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Relativistic bound-state equations in three dimensions
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First, a systematic procedure is derived for obtaining three-dimensional bound-state equations from four-
dimensional ones. Unlike “quasipotential approaches” this procedure does not involve the use of delta-
function constraints on the relative four-momentum. In the absence of negative-energy states, the kernels of the
three-dimensional equations derived by this technique may be represented as sums of time-ordered perturbation
theory diagrams. Consequently, such equations have two major advantages over quasipotential equations: They
may easily be written down in any Lorentz frame, and they include the meson-retardation effects present in the
original four-dimensional equation. Second, a simple four-dimensional equation with the correct one-body
limit is obtained by a reorganization of the generalized ladder Bethe-Salpeter kernel. Third, our approach to
deriving three-dimensional equations is applied to this four-dimensional equation, thus yielding a retarded
interaction for use in the three-dimensional bound-state equation of Wallace and Mandelzweig. The resulting
three-dimensional equation has the correct one-body limit and may be systematically improved upon. The
quality of the three-dimensional equation, and our general technique for deriving such equations, is then tested
by calculating bound-state properties in a scalar field theory using six different bound-state equations. It is
found that equations obtained using the method espoused here approximate the wave functions obtained from
their parent four-dimensional equations significantly better than the corresponding quasipotential equations do.
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I. INTRODUCTION where

— 2 2
With the advent of experimental facilities such as CE- &(pi) = vpi+my, 1.4
BAF, which are capable of probing hadronic systems at en-
ergies where relativistic effects become important, the devel-

for spin-zero particles,

opment of theoretical frameworks in which consistentAli(p.): 2€i(py) o

relativistic calculations of few-body hadronic systems can be ' ' TE(P)Y — v pitm ; in-half icl

performed is no longer merely desirable; it is essential. 2¢(p;) or spin-half particles,
An obvious starting point for such a calculation in a two- 1.5

body system(such as the deuterpris the Bethe-Salpeter
equation(BSE) for the four-dimensional, covariant, two-to-
two amplitudeT,

n is a positive infinitessimal, an is the Bethe-Salpeter
kernel[1-5]. In principle K should include all two-particle
irreducible two-to-two Feynman graphs. The solution of
(1.1) with the full two-particle irreducible kernel is imprac-
tical and usually resort is made to the ladder approximation
) _ o [6—9]. Some undesirable features attend this approximation
where Gy is the free two-particle propagator, which in our (see[10] for a full discussio not the least of which is the

T=K+KG,T, (1.0

convention Is fact that the ladder BSE does not have the correct one-body
limit [11]. (An equation is said to have the correct one-body
Go(p1,P5:P1,P2)=i(2m)88Y(p;—p1) limit if, when the mass of one particle is taken to infinity, the
@) r equation reduces to the Klein-Gordon or Dirac equation for
X 8 (pa—p2)di(p1)da(p2), the light particle moving in the static field of the now infi-

(1.2 nitely massive sourceBy contrast, the full BSE1.1) does
possess the correct one-body limit.

with Three-dimensional guasipotential equatid@PE'S are
realized by rewriting the Bethe-Salpeter equation for the
. A (p) B A7 (p) w3 two-particle amplitud€1.1) as a pair of coupled equations
P e+ preap—in T=U+UgT, (16
U=K+K(Gg—9g)U, .7
"Electronic address: phillips@quark.umd.edu where the propagata is arbitrary. Ifg is chosen to contain
"Electronic address: wallace@quark.umd.edu a one-dimensional delta function constraining the relative
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four-momentum, then Eq1.6) becomes a three-dimensional equations such ad.11) which are themselves free of these
equation for the amplitudd. Examples of this approach singularities. On the other hand, in any electromagnetic re-
include the equations of Blankenbecler and Suyd& and action where the photon momentuwpis nonzero, the con-
Gross[11,13. In principle the driving termU should be straint(1.10 cannot hold for the initial- and final-state rela-
determined by solving the four-dimensional integral equatiortive four-momenta in the c.m. framg20]. Therefore a
(1.7). However, given the difficulty of solving such equa- boosted vertex function is required for electromagnetic ma-
tions, and our lack of knowledge about the best forrfKdbr  trix element calculations or, for that matter, for any QPE
hadronic physics, usuallyy is chosen to be a one-boson- calculation in a three-body problem. A boost equation for the
exchange interaction: guasipotential may be deduced from Eg.7), but unphysi-
cal singularities arise in the boosted interacti0,21].
U=Voge. (1.8 These are removed from the theory if the full resultthras
defined by(1.7), is used in the quasipotential equation, but
ho truncation ofU at any finite order inG—g is free of
singularities.
(1.9 Therefore, in this paper we seek a general procedure for
the reduction of four-dimensional equations whibbes not

A reasonable description of few-hadron systems is obtainetfivolve the use of delta function@/e develop a procedure
by fitting coupling constants and some mass parameters & Which a four-dimensional equation may be approximated
Voge t0 the nucleon-nucleon scattering datExamples of by a three-dimensional equation and the interaction in that
this approach include, but are by no means limited to, Refs¢quation improved systematically. The technique is pre-
[14-16].) sented in Sec. Il. It has a close connection to the work of
The QPE formalism of Gross obeys the one-body limitKI€in [23-2§ on three-dimensional reductions of four-
[11]. Another variant of the quasipotential approach whichdimensional equations, and to standard time-ordered pertur-
respects the one-body limit was derived by Wallace andation theory, as discussed in Sec. lll. .
Mandelzweig in Refs[17—19. We provide a generalization In general the interaction in the three-dimensional equa-
of that formalism in this paper. As originally derived, the tions we discuss is not covariant. But, since the application
QPE of Wallace and Mandelzweig contains, for the nucleon®f our delta-function-free reduction technique to infinite or-
nucleon system, a one-boson-exchange potential which is ifler produces an equation equivalent to the original four-
stant in the center-of-mass frame. This involves the use of §imensional equation, the sum of all terms in the three-

Thet matrix then obeys the three-dimensional integral equa
tion

T= VOBE+ VOBEg T.

constraint on the relative four-momentysnof the form dimensional formalism must produce covariant results. In
nuclear physics it is known that contributions which are of
p-P=0, (1.10 higher order in the coupling are of increasingly shorter

range. Such short-range contributions to hadronic interac-
whereP is the total two-body four-momentum. In the center- tions must always be treated in an essentially phenomeno-
of-mass frame, the equation for the deuteron vertex functiofogical manner. Therefore, it is expected that a truncation of
takes the form the interaction at some finite order in the coupling will be
useful for applications. It should always be appropriate to
I'wm= VinsGerl'wm » (1.1)  absorb the effects of the neglected higher-order graphs into
) ) phenomenological parameters, thus ameliorating the nonco-
whereGer refers to the Wallace-Mandelzweig choice for the yariance of the theory. In particular, we show in Sec. Il that
propagatog. The formalism is covariant since the constraintthe |eading-order boost corrections to the interaction ob-
(1.10 is expressed covariantly and the pair of equationgained by Forest, Pandharipande, and Fi2if] are indeed
(1.1 and(1.7) is equivalent to the bound-state BSE: contained within our truncated interaction.
In Sec. IV we show that the crossed-box graph may be
I'=KG,I". (1.12 approximately rewritten as an iterate of the ladder kernel:

Equation(1.12) for the c.m. frame deuteron vertex function K@D ~KDG.K? (1.14
has been used in recent work by Devine and Wall2€e21]. X o

This formalism may be developed in a manifestly covariantyhere the form of5. is derived in Sec. IV. In particular, this
fashion following the technique of Fuda2]. This involves  approximation is exact in the high-enertgikona) and one-
writing all four-vectors in terms of their components parallel pody limits, and may be systematically improved upon in
and perpendicular to the total four-momentum: other regimes. This leads us to propose the four-dimensional

