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Relativistic bound-state equations in three dimensions

D. R. Phillips* and S. J. Wallace†

Department of Physics and Center for Theoretical Physics, University of Maryland, College Park, Maryland 20742
~Received 8 March 1996!

First, a systematic procedure is derived for obtaining three-dimensional bound-state equations from four-
dimensional ones. Unlike ‘‘quasipotential approaches’’ this procedure does not involve the use of delta-
function constraints on the relative four-momentum. In the absence of negative-energy states, the kernels of the
three-dimensional equations derived by this technique may be represented as sums of time-ordered perturbation
theory diagrams. Consequently, such equations have two major advantages over quasipotential equations: They
may easily be written down in any Lorentz frame, and they include the meson-retardation effects present in the
original four-dimensional equation. Second, a simple four-dimensional equation with the correct one-body
limit is obtained by a reorganization of the generalized ladder Bethe-Salpeter kernel. Third, our approach to
deriving three-dimensional equations is applied to this four-dimensional equation, thus yielding a retarded
interaction for use in the three-dimensional bound-state equation of Wallace and Mandelzweig. The resulting
three-dimensional equation has the correct one-body limit and may be systematically improved upon. The
quality of the three-dimensional equation, and our general technique for deriving such equations, is then tested
by calculating bound-state properties in a scalar field theory using six different bound-state equations. It is
found that equations obtained using the method espoused here approximate the wave functions obtained from
their parent four-dimensional equations significantly better than the corresponding quasipotential equations do.
@S0556-2813~96!01508-7#
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I. INTRODUCTION

With the advent of experimental facilities such as CE
BAF, which are capable of probing hadronic systems at e
ergies where relativistic effects become important, the dev
opment of theoretical frameworks in which consisten
relativistic calculations of few-body hadronic systems can b
performed is no longer merely desirable; it is essential.

An obvious starting point for such a calculation in a two
body system~such as the deuteron! is the Bethe-Salpeter
equation~BSE! for the four-dimensional, covariant, two-to-
two amplitudeT,

T5K1KG0T, ~1.1!

whereG0 is the free two-particle propagator, which in ou
convention is

G0~p18 ,p28 ;p1 ,p2!5 i ~2p!8d~4!~p182p1!

3d~4!~p282p2!d1~p1!d2~p2!,

~1.2!

with

di~pi !5
L i

1~pi !

pi
02e i~pi !1 ih

2
L i

2~pi !

pi
01e i~pi !2 ih

, ~1.3!
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where

e i~pi !5Api21mi
2, ~1.4!

L i
6~pi !5H 1

2e i~pi !
for spin-zero particles,

6e i~pi !g
02gi•pi1mi

2e i~pi !
for spin-half particles,

~1.5!

h is a positive infinitessimal, andK is the Bethe-Salpeter
kernel @1–5#. In principleK should include all two-particle
irreducible two-to-two Feynman graphs. The solution
~1.1! with the full two-particle irreducible kernel is imprac
tical and usually resort is made to the ladder approximat
@6–9#. Some undesirable features attend this approximat
~see@10# for a full discussion!, not the least of which is the
fact that the ladder BSE does not have the correct one-b
limit @11#. ~An equation is said to have the correct one-bo
limit if, when the mass of one particle is taken to infinity, th
equation reduces to the Klein-Gordon or Dirac equation
the light particle moving in the static field of the now infi
nitely massive source.! By contrast, the full BSE~1.1! does
possess the correct one-body limit.

Three-dimensional quasipotential equations~QPE’s! are
realized by rewriting the Bethe-Salpeter equation for t
two-particle amplitude~1.1! as a pair of coupled equations

T5U1UgT, ~1.6!

U5K1K~G02g!U, ~1.7!

where the propagatorg is arbitrary. Ifg is chosen to contain
a one-dimensional delta function constraining the relat
507 © 1996 The American Physical Society
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four-momentum, then Eq.~1.6! becomes a three-dimension
equation for the amplitudeT. Examples of this approac
include the equations of Blankenbecler and Sugar@12# and
Gross @11,13#. In principle the driving termU should be
determined by solving the four-dimensional integral equa
~1.7!. However, given the difficulty of solving such equ
tions, and our lack of knowledge about the best form ofK for
hadronic physics, usuallyU is chosen to be a one-boso
exchange interaction:

U5VOBE. ~1.8!

The t matrix then obeys the three-dimensional integral eq
tion

T5VOBE1VOBEgT. ~1.9!

A reasonable description of few-hadron systems is obta
by fitting coupling constants and some mass parameter
VOBE to the nucleon-nucleon scattering data.~Examples of
this approach include, but are by no means limited to, R
@14–16#.!

The QPE formalism of Gross obeys the one-body lim
@11#. Another variant of the quasipotential approach wh
respects the one-body limit was derived by Wallace
Mandelzweig in Refs.@17–19#. We provide a generalizatio
of that formalism in this paper. As originally derived, th
QPE of Wallace and Mandelzweig contains, for the nucle
nucleon system, a one-boson-exchange potential which i
stant in the center-of-mass frame. This involves the use
constraint on the relative four-momentump of the form

p•P50, ~1.10!

whereP is the total two-body four-momentum. In the cente
of-mass frame, the equation for the deuteron vertex func
takes the form

GWM5VinstGETGWM , ~1.11!

whereGET refers to the Wallace-Mandelzweig choice for t
propagatorg. The formalism is covariant since the constra
~1.10! is expressed covariantly and the pair of equati
~1.11! and ~1.7! is equivalent to the bound-state BSE:

G5KG0G. ~1.12!

Equation~1.11! for the c.m. frame deuteron vertex functio
has been used in recent work by Devine and Wallace@20,21#.
This formalism may be developed in a manifestly covari
fashion following the technique of Fuda@22#. This involves
writing all four-vectors in terms of their components para
and perpendicular to the total four-momentum:

p5piP̂1p' , ~1.13!

wherepi5p• P̂, with P̂5P/AP2.
A fundamental flaw exists in quasipotential formalism

that are based on a form forg which contains a delta func
tion. It is generally impossible to systematically correct
lowest-order approximation by use of Eq.~1.7! because un-
physical singularities arise. In two-body hadronic syste
such as the deuteron, calculations may still be pursued u
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equations such as~1.11! which are themselves free of thes
singularities. On the other hand, in any electromagnetic
action where the photon momentumq is nonzero, the con-
straint ~1.10! cannot hold for the initial- and final-state rela
tive four-momenta in the c.m. frame@20#. Therefore a
boosted vertex function is required for electromagnetic m
trix element calculations or, for that matter, for any QP
calculation in a three-body problem. A boost equation for t
quasipotential may be deduced from Eq.~1.7!, but unphysi-
cal singularities arise in the boosted interaction@20,21#.
These are removed from the theory if the full result forU, as
defined by~1.7!, is used in the quasipotential equation, bu
no truncation ofU at any finite order inG2g is free of
singularities.

Therefore, in this paper we seek a general procedure
the reduction of four-dimensional equations whichdoes not
involve the use of delta functions. We develop a procedure
by which a four-dimensional equation may be approximat
by a three-dimensional equation and the interaction in th
equation improved systematically. The technique is pr
sented in Sec. II. It has a close connection to the work
Klein @23–26# on three-dimensional reductions of four
dimensional equations, and to standard time-ordered per
bation theory, as discussed in Sec. III.

In general the interaction in the three-dimensional equ
tions we discuss is not covariant. But, since the applicati
of our delta-function-free reduction technique to infinite o
der produces an equation equivalent to the original fou
dimensional equation, the sum of all terms in the thre
dimensional formalism must produce covariant results.
nuclear physics it is known that contributions which are
higher order in the coupling are of increasingly short
range. Such short-range contributions to hadronic inter
tions must always be treated in an essentially phenome
logical manner. Therefore, it is expected that a truncation
the interaction at some finite order in the coupling will b
useful for applications. It should always be appropriate
absorb the effects of the neglected higher-order graphs i
phenomenological parameters, thus ameliorating the non
variance of the theory. In particular, we show in Sec. III th
the leading-order boost corrections to the interaction o
tained by Forest, Pandharipande, and Friar@27# are indeed
contained within our truncated interaction.

