
PHYSICAL REVIEW C JULY 1996VOLUME 54, NUMBER 1

05
Coulomb-Sturmian separable expansion approach:
Three-body Faddeev calculations for Coulomb-like interactions
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W. Plessas
Institute for Theoretical Physics, University of Graz, Universita¨tsplatz 5, A-8010 Graz, Austria

~Received 1 February 1996!

We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for
generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for
several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agree-
ment with the ones established in the literature are achieved for short-range interactions. We outline the
formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a
three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good
agreement with the answer from a recent stochastic-variational-method calculation.@S0556-2813~96!00207-5#

PACS number~s!: 21.45.1v, 03.65.Ge, 02.30.Rz, 02.60.Nm
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I. INTRODUCTION

Separable expansion schemes have always been
tremely useful in solving few-body problems. For examp
in three-body systems, at any time starting from the 196
important new results have been achieved by solving
Faddeev equations with some sort of separable repres
tion of the two-body subsystems~for a review see, e.g., Ref
@1#!. In more recent times, above all the separable expan
method proposed by Ernst, Shakin, and Thaler@2# ~the so-
called EST method! has proven very useful. Indeed, the fir
three-nucleon scattering results with such realistic mes
exchangeN-N interactions as the Paris potential we
achieved with this method@3#, and they were later confirme
by a direct solution of the Faddeev equations@4#.

Even nowadays, when three-body Faddeev equations
directly be solved on supercomputers~for a recent review of
the state of the art, see Ref.@5#!, separable expansio
schemes have their relevance. Not only does an accu
separable representation of the input dynamics allow on
save much computer time in arriving at standard resu
separable expansion methods may also help a lot in obtai
solutions to hitherto unsolved problems. In this respect
may mention the solution of the three-nucleon scatter
problem with realisticN-N interactions and Coulomb force
at any energy; so far only limited solutions below or abo
breakup threshold have been obtained~see, e.g., Refs.@6#
and @7#!.

In this paper we deal with a separable expansion met
that is well adapted to treating few-body problems includ
long-range forces. Its essence lies in the expansion of
potential operatorvs of the short-range part of any intera
tion with the use of Coulomb-Sturmian~CS! functions@8#. If
the full potential also contains a Coulomb interactionvC,
this is kept in the Green’s operator. Thereby all difficulti
associated with a~separable! expansion of the Coulomb po
tential are avoided, while at the same time correct asympt
properties of all quantities are guaranteed. Still the adv
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tages of the separable expansion can be exploited in sol
the two- and three-body integral equations.

The CS separable expansion method has been extens
tested before in two-body problems. Not only were bou
and resonant states with a variety of short-range plus C
lomb potentials@8# investigated but scattering solutions we
also obtained@9#. In these works also convergence studi
were performed and subsequently extended to the multich
nel Coulomb problem@11#. Computer codes for the CS sepa
rable expansion of any local or nonlocal two-body intera
tion in the presence of Coulomb-like potentials we
published in Ref.@10#. In Sec. II below we shall recall some
of the most important formulas for the two-body problem

The principal advantage of the CS separable expansio
the fact that the matrix elements of the Coulomb Gree
operator can be calculated analytically in the two-body s
tem. Besides the separable representation of the short-r
part of the full interaction, this turns out to be an essen
requirement for an efficient and accurate solution of t
three-body system. For the latter we may thus follow t
integral-equation approach and thereby guarantee the im
mentation of the appropriate~Coulomb-like! asymptotics. In
Sec. III below we shall demonstrate how the matrix eleme
of the three-body Coulomb Green’s operator can be cal
lated in a reliable way.

We prove the efficiency of our method through the so
tion of the Faddeev equations for three-body bound sta
interacting via various short-range forces and in a case w
additional Coulomb interaction among all three particles. W
adhere to problems for which benchmark results from ot
methods have been obtained already. It is found that in
cases excellent agreement is achieved. The method there
appears promising as an efficient tool for solving three-bo
systems, as it can be adapted to more general cases~includ-
ing three-body forces! and extended to scattering under th
presence of long-range interactions.