- integral equation
p=pP+p., (1.13

wherep;=p- P, with P=P/\/P?,

A fundamental flaw exists in quasipotential formalisms This equation has the correct one-body limit and results from
that are based on a form fgr which contains a delta func- an approximate resummation of the BSE ketkelt reduces
tion. It is generally impossible to systematically correct theto the Wallace-Mandelzweig equatigf.1) if the depen-
lowest-order approximation by use of Ed.7) because un- dence ofK(®) on the time component of the relative four-
physical singularities arise. In two-body hadronic systemsmomentum in the c.m. frame is neglected. A three-
such as the deuteron, calculations may still be pursued usirdjmensional reduction of Eq(1.15 using the method

I'=K®@(Gy+Ge)T. (1.15
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developed in Sec. Il provides a systematic way to includevhereK; is three dimensional in the sense that it does not
retardation effects, and so improve on Ef11). This reduc- depend on the zeroth component of the relative four-
tion to a three-dimensional equation is performed in Sec. Vmomentgp andp’. For instance, if2.1) was being solved in
The dynamical boost of the three-dimensional interactiorthe two-body center-of-mass frame akdvas a one-boson-
present in the equation is realized through simple deperexchange kernel, theld; could be chosen to be the usual
dence of the interaction on the total three-momentum andtatic one-boson-exchange kernel. Note that even though the
energy of the system, thus eliminating the boost problem ofvhole driving termK is Lorentz covariant, because the re-
Eq. (1.1D. striction onK is frame dependent, the piedés andK, are

In Sec. VI the predictions of the three-dimensional inte-not. The splitting ofK leads to the following coupled equa-
gral equation obtained in Sec. V are compared to those afons forI:
five other bound-state equations: the ladder BSE and Eg.

(1.19), both of which are, of course, four-dimensional equa- r=r,;+r,, (2.9

tions, and the three-dimensional equations of Salpeter, Klein,

and Wallace and Mandelzweig. [,=K,Go(I'1+T5), (2.5
The results of Secs. 11—V are presented concurrently for a

scalar and a spinor field theory. In particular, in the scalar ,=K,Go(T1+T,). 2.6

case we use thg?o field theory, defined by the Lagrangian

1 Both these equations are four dimensional; howelerhas
=_ ey — M2 b2 2y — M2 b2 no dependence on the zeroth component of the relative four-
L=5(0,¢10"dp1—mip1+ 3, 20" p,— M55 = o
2 momentum because of the defining conditionkgf. Mean-
while, the second equation may be formally solved to obtain
+d,00"0— u?o?) —gim; pio—gmydio. a Y y
(1.19 I,=[1-K;Go] *K,Gol'y

Coupling terms include mass factors so that the couplings =-T1+[1-K,Go] 'T;. (2.7
g, and g, are dimensionless, thus ensuring that the limits
m,— andm,—o correspond to the appropriate one_bodyThiS last result may then be substituted into E45) to yield
limits. It is this field theory in which the numerical calcula-
tions of Sec. VI are performed. In the spinor case the La- I =K.dgl'y, (2.8
grangian is
o L o where
L= (1y, 0" —my) b+ iy, 0" —mMy) = Q1¢h10Yn

~ Qo0 . (1.17
Equation (2.8) then becomes a three-dimensional equation

The arguments of Secs. Ill-V are, in fact, quite general andgecause the implied integrations over time components of
with small modifications, also apply to field theories involv- momenta only affecg; i.e., it reduces to

ing other types of particles.

g: Go+GoK2g. (29)

=K@y, (2.10
Il. SYSTEMATIC PROCEDURE FOR THE REMOVAL OF
THE RELATIVE-ENERGY DEGREE OF FREEDOM where
FROM A BOUND-STATE EQUATION
Consider the Bethe-Salpeter equation for the bound-state dpgydpg ,
vertex functionT, i.e., <Q>Ef (ZT)zg(ppr;P)' (211
d*p’ . . .
I'(p;P)= f ———K(p,p’;P)Gy(p’;P)['(p’;P). Here we have used the same implied integration notation for
(2) the three-dimensional integral equati¢h10 as for a four-

(2.9 dimensional equation. This practice continues below and the
context should make it clear whether the equation in question
is a three- or four-dimensional one.

Equations(2.10 and (2.9 are exactly equivalent to the
C(Sriginal BSE(2.1). In order to reconstruct the Bethe-Salpeter
amplitudel” from the noncovariant three-dimensiothal one
must use Eq(2.7) rearranged into the form

Here P is the total two-body four-momentum, amm and

p’ are the relative four-momenta. This equation is com-
pletely general, and applies to the bound-state vertex fun
tion in any field theory. Throughout this paper we find it
convenient to omit the explicit integration from such equa-
tions, abbreviating them as follows:

I'=KGyI. 2.2 I=[1-K,Go] Iy. (2.12
Suppose that the driving term of this equatih,is sepa- The Green's functiolG) defined by Eq(2.11) is, in fact,
rated into two pieces: the Fourier transform of the corresponding equal-time coor-

dinate space Green's functiof(t’,x;,X5;t,X,X5). This
K=K;+K,, (2.3 may be seen by defining
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Gt X)X 1% %) = 8(xY —x2) 8(x2—x2) whereT;=(Gy) " YGoTGy){G) ! is the three-dimensional
t matrix corresponding to the Bethe-Salpetematrix T.
X g(X1,X5;X1,X2), (2.13 ThusKj is, indeed, the irreducible interaction which pro-

duces the t-matrix, using the propagatqiG,). We there-
where g is the appropriate four-dimensional two-body fore expect that the rules for the constructionkof will be
Green’s function, and then inserting the integral representaakin to those for the two-particle irreducible interaction in
tion of the delta functions and taking the Fourier transformtime-ordered perturbation theory.
[28,29.

If K, is now chosen to be a c.m.-frame instant interaction,;; ~oNNECTION TO TIME-ORDERED PERTURBATION

K inst _then(2..9) may be taken to de_fing order by order in THEORY AND THE WORK OE KLEIN
K—K™t This provides a systematic way to calculate retar-
dation corrections to the Salpeter equatiga] The connection to time-ordered perturbation theory
(TOPT) emerges for a simplified dynamics in which only
I=KMS(G)T ', (2.14 positive-energy states are kept@y,. For the case of a field

theory of nucleons and pions it has been shown that the
which results from takingg at zeroth order irK —K™t |n  Green’s functionGo+GoT Go) obeys the rules of TOPT in
particular, at first order itk — K" we find that the no-antinucleon ca$e8,31]. The same derivations suffice
to prove the result for the scalar field theories defined in the
Introduction. It therefore immediately follows thHt; is the
2P| TOPT amplitude in the case that only positive-energy
§tates are kept its.

We now provide a specific example of the derivation of

(GM)=(Gg)+(GoKGg) —(Go)K™(Gp).  (2.15

The use of this three-dimensional propagator in place o

(Go) In (2.10 WO.U|d therefore Incorporate Ieadmg-or_der "€ the time-ordered perturbation theory amplitude by this route.
tardation corrections in the three-dimensional equation. . s . e - )
First, it is true in general that, if in Eq2.17) G is replaced

There is, however, a general way to account for all th . :
relative-energy integrations in the modified Green’s functior‘?by Go. then the three-dimensional kernel becomes

(G). Recall that the choice df; is subject only to the con-

straint that it should not depend on the zeroth component of K1=(Gg) HGoKG)(Go) . (3.1

the relative four-momentum in, say, the c.m. frame. Consider

Eqg. (2.9 rewritten as We note that this formula was given by Klein in his work on
deriving three-dimensional scattering equations from four-

(G)=(Gg)+(GoKG) —(Go)K1(G), (2.1  dimensional one$23—25. Equations(2.17) and (2.9) may

thus be thought of as providing a generalization of the for-

and chooseK; such that{G)=(G,). This provides the de- malism of Klein. Second, suppose thatis expanded ac-

fining condition, cording to the power of the coupling constant in each of its
contributions, i.e.,

K1=(Go) YGoKG)(Go) . (2.17)

Since this choice oK; means thatG)=(G), the full dy- K= K@), (3.2
namics reduces to a three-dimensional integral equation with i=1
the free propagatofGy), i.e.,

and for the moment only the second-order, or ladder, contri-

bution toK is kept; i.e.,(3.1) is rewritten as
I'1=K(GyTl'y, (2.18 P 3.1

and all the complexities of the relative-energy integrations Ki?=(Gg) {(GoK@Go)(Gp) . (3.3
are transferred to the interacti¢f .