In Sec. IV we show that the crossed-box graph may
approximately rewritten as an iterate of the ladder kernel:

KX
~4!'K ~2!GCK

~2!, ~1.14!

where the form ofGC is derived in Sec. IV. In particular, this
approximation is exact in the high-energy~eikonal! and one-
body limits, and may be systematically improved upon
other regimes. This leads us to propose the four-dimensio
integral equation

G5K ~2!~G01GC!G. ~1.15!

This equation has the correct one-body limit and results fro
an approximate resummation of the BSE kernelK. It reduces
to the Wallace-Mandelzweig equation~1.11! if the depen-
dence ofK (2) on the time component of the relative four
momentum in the c.m. frame is neglected. A thre
dimensional reduction of Eq.~1.15! using the method
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54 509RELATIVISTIC BOUND-STATE EQUATIONS IN THREE . . .
developed in Sec. II provides a systematic way to includ
retardation effects, and so improve on Eq.~1.11!. This reduc-
tion to a three-dimensional equation is performed in Sec.
The dynamical boost of the three-dimensional interactio
present in the equation is realized through simple depe
dence of the interaction on the total three-momentum a
energy of the system, thus eliminating the boost problem
Eq. ~1.11!.

In Sec. VI the predictions of the three-dimensional inte
gral equation obtained in Sec. V are compared to those
five other bound-state equations: the ladder BSE and E
~1.15!, both of which are, of course, four-dimensional equa
tions, and the three-dimensional equations of Salpeter, Kle
and Wallace and Mandelzweig.

The results of Secs. III–V are presented concurrently for
scalar and a spinor field theory. In particular, in the scal
case we use thef2s field theory, defined by the Lagrangian

L5
1

2
~]mf1]

mf12m1
2f1

21]mf2]
mf22m2

2f2
2

1]ms]ms2m2s2!2g1m1f1
2s2g2m2f2

2s.

~1.16!

Coupling terms include mass factors so that the couplin
g1 and g2 are dimensionless, thus ensuring that the limit
m1→` andm2→` correspond to the appropriate one-bod
limits. It is this field theory in which the numerical calcula-
tions of Sec. VI are performed. In the spinor case the L
grangian is

L5c̄1~ igm]m2m1!c11c̄2~ igm]m2m2!c22g1c̄1sc1

2g2c̄2sc2 . ~1.17!

The arguments of Secs. III–V are, in fact, quite general an
with small modifications, also apply to field theories involv
ing other types of particles.

II. SYSTEMATIC PROCEDURE FOR THE REMOVAL OF
THE RELATIVE-ENERGY DEGREE OF FREEDOM

FROM A BOUND-STATE EQUATION
Consider the Bethe-Salpeter equation for the bound-sta

vertex functionG, i.e.,

G~p;P!5E d4p8

~2p!4
K~p,p8;P!G0~p8;P!G~p8;P!.

~2.1!

Here P is the total two-body four-momentum, andp and
p8 are the relative four-momenta. This equation is com
pletely general, and applies to the bound-state vertex fun
tion in any field theory. Throughout this paper we find i
convenient to omit the explicit integration from such equa
tions, abbreviating them as follows:

G5KG0G. ~2.2!

Suppose that the driving term of this equation,K, is sepa-
rated into two pieces:

K5K11K2 , ~2.3!
e

.
n
n-
d
f

-
of
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-
n,
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whereK1 is three dimensional in the sense that it does n
depend on the zeroth component of the relative fou
momentap andp8. For instance, if~2.1! was being solved in
the two-body center-of-mass frame andK was a one-boson-
exchange kernel, thenK1 could be chosen to be the usua
static one-boson-exchange kernel. Note that even though
whole driving termK is Lorentz covariant, because the re
striction onK1 is frame dependent, the piecesK1 andK2 are
not. The splitting ofK leads to the following coupled equa
tions forG:

G5G11G2 , ~2.4!

G15K1G0~G11G2!, ~2.5!

G25K2G0~G11G2!. ~2.6!

Both these equations are four dimensional; however,G1 has
no dependence on the zeroth component of the relative fo
momentum because of the defining condition ofK1 . Mean-
while, the second equation may be formally solved to obta

G25@12K2G0#
21K2G0G1

52G11@12K2G0#
21G1 . ~2.7!

This last result may then be substituted into Eq.~2.5! to yield

G15K1GG1 , ~2.8!

where

G5G01G0K2G. ~2.9!

Equation ~2.8! then becomes a three-dimensional equati
because the implied integrations over time components
momenta only affectG; i.e., it reduces to

G15K1^G&G1 , ~2.10!

where

^G&[E dp08dp0
~2p!2

G~pm8 ,pm ;P!. ~2.11!

Here we have used the same implied integration notation
the three-dimensional integral equation~2.10! as for a four-
dimensional equation. This practice continues below and
context should make it clear whether the equation in quest
is a three- or four-dimensional one.

Equations~2.10! and ~2.9! are exactly equivalent to the
original BSE~2.1!. In order to reconstruct the Bethe-Salpete
amplitudeG from the noncovariant three-dimensionalG1 one
must use Eq.~2.7! rearranged into the form

G5@12K2G0#
21G1 . ~2.12!

The Green’s function̂G& defined by Eq.~2.11! is, in fact,
the Fourier transform of the corresponding equal-time coo
dinate space Green’s functionG(t8,x18 ,x28 ;t,x1 ,x2). This
may be seen by defining
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510 54D. R. PHILLIPS AND S. J. WALLACE
G~ t8,x18 ,x28 ;t,x1 ,x2!5d~x1
082x2

08!d~x1
02x2

0!

3g~x18 ,x28 ;x1 ,x2!, ~2.13!

where g is the appropriate four-dimensional two-bod
Green’s function, and then inserting the integral represen
tion of the delta functions and taking the Fourier transfor
@28,29#.

If K1 is now chosen to be a c.m.-frame instant interactio
K inst, then ~2.9! may be taken to defineG order by order in
K2K inst. This provides a systematic way to calculate reta
dation corrections to the Salpeter equation@30#

G15K inst^G0&G1 , ~2.14!

which results from takingG at zeroth order inK2K inst. In
particular, at first order inK2K inst we find that

^G~1!&5^G0&1^G0KG0&2^G0&K
inst^G0&. ~2.15!

The use of this three-dimensional propagator in place
^G0& in ~2.10! would therefore incorporate leading-order re
tardation corrections in the three-dimensional equation.

There is, however, a general way to account for all th
relative-energy integrations in the modified Green’s functio
^G&. Recall that the choice ofK1 is subject only to the con-
straint that it should not depend on the zeroth component
the relative four-momentum in, say, the c.m. frame. Consid
Eq. ~2.9! rewritten as

^G&5^G0&1^G0KG&2^G0&K1^G&, ~2.16!

and chooseK1 such that̂ G&5^G0&. This provides the de-
fining condition,

K1[^G0&
21^G0KG&^G0&

21. ~2.17!

Since this choice ofK1 means that̂G&5^G0&, the full dy-
namics reduces to a three-dimensional integral equation w
the free propagator̂G0&, i.e.,

G15K1^G0&G1 , ~2.18!

and all the complexities of the relative-energy integratio
are transferred to the interactionK1 .

It follows thatK1 is the two-particle irreducible~2PI! in-
teraction, where two-particle irreducibility is defined with
respect to the three-dimensional propagator^G0&. To show
this formally, rearrangêG0KG& as follows:

^G0KG&5^G0KG0~12KG0!
21&

1^G0KG0$@12~K2K1!G0#
212@12KG0#

21%&

5^G0TG0&2^G0TG0&K1^G&, ~2.19!

whereT5K(12G0K)
21 is the Bethe-Salpetert matrix de-

fined by Eq.~1.1!. Use of Eq.~2.19! in Eq. ~2.17! produces

T15K11T1^G0&K1 , ~2.20!
ta-
m

n,

r-

of
-

e
n

of
er
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s

whereT15^G0&
21^G0TG0&^G0&

21 is the three-dimensional
t matrix corresponding to the Bethe-Salpetert matrix T.
Thus K1 is, indeed, the irreducible interaction which pro-
duces the t-matrixT1 using the propagator̂G0&. We there-
fore expect that the rules for the construction ofK1 will be
akin to those for the two-particle irreducible interaction in
time-ordered perturbation theory.

