factors. If the constituents
were point particles the corresponding densities would be

represented by Dirac delta functions:p;(r—r;) = zlim —iFnm1(q) 42)
=Z;6(r—r;), and py(r—ry)=pu,8(r—r,), wherez; and V1040 d '

M, are, respectively, the charge number of partjcend the

magnetic moment of the neutron in nuclear magnetons. The .

finite size of the neutron and the alpha particles and their M3:3Z\/_5 —iFus(q) 43)
nonelementary nature are described by the Fourier trans- 2 4—0 q° '

forms of the corresponding electric and magnetic form fac-
tors[19]: The results obtained for these quantities, using the two-
body preferred interactions LRG and AB, are presented in
dq Table IIl. The values generally accepted for the same quan-
f)n(r—rn)=J?G(E“)(qz)exr[—iq(r—rn)], (36) tities which result from analysis of different experimental
(2m) results are also presented for comparison.
These theoretical results are remarkably good having in
mind the simplicity of the model used and the fact that it
r—=ry) f(277)3G§\;‘)(q2)exp{—iq~(r—rn)], (37)  contains no adjustable parameters.
The electric and magnetic observables associated with the
lowest multipoles present a very small relative difference to
. A (w2 ] the corresponding experimental values. The magnetic dipole
pa(r_ra)zzaj WGE (g9)exd —ig-(r—rg)], moment differs from the experimental value, which is known
(39) to an extraordinary degree of precision, by less than 2.5%. In
the case of the charge radius the difference is less than 2%.
. For the highest multipole moments the relative difference
Ha(T—T,)=0. (39 s not so small but the results are still quite approximate. The
value of the electric quadrupole moment is not very far from
Phenomenological expressions for these particle form facthe limit of the experimental error interval. In what concerns
tors are obtained from the literature. The neutron charge antie magnetic octupole it is important to point out that it is
magnetic form factors are taken from the work of Gari andvery difficult to establish a reliable experimental value, since
Krimpelmann[21]. For the alpha particle charge form fac- this depends to a great extent on the process of analyzing the
tor, the simple parametrization of Frosehal.[22] is used. data and also on the data that are being analyzed. The value
These phenomenological form factors, together with the twoestimated by different authors has been varying at least by a
body potentials described in Sec. II, are the only externafactor of 2 over the years. The experimental result used for
input used in the present work. comparison is taken from the thorough analysis of this quan-
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TABLE IV. Results for the ground-state electromagnetic ob-

servables, in the three-body model We, obtained with different 0.01 '
two-body interactions. L« i
o Q m M3 0.00 D e
a-a n-a (fm) (e fm?) 78] (n, fm?) .
AB  LRG 2477 4791 —1.151 6.01 T
GL1(Sy, 2476 4789 —1.156 6.03 001 s
GL2(S,,) 2477 4817 —1.136 5.88
S(Py) 2477 4865 —1.081 5.97
S(P3p) 2558 5103 —1.243 9.73 : }
CB LRG 2450 4612 —1.130 5.74 0.01
GL1(S,,) 2449 4604 —1.137 5.76 .
GL2(S;,) 2450  4.637 —1.116 5.63 T
S(P1) 2450  4.680 —1.059 5.71
S(P) 2559 5063 —1.254 9.82 0.00

. -’ 2
tity made by Lapika et al. [2]. The value of 5 1'U‘N fm FIG. 1. Single-particle contributions to the matrix elements of

results from the analysis of their experimental scattering datghe magnetic dipole and octupole operators: neutron sindf-
together with older data presented by other authors. Howbital motion of the alpha particlea(), and orbital motion of the
ever, if the same analysis is applied solely to their data th@eutron ).

value they obtain is &2« fm?. If this, on the one hand,

coincides exactly with the present theoretical result, on th@nd 3, as function of the momentum transfeolid lines.
other hand it clearly states the difficulty in establishing aThe two Coulomb and two magnetic multipole contributions
rigorous experimental value. to these form factors are also represented: the lowest order
For comparison, the results for the electromagnetic molFo|? and |Fy,|? (dashed lines and the highest order
ments obtained with different sets of two-body interactions|F,|? and |Fy3/? (dot-dashed lings The experimental
are presented in Table IV. Like for the binding energy, thepoints are taken from some of the most representative elastic
CB potential performs generally worse, and tBg, and electron scattering results fSBe that span different regions
P, parametrizations of the-« interaction have limited in- of momentum transfer. These results were published by dif-
fluence on the value of the observables. Thg interaction  ferent authors over the years, since 1966, and culminate in
S, despite the limitations mentioned in Sec. Il, gives a bettethe recent work by Glickmart al. [18] where results for
result for the electric quadrupole moment. However, the
magnetic moments, particularly the octupole, are not well 10°
reproduced. As expected, the size related observables, charge
radius and quadrupole moment, show a scaling with the
binding energy in the right direction, but the magnetic ob- -1
servables are oversensitive to a shift in this energy.
It is interesting to examine the single-particle contribu-
tions to the matrix elements of the charge and magnetic mul- -2
tipole operatorsF..(q) and Fy,-(q). These contributions