It follows thatK; is the two-particle irreduciblé2Pl) in- ~ We now calculate this amplitude in the absence of negative-
teraction, where two-particle irreducibility is defined with energy states. First, the propagators are split according to Eq.
respect to the three-dimensional propagd®g). To show (1.3), and only the positive-energy pieces retained. Second,
this formally, rearrangéG,Kg) as follows: the inverse Fourier representations of all quantities are in-
serted, so that the time ordering can be clearly elucidated.
_ Third, a change of variables to time differences is made.
(GoKG)=(GoKGo(1~KGo) %) Fourth, the relative-energy integrations are performed, gen-

+(GoKGol[1— (K—K;)Go] 1-[1—KG,]"1}) erating delta functions on some of the time differences. Last,
the integrals over these time differences are performed. This
=(GoTGp) —(GoTGg)K1(G), (219  procedure allows the calculation & in any frame. In-

iy ) deed, it is completely general, and can be used to calculate
whereT=K(1—GyK) * is the Bethe-Salpetdr matrix de- K, no matter whak is chosen.

fined by Eq.(1.1). Use of Eq.(2.19 in Eqg. (2.17) produces If the total four-momentum of the two-body system in the
frame of interest is writterP=(E,P), then it is seen that
T,=K1+T{Gg)Ky, (2.20 K(lz) takes the standard form of TOPT:
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1
2¢e(p

u(p)=u(p)= . (3.11

3

FIG. 1. The two graphs which contribute to the second-orderEXpandmg

three-dimensional kernel, if only positive-energy intermediate states
are included in the calculation.

Y(p;E,P)=u1(p1)uy(p2) &(p;E,P) (3.12

K{?(p',p;E,P)
019> 1 1 (with an impli(?it summation on spin indices in the spinor
=5 M L — + S| case and manipulating Eq(3.8) leads to
(3.9
where  ET=E+iy, €1=€1(p1), €= €x(Py), (E—ei—eé)qb(p’;s!E,P)
= \/ﬁ, 1ot Ty _
i plase o (b, Here, s Cadm are fhe maseds o the - | (3753K&2><p’.p;E,P>¢<p;E,P>, (313

two interacting particlesu is the mass of the exchanged
meson, and the factok is defined by
. . with
4m;m, for spin-zero particles,
M= . , (3.5
1 for spin-half particles.
K@(p',p;E,P)=up(p))ux(py) K P (p' . p;E,P

Note that to extract the mass of the bound stiste pne must (PP )= Ua(P)UP)KT(PP )

setE=/MZ+P?. The total and relative three-momenta are X Uq(p1)us(ps). (3.19
related to the individual particle momenta in the usual way:

p1+p2=p;+p;=P, (3.6 Note that the TOPT interaction which appears in the
bound-state equation3.13 changes with total three-
VoP1— v1P2=P; VP~ v1Pa=p’, 3.7 momentum of the system. This provides the dynamical boost

] of the interaction and it is straightforward to show that it
where v, and v, are any two real numbers which obey incorporates the perturbative boost correction discussed in
v1+v,=1. Figure 1 shows the time-ordered diagrams correRef, [27]. That is, in the equal-mass case, to second order in

sponding to Eq(3.4). , , . . P we have(neglectingp?’m andp’?/m termg
The bound-state equation corresponding to this interaction

is then
- /. ! -~ -~ P2 -~
(Go) Y(p';E,P)y(p’;E,P) K{?(0;P) =K (0;0) — 7 K{*(0;0)

d®p

_ (2) (' - . 1 ~

I(ZW)sKl (p",p;E,P)¢(p;E,P), (38) _8m p,qp,qugz)(q;o)’ (3.15
where we have omitted the factor of £236®)(p’ — p) from

Gy), which integrates out of the equation trivially. Here . . . .
(Go) 9 q y where we have written the interaction as a function of the

TAS mom_er_wtum of the exchanged mesg; p’ —Pp. _
Efin—e—c, (3.9 Ifit is true, as _arguet_j in Ref27], that this Iead_lng-order
boost correction is sufficiently accurate for studies of three-
nucleon systems, then the boost effects incorporated in the

where A; =A{(p,) and A; =A, (p,). Now suppose that
we have a set of free single-particle positive-energyTOPT result(3.4) should be more than adequate. Indeed, we

momentum-space wave functionsfor both the spin-half P€lieve such a boost to be preferable to that of Gql5),

and scalar theories. In the spin-half case these will be th&nce it involves operators which are bounded Fas «,

spinors, and their normalization may be chosen such that Whereas, at large values Bf the perturbative boost correc-
tion (3.15 diverges.

A" (p)=u(p)u(p) (3.10 The identification of the kernek; with the usual time-

ordered perturbation theory interaction is only correct in the

(where spin indices have been suppressedthe scalar case absence of negative-energy states. With the full four-

Eg.(3.10 may also be enforced, since ths may be chosen dimensional propagator, the form Bﬂ‘lz) obtained from Eq.

to be merely numerical factors; i.e., we may define (3.3 in the manner described above Eg§.4) is

(Go)(p;E,P)=
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(Go)(P";E.P)K?(P'.p;E.P)(Go) (PiE.P)
_GaGM|[[ ATTATT ATTASY 1 ATA; ATA;
- 2w E-e1—€, —€—€-0/E-—e—e—w\E-€1—€; —e—e—w
L[ ADAT AT 1 ATAS ALAS
E-e1—€, —€— €0/ E-e—e—0w\E-€—€6; —e—€6—w
. AT'AS 1 1 ATA;
—E-€e1—€)\ —€1—€1—w —er—e—w)E—€e—€
L[ Ay AFTAS 1 ATA; ALAS
—E—€1—¢, —€—¢~w " E-€e-€—w|\—-E—€—€ —e—e—o
. AT'AS’ AT'AS’ 1 ATA, ATA,
—E—-€1—€, —€—€—w/ —E—€—€,—0w\—E—€—-€ —€-€-0
ATTAS 1 1 ATA;
+ 1,2,( : s ——, (316
E-e1—e\—€—€1—0 —€—6—w/ —E-€e—¢€

whereA;"=A;"(p;) andA;"'=A;"(p/). Note that here, and
throughout the rest of this paper, the prescriptions can be
generated by understanding the massgs m,, and u to
have a small negative imaginary part.

Now the three-dimensional propagator is

bering that different time orderings contribute to different
graphs.

(2) Construct the expression for each individual graph ex-
actly as in TOPT, save th&t) all one-particle energies are to
be relativistic;(b) if in some intermediate state of the graph

both the initial-state particles are present with exactly the
same momenta as in their initial state—i.e., their state is
unaltered from the beginning of the graph—then in the
TOPT denominator corresponding to that state the quantity

ATA;

Et+in—e;— e

ArA,
—E+tin—e— €

(3.17

(Go)(p;E,P)=

(where once again we have omitted the momentum-space
delta function for notational simplicily which is the Sal-
peter propagatof30]. If the negative-energy piece is re-
moved, this becomes the Blankenbecler-Su@ja?] or
Logunov-Tavkhelidz¢29] propagator. Note that in the spin-
half case this propagator does not have a unique inverse; -
consequently, in that case the derivation of the bound-state
equation analogous to E¢3.13 usually assumes that the
+— and— + pieces of{Gy) ! are zero.