III. CONNECTION TO TIME-ORDERED PERTURBATION
THEORY AND THE WORK OF KLEIN

The connection to time-ordered perturbation theory
~TOPT! emerges for a simplified dynamics in which only
positive-energy states are kept inG0 . For the case of a field
theory of nucleons and pions it has been shown that th
Green’s function̂G01G0TG0& obeys the rules of TOPT in
the no-antinucleon case@28,31#. The same derivations suffice
to prove the result for the scalar field theories defined in the
Introduction. It therefore immediately follows thatK1 is the
2PI TOPT amplitude in the case that only positive-energy
states are kept inG0 .

We now provide a specific example of the derivation of
the time-ordered perturbation theory amplitude by this route
First, it is true in general that, if in Eq.~2.17! G is replaced
by G0 , then the three-dimensional kernel becomes

K15^G0&
21^G0KG0&^G0&

21. ~3.1!

We note that this formula was given by Klein in his work on
deriving three-dimensional scattering equations from four-
dimensional ones@23–25#. Equations~2.17! and ~2.9! may
thus be thought of as providing a generalization of the for-
malism of Klein. Second, suppose thatK is expanded ac-
cording to the power of the coupling constant in each of its
contributions, i.e.,

K5(
i51

`

K ~2i !, ~3.2!

and for the moment only the second-order, or ladder, contri
bution toK is kept; i.e.,~3.1! is rewritten as

K1
~2!5^G0&

21^G0K
~2!G0&^G0&

21. ~3.3!

We now calculate this amplitude in the absence of negative
energy states. First, the propagators are split according to E
~1.3!, and only the positive-energy pieces retained. Second
the inverse Fourier representations of all quantities are in
serted, so that the time ordering can be clearly elucidated
Third, a change of variables to time differences is made
Fourth, the relative-energy integrations are performed, gen
erating delta functions on some of the time differences. Last
the integrals over these time differences are performed. Th
procedure allows the calculation ofK1

(2) in any frame. In-
deed, it is completely general, and can be used to calcula
K1 no matter whatK is chosen.

If the total four-momentum of the two-body system in the
frame of interest is writtenP5(E,P), then it is seen that
K1
(2) takes the standard form of TOPT:



e
y

e

o

h

r

e

ost
it
in
in

e

e-
the
e

-

e
r-

e
te

54 511RELATIVISTIC BOUND-STATE EQUATIONS IN THREE . . .
K1
~2!~p8,p;E,P!

5
g1g2
2v
MS 1

E12e12e282v
1

1

E12e22e182v D ,
~3.4!

where E15E1 ih, e15e1(p1), e25e2(p2),
v5Am21(p2p8)2, ande18 (e28) has the argumentp18 (p28)
in place ofp1 (p2). Here,m1 andm2 are the masses of the
two interacting particles,m is the mass of the exchanged
meson, and the factorM is defined by

M5H 4m1m2 for spin-zero particles,

1 for spin-half particles.
~3.5!

Note that to extract the mass of the bound state,M , one must
setE5AM21P2. The total and relative three-momenta ar
related to the individual particle momenta in the usual wa

p11p25p181p285P, ~3.6!

n2p12n1p25p; n2p182n1p285p8, ~3.7!

where n1 and n2 are any two real numbers which obey
n11n251. Figure 1 shows the time-ordered diagrams corr
sponding to Eq.~3.4!.

The bound-state equation corresponding to this interacti
is then

^G0&
21~p8;E,P!c~p8;E,P!

5E d3p

~2p!3
K1

~2!~p8,p;E,P!c~p;E,P!, ~3.8!

where we have omitted the factor of (2p)3d (3)(p82p) from
^G0&, which integrates out of the equation trivially. Here

^G0&~p;E,P!5
L1

1L2
1

E1 ih2e12e2
, ~3.9!

whereL1
15L1

1(p1) andL2
15L2

1(p2). Now suppose that
we have a set of free single-particle positive-energ
momentum-space wave functionsu for both the spin-half
and scalar theories. In the spin-half case these will be t
spinors, and their normalization may be chosen such that

L1~p!5u~p!ū~p! ~3.10!

~where spin indices have been suppressed!. In the scalar case
Eq. ~3.10! may also be enforced, since theu’s may be chosen
to be merely numerical factors; i.e., we may define

FIG. 1. The two graphs which contribute to the second-ord
three-dimensional kernel, if only positive-energy intermediate sta
are included in the calculation.
:

-

n

y

e

u~p!5ū~p![
1

A2e~p!
. ~3.11!

Expanding

c~p;E,P!5u1~p1!u2~p2!f~p;E,P! ~3.12!

~with an implicit summation on spin indices in the spino
case! and manipulating Eq.~3.8! leads to

~E2e182e28!f~p8;E,P!

5E d3p

~2p!3
K̃1

~2!~p8,p;E,P!f~p;E,P!, ~3.13!

with

K̃1
~2!~p8,p;E,P!5ū1~p18!ū2~p28!K1

~2!~p8,p;E,P!

3u1~p1!u2~p2!. ~3.14!

Note that the TOPT interaction which appears in th
bound-state equation~3.13! changes with total three-
momentum of the system. This provides the dynamical bo
of the interaction and it is straightforward to show that
incorporates the perturbative boost correction discussed
Ref. @27#. That is, in the equal-mass case, to second order
P we have~neglectingp2/m andp82/m terms!

K̃1
~2!~q;P!5K̃1

~2!~q;0!2
P2

4m2 K̃1
~2!~q;0!

2
1

8m2P•qP•“qK̃1
~2!~q;0!, ~3.15!

where we have written the interaction as a function of th
momentum of the exchanged meson,q5p82p.

If it is true, as argued in Ref.@27#, that this leading-order
boost correction is sufficiently accurate for studies of thre
nucleon systems, then the boost effects incorporated in
TOPT result~3.4! should be more than adequate. Indeed, w
believe such a boost to be preferable to that of Eq.~3.15!,
since it involves operators which are bounded asP→`,
whereas, at large values ofP, the perturbative boost correc
tion ~3.15! diverges.

The identification of the kernelK1 with the usual time-
ordered perturbation theory interaction is only correct in th
absence of negative-energy states. With the full fou
dimensional propagator, the form ofK1

(2) obtained from Eq.
~3.3! in the manner described above Eq.~3.4! is

r
s
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^G0&~p8;E,P!K1
~2!~p8,p;E,P!^G0&~p;E,P!

5
g1g2M
2v F S L1

18L2
18

E2e182e28
1

L1
28L2

18

2e182e12v D 1

E2e12e282v S L1
1L2

1

E2e12e2
1

L1
1L2

2

2e22e282v D
1S L1

18L2
18

E2e182e28
1

L1
18L2

28

2e22e282v D 1

E2e182e22v S L1
1L2

1

E2e12e2
1

L1
2L2

1

2e182e12v D
1

L1
28L2

28

2E2e182e28
S 1

2e182e12v
1

1

2e282e22v D L1
1L2

1

E2e12e2

1S L1
28L2

28

2E2e182e28
1

L1
18L2

28

2e12e182v D 1

2E2e12e282v S L1
2L2

2

2E2e12e2
1

L1
2L2

1

2e22e282v D
1S L1

28L2
28

2E2e182e28
1

L1
28L2

18

2e22e282v D 1

2E2e182e22v S L1
2L2

2

2E2e12e2
1

L1
1L2

2

2e12e182v D
1

L1
18L2

18

E2e182e28
S 1

2e182e12v
1

1

2e282e22v D L1
2L2

2

2E2e12e2
G , ~3.16!
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whereL i
65L i

6(pi) andL i
685L i

6(pi8). Note that here, and
throughout the rest of this paper, theih prescriptions can be
generated by understanding the massesm1 , m2 , andm to
have a small negative imaginary part.

Now the three-dimensional propagator is

^G0&~p;E,P!5
L1

1L2
1

E1 ih2e12e2
1

L1
2L2

2

2E1 ih2e12e2
~3.17!