are associated with the various terms in the charge and cur- NE
rent density operator@4) and(35). In the case of the charge 107
multipole matrix elements the only appreciable contribution

comes from the term representing the charge density of the

alpha particles. As would be expected, the influence of the 107t

finite size of the neutron is negligible. The single-particle

contributions to the matrix elements of the magnetic dipole

and octupole operators are represented in Fig. 1. It is appar- 107

ent that the dominant contribution to eith&r,.(q) or

Fwms(q) comes from the spin of the neutron, through the

magnetization term in Eq35). The orbital motion of the

charge;d alpha part_icles also o_ffers an i_mportant contribution, g5 o Squared longitudindCoulomb elastic form factor of

especially to the dipole term in which it has, for lay the  9ge in function of the transfer momentum. The curves represent the

opposite sign to the dominant spin part. As expected, th@yesent theoretical calculations: total form fadey|? (solid line),

orbital motion of the neutron presents a negligible effect onyonopole contributionF |2 (dashed ling and quadrupole contri-

both multipole matrix elements. bution |Fc,|? (dot-dashed line The experimental data were ex-
The squared longitudinal and transverse elastic form factracted from Ref.[18] (circles, Ref. [24] (triangle3, and Ref.

tors|F|? and|F{|? are represented, respectively, in Figs. 2[3] (stars.




54 THREE-BODY CALCULATION OF °Be.. .. 531

1078 and also to disregarding the Coulomb potential in the dy-
namical equations of the three-body system. In the present
model of °Be, where both these factors were taken into ac-
count, the same kind of disagreement appears, even if not as
pronounced. This seems to indicate a common cause, namely
the influence of the internal magnetic structure of the alpha
particles.

I

VII. CONCLUSION

The present work constitutes a consistent nonrelativistic
three-body calculation of the electromagnetic properties of
%Be. In this formulation of the three-body problem, which
allows the inclusion of the Coulomb potential, the bound-
state wave function depends exclusively on the low-energy
parametrization of the underlying two-body interactions be-
tween the constituent particles. Except for the use of phe-
nomenological electromagnetic form factors for the indi-
vidual particles, which is, of course, necessary in the

FIG. 3. Squared transversenagneti¢ elastic form factor of determination of the electromagnetic properties, no further
°Be in function of the transfer momentum. The curves represent thiarametrization is introduced and the results obtained for the
present theoretical calculations: total form fadt‘érr|2 (SO'Id Iine), physica' observables are direct predictions of the three_body
dipole contribution|F;|? (dashed ling and octupole contribution model.
|[Fusl|? (dot-dashed .Iin)e The experimen.tal data were extracted  This model is very successful in describing the low mo-
from ~Ref. [18] (circles, Ref. [2] (diamonds, and Ref.  meniym transfer behavior of the elastic electromagnetic form
[25] (squarejs factors of °Be. Even beyond its expected domain of validity,

for higher values ofg, the model is able to reproduce the
both longitudinal and transverse form factors are presentedorrect shape of the longitudinal form factor, where both
(solid circles. monopole and quadrupole contributions are important.

The calculated longitudinalCoulomb form factor de- Therefore, the nuclear ground-state charge distribution is en-
scribes extremely well the general behavior of the experitirely compatible with a three-particle structure, where the
mental points over the whole region of momentum transfeiinternal charge distribution of each particle is described by
where data are available. Special mention should be made the corresponding charge form factor. The theoretical results
the region of the zero of the monopole form factor, where theobtained for the transverse form factor are physically very
guadrupole part dominates. The good description also of thatteresting because they indicate that, although the model
region allows the conclusion that the absolute strengths afives a reasonable description of the electron scattering ex-
both quadrupole and monopole terms are very well describederimental results for low values of momentum transfer, for
by the three-body dynamics of thet+ o+« system. higher momenta the simple three-body model becomes inad-