II. COULOMB-STURMIAN SEPARABLE EXPANSION

We give a short account of the formalism of the CS sep
rable expansion in the two-body system with short-ran
50 © 1996 The American Physical Society
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54 51COULOMB-STURMIAN SEPARABLE EXPANSION APPROACH: . . .
plus Coulomb interactions. Here we specify our notation a
provide the formulas that are needed later in the solution
the three-body problem.

A. Basis functions

The short-range potential operatorvs in some angular mo-
mentum statel will be expanded on the basis of Coulomb
Sturmian functions

^r unl&5F n!

~n12l11!! G
1/2

~2br ! l11e2brLn
2l11~2br !,

~n50,1,2, . . . !, ~1!

which are the solutions of the Sturm-Liouville problem
the hydrogenic system@12#. Here,Ln

2l11 represent the La-
guerre polynomials andb relates to the energy in the Sturm
Liouville equation. We takeb as a fixed parameter, thu
working with energy-independent CS functions. They form
complete set

15 limN→` (
n50

N

unl̃&^nlu5 limN→`1N , ~2!

where

^r unl̃&5
1

r
^r unl&. ~3!

With theNth order unit operator1N in Eq. ~2! we can now
expand the short-range potential operator in the form

v l
s5 limN→`1Nv l

s1N5 limN→` (
n,n850

N

unl̃&^nluv l
sun8l &^n8 l̃ u.

~4!

If N remains finite, we end up with a rank-N separable ap-
proximation. As a consequence the two-body problem
then be solved by algebraic methods@1#.

B. Short-range plus Coulomb interactions

Let us now assume a two-potential case of short-ra
plus Coulomb-like interactions,

v5vs1vC, ~5!

and consider the homogeneous Lippmann-Schwinger eq
tion for the bound stateuc l& in some partial wavel ,

uc l&5gl
C~E!v l

suc l&. ~6!

Heregl
C(E) is the two-body Coulomb Green’s operator

gl
C~E!5~E2hl

02vC!21 ~7!

with the free Hamiltonian denoted byhl
0 . Using the expan-

sion ~4! in Eq. ~6! one arrives at a linear system of homog
neous quations for the wave-function coefficien
A ln5^nl̃uc l&:

$@g l
C~E!#212v l

s%A l50. ~8!
nd
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It has a unique solution if and only if

det$@g l
C~E!#212v l

s%50. ~9!

The matrices involved are made up from the elements

g lnn8
C

~E!5^ñl ugl
C~E!un8 l̃ & ~10!

and

v lnn8
s

5^nluv l
sun8l &. ~11!

While the latter matrix elements may be evaluated~numeri-
cally! for any given short-range potential either in configu
ration or in momentum space, the matrix elements of t
Coulomb Green’s operator between CS states can be ca
lated analytically@8#; the corresponding computer code i
available from Ref.@10#. This fact then also allows one to
calculate the matrix elements of the full Green’s operator
the whole complex plane,

g l~E!5$@g l
C~E!#212v l

s%21, ~12!

which will be needed later on in the solution of the three
body problem with charged particles.

After solving Eq.~8! for the coefficientsA ln the bound
stateuc l& can be expressed as

uc l&5 (
n50

N

B lngl
C~E!unl̃&, ~13!

where the new coefficients result from the matrix multiplica
tionB l5v l

sA l . We note that expression~13! is distinct from
the usual expansion of the stateuc l& with certain test func-
tions. The explicit occurrence of the Coulomb Green’s o
erator always ensures the correct asymptotic behavior@9#.
This is an immediate consequence of the fact that only t
short-range potential~but not the wave function! is ex-
panded.

III. SOLUTION OF THE THREE-BODY
BOUND-STATE PROBLEM

We now extend the CS basis to the three-body system a
demonstrate the solution of the Faddeev equations for bou
states of three particles with any short-range interactions a
under the presence of Coulomb forces.