~where once again we have omitted the momentum-spa
delta function for notational simplicity!, which is the Sal-
peter propagator@30#. If the negative-energy piece is re-
moved, this becomes the Blankenbecler-Sugar@12# or
Logunov-Tavkhelidze@29# propagator. Note that in the spin-
half case this propagator does not have a unique inver
consequently, in that case the derivation of the bound-st
equation analogous to Eq.~3.13! usually assumes that the
12 and21 pieces of̂ G0&

21 are zero.
The graphs corresponding to the terms in Eq.~3.16! are

shown in Fig. 2. Graphs~a!–~d! are generated by the first
line of Eq. ~3.16!, graphs~e!–~h! by the second line, and
graphs~i! and~j! by the third line. The fourth to sixth lines of
~3.16! generate the same ten graphs, but with particles a
antiparticles interchanged. Note that the graphs drawn in F
2 do not represent actual physical processes, but rather c
tributions to the ‘‘potential’’K1

(2) . As observed by Klein, if
negative-energy particles are present, the rules for the c
struction of this interaction differ from those of standar
TOPT @23,24#.

In general, it can be shown that the rules for the constru
tion of the full two-body equal-time Green’s function
^G01G0TG0&, for the case of positive-energy initial and
final-state particles, are, in either of the two field theorie
given in the Introduction

~1! Draw all topologically distinct, two-to-two graphs,
which do not contain vacuum-vacuum subdiagrams, reme
ce

e;
te

d
g.
n-

n-

c-

,

-

bering that different time orderings contribute to differe
graphs.

~2! Construct the expression for each individual graph
actly as in TOPT, save that~a! all one-particle energies are t
be relativistic;~b! if in some intermediate state of the grap
both the initial-state particles are present with exactly
same momenta as in their initial state—i.e., their state
unaltered from the beginning of the graph—then in
TOPT denominator corresponding to that state the quan

FIG. 2. The ten graphs which contribute to the second-or
three-dimensional kernel if propagation into negative-energy st
is allowed. Note that these graphs can be interpreted as applyi
positive- or negative-energy particles. In fact, each graph sh
contributes twice: the second time with positive-energy partic
going forward in time interchanged with negative-energy partic
going backward. The dotted lines represent the initial and fi
times in each graph. Observe that in all but graphs~a! and~e! some
interactions take place outside the interval@ t i ,t f #.
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e11e2 must be replaced byE; and ~c! similarly, if both
final-state particles are present with exactly the same m
menta as in their final state—i.e., they have undergone th
last interaction but are still present in some intermedia
state—then in the TOPT denominator corresponding to t
state the quantitye181e28 must be replaced byE.

If both these last two conditions are satisfied, then t
denominator for the relevant state is the TOPT denomina
for that state, but withe181e281e11e2 replaced by 2E. Note
that these are not the rules for the amplitude obtained fr
the ladder BSE. The Green’s function defined by these ru
is the 11→11 piece of the full two-body equal-time
Green’s function of the field theory.

The substitution of theseE’s in the intermediate-state de
nominators can be shown to be due to a crucial differen
between the way initial and final states are treated in t
calculation of^G0TG0& and in TOPT. In TOPT the initial
and final times in the diagram are taken to minus and p
infinity, respectively, thus guaranteeing that no interacti
takes place before the beginning~or after the end! of the
propagation of the two-particle state. However, whe
^G0TG0& is calculated in our work the initial and final times
are kept finite. Consequently the first~last! event in the dia-
gram need not be the creation of thef1f2 or N1N2 pair; it
may be the creation out of~destruction into! the vacuum of a
ff̄s or NN̄s state.~See for instance the second graph
Fig. 2.! The possibility of such an event happening before
after thef1f2 orN1N2 propagation in some contributions to
^G0TG0& leads to denominators which differ from the TOP
ones in those pieces of̂G0TG0&. It follows that, if the
pieces of the Hamiltonian of the theory which coupleff̄s
or NN̄s states directly to the vacuum are removed from t
Hamiltonian, then the modification of the TOPT denomin
tors is not necessary, and the rules for calculation of t
two-particle to two-particle part of the Green’s functio
^G0TG0& become exactly those for the calculation of th
TOPT Green’s function. This equivalence of^G0TG0& and
the time-ordered perturbation theory Green’s function in t
absence of such terms from the Hamiltonian was demo
strated for a field theory of nucleons and pions by Kvin
khidze and Blankleider@28#.

As discussed in Sec. II, the use of a static interaction
the Bethe-Salpeter equation leads to the Salpeter equa
~2.14!. This equation is often used for the interactions of tw
relativistic particles. It is straightforward to show that th
static limit of the potential given by Eq.~3.16! is the usual
instant interaction in the positive-energy sector. On the oth
hand, Eq. ~3.16! predicts that the coupling between th
11 and 22 states is suppressed by retardation effec
which cause it to be a factorv/m ~in the equal-mass case!
smaller than the rest of the static interaction. This factor
zero in the static limit. Thus, for a causal interaction, th
correct static limit of Eq.~2.18! with the interaction~3.16! is
the Breit equation, i.e., Eq.~2.14! with the22 states omit-
ted from the calculation.

In order to recover the results of Klein for two-meson
exchange interactions, and so make connection with the
cent work on two-pion exchange of Rijken and Stoks@32,33#
and Lahiff and Afnan@34#, we evaluateG to first order in
K2K1 in Eq. ~2.17!. This produces
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K15^G0&
21@^G0KG0&1^G0KG0~K2K1!G0&#^G0&

21.
~3.18!

Now expandingK as in Eq. ~3.2! and dropping terms of
higher than fourth order in the coupling constant leads to

K1
~4!5^G0&

21~^G0K
~4!G0&1^G0K

~2!G0K
~2!G0&!^G0&

21

2K1
~2!^G0&K1

~2! . ~3.19!

When applied to particle-particle scattering Eq.~3.19! gives
exactly the same results obtained by Klein, except that whe
Klein removed the iterated second-order three-dimension
interaction by hand, here the formalism provides the subtra
tion naturally.

The procedure developed in Sec. II thus provides the ge
eralization of Klein’s method. The interaction and vertex
functions defined by Eqs.~2.17!, ~2.9!, and ~2.18! have the
full relative-energy dynamics of the Bethe-Salpeter equatio
~2.1! included in them.

IV. SIMPLE FOUR-DIMENSIONAL EQUATION WITH
THE CORRECT ONE-BODY LIMIT

Now let us return to the four-dimensional BSE~1.1!. The
simplest BSE with the correct one-body limit is

G5KXG0G, ~4.1!

whereKX is the sum of all 2PI ladder and crossed-ladde
two-to-two graphs@11#. The bound-state masses predicted b
such an equation have recently been obtained by Mon
Carlo integration in the Feynman-Schwinger representatio
of both scalarf3 field theory and scalar QED by Nieuwen-
huis, Tjon, and Simonov@35–39#. In general, though, the
kernelKX is too complicated for~4.1! to be solved by stan-
dard means. Therefore, in this section we shall derive a fou
dimensional equation which has a simple kernel, the appr
priate meson-production thresholds, and the correct on
body and high-energy~or eikonal! limits. A form of the
following derivation appeared in@18#.

Although it is impossible to rewrite a crossed graph ex
actly as an iterate of the ladder kernelK (2), the leading con-
tributions of these graphs to the high-energy and one-bo
limits are iterative. This can be easily shown in the case
the fourth-order crossed-box graph. In both of the field the
ries defined in the Introduction, this graph corresponds to
expression

KX
~4!~k18 ,k28 ;k1 ,k2!5 ig1

2g2
2M2E d4p2

~2p!4
1

~k282p2!
22m2

3d1~P2p2!d2~k21k282p2!
1

~p22k2!
22m2 , ~4.2!

where the lines have been assigned the momenta shown
Fig. 3, andP is the total momentum, which is conserved:

P5k11k25k181k28 . ~4.3!
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The propagatorsdi were given in Eq.~1.3!, and the factor
M was defined in Eq.~3.5!.