The graphs corresponding to the terms in E2j16) are
shown in Fig. 2. Graph$a)—(d) are generated by the first
line of Eq. (3.16), graphs(e)—(h) by the second line, and
graphs(i) and(j) by the third line. The fourth to sixth lines of
(3.16) generate the same ten graphs, but with particles and
antiparticles interchanged. Note that the graphs drawn in Fig.
2 do not represent actual physical processes, but rather con-
tributions to the “potential”’K{?). As observed by Klein, if
negative-energy particles are present, the rules for the con-
struction of this interaction differ from those of standard

TOPT[23,24. . three-dimensional kernel if propagation into negative-energy states
_ Ingeneral, it can be shown that the rules for the construcis 4jjowed. Note that these graphs can be interpreted as applying to
tion of the full two-body equal-time Green’s function positive- or negative-energy particles. In fact, each graph shown
(Go+GoTGy), for the case of positive-energy initial and contributes twice: the second time with positive-energy particles
final-state particles, are, in either of the two field theoriesgoing forward in time interchanged with negative-energy particles
given in the Introduction going backward. The dotted lines represent the initial and final
(1) Draw all topologically distinct, two-to-two graphs, times in each graph. Observe that in all but gragsind(e) some

which do not contain vacuum-vacuum subdiagrams, remerrinteractions take place outside the interpal t¢].

(@ ®) ©

(d © ()

()]

® @

®

FIG. 2. The ten graphs which contribute to the second-order
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€,+¢€, must be replaced b¥; and (c) similarly, if both K1=<GO>71[<GOKGO>+<GOKG0(K_Kl)GO>]<GO>7l-
final-state particles are present with exactly the same mo- (3.18
menta as in their final state—i.e., they have undergone their
last interaction but are still present in some intermediattNow expandingK as in Eq.(3.2 and dropping terms of
state—then in the TOPT denominator corresponding to thatigher than fourth order in the coupling constant leads to
state the quantity; + e, must be replaced bi.

If both these last two conditions are satisfied, then the K{¥'=(Gg) "2 ((GoK W Gg) +(GoK P GoKPG))(Gg) ~*
denominator for the relevant state is the TOPT denominator
for that state, but witlke; + €5+ €, + €, replaced by E. Note

that these are not the rules for the amplitude obtained from

the ladder BSE. The Green’s function defined by these ruleg\/hen applied to particle-part'icle scatter?ng £8.19 gives
is the ++—++ piece of thefull two-body equal-time exactly the same results obtained by Klein, except that where

Greers funcion o he feld theory
The substitution of thesE’s in the intermediate-state de- y ’ P

inat be sh to be due t ial diff tion naturally.
nominators can be shown to be due to a crucial difference ™y o o codure developed in Sec. Il thus provides the gen-

between the way initial and final states are treated in the jization of Klein's method. The interaction and vertex
calculation of(GoTGp) and in TOPT. In TOPT the initial  ,nctions defined by Eq€2.17), (2.9), and (2.18 have the

and final times in the diagram are taken to minus and plugy| rejative-energy dynamics of the Bethe-Salpeter equation
infinity, respectively, thus guaranteeing that no |nteract|or‘(2_1) included in them.

takes place before the beginnirigr after the eng of the
propagation of the two-particle state. However, when
(GoTGy) is calculated in our work the initial and final imes 1V SIMPLE FOUR-DIMENSIONAL EQUATION WITH

are kept finite. Consequently the fifgast event in the dia- THE CORRECT ONE-BODY LIMIT

gram need not be the creation of thg¢, or N1N, pair; it Now let us return to the four-dimensional B$E1). The
may be the creation out ¢flestruction intpthe vacuum of a simplest BSE with the correct one-body limit is

¢po or NNo state.(See for instance the second graph in

Fig. 2) The possibility of such an event happening before or =Ky Gl 4.1
after the¢, ¢, or N;N, propagation in some contributions to ’
(GoTGy) leads to denominators which differ from the TOPT

—K{P(G)K? . (3.19

- . . where Ky is the sum of all 2Pl ladder and crossed-ladder
Oﬁes in those pieces .G(fGOTGO>' I fOIIOW.S that, if the two-to-two graph$11]. The bound-state masses predicted by
pieces of the Hamiltonian of the theory which cougléo ¢,ch an equation have recently been obtained by Monte
or NNo states directly to the vacuum are removed from thecayig integration in the Feynman-Schwinger representation
Hamiltonian, then the modification of the TOPT denomina-ys potn scalarg® field theory and scalar QED by Nieuwen-
tors is not necessary, and the rules for calculation of the s Tjon, and Simonoy35-39. In general, though, the
two-particle to two-particle part of the Green’s function yere|K, is too complicated fof4.1) to be solved by stan-
(GoTGp) become exactly those for the calculation of the yarg means. Therefore, in this section we shall derive a four-
TOPT Green's function. This equivalence @oTGo) and  gimensional equation which has a simple kemnel, the appro-

the time-ordered perturbation theory Grgen’_s function in thepriate meson-production thresholds, and the correct one-
absence of such terms from the Hamiltonian was demonbody and high-energyor eikona) limits. A form of the

strated for a field theory of nucleons and pions by Kvini- following derivation appeared ifL8].

khidze and Blankleidef28]. o ~ . Although it is impossible to rewrite a crossed graph ex-
As discussed in Sec. Il, the use of a static interaction INctly as an iterate of the ladder ker€P, the leading con-
the Bethe-Salpeter equation leads to the Salpeter equaltigfytions of these graphs to the high-energy and one-body
(2.14. This equation is often used for the interactions of tWojjnits are iterative. This can be easily shown in the case of
relativistic particles. It is straightforward to show that the o fourth-order crossed-box graph. In both of the field theo-

static limit of the potential given by Eq3.16 is the usual o5 gefined in the Introduction, this graph corresponds to an
instant interaction in the positive-energy sector. On the othegyression

hand, Eq.(3.16 predicts that the coupling between the
++ and —— states is suppressed by retardation effects dp 1
which cause it to be a factas/m (in the equal-mass case K§(4)(k’ ks ;kl,kz)=ig§g§M2 24 . —
smaller than the rest of the static interaction. This factor is (2m)" (ky=P2)°—p
zero in the static limit. Thus, for a causal interaction, the
correct static limit of Eq(2.18 with the interaction(3.16) is 1
the Breit equation, i.e., Eq2.14) with the — — states omit- X dy(P—p2)da(ky+ ké_pz)(Tz_—z: (4.2
ted from the calculation. =) —p

In order to recover the results of Klein for two-meson-
exchange interactions, and so make connection with the r
cent work on two-pion exchange of Rijken and Stp&2,33
and Lahiff and Afnan[34], we evaluateg to first order in
K—K, in Eq. (2.17). This produces P=k;+ko=ki+k3. 4.3

where the lines have been assigned the momenta shown in
Eiiig. 3, andP is the total momentum, which is conserved:
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k; P'pz k| GC(p,yp;E:L-EZ)

=i(2m)*6W(p’' —p)di[p]da[ (E;—Ey+ppP—p. .
(4.1

HereE,; andE, are defined via

2E2:k2||+ké” , 2El:le+kiH , (4.12)

and so in the c.m. fram&=E,;+E,. The propagatoG.
Kk} K,+k,- p, K, defined by(4.11) therefore depends on the parallel compo-
nents of the external momenta. Thus the use of operator no-
FIG. 3. The crossed-box graph, showing the momentum labeltation in Eq.(4.10 is not strictly correct. In Eq(4.27) we
used in the text. redefineG¢ in order to remove this dependence on external
momenta. However, that change@¢ modifies the analytic
The propagatorsl; were given in Eq(1.3), and the factor structure of the amplitude defined by the corresponding inte-

M was defined in Eq(3.5). gral equation. Therefore, for the present we persist @ith
Following Wallace and Mandelzwei8,19 we define, defined by(4.11), and use an improper operator notation.
for any four-vectorg, quantitiesq andq, , as follows: Note that if the particles are on shell in their initial and final
R states, then
D= APt s “-4 E2+m2—m3 E2+m5—m?
~ E;=E{=————°, E,=Ey'=——~-——
whereP is the unit four-vector in the direction d? and e 2E P22 2E w13
4.1

a=a-P. 4.5 These arguments show that B4.10 will be exact in the

infinite-mass and high-energy limits, thus demonstrating that
the pieces 01K§(4) which survive in these two limits may,
indeed, be written as iterates k2.