A. Short-range interactions

The integral equations for the three Faddeev compone
Ca of the bound-state wave functionC read

uCa&5Ga~E!@va
s uCb&1va

s uCg&] ~14!

with a,b,g a cyclic permutation. Here the channel Green
operators are defined by

Ga~E!5~E2H02va
s !21, ~15!

whereH0 is the free three-particle Hamiltonian andva
s the

short-range interaction of the pair (b,g). In the angular mo-
mentum representation~omitting the explicit spin and isospin
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52 54Z. PAPP AND W. PLESSAS
dependence from our notation! we define the CS basis for the
expansion of the short-range interactions in the three-parti
system as

unn ll&a5unl&a ^ unl&a ~n,n50,1,2, . . .!, ~16!

with the CS states from Eq.~1!. Here l and l denote the
angular momenta of the two-body pair (b,g) and of the third
particlea relative to the center of mass of this pair, respe
tively. In the three-particle Hilbert space we have~with an-
gular momentum summation implicitly included!

15 limN→` (
n,n50

N

unn l l̃&aa^nn llu5 limN→`1N,a ~17!

where the configuration-space representation in terms of
cobi coordinatesja andha reads

^jahaunn l l̃&a5
1

jaha
^jahaunn ll&a . ~18!

After the CS expansion of the potentialsva
s , vb

s , andvg
s in

the three-particle space, the Faddeev equations can be rew
ten as

uCa&5Ga~E!@1N,ava
s1N,buCb&11N,ava

s1N,guCg&]. ~19!

By applying the CS statesa^nn l l̃u from the left, Eqs.
~19! turn into a linear system of homogeneous equations
the coefficients of the Faddeev componen
A lalann5a^nn l l̃uCa&:

$@G~E!#212v%A50. ~20!

A unique solution thereof exists if and only if

det$@G~E!#212v%50. ~21!

The matricesG(E) and v have a block structure and the
matrix elements are given by

v lalann,l
b8l

b8n8n85~12dab!a^nn lluva
s un8n8l 8l8&b

~22!

and

G lalann,l
a8l

a8n8n8~E!5dab a^nn l l̃uGa~E!un8n8l 8l 8̃&a ,

~23!

respectively. Notice that the matrix elements of the Green
operator are needed only within the same partitiona whereas
the matrix elements of the potentials occur only betwe
different partitionsa andb. The latter may again be evalu-
ated numerically either in configuration or in momentum
space. We have adopted the configuration-space version
the Balian-Bre´zin method@13#.

For the calculation of the matrix elements of the Green
operator in Eq.~23! we proceed in the following way. We
split the three-particle free Hamiltonian into

H05hja

0 1hha

0 , ~24!
le

-
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i.e., the free motions in the two Jacobi coordinates. Then w
define the two-body Hamiltonianhja

as

hja
5hja

0 1va
s . ~25!

Since the commutator of the Hamiltonianshja
andhha

0 van-

ishes,

@hja
,hha

0 #50, ~26!

we may apply the convolution theorem by Bianchi an
Favella@14#

Ga~E!5~E2hja
2hha

0 !215
1

2p i R C de ~E2e2hja
!21

3~e2hha

0 !21. ~27!

Here the contourC encircles the spectrum ofhha

0 without

penetrating into the spectrum ofhja
~cf. Fig. 1!. We note that

in this integral the roles ofhha

0 andhja
may also be inter-

changed.
After sandwiching the above Green’s operator betwee

the CS states, the integral in Eq.~27! appears in the form

G lalann,l
a8l

a8n8n8~E!

5
1

2p i R C de a^nl̃ u~E2e2hja
!21un8l 8̃&a

3a^nl̃u~e2hha

0 !21un8l 8̃&a , ~28!

where the separate matrix elements occurring in the in
grand are known from the two-particle case of the previou
section@cf. Eq. ~12!#.

After solving Eq. ~20! for the coefficientsA lalann the
Faddeev components can be expressed as

uCa&5 (
n,n50

N

B lalannGa~E!uñn ll&a , ~29!

where the new coefficients again result from the matrix mu
tiplication B5vA. As before we hint at the advantage tha
the representation~29! of uCa& guarantees for the correct
asymptotic behavior of the Faddeev component, due to t
explicit occurrence of the Green’s operator. This is of pa
ticular importance in the Coulomb case below.