Following Wallace and Mandelzweig@18,19# we define,
for any four-vectorq, quantitiesqi andq'm as follows:

qm5qiP̂m1q'm , ~4.4!

whereP̂ is the unit four-vector in the direction ofP and

qi5q• P̂. ~4.5!

Consequently in Eq.~4.2! the argument of the functiond2
may be rewritten:

~k2i1k28i2p2i!P̂1k2'1k28'2p2' . ~4.6!

Now suppose that the momentum of particle 2 is larg
This may occur becausem2@m1 ~one-body limit! or because
particle 2 has very high energy~eikonal limit!. In either case
its intermediate- and final-state momenta will be largely un
affected by the presence of particle 1, and so we may a
proximate the perpendicular components as unchanging,

k2'1k28''2p2' . ~4.7!

Indeed, making the replacement~4.7! in ~4.2! will not affect
the value ofKX

(4) in the limit m2→`.
This argument shows thatKX

(4) may be approximately re-
written as

KX
~4!~k28 ,k2 ;P!' i E d4p2

~2p!4
K ~2!~k282p2!d1@P2p2#

3d2@~k2i1k28i2p2i!P̂1p2'#K ~2!~p22k2!, ~4.8!

whereK (2) is the ladder BSE driving term:

K ~2!~q!5M
g1g2

q22m21 ih
. ~4.9!

In operator notation

KX
~4!'K ~2!GCK

~2!, ~4.10!

with

FIG. 3. The crossed-box graph, showing the momentum labe
used in the text.
.

-
p-

GC~p8,p;E1,E2!

5 i ~2p!4d~4!~p82p!d1@p#d2@~E22E11pi!P̂2p'#.
~4.11!

HereE1 andE2 are defined via

2E25k2i1k28i , 2E15k1i1k18i , ~4.12!

and so in the c.m. frameE5E11E2 . The propagatorGC
defined by~4.11! therefore depends on the parallel compo
nents of the external momenta. Thus the use of operator n
tation in Eq.~4.10! is not strictly correct. In Eq.~4.27! we
redefineGC in order to remove this dependence on externa
momenta. However, that change inGC modifies the analytic
structure of the amplitude defined by the corresponding inte
gral equation. Therefore, for the present we persist withGC
defined by~4.11!, and use an improper operator notation
Note that if the particles are on shell in their initial and final
states, then

E15E1
on[

E21m1
22m2

2

2E
, E25E2

on[
E21m2

22m1
2

2E
.

~4.13!

These arguments show that Eq.~4.10! will be exact in the
infinite-mass and high-energy limits, thus demonstrating tha
the pieces ofKX

(4) which survive in these two limits may,
indeed, be written as iterates ofK (2).

Now suppose thatKX is written as

KX5V1VGCKX . ~4.14!

In principle this is always possible, as~4.14! may be taken as
a definition ofV. At second order in the coupling we clearly
have

V~2!5KX
~2![K ~2!, ~4.15!

while the above argument shows that, with thisV(2),

KX
~4!5V~2!GCV

~2! ~4.16!

in the high-energy and infinite-mass limits. Thus, a reason
able choice forV is V5K (2). Equation~4.14! then defines
corrections to this choice.

Once thisV is chosen, Eq.~4.14! and the BSE~4.1! may
be combined to yield an ‘‘improved’’ ladder BSE, which, in
the two-body c.m. frame, after a change of variables to tota
and relative four-momenta, takes the form

G~p08 ,p8;s!5 i E d4p

~2p!4
K ~2!~p82p!d1~E1

on1p0 ,p!

3@d2~E2
on2p0 ,2p!1d2~E2

on2p081p0 ,2p!#G~p0 ,p;s!.
~4.17!

We stress that what has been done here is to take certa
pieces of the Bethe-Salpeter kernelKX and rewrite them in
the form K (2)GCK

(2), K (2)GCK
(2)GCK

(2), etc. Conse-
quently, Eq.~4.17! is equivalent to a Bethe-Salpeter equation
in which graphs other than one-meson exchange are appro

ls
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mately included in the kernel. Thus we expect that the so
tion of this equation may provide a better description of
dynamics of two-particle systems than the ladder BSE a
plitude.

This will be especially true for systems with one partic
much heavier than the other. In these systems the one-b
limit constitutes an important piece of the dynamics. Unli
the ladder BSE, Eq.~4.17! has the correct one-body limit
This may be shown as follows. For the on-shell vertex fu
tion p0850. If p0850, the sum of the two particle-2 propag
tors, multiplied byM is, in the spin-zero case,

M@d2~E2
on2p0 ,2p!1d2~E2

on1p0 ,2p!#

5
4m1m2

~E2
on2p0!

22e2
21 ih

1
4m1m2

~E2
on1p0!

22e2
21 ih

,

while for the spin-half case the same combination becom

~E2
on2p0!g

01g2•p1m2

~E2
on2p0!

22e2
21 ih

1
~E2

on1p0!g
01g2•p1m2

~E2
on1p0!

22e2
21 ih

.

In them2→` limit, E2
on→e2→m2 , and so this expressio

reduces to

F 1

p01 ih
2

1

p02 ih G2m1522p id~p0!2m1 ~4.18!

for the spin-zero case and

22p id~p0!L2`
1 ~4.19!

for the spin-half case, where

L2`
1 5

11g0

2
~4.20!

is the positive-energy projection operator for an infinite
massive particle 2. Thus, in the infinitem2 limit Eq. ~4.17!
yields the Klein-Gordon or Dirac equation for the wave fun
tion of particle 1 moving in the statics field generated by
particle 2:

E22m1
22p82

2m1
c~p8!52E d3p

~2p!3
g1g2

~p82p!22m2c~p!

~4.21!

or

~Eg02p8•g2m1!c~p8!52E d3p

~2p!3
g1g2

~p82p!22m2c~p!,

~4.22!

where

c~p!5
1

E22m1
22p2

G~0,p;E! ~4.23!

or

c~p!5
1

Eg02p•g2m1
L2`

1 G~0,p;E!, ~4.24!
lu-
e
m-

le
ody
e

c-
-

es

ly

c-

andE5E1
on.

Equation ~4.17! also has the appropriate meson-
production thresholds, and therefore could be used as a bas
for four-dimensional calculations of two-body bound-state
properties. However, the equation cannot be written in the
form

G5K ~2!GG, ~4.25!

and consequently the method of Sec. II cannot be applied to
it. Therefore, we now seek an approximate version of Eq.
~4.17! which can be written in the form~4.25!.

In the on-shell vertex functionp0850. In what follows we
usep0850 in the integrand also when the amplitude is not on
shell. This approximation provides a four-dimensional ver-
sion of the three-dimensional Wallace-Mandelzweig equa-
tion obtained in Refs.@17–19#. In the center-of-mass frame it
is

G~p8;E1
on,E2

on!5 i E d4p

~2p!4
K ~2!~p82p!d1~E1

on1p0 ,p!

3@d2~E2
on2p0 ,2p!1d2~E2

on1p0 ,2p!#G~p;E1
on,E2

on!.
~4.26!

RedefiningGC to be, in the c.m. frame,

GC~p8,p;E1
on,E2

on!5 i ~2p!4d~4!~p82p!

3d1~E1
on1p0 ,p!d2~E2

on1p0 ,2p!,

~4.27!

allows Eq.~4.26! to be written

G5K ~2!~G01GC!G. ~4.28!

The following points are worth noting
~1! Because the new choice forGC does not affect the

on-shell fourth-order piece of the amplitude, Eq.~4.10! is
still exactly true on shell in the one-body and eikonal limits.

~2! In the limit m2→`, Eq. ~4.26! has the correct one-
body limit, as can be seen by a similar argument to that given
for Eq. ~4.17!.

~3! If a pinch analysis of the singularities of the amplitude
T defined by the scattering equation corresponding to~4.26!
is performed, then it is found that at orderg4 there is a
production cut in thep08 plane of the half-off-shell amplitude
which extends upwards from

p085m21m2E2
on ~4.29!

and lies infinitessimally below the real axis. In the on-shell
amplitude at sixth order this cut appears in the integrand and
overlaps with the pole of the Green’s function at
p085E2

on2e2(q), so producing a cut in theE2
on plane ofT

which extends upwards from

E2
on5m21

m

2
. ~4.30!