(kg + kéH —py)P+ky, + Ky, — Do, - (4.6) Now suppose thaKy is written as

Consequently in Eq(4.2) the argument of the functiod,
may be rewritten:

Now suppose that the momentum of particle 2 is large.

This may occur because,>m; (one-body limi} or because |n principle this is always possible, 4.14 may be taken as

particle 2 has very high enerdgikonal limit). In either case 4 definition ofV. At second order in the coupling we clearly
its intermediate- and final-state momenta will be largely un4,5ye

affected by the presence of particle 1, and so we may ap-

proximate the perpendicular components as unchanging, V=K@ =K®, (4.15
Ky, +ky, ~2p,, . (4.7 while the above argument shows that, with tki€),
Indeed, making the replaceme#t?) in (4.2) will not affect K=V GV (4.16

the value ofkK ) in the limit m,— .

This argument shows thdﬁ§(4) may be approximately re- in the high-energy and infinite-mass limits. Thus, a reason-

able choice forV is V=K. Equation(4.14 then defines

written as corrections to this choice.
d*p Once thisV is chosen, Eq(4.14) and the BSE4.1) may
K (kg ,kZ;P)~iJ 2 KD (I~ po)dy[ P— p,] be combined to yield an “improved” ladder BSE, which, in
(27) the two-body c.m. frame, after a change of variables to total
X daf (K + Ky~ Pa) P+ po K (py—ky), (4.8 ~ and relative four-momenta, takes the form
d4
whereK ) is the ladder BSE driving term: ['(po,p';s)=i J ﬁK(z)(p’—p)dl(E‘l’% Po.P)
K@(q) = My 92— 49 X[dx(ES™—po,—p)+dx(ES™ pj+po,—P) T (Po.PiS).
Q" —utin (4.17)
In operator notation We stress that what has been done here is to take certain
pieces of the Bethe-Salpeter kerg} and rewrite them in
K ~K@GK?), (4.10  the form K@AG:K®), KAGLKPAGK?), etc. Conse-

quently, Eq.(4.17) is equivalent to a Bethe-Salpeter equation
with in which graphs other than one-meson exchange are approxi-
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mately included in the kernel. Thus we expect that the soluandE=E{".
tion of this equation may provide a better description of the Equation (4.17 also has the appropriate meson-
dynamics of two-particle systems than the ladder BSE amproduction thresholds, and therefore could be used as a basis

plitude.

for four-dimensional calculations of two-body bound-state

This will be especially true for systems with one particle properties. However, the equation cannot be written in the
much heavier than the other. In these systems the one-bodgrm

limit constitutes an important piece of the dynamics. Unlike
the ladder BSE, Eq(4.17) has the correct one-body limit.

'=K®@ar, (4.25

This may be shown as follows. For the on-shell vertex func-

tion p}
tors, multiplied by M is, in the spin-zero case,

M[da(E3"=Po, —p) +d2(E3™+Po, —P)]

4mim,
(ES"+po)’—es+in’

4m;m,
Eon_ 2_ 2, +
(B —po) —extin

=0. If p,=0, the sum of the two particle-2 propaga- and consequently the method of Sec. Il cannot be applied to

it. Therefore, we now seek an approximate version of Eq.
(4.17 which can be written in the forn¥.25.

In the on-shell vertex functiop,=0. In what follows we
usep,=0 in the integrand also when the amplitude is not on
shell. This approximation provides a four-dimensional ver-
sion of the three-dimensional Wallace-Mandelzweig equa-
tion obtained in Refd.17-19. In the center-of-mass frame it

while for the spin-half case the same combination becomesgs

(ES™+po) Y0+ 72-p+my
(E3"+po)>—ex+in

(ES"—Po) ¥+ 2- p+my
(E3"—po)?—ex+in

In the my—o limit, E3"—€e,—m,, and so this expression

reduces to

1 1
Potin Ppo—in

}2m1= —27i6(p®)2m; (4.18

for the spin-zero case and

—2mi 8(p°) A, (4.19
for the spin-half case, where
1+
A= 270 4.20

is the positive-energy projection operator for an infinitely

massive particle 2. Thus, in the infinite, limit Eq. (4.17)

F(p';Ei’”,E;’”):if (g:m“)(p'—p>d1<E‘1’“+po,p>
X[da(E3"=Po, —p) +d2(EZ"™+ po, —p)IT'(p; ET",E3).
(4.26
RedefiningG¢ to be, in the c.m. frame,
Ge(p',p;EL"E3) =i(2m)*6(p’ —p)
X dy(E?"™ po,p)d2(EZ™ po, —P),
4.27
allows Eq.(4.26) to be written
I'=K®@(Gy+Ge)r. (4.28

The following points are worth noting
(1) Because the new choice f@- does not affect the
on-shell fourth-order piece of the amplitude, E¢.10 is

yields the Klein-Gordon or Dirac equation for the wave func-still exactly true on shell in the one-body and eikonal limits.

tion of particle 1 moving in the statio- field generated by
particle 2:

E2-mi-p'2 d®p 0.9
(4.21)
or
d*p 919>
0_ . Ay "y — _
(4.22
where
1
(p)= mr(oypf) (4.23
or
W(p)= m/\;r(oypf), (4.24

(2) In the limit my,—o, Eqg. (4.26) has the correct one-
body limit, as can be seen by a similar argument to that given
for Eq. (4.17).

(3) If a pinch analysis of the singularities of the amplitude
T defined by the scattering equation correspondin(t26
is performed, then it is found that at ordgf there is a
production cut in theg plane of the half-off-shell amplitude
which extends upwards from

po=my+u—E3" (4.29
and lies infinitessimally below the real axis. In the on-shell
amplitude at sixth order this cut appears in the integrand and
overlaps with the pole of the Green’s function at
Po=E3"—€,(q), so producing a cut in th&3" plane of T
which extends upwards from

ES=my+ & (4.30

This is not a particle-production threshold which exists in the
full Bethe-Salpeter scattering amplitude. Hence its existence
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in the amplitudeT defined by the scattering equation corre-we first recover Wallace and Mandelzweig’s original quasi-
sponding to Eq(4.26 must be regarded as a deficiency of potential equation, and then calculate a three-dimensional
that equation. It arises because the method used to derive Bkgrnel which includes first-order retardation corrections to
(4.26 is only guaranteed to produce the correct cut structur¢his result.
for the second- and fourth-order on-shell amplitudes. It Observe that onc&. is defined by Eq(4.27), Eqs.(4.14
should be noted that the vertex function given by Eql?) and(4.1) are equivalent to
does not contain this anomalous threshold.
The value oft at which the threshol.30 occurs in the
on-shell amplitude i€ =m,+ u/2+ JmZ+myu+u?/4. In F=V(Go+G)I, 5.1
fact, since Eq(4.17 was designed for use in tha,>m;
regime, this is actually above=m;+m,+ x. Therefore the
theory has the correct threshold structure for all energies
such that m,—m;<E<m;+m,+w. Furthermore, if
m;=m,, then the threshold(4.30 actually lies at
E=m;+m,+ u, which is where the first production thresh-
old of the crossed-box graph should be. Consequently, we
think of this cut as representing the usual single-pion- 1=V«(G)T, (5.2
production threshold of the crossed-box graph, but somewhat
displaced ifm,>m;.
(4) This equation was derived for particles of different G=Go+ G+ (Go+Ge)(V—V,)G. (5.3
mass. If we desire an equation for identical particles, a sym-
metric form of the propagato&: must be used(We shall
return to this point in the next sectign. If V is taken to beV,;., WhereV . is the static one-
(5) The above derivation could equally well be pursuedsigma exchange potential,
for the exchange of vector particles. However, in, for in-
stance, scalar QED, account must be taken of the seagull
graphs. Furthermore, in the case of spinor QED more care , 919, M
must be taken, since an additional piece of the interaction VoinsP',P) =~ m
may be generated when one attempts to wXteVGcV.
(The interested reader may condul] for details on these
points) these equations reduce to

whereV is regarded as beindefinedby (4.14). This pro-
vides a method for calculating corrections to Eg.28),
which was obtained by assuming théat K. The result of
applying the method of Sec. Il to E(.1) is