In the case of the transverse form factor, the experimentatquate. This situation is easily understandable if one has in
data are reasonably reproduced in the pwegion. The first mind the fact that the greater the penetration of the electrons
maximum of the magnetic dipole term has approximately thenside the nucleus, the more the experimental results are go-
right height. However, for higher momentum, the secondanjing to be sensitive to the details of the internal structure of
maximum at about 1.9 fm! is too small in amplitude to the alpha particles, and particularly to the distribution of
reproduce the bump observed in the experimental datmagnetic moments of the nucleons that compose them. The
points. Also, the analysis of the region where the dipole terrnuclear magnetic moment distribution has to include contri-
has its zero indicates a too small strength of the octupolbutions from configurations other than that of a neutiwith
contribution. This result is extremely interesting, as it indi-its spin plus two orbiting charged spinless alpha particles.
cates that the dynamics of the three-body system, despitdany-body correlations play an important role in this case
reproducing the general trend, is missing something in thepecially at high momentum transfer.
description of the high-momentum magnetic scattering prop- The static properties of th&Be ground state, which are
erties of °Be. The same type of discrepancy, between theextracted from the form factors, are predicted with an accu-
calculated transverse form factor and the experimental date@cy comparable and in some cases superior to other theo-
at large transfer momentum, is found in the case of the thregetical models. The moments of lowest multipolarity, charge
body a+p+n model of 5Li presented by Eskandariat al.  radius and magnetic dipole moment, in particular, have their
[26]. In fact, these authors obtain for the magnetic dipoleexperimental values reproduced within about 2%.
term, which constitutes the only contribution to the trans- The study of different two-body interactions revealed the
verse form factor of®Li, a reasonable agreement with the importance of having a parametrization of tier dominant
experimental data at lowy, but their calculation largely un- P3, partial wave that very well reproduces the low-energy
derestimates the value of the form factor for higher mo-phase shifts. On the other hand, the results demonstrate a
menta. These authors attribute part of this discrepancy to tharge stability with respect to the particular representation of
fact that they neglect the convection current contributionsthe nondominant partial waves in thea system. In the




532 E. CRAVO 54

a-a two-body system, there is not a very marked difference m
between the use of Ali-Bodmer and Chien-Brown potentials, k2o Q,Q",U)=| 11
but it turned out to be the former that produces better results
for the static observables as well as for the form factors.
One possible future refinement of the present model might m
be the attempt to include the nucleonic structure of the alpha ki Q,Q",u)=|Q+ ——Q'|, (A2)
particles in the wave function of the system, after the solu- Na
tion of the basic three-body problem. This procedure would
perhaps correct the discrepancies found in the transverse
form factor at high momentum transfer, by introducing the , m
spin correlations that would affect the matrix elements of the K1(Q,Q",u)= M
magnetic multipole operators, without destroying the under-
lying three-body structure of the system.

~Q+Q'|, (A1)

n

“Q+Q', (A3)

n

k,(Q.Q".w)=[Q+3Q'], (A4)
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APPENDIX: COEFICIENTS INVOLVED
IN THE THREE-BODY EQUATIONS where variablau represents eithe®- Q' or Q-q'.

The magnitude of the composed momenta appearing in The channel state projection coeficieRs andP'!’ that
the final three-body equatiori26) have the following defi- result from the overlap of channel states in different parti-

nitions: tions, are given by the following expressions:
/7 /A /=N+N / a 7\ NN
o~ [ m Q\"(Q Q 1
P?2,(Q,Q',u)= 022, ., —1/”( “) (—) (—) (—) SPA(W), A7
~,(Q.Q",u) gozogo S (~ D ol i) 10 SPA(W), (A7)

i 4 7! A max i , 1 N’ mn =\ Q / Q 7! Q/ )\+)\’1
niaeng, § S (R Y 2 e o

- _
=0 /=g A=0 Mna k21 Q

o /r Lr max . )\/
Ply(Qaw=2 X = 3 0, (-1

A =0\"=0

MQ
2M naklZ

mp

M

/’( Q
Q

L 2q, >\’+>\”1P ( ) (Ag)
_ —_— —_— u,
2K 1, 2" A

where P, (u) is the Legendre polynomial of degre®e. The limits of the summations i in the above expressions are
Ama=minL" +N+N L+ =N+/"=\"), and A pp=min(/+\"+\",L+/"—\"+L’=\"). The angular momentum cou-
pling coeficients® and® have the definitions

i’ s R e D a2 T 20+ 1)
O A= (—1 L (o= -a)AY T, (ZA,
L A
O A P IPTIR I PR | P
I
L B A’ L C 7=\
x{ A / L’ A’ A N (A10)

/I /‘1_)\/ )\/ B /’r_)\/ /
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1/2

N SN = /rA ’ /A " A2 2/7+1 2L’+1 v
@77;)\r)\rrA:(_1) //” LL (/ -\ )(L -\ )A o\’ 2\
L A
R n )\r A’ A / A A A B Lr_)\n L B /’/_)\r . )
2 2R2 /1
X%A (0 0 o)(o 0 o)AEBAB(o 0 0 )(o 0 0 ) J 2
J L/ j/
B A Lr_)\/r
)\/ // /I_)\/
NN iL A ] (A11)
A 7 L’

whereX= \2x+ 1, and the summations are extended to all possible values compatible with the triangular conditions imposed
by the Wigner symbols.
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