This is not a particle-production threshold which exists in the
full Bethe-Salpeter scattering amplitude. Hence its existence
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in the amplitudeT defined by the scattering equation corr
sponding to Eq.~4.26! must be regarded as a deficiency
that equation. It arises because the method used to derive
~4.26! is only guaranteed to produce the correct cut struct
for the second- and fourth-order on-shell amplitudes.
should be noted that the vertex function given by Eq.~4.17!
does not contain this anomalous threshold.

The value ofE at which the threshold~4.30! occurs in the
on-shell amplitude isE5m21m/21Am1

21m2m1m2/4. In
fact, since Eq.~4.17! was designed for use in them2.m1
regime, this is actually aboveE5m11m21m. Therefore the
theory has the correct threshold structure for all energieE
such that m22m1,E,m11m21m. Furthermore, if
m15m2 , then the threshold ~4.30! actually lies at
E5m11m21m, which is where the first production thresh
old of the crossed-box graph should be. Consequently,
think of this cut as representing the usual single-pio
production threshold of the crossed-box graph, but somew
displaced ifm2.m1 .

~4! This equation was derived for particles of differe
mass. If we desire an equation for identical particles, a s
metric form of the propagatorGC must be used.~We shall
return to this point in the next section.!

~5! The above derivation could equally well be pursu
for the exchange of vector particles. However, in, for
stance, scalar QED, account must be taken of the sea
graphs. Furthermore, in the case of spinor QED more c
must be taken, since an additional piece of the interac
may be generated when one attempts to writeX'VGCV.
~The interested reader may consult@19# for details on these
points.!

V. THREE-DIMENSIONAL EQUATION
WITH RETARDATIONS

AND THE CORRECT ONE-BODY LIMIT

We now apply the relative-energy integration method
Sec. II to the four-dimensional equation~4.26!. By so doing
-
f
Eq.
re
It

-
we
n-
hat

t
m-

d
-
gull
are
ion

of

we first recover Wallace and Mandelzweig’s original quasi-
potential equation, and then calculate a three-dimensiona
kernel which includes first-order retardation corrections to
this result.

Observe that onceGC is defined by Eq.~4.27!, Eqs.~4.14!
and ~4.1! are equivalent to

G5V~G01GC!G, ~5.1!

whereV is regarded as beingdefinedby ~4.14!. This pro-
vides a method for calculating corrections to Eq.~4.28!,
which was obtained by assuming thatV5K (2). The result of
applying the method of Sec. II to Eq.~5.1! is

G15V1^G&G1 , ~5.2!

G5G01GC1~G01GC!~V2V1!G. ~5.3!

If V is taken to beVs inst, whereVs inst is the static one-
sigma exchange potential,

Vs inst~p8,p!52
g1g2M

~p2p8!21m2 , ~5.4!

these equations reduce to

G15Vs instGETG1 , ~5.5!

which is a three-dimensional equation with a free two-body
propagator that in the c.m. frame takes the form
GET~p;E1
on,E2

on![^G01GC& ~5.6!

5
L1

1L2
1

E1
on1E2

on2e12e21 ih
1

L1
1L2

2

E1
on2E2

on2e12e21 ih
1

L1
2L2

1

2E1
on1E2

on2e12e21 ih
1

L1
2L2

2

2E1
on2E2

on2e12e21 ih
,

~5.7!
where once again a factor of (2p)3d (3)(p82p) has been
omitted for notational simplicity. Note that this propagator
equivalent to that derived by Cooper and Jennings by a
ferent technique@40#. Note also that in the casem15m2 this
same propagator is referred to as the equal-time~ET! propa-
gator by Tjon and collaborators@15,37,38,41,42#.

The desired generalization of Eq.~5.5! which incorporates
retardation and boost effects follows from applying the ide
of Secs. II and III to Eq.~5.3!. If V1 is chosen such that th
last term in Eq.~5.3! is zero, the formula

V15GET
21^~G01GC!VG&GET

21 ~5.8!
is
dif-

as
e

is obtained for the general three-dimensional interaction to
be used in

G15V1GETG1 . ~5.9!

A first step in the inclusion of retardation and boost effects
may be taken by following Klein’s work and replacingG by
G01GC . This yields what we refer to as the first-order
relative-energy integration result

V15GET
21AGET

21 ~5.10!
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A5^~G01GC!V~G01GC!&. ~5.11!

We now takeV equal toK (2) and calculateA in the
center-of-mass frame. In order to do this we first decompo
the c.m. frame propagators:

di~p!5(
r i

L i
r i~p!

r i p02e i~p!
, i51,2, ~5.12!

where r i may take on the values61. It follows that the
amplitudeA may be written as

A5 (
r1r18r2r28

L
1
r188L2

r288A~r18r28←r1r2!L1
r1L2

r2 .

~5.13!
e

o

s
-

.

n
a

t

r
c

se

The 16 contributionsA(r18r28←r1r2) may be calculated by
the same method used to obtain the Klein potential~3.16!.
They are found to take on a slightly different form depending
on whetherr18r1 is equal to plus or minus one. In order to
simplify the expressions for theA’s we define the following
quantities:

F5
g1g2M
2v

, ~5.14!

ei5r iEi
on2e i , ei85r i8Ei

on2e i8; i51,2. ~5.15!

If r18r151, then
A~r18r28←r1r2!~p8,p;E1
on,E2

on!5F
1

e181e28

1

e11e282v F 1

e11e2
1

1

e21e282vG1FF 1

e181e28
1

1

e21e282vG 1

e181e22v

1

e11e2
.

~5.16!

Conversely, ifr18r1521, then

A~r18r28←r1r2!~p8,p;E1
on,E2

on!5F
1

e11e182v

1

e11e282v F 1

e11e2
1

1

e21e282vG
1FF 1

e181e28
1

1

e21e282vG 1

e181e22v

1

e11e182v
1F

1

e181e28
F 1

e11e182v
1

1

e21e282vG 1

e11e2
. ~5.17!
We note the following points about the interaction defin
by Eqs.~5.7!, ~5.10!, ~5.13!, ~5.16!, and~5.17!.

~1! As expected from the four-dimensional equati
~4.26! it assumes a static form in the limitm2→`. In other
words, it has the correct one-body limit.~Recall that we as-
sumed that particle 2 was the heavier of the two.!

~2! In the static limit of the interaction defined by Eq
~5.16! and ~5.17! all couplings to the22 states are sup
pressed. On the other hand, the other couplings tend to
same static limit as the11→11 piece of the interaction
Thus, in this limit the11→12 coupling, which is due to
Z graphs, is correctly given by the instantaneous excha
interaction, and only the22 states need be omitted from
calculation. The role of the12 and22 states in this limit
is therefore consistent with the one-body limit which mo
vated Eq.~5.9!.

~3! Also as expected from~4.26! A(11←11) has a
singularity structure which is different to that of the ordina
time-ordered perturbation theory amplitude: It contains a
beginning atE25m21m/2. The same comments made abo
d

n
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the
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the unusual singularity structure of~4.26! apply to this cut.
~4! Because we have used a form ofGC derived by con-

sidering the limitm2→`, the interaction isnot symmetric
under the interchange of particle 1 and 2 labels.

Points ~2! and ~3! are not a reflection of the underlying
physics of the meson-exchange process, but rather of the
particular iterative form we used in our attempt to sum some
of the higher-order graphs in the kernel of the BSE~4.1!.

The choice ofGC used above involves an approximation
which is appropriate in the regimem2.m1 . For equally
massive particles a more appropriate choice for the propaga-
tor GC is

GC~p8,p;E1
on,E2

on!

5 i ~2p!4d~4!~p82p!
1

2
@d1~E11p0 ,p!d2~E21p0 ,2p!