(5.9

V. THREE-DIMENSIONAL EQUATION
WITH RETARDATIONS I'1=VginsGerl'1, (5.9
AND THE CORRECT ONE-BODY LIMIT

We now apply the relative-energy integration method ofwhich is a three-dimensional equation with a free two-body
Sec. Il to the four-dimensional equati¢4.26). By so doing  propagator that in the c.m. frame takes the form

Ger(p;ET" E2")=(Go+Gc) (5.6
_ AT Ag N AT Ay N ArAg N Ay Ay

ES"+ES"—€e1—e,tin E)—EY'—e—et+in —E)+ES-—e—€e+in —E)—E-e—€+in’

(5.7

where once again a factor of £3°5C)(p’—p) has been is obtained for the general three-dimensional interaction to
omitted for notational simplicity. Note that this propagator isbe used in
equivalent to that derived by Cooper and Jennings by a dif-
ferent techniqué¢40]. Note also that in the case; =m, this [,=V,Ge ;. (5.9
same propagator is referred to as the equal-iE® propa-
gator by Tjon and collaboratof45,37,38,41,4R

The desired generalization of E&.5) which incorporates
retardation and boost effects follows from applying the idea
of Secs. Il and Il to Eq(5.3). If V, is chosen such that the
last term in Eq«(5.3) is zero, the formula

V1=Gg1((Go+Gc)VG) Gt (5.8 V1=GgrAGet (5.10

A first step in the inclusion of retardation and boost effects
may be taken by following Klein’s work and replaciggby
%304— Gc. This yields what we refer to as the first-order
relative-energy integration result
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A={(Gy+Gc)V(Gy+Gp)). (5.1  The 16 contribution®(p1p5<p1p,) May be calculated by
the same method used to obtain the Klein poter(8al6).
We now takeV equal toK®) and calculateA in the  They are found to take on a slightly different form depending
center-of-mass frame. In order to do this we first decomposgn whetherp;p, is equal to plus or minus one. In order to

the c.m. frame propagators: simplify the expressions for th&’s we define the following
quantities:
A(p)
d(p=2 ————, =12, (512
Pi PiPo— 6_i(p) gngM
F= , 5.1
where p; may take on the values 1. It follows that the 20 ©.14

amplitudeA may be written as

=5 E"— ¢ = /EON_ ¢! =
A= S Api’Apé’A(pip%—plpz)AplApz e=pE’""—¢, e=p/E'—¢,; i=12. (519
1 Y2 122
P1P1P2PS

(5.13 If p1p1=1, then

1 1
! /+ !
eite;, ete;—w

1 1
e;te,—wete;’

1
e;te; e te—w

1 1
+ !
el+ez ez+ez_w

A(pipr—p1p2) (P’ P;ET ESN=F

(5.16
Conversely, ifp1p;=—1, then
1 1 1 1
A N /, ;EOH,EO :F +
(plpz(_plpZ)(p PiE; Zn) eﬁ-ei-w e1+eé_(1) e1+82 e2+eé_(1)
1 1 1 1 1 1 1
+F ’ ;T ’ ’ ’ +F ’ 7 ’ + ’ . (517)
e1+e2 82+92—(o el+ez_(l) e1+el_w el+82 el+e1_w 62+62—w el+62

We note the following points about the interaction definedthe unusual singularity structure 6£.26) apply to this cut.
by Eqgs.(5.7), (5.10, (5.13, (5.16, and(5.17). (4) Because we have used a form®§ derived by con-
(1) As expected from the four-dimensional equationsidering the limitm,— o, the interaction isnot symmetric
(4.26 it assumes a static form in the limit,—o. In other  under the interchange of particle 1 and 2 labels.
words, it has the correct one-body lim{Recall that we as- Points(2) and (3) are not a reflection of the underlying
sumed that particle 2 was the heavier of the jwo. physics of the meson-exchange process, but rather of the
(2) In the static limit of the interaction defined by Egs. particular iterative form we used in our attempt to sum some
(5.16 and (5.17) all couplings to the— — states are sup- of the higher-order graphs in the kernel of the B&EL).
pressed. On the other hand, the other couplings tend to the The choice ofG: used above involves an approximation
same static limit as the- + — + + piece of the interaction. which is appropriate in the regimm,>m;. For equally
Thus, in this limit the+ + — + — coupling, which is due to massive particles a more appropriate choice for the propaga-
Z graphs, is correctly given by the instantaneous exchanger G is
interaction, and only the- — states need be omitted from a
calculation. The role of the- — and — — states in this limit
is therefore consistent with the one-body limit which moti- ! ~-[ON =0
vated Eq.(5.9). Ge(p’.PiEY" EZ)
(3) Also as expected fronf4.26 A(+ ++«—++) has a ) 1
singularity structure which is different to that of the ordinary ~ =1(2m)*6"¥(p’ — P)5[di(E1+Po,p)da(E2+Po, —P)
time-ordered perturbation theory amplitude: It contains a cut
beginning aE,=m,+ /2. The same comments made about +d(E1—po,p)da(Es—pg,—p)]- (5.18
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Note that this choice is label symmetric, and hence the When Egs.(5.10 and (5.11) are applied with this sym-
resulting bound-state equation may be used for identicainetrized form ofG the result is &/, of the form(5.13), but
particles. TheG. defined by(4.27 did not have this prop- with an A(pips<pip,) which may be written in any
erty. p-spin channel as

, oneom FI 1 1 1 1 1 1
A(p P 1'E2n):_ ’ ’ r_ + ’ _ + r_ + r_
2lejte;lete,—w ejte,—w etej—w ete,—w/ e +e
1 1 1 1 1 1 1 1 1

+ ’ ’ r_ r_ + ’ 1Al _ r_ + r_ r_

el+82 el+ez w e2+ez w el+62 el+e2 w el+el w el+el 0] e1+e2 w e1+ez
1 1 1 1 1 1 1
! ! + ! ’ + ! ! 1 (519
ez+ez_(1) e1+ez_(1) el+ez e2+e2_(1) el+e2_(1) el+ez_(1) el+el_(1)
|
with all symbols defined as above. and the Klein equation. The second group contains the four-

dimensional Wallace-Mandelzweig equati¢h26) and the
VI. COMPARISON OF THE BOUND-STATE PREDICTIONS two three-dimensional equations derived from it: the equal-
OF DIFFERENT THREE- AND FOUR-DIMENSIONAL time equation(5.5 and the first-order relative-energy inte-
INTEGRAL EQUATIONS gration equatiort5.9) with the interactiorV/, defined by Eqgs.
(5.19, (5.13, (5.10, and(5.7). Within these two groups the
HaVing derived the interaction which is to be used in Eq.three equations may then be thought of as being Ze(mh_
(5.9 we may now compare the two-body bound-state propstant potential equationsfirst- (Klein-type), and infinite-

erties predicted by this integral equation with those propertfour-dimensional equatiohsorder relative-energy integra-
ties obtained from other three- and four-dimensional calcutjon results.