B. Coulomb-like interactions

In this section we extend the formulation of the three
body problem to the case of long-range interactions. We a

FIG. 1. ContourC for the integral in Eq.~ 27! in case of the
three-body bound-state problem. To the right of the dotted vertic
line lies the~continuous! spectrum ofhha

0 , to its left the~discrete
and continuous! spectrum ofhja

.
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54 53COULOMB-STURMIAN SEPARABLE EXPANSION APPROACH: . . .
sume the subsystem interaction to be a sum of short-ra
plus ~repulsive! Coulomb interactions

va5va
s1va

C , ~30!

and adhere to the Faddeev equations in the form as mod
by Noble @15#:

uCa&5Ga
C~E!@va

s uCb&1va
s uCg&] ~31!

with the Coulomb-like Green’s operator

Ga
C~E!5~E2H02va

s2va
C2vb

C2vg
C!21. ~32!

Herein all long-range interactions for all subsystems are
lected, in complete analogy to the two-body case@cf. Eq.
~6!#.

As in the previous section the short-range potentials
expanded on the CS basis leading to an equation simila
~19!. A unique solution thereof exists if and only if

det$@GC~E!#212v%50, ~33!

where the matrices have the same block structure as befo
Eq. ~21!. The important point is thatv contains only matrix
elements of the short-range interactions; in fact they
completely equivalent to Eq.~22!.

For the calculation of the matrix elements of t
Coulomb-like Green’s operator we proceed along the line
the two-potential formalism@16#. First we rewrite it using
the resolvent equation

Ga
C~E!5G̃a

C~E!1G̃a
C~E!~vb

C1vg
C2ua

C!Ga
C~E! ~34!

with G̃C defined by

G̃a
C~E!5~E2H02va

s2va
C2ua

C!21. ~35!

Here we have introduced the auxiliary potentialua
C , which is

required to have the asymptotic form

ua
C;

Za~Zb1Zg!

ha
~36!

as ha→`. It may be viewed as the effective Coulom
potential between the center of mass of the subsystema
~with chargeZb1Zg) and the third particle~with charge
Za). The important role of the potentialua

C is that asymptoti-
cally it compensates the Coulomb tail of the long-range
tentials vb

C1vg
C in Eq. ~34!. Thus the combination

U5vb
C1vg

C2ua
C can be subject to a separable expansion

effectively be treated as a short-range potential. With
help of the formal solution of Eq.~34! we may now express
the inverse matrix@G a

C(E)#21 as

@G a
C~E!#215@G̃ a

C~E!#212U, ~37!

whereU is constructed from the matrix elements

U lalann,l
a8l

a8n8n85a^nn llu~vb
C1vg

C2ua
C!un8n8l 8l8&a ~38!
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resulting from the CS expansion. The matrix elements of t
Green’s operatorG̃a

C(E) can again be calculated by the con
tour integral as before. We are then left with the integral

G̃ lalann,l
a8l

a8n8n8
C

~E!

5
1

2p i R C de a^nl̃u~E2e2hja
!21un8l 8̃&aa

3^nl̃u~e2hha

C !21un8l 8̃&a , ~39!

wherehha

C 5hha

0 1ua
C andhja

5hja

0 1va
s1va

C .

The calculation of the Faddeev amplitudeuCa& in Eq.
~31! is completely analogous to the short-range case of t
previous section. Only in Eq.~29! the Green’s operator
Ga(E) must now be replaced by the Coulomb Green’s o
eratorGa

C(E) of Eq. ~32!.

IV. TESTS OF THE METHOD

In this section we demonstrate the performance of t
method in calculations of various three-body bound state
We have selected cases for which benchmark results are
ready available in the literature. The comparisons will prov
the efficiency of our method, especially in the situation whe
Coulomb forces are present.

A. Illustration of the convergence of the CS expansion

Before presenting the final results, let us demonstrate
convergence of the results for the three-body bound-state
ergies. For this purpose we take the example of the A
Bodmer ~AB! potential @17# betweena particles of mass
M

vs~r !5500 exp@2~0.7r !2#2130 exp@2~0.475r !2# ~40!

without and

v~r !5vs~r !14e2/r ~41!

with Coulomb interaction. We use units such tha
\2/M510.366 75 MeV fm2 ande251.44 MeV fm.