1d1~E12p0 ,p!d2~E22p0 ,2p!#. ~5.18!
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Note that this choice is label symmetric, and hence
resulting bound-state equation may be used for iden
particles. TheGC defined by~4.27! did not have this prop-
erty.
the
tical

When Eqs.~5.10! and ~5.11! are applied with this sym-
metrized form ofGC the result is aV1 of the form~5.13!, but
with an A(r18r28←r1r2) which may be written in any
r-spin channel as
A~p8,p;E1
on,E2

on!5
F

2 F 1

e181e28
S 1

e11e282v
1

1

e181e22v
1

1

e11e182v
1

1

e21e282v D 1

e11e2

1
1

e181e28

1

e11e282v

1

e21e282v
1

1

e181e28

1

e181e22v

1

e11e182v
1

1

e11e182v

1

e11e282v

1

e11e2

1
1

e21e282v

1

e181e22v

1

e11e2
1

1

e21e282v S 1

e11e282v
1

1

e181e22v D 1

e11e182vG , ~5.19!
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VI. COMPARISON OF THE BOUND-STATE PREDICTIONS
OF DIFFERENT THREE- AND FOUR-DIMENSIONAL

INTEGRAL EQUATIONS

Having derived the interaction which is to be used in E
~5.9! we may now compare the two-body bound-state pro
erties predicted by this integral equation with those prop
ties obtained from other three- and four-dimensional calc
lations. This is done in the scalar field theory defined in t
Introduction. The massesm1 , m2 , andm are chosen to be
m15m25m andm50.15m. Units are then chosen so tha
\5c5m51.

The three-dimensional equations to be considered are
following.

~1! The Salpeter equation, which may be written

GS5Vs inst̂ G0&GS , ~6.1!

with Vs inst given by Eq.~5.4! and ^G0& by Eq. ~3.17!. Note
that in this scalar field theory Eq.~6.1! is exactly equivalent
to the Blankenbecler-Sugar equation obtained from the la
der BSE.

~2! The Klein equation for a one-sigma-exchange intera
tion, which is Eq.~2.18! with the interaction defined by Eqs
~3.16! and ~3.17!.

~3! The equation proposed by Wallace and Mandelzwe
which we refer to as the ET equation:

GET5Vs instGETGET , ~6.2!

whereGET was given in Eq.~5.7!.
~4! The retarded ET equation, Eq.~5.2!, with the label-

symmetric interaction obtained in the previous section, i.
with V1 defined by~5.19!, ~5.13!, ~5.10!, and~5.7!.

The four-dimensional equations these four calculatio
are to be compared to are~1! the ladder Bethe-Salpeter equa
tion and~2! Eq. ~4.26!, which, unlike the ladder BSE, has th
correct one-body limit.

We consider the six bound-state equations as falling in
two groups. The first contains the ladder BSE and the t
three-dimensional reductions thereof: the Salpeter equa
.
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and the Klein equation. The second group contains the fo
dimensional Wallace-Mandelzweig equation~4.26! and the
two three-dimensional equations derived from it: the equ
time equation~5.5! and the first-order relative-energy inte
gration equation~5.9! with the interactionV1 defined by Eqs.
~5.19!, ~5.13!, ~5.10!, and~5.7!. Within these two groups the
three equations may then be thought of as being zeroth-~in-
stant potential equations!, first- ~Klein-type!, and infinite-
~four-dimensional equations! order relative-energy integra
tion results.

At any given bound-state massM the equation

G~M !5K ~M !G~M !, ~6.3!

whether it be a three- or four-dimensional integral equati
is an eigenvalue problem. The coupling constantg1g2 which
appears in the kernel must be chosen such thatK (M ! has
eigenvalue one. If we are searching for the ground state
the system, then we may assume thatG is anS-wave state,
thus implying that the functionG has no angular dependenc
The integration overp̂ may then be easily performed. Th
resultant one-~or two-! dimensional integral equation ma
then be discretized, reducing the problem to one of solv
for the eigenvalues of a matrix version ofK . Note that in the
four-dimensional equations it is necessary to perform a W
rotation in the variablep0 before the kernelK is discretized,
as otherwise the analytic structure in the kernel makes
procedure numerically unstable.

When this approach is implemented for the equatio
listed above the six bound-state spectra shown in Fig. 4
obtained. The following observations may immediately
made.

~1! The two instant formalisms~Salpeter and ET! predict
more binding at a given coupling than either their cor
sponding four-dimensional equation or their correspond
Klein-type interaction.

~2! The calculations in the second group always pred
deeper binding than the corresponding calculations in
first group. In other words, the inclusion of pieces of high
order graphs in the kernel of the integral equation yie
deeper binding at a given coupling.
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~3! The first-order relative-energy integration~Klein-type!
interactions give predictions for the bound-state spec
which are significantly closer to those of the full four
dimensional calculation than the spectra of the instant eq
tions.

All of these results can be understood on physic
grounds. Point~1! arises because the inclusion of retardatio
in the scalar field theory always reduces the amount of
traction in the bound state. An example of this is provided b
one-sigma exchange. When the full retardation correctio
predicted by time-ordered perturbation theory are includ
the instant potential~5.4! is replaced by the retarded interac
tion ~3.4! ~provided the effects of negative-energy states a
ignored!. If E,m11m2 , this will always be a negative num-
ber that is smaller in magnitude than the instant potenti
Meanwhile, the inclusion of pieces of additional higher-ord
graphs leads to deeper binding since in thef2s theoryall
time-ordered perturbation theory graphs are attractive in
bound-state region. Most significant though, in our opinio
is point ~3!, which shows that the first-order relative-energ
integration ~Klein-type! potentials do a better job than the
instant interactions of approximating the four-dimension
equation which both are derived from.

All six of these calculations aim to sum the main contr
butions to the two-to-two amplitude. However, Fig. 4 show
that they give different results, and so they cannot all
correct. The question therefore arises, what is the bind
energy at a given coupling if the full scattering series
summed? A partial answer to this question was recently p
vided by Nieuwenhuis and Tjon, who summed the series
all ladder and crossed-ladder diagrams using Monte Ca
integration techniques in the Feynman-Schwinger repres
tation, and so obtained two-body bound-state masses in
scalar theory@35–38#. Their results, calculated at six differ-
ent coupling strengths, show that the sum of all such grap
predicts deeper binding thananyof our six integral equation
calculations. In particular, the ET appears to do the best

FIG. 4. A plot of bound-state mass (M /m) versus coupling
strength (g1g2 /p) for the seven different calculations discussed
the text. The points with error bars are taken from@37# and repre-
sent the Feynman-Schwinger representation~FSR! calculation of
Nieuwenhuis and Tjon. The other calculations were all perform
using three- or four-dimensional integral equations, with the lege
as indicated in the figure.
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of reproducing the bound-state spectrum obtained by Nie
wenhuis and Tjon. At first sight this appears to recomme
the ET as the best formalism for doing three-dimension
calculations. However, two points must be remembered b
fore a definite conclusion is drawn.

First, the reason that the Nieuwenhuis-Tjon calculatio
predicts so much more binding than the two fou
dimensional integral equation calculations performed here
precisely the fact discussed in connection with point~2!
above: In thef2s theory all time-ordered perturbation
theory graphs give attraction in the bound-state regio
Hence the Nieuwenhuis-Tjon calculation, which include
many more such graphs than both the ladder BSE and fo
dimensional Wallace-Mandelzweig equation calculation
mustpredict more binding. Therefore, we claim that the Sa
peter and ET equations do a ‘‘better’’ job of imitating th
full Nieuwenhuis-Tjon calculation than the ladder BSE an
four-dimensional Wallace-Mandelzweig equation becau
instant calculations such as the Salpeter and ET ones ign
two competing effects.

~1! Higher-order graphs are left out of their kernel. I
included, these graphs would lead to deeper binding a
given coupling.

~2! Exchanged-meson retardation is completely ignore
If included, this retardation would lead to shallower bindin
at a given coupling.

In other words, we claim that the ET formalism’s appa
ent success is due to the cancellation of these two neglec
effects and cannot necessarily be interpreted as a signa
that approach having the ‘‘right physics’’ for the problem.

Second,noneof these calculations have been performe
in the way that calculations in few-body hadronic physics a
usually performed. When such bound-state calculations
done in hadronic physics one usually acknowledges that
use ofany integral equation necessarily means the neglect
some graphs of the theory, and so one regards the coupl
that appear in that equation as effective. These couplings
then usually fixed by fitting to some set of observables, a
then certain different observables are predicted. This ma
the connection to an underlying field theory somewhat mo
tenuous, but it does allow calculation to proceed in situatio
where ~i! the value of the coupling which appears in th
‘‘fundamental’’ Lagrangian is not known and~ii ! the prob-
lem is highly nonperturbative and consequentlyany trunca-
tion is somewhat suspect.