lations. This is done in the scalar field theory defined in the At any given bound-state masé the equation
Introduction. The masseas,, m,, andw are chosen to be
m;=m,=m and u=0.15m. Units are then chosen so that

fi=c=m=1. I'(M)=K(M)I'(M), (6.3
The three-dimensional equations to be considered are the
following. ) . . . .
(1) The Salpeter equation, which may be written yvhethe_r it be a three- or four-dlmenglonal integral equatlon,
is an eigenvalue problem. The coupling constyu, which
I's=V,ins{ Go)'s, (6.)  appears in the kernel must be chosen such K@) has

eigenvalue one. If we are searching for the ground state of
with Vi given by Eq.(5.4) and(G,) by Eq.(3.17. Note  the system, then we may assume thas anS-wave state,
that in this scalar field theory E¢6.1) is exactly equivalent thus implying that the functiol’ has no angular dependence.
to the Blankenbecler-Sugar equation obtained from the ladThe integration ovep may then be easily performed. The
der BSE. resultant one<{or two-) dimensional integral equation may
(2) The Klein equation for a one-sigma-exchange interacthen be discretized, reducing the problem to one of solving
tion, which is Eq.(2.18 with the interaction defined by Eqgs. for the eigenvalues of a matrix version¥f Note that in the

(3.16 and (3.17). four-dimensional equations it is necessary to perform a Wick
(3) The equation proposed by Wallace and Mandelzweigfotation in the variablg, before the kerneK is discretized,
which we refer to as the ET equation: as otherwise the analytic structure in the kernel makes this

procedure numerically unstable.
I'er=V,insGetl TS (6.2 When this approach is implemented for the equations
listed above the six bound-state spectra shown in Fig. 4 are
whereGgr was given in Eq(5.7). obtained. The following observations may immediately be

(4) The retarded ET equation, E¢p.2), with the label- made.
symmetric interaction obtained in the previous section, i.e., (1) The two instant formalism&Salpeter and EJTpredict
with V; defined by(5.19, (5.13, (5.10, and(5.7). more binding at a given coupling than either their corre-
The four-dimensional equations these four calculationsponding four-dimensional equation or their corresponding
are to be compared to a(®) the ladder Bethe-Salpeter equa- Klein-type interaction.
tion and(2) Eq. (4.26), which, unlike the ladder BSE, has the  (2) The calculations in the second group always predict
correct one-body limit. deeper binding than the corresponding calculations in the
We consider the six bound-state equations as falling intdirst group. In other words, the inclusion of pieces of higher-
two groups. The first contains the ladder BSE and the twmrder graphs in the kernel of the integral equation yields
three-dimensional reductions thereof: the Salpeter equatiodeeper binding at a given coupling.
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FIG. 4. A plot of bound-state masM(m) versus coupling
strength .9, /) for the seven different calculations discussed in
the text. The points with error bars are taken frf8i] and repre-
sent the Feynman-Schwinger representatiBBR calculation of

Nieuwenhuis and Tjon. The other calculations were all performetzl§nc

using three- or four-dimensional integral equations, with the legen
as indicated in the figure.

(3) The first-order relative-energy integrati@flein-type)
interactions give predictions for the bound-state spectr
which are significantly closer to those of the full four-
dimensional calculation than the spectra of the instant equ
tions.
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of reproducing the bound-state spectrum obtained by Nieu-
wenhuis and Tjon. At first sight this appears to recommend
the ET as the best formalism for doing three-dimensional
calculations. However, two points must be remembered be-
fore a definite conclusion is drawn.

First, the reason that the Nieuwenhuis-Tjon calculation
predicts so much more binding than the two four-
dimensional integral equation calculations performed here is
precisely the fact discussed in connection with pait
above: In the ¢20 theory all time-ordered perturbation
theory graphs give attraction in the bound-state region.
Hence the Nieuwenhuis-Tjon calculation, which includes
many more such graphs than both the ladder BSE and four-
dimensional Wallace-Mandelzweig equation calculations,
mustpredict more binding. Therefore, we claim that the Sal-
peter and ET equations do a “better” job of imitating the
full Nieuwenhuis-Tjon calculation than the ladder BSE and
four-dimensional Wallace-Mandelzweig equation because
instant calculations such as the Salpeter and ET ones ignore
two competing effects.

(1) Higher-order graphs are left out of their kernel. If
luded, these graphs would lead to deeper binding at a
given coupling.

(2) Exchanged-meson retardation is completely ignored.
If included, this retardation would lead to shallower binding

ata given coupling.

In other words, we claim that the ET formalism’s appar-

£nt success is due to the cancellation of these two neglected

effects and cannot necessarily be interpreted as a signal of

All of these results can be understood on physicalthat approach having the “right physics” for the problem.

grounds. Pointl) arises because the inclusion of retardation

in the scalar field theory always reduces the amount of at!
traction in the bound state. An example of this is provided b))"

one-sigma exchange. When the full retardation correction

predicted by time-ordered perturbation theory are included!

the instant potentials.4) is replaced by the retarded interac-
tion (3.4) (provided the effects of negative-energy states ar
ignored. If E<m;+m,, this will always be a negative num-

ber that is smaller in magnitude than the instant potential

Meanwhile, the inclusion of pieces of additional higher-order

graphs leads to deeper binding since in thfer theory all

time-ordered perturbation theory graphs are attractive in thév

bound-state region. Most significant though, in our opinion
is point (3), which shows that the first-order relative-energy
integration (Klein-type) potentials do a better job than the
instant interactions of approximating the four-dimensional
equation which both are derived from.

All six of these calculations aim to sum the main contri-
butions to the two-to-two amplitude. However, Fig. 4 shows
that they give different results, and so they cannot all b

Second,noneof these calculations have been performed
the way that calculations in few-body hadronic physics are
sually performed. When such bound-state calculations are
done in hadronic physics one usually acknowledges that the
se ofanyintegral equation necessarily means the neglect of
some graphs of the theory, and so one regards the couplings

n

éhat appear in that equation as effective. These couplings are

then usually fixed by fitting to some set of observables, and
then certain different observables are predicted. This makes
the connection to an underlying field theory somewhat more
tenuous, but it does allow calculation to proceed in situations
here (i) the value of the coupling which appears in the
fundamental” Lagrangian is not known angi) the prob-

lem is highly nonperturbative and consequeraty trunca-

tion is somewhat suspect.

Therefore, to test the procedure of Sec. Il for deriving

three-dimensional integral equations in a way consistent with
that in which it would be used in hadronic physics, we fix the

mass of the bound state Bt=1.95 and calculate the wave
unctions

correct. The question therefore arises, what is the binding
energy at a given coupling if the full scattering series is

summed? A partial answer to this question was recently pro- ) ) ) )
vided by Nieuwenhuis and Tjon, who summed the series ofor each_ of the four dlfferent three-d|men3|on_al calculations.
all ladder and crossed-ladder diagrams using Monte carlfHereg is the free two-particle Green’s function for the rel-

integration techniques in the Feynman-Schwinger represer?—vam calculauo_r). Each thr_ee—dlmensmnal wave function

tation, and so obtained two-body bound-state masses in thf§ust be normalized according to

scalar theoryf35—38. Their results, calculated at six differ- J’

y(p";E)=9(p";E)I'(p";E) (6.9

d3p/d3p

9G™1
W!ﬁ*(p';E)

ent coupling strengths, show that the sum of all such graphs
predicts deeper binding thamy of our six integral equation

calculations. In particular, the ET appears to do the best job

(p",p;E)¢(p;E)=2E,
(6.5

JE
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whereG is the full two-particle Green’s function appearing 15

in the three-dimensional equation from whith was ob- o ET
tained. These wave functions are then compared to the four- - ?StEdeed ET

dimensional wave functions, integrated over the zeroth com-

ponent of the relative four-momentum:
1.0 r

1
Y(p';E)= Zf dpeg(p,;:E)L(p,;E). (6.6) g
s
Hereg is the appropriate free two-particle four-dimensional |
Green’s function. The four-dimensional vertex function used
in (6.6) is normalized according to
d4p,d4pl—\* ! E ’ E &G_l ! E
Zn® (Pu E)9(PL E) —=— (P, Py E) o0 L
Xg(pu;E)'(p,;E)=2E, (6.7)