Therefore, to test the procedure of Sec. II for derivin
three-dimensional integral equations in a way consistent w
that in which it would be used in hadronic physics, we fix th
mass of the bound state atM51.95 and calculate the wave
functions

c~p8;E!5g~p8;E!G~p8;E! ~6.4!

for each of the four different three-dimensional calculation
~Hereg is the free two-particle Green’s function for the rel
evant calculation.! Each three-dimensional wave function
must be normalized according to

E d3p8d3p

~2p!6
c* ~p8;E!

]G21

]E
~p8,p;E!c~p;E!52E,

~6.5!

n

d
nd



g

o

a
e

g

e
.
h
th

.
a
a
e
in
t

t
-
r

b-

ed
sed
al
at-
he
a-
r-

s
de-
l
s
.
h
to
te-
If
nt
y
s
pt
di-
re-
a-
a

f
, if
le
e-

e

n

d
n

520 54D. R. PHILLIPS AND S. J. WALLACE
whereG is the full two-particle Green’s function appearin
in the three-dimensional equation from whichG was ob-
tained. These wave functions are then compared to the f
dimensional wave functions, integrated over the zeroth co
ponent of the relative four-momentum:

c~p8;E!5
1

2pE dp08g~pm8 ;E!G~pm8 ;E!. ~6.6!

Hereg is the appropriate free two-particle four-dimension
Green’s function. The four-dimensional vertex function us
in ~6.6! is normalized according to

E d4p8d4p

~2p!8
G* ~pm8 ;E!g~pm8 ;E!

]G21

]E
~pm8 ,pm ;E!

3g~pm ;E!G~pm ;E!52E, ~6.7!

whereG is the full two-particle Green’s function appearin
in the four-dimensional equation from whichG was ob-
tained. The left-hand sides of Eqs.~6.5! and ~6.7! may be
reduced to two-~and four-! dimensional integrals using th
fact that theS-wave wave functionc is angle independent
Note that in the four-dimensional case Wick rotation in t
zeroth component allows use of the vertex function on
p0 or p08 imaginary axis.

When the normalized wave functions of the equations
group 1~group 2! are compared the results shown in Figs
and 6 are obtained. It is immediately seen that all the w
functions at this bound-state mass have essentially the s
features. However, in both figures it is clear that the thr
dimensional equation with the first-order relative-energy
tegration, or Klein-type, interaction reproduces the integra
four-dimensional wave function considerably more acc
rately than the instant calculation does. This shows that
procedure given in Sec. IIdoesprovide a way to systemati
cally derive three-dimensional equations which are close

FIG. 5. A plot of normalized wave functionskc(k) versus mo-
mentum k ~in units such thatm51), for a bound state with
M51.95m. The different wave functions shown are the integrat
ladder BSE wave function~solid line!, the result of the Klein po-
tential calculation~long-dashed line!, and the Salpeter equatio
wave function~dotted line!.
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their four-dimensional counterparts than those which are o
tained from merely adopting an instant interaction.

VII. CONCLUSION

Quasipotential equations~QPE’s!, despite their success as
a basis for hadronic phenomenology, cannot be improv
upon systematically. This is because whenever they are u
beyond first order they predict amplitudes with unphysic
singularities. These singularities also appear whenever
tempts are made to boost the interaction appearing in t
QPE from one frame to another. They arise from these equ
tions’ use of delta-function constraints on the relative fou
momentum.

Because of this shortcoming of QPE’s, in Sec. II of thi
paper we sought, and found, a systematic procedure for
riving three-dimensional equations from four-dimensiona
ones which does not involve the use of delta functions. A
shown in Sec. III, this procedure is akin to the work of Klein
It allows the derivation of a three-dimensional kernel whic
includes, in a systematic expansion which may be pursued
any desired accuracy, the effects of the relative-energy in
gration present in the four-dimensional integral equation.
the procedure is applied to infinite order, a result equivale
to the original four-dimensional equation is obtained. At an
order the kernel derived has a simple interpretation in term
of the diagrams of time-ordered perturbation theory, exce
that the presence of negative-energy states requires ad
tional rules. The resultant three-dimensional equations the
fore include more of the meson-retardation effects than qu
sipotential equations, and incorporate the effects of
dynamical boost.

Since the BSE with any kernel which is a finite sum o
Feynman graphs does not have the correct one-body limit
the procedure of Sec. II is directly applied to any solvab
BSE, a three-dimensional equation without the correct on

d

FIG. 6. A plot of normalized wave functionskc(k) versus mo-
mentum k ~in units such thatm51), for a bound state with
M51.95m. The different wave functions shown are the integrate
four-dimensional Wallace-Mandelzweig equation wave functio
~thick solid line!, the wave function resulting from the first-order
relative-energy integration method applied to that equation~dash-
dotted line!, and the ET wave function~short-dashed line!.
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body limit is found. However, as demonstrated by Walla
@18#, and recapitulated here in Sec. IV, a Bethe-Salp
equation with the correct one-body limit may be reorgani
so that the pieces of the kernel which contribute at lead
order in the one-body limit take on an iterative form. Hen
a four-dimensional equation, Eq.~4.17!, with the correct
one-body limit and meson-production thresholds is deriv
A further approximation leads to a simple four-dimensio
equation to which the procedure of Sec. II may be appl
Eq. ~4.26!. In making that approximation some of the meso
production thresholds are displaced. Nevertheless, the e
tion still has exactly the correct cut structure f
m22m1,E,m11m21m.

In Sec. V the procedure of Sec. II was applied to
four-dimensional equation~4.26!. The result is a simple
three-dimensional equation with the correct one-body li
which has straightforward boost properties. The main sh
coming of this equation is the fact that certain thresholds
the original Bethe-Salpeter wave function are modified in
three-dimensional wave function. However, this modificat
is due to the approximation in moving from~4.17! to ~4.26!,
rather than to any deficiencies of our procedure for deriv
three-dimensional equations. It could be systematically
rected for, at the price of complicating the three-dimensio
kernel.

Finally, in Sec. VI we compared and contrasted
bound-state properties predicted by six different bound-s
equations in a scalar field theory. A first group of equatio
contained the ladder Bethe-Salpeter equation and two th
dimensional equations based on it: the Salpeter equation
the equation obtained by applying our method to first ord
which we referred to as the Klein equation, since the form
obtained for the three-dimensional interaction appears
Klein’s work. In the second group were Eq.~4.26!, the so-
called equal-time equation, and the equation derived in
VI. It was found that in each group of three equations
equation derived by the Klein-like delta-function-free redu
tion technique of Sec. II approximated its parent fo
dimensional equation better than the corresponding ins
ce
ter
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equation did. However, the bound-state spectra from the in
stant ET equation lies closest to the bound-state spectru
obtained from the sum of ladder and crossed-ladder graph
as calculated by Nieuwenhuis and Tjon@35–38#. This can be
understood on physical grounds and, we argued, is not ne
essarily a recommendation for the use of the ET equation
physical systems. Indeed, when the wave functions of a two
body system in a scalar field theory are examined it is see
that the equation derived in Sec. V does a much better job o
reproducing the integrated four-dimensional wave function
than the ET equation wave function does.

The results of Sec. VI are in harmony with recent results
for phase shifts in scalar-scalar scattering obtained by Lahi
and Afnan @34#. They found that the Klein method repro-
duces the phase shifts obtained from the correspondin
Bethe-Salpeter equation much better than a Blankenbecle
Sugar calculation with an instant interaction.

These formal and numerical results indicate that the pro
cedure of Sec. II is successful in its goal of providing a way
to systematically obtain three-dimensional equations from
four-dimensional ones without the use of delta functions. In
particular, when applied to the four-dimensional equation
~4.26! this procedure yields a three-dimensional equatio
which, unlike the corresponding quasipotential equation
~5.5!, has a well-defined boost. This would seem to mak
such an equation a good starting point for calculations i
few-hadron systems.
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