FIG. 6. A plot of normalized wave functiorig/(k) versus mo-
whereG is the full two-particle Green'’s function appearing mentum k (in units such thatm=1), for a bound state with
in the four-dimensional equation from which was ob- M=1.95m. The different wave functions shown are the integrated
tained. The left-hand sides of Eg®.5 and (6.7) may be four-dimensional Wallace-Mandelzweig equation wave function
reduced to two<{and four) dimensional integrals using the (thick solid ling, the wave function resulting from the first-order
fact that theS-wave wave functiony is angle independent. relative-energy integration method applied to that equatéash-
Note that in the four-dimensional case Wick rotation in thedotted ling, and the ET wave functiofshort-dashed line
zeroth component allows use of the vertex function on the
po Or p, imaginary axis. their four-dimensional counterparts than those which are ob-
When the normalized wave functions of the equations irfained from merely adopting an instant interaction.

group 1(group 2 are compared the results shown in Figs. 5
and 6 are obtained. It is immediately seen that all the wave
functions at this bound-state mass have essentially the same
features. However, in both figures it is clear that the three- Quasipotential equatio®PE’s, despite their success as
dimensional equation with the first-order relative-energy in-3 basis for hadronic phenomenology, cannot be improved
tegration, or Klein-type, interaction reproduces the integratedipon systematically. This is because whenever they are used
four-dimensional wave function considerably more accuneyond first order they predict amplitudes with unphysical
rately than the instant calculation does. This shows that thgingularities. These singularities also appear whenever at-
procedure given in Sec. Hoesprovide a way to systemati- tempts are made to boost the interaction appearing in the
cally derive three-dimensional equations which are closer t@)PE from one frame to another. They arise from these equa-

tions’ use of delta-function constraints on the relative four-

VII. CONCLUSION

15 momentum.
- Salpster Because of this shortcoming of QPE’s, in Sec. Il of this
——- Klein paper we sought, and found, a systematic procedure for de-

——- Ladder BSE

riving three-dimensional equations from four-dimensional
ones which does not involve the use of delta functions. As
shown in Sec. lll, this procedure is akin to the work of Klein.

It allows the derivation of a three-dimensional kernel which
includes, in a systematic expansion which may be pursued to
any desired accuracy, the effects of the relative-energy inte-
gration present in the four-dimensional integral equation. If
the procedure is applied to infinite order, a result equivalent
to the original four-dimensional equation is obtained. At any
order the kernel derived has a simple interpretation in terms
of the diagrams of time-ordered perturbation theory, except
that the presence of negative-energy states requires addi-
tional rules. The resultant three-dimensional equations there-
fore include more of the meson-retardation effects than qua-

FIG. 5. A plot of normalized wave functiortsj(k) versus mo-  Sipotential equations, and incorporate the effects of a
mentumk (in units such thatm=1), for a bound state witn dynamical boost.
M =1.95m. The different wave functions shown are the integrated ~ Since the BSE with any kernel which is a finite sum of
ladder BSE wave functiofsolid line), the result of the Klein po- Feynman graphs does not have the correct one-body limit, if
tential calculation(long-dashed ling and the Salpeter equation the procedure of Sec. Il is directly applied to any solvable
wave function(dotted ling. BSE, a three-dimensional equation without the correct one-

k/mV (k)

k/m
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body limit is found. However, as demonstrated by Wallaceequation did. However, the bound-state spectra from the in-
[18], and recapitulated here in Sec. IV, a Bethe-Salpetestant ET equation lies closest to the bound-state spectrum
equation with the correct one-body limit may be reorganizecbbtained from the sum of ladder and crossed-ladder graphs,
so that the pieces of the kernel which contribute at leadingts calculated by Nieuwenhuis and Tji85-38. This can be

order in the one-body limit take on an iterative form. Henceunderstood on physical grounds and, we argued, is not nec-
a four-dimensional equation, Eq4.17), with the correct essarily a recommendation for the use of the ET equation in
one-body limit and meson-production thresholds is derivedPhysical systems. Indeed, when the wave functions of a two-

A further approximation leads to a simple four-dimensionalPedy System in a scalar field theory are examined it is seen
equation to which the procedure of Sec. Il may be appliedthat the equation derived in Sec. V does a much better job of

Eq.(4.26. In making that approximation some of the meson_’reproducing the integrated four-dimensional wave function

production thresholds are displaced. Nevertheless, the equi@n the ET equation wave function does.
tion stil has exactly the correct cut structure for The results of Sec. VI are in harmony with recent results

for phase shifts in scalar-scalar scattering obtained by Lahiff
m,—m<E<m;+my+ u. !
’In Sec. V the przocéijure of Sec. Il was applied to the@d Afnan[34]. They found that the Klein method repro-
four-dimensional equatiori4.26. The result is a simple duces the phase shllfts obtained from the corresponding
three-dimensional equation with the correct one-body limitBethe-Salpeter equation much better than a Blankenbecler-

which has straightforward boost properties. The main short—Sugar calculation with an Instant interaction.

coming of this equation is the fact that certain thresholds of These formal gnd numencal_ rgsults indicate t.h'?“ the pro-
the original Bethe-Salpeter wave function are modified in theCecjure of SQC' IFis suqcessful |n.|ts 90?' of prowdl_ng away
three-dimensional wave function. However, this modification®® sys.temat.|cally obta|n.three-d|men5|onal eq“a“"’?s from
is due to the approximation in moving frofd.17) to (4.26), four_—dlmensmnal ones without the use _of delt_a functlons._ In
rather than to any deficiencies of our procedure for derivin art|cula_r, when appllet_ll to the four-dl_mens!onal equation
three-dimensional equations. It could be systematically cor 4.2 this procedure yields a three-dimensional equation

ted f t the pri f licating the three-di : Yvhich, unlike the qorresponding _quasipotential equation
rkeeineel or, at the price of complicating the three dlmen5|ona(5.5)’ has a well-defined boost. This would seem to make

Finally, in Sec. VI we compared and contrasted thesuch an equation a good starting point for calculations in

bound-state properties predicted by six different bound—statf?w'hadron systems.
equations in a scalar field theory. A first group of equations
contained the ladder Bethe-Salpeter equation and two three-
dimensional equations based on it: the Salpeter equation and S.J.W. acknowledges a conversation in which Paul Du-
the equation obtained by applying our method to first orderlany suggested that delta-function constraints were unneces-
which we referred to as the Klein equation, since the formulasary in the three-body problem and a three-dimensional re-
obtained for the three-dimensional interaction appears imluction of the Bethe-Salpeter amplitude could be effected by
Klein’s work. In the second group were E@.26), the so- integrating out relative energies. This idea stimulated the
called equal-time equation, and the equation derived in Se@resent work on the two-body problem. D.R.P. thanks Coen
VI. It was found that in each group of three equations thevan Antwerpen for his help in writing the code used to solve
equation derived by the Klein-like delta-function-free reduc-the Bethe-Salpeter equation. We are grateful to the U.S. De-
tion technique of Sec. Il approximated its parent four-partment of Energy for its support under Contract No. DE-
dimensional equation better than the corresponding instar®G02-93ER-40762.
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