Evidently the quality of the results will depend on the
number of terms employed in the separable expansion of
~short-range! potential. We quote the values of the bindin
energies from calculations without~Table I! and with~Table
II ! Coulomb forces, taking into account different numbers
channelsnch51,2,3,4~corresponding to angular momentum
states up tol5l50, l5l52, l5l54, and l5l56 em-
ployed!. In all cases it is observed that convergence up
five significant digits is comfortably achieved withN520
terms applied forn and n in the separable expansion. Re
markably, the speed of the convergence is everywhere si
lar, irrespective of how many angular momentum channe
are included and whether or not Coulomb forces are prese
We note especially for the Coulomb case that the satisfact
convergence stems from reliable separable expansions of
potentialsvs andU, which—from the point of view of scat-
tering theory—are both short-range potentials; the falloff
U is much slower than that ofvs, though.
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54 54Z. PAPP AND W. PLESSAS
In principle, the convergence may also depend on t
~range! parameterb of the Coulomb-Sturmian functions. We
found, however, that the dependence is weak in a relativ
large interval of possible choices, just as was established
the two-body case@8,9#.

The convergence is practically of the same quality in t
case of the other potentials considered below.

B. Results for various three-body bound states

We now present our converged results for the Malflie
Tjon ~MT! @18# and AB @17# potentials and compare them to
other benchmark calculations. For the MT potential

vs~r !5Vr exp~23.11r !/r2Va exp~21.55r !/r ~42!

between two nucleons of massm we consider two cases:

TABLE I. Convergence of the binding energy of a three-boso
system interacting via the Ali-Bodmer potential, Eq.~40!, with in-
creasing basis for the separable expansion.N denotes the maximum
number of basis states employed forn andn in Eq. ~19!.

N Number of channelsnch
1 2 3 4

12 4.13899 5.11756 5.17699 5.17888
13 4.14092 5.11911 5.17862 5.18057
14 4.14044 5.11897 5.17846 5.18043
15 4.14046 5.11898 5.17850 5.18047
16 4.14065 5.11917 5.17871 5.18069
17 4.14069 5.11926 5.17880 5.18079
18 4.14069 5.11926 5.17881 5.18080
19 4.14069 5.11926 5.17881 5.18080
20 4.14070 5.11927 5.17882 5.18081
21 4.14071 5.11928 5.17884 5.18083
22 4.14071 5.11929 5.17884 5.18083
23 4.14071 5.11929 5.17884 5.18083
24 4.14071 5.11929 5.17884 5.18083

TABLE II. Same as in Table I for the Ali-Bodmer plus Cou
lomb potential, Eq.~41!.

N Number of channelsnch
1 2 3 4

12 1.90151 2.81629 2.86703 2.86839
13 1.90473 2.81833 2.86912 2.87054
14 1.90368 2.81796 2.86871 2.87014
15 1.90373 2.81797 2.86875 2.87019
16 1.90404 2.81819 2.86899 2.87044
17 1.90397 2.81824 2.86904 2.87049
18 1.90401 2.81824 2.86905 2.87050
19 1.90400 2.81824 2.86905 2.87050
20 1.90401 2.81825 2.86906 2.87051
21 1.90402 2.81826 2.86907 2.87053
22 1.90402 2.81827 2.86908 2.87053
23 1.90402 2.81827 2.86908 2.87053
24 1.90402 2.81827 2.86908 2.87053
he

ly
in

e

t-

MTVa: Vr51458.0470,Va5578.0890,
MTVb: Vr51438.4812,Va5570.3316

~here we use units such that\2/m541.47 MeV fm2!. For
MTVa we may compare to the results of the Los Alamos
Iowa @19# and Groningen@20# groups, both of which are
obtained from a direct solution of the Faddeev equations
configuration space, and in addition to results from a
ATMS ~amalgamation of two-body correlations into multiple
scattering process! @21# calculation, a Green’s function
Monte Carlo ~GFMC! calculation @22#, an integro-
differential-equation approach~IDEA! @23#, and a stochastic
variational method~SVM! @24#. From Table III it is evident
that our method provides very accurate predictions for bin
ing energies in all cases. This is true for the channel-b
channel comparison with the Los Alamos–Iowa calculatio
and likewise for the comparison with the best results from
the other works. With respect to the best results quoted in t
lower rows of Table III we note that for the corresponding
calculations the number of angular momentum channels e
ployed is either not definitely known or not specified in a
scheme like ours.

In order to demonstrate that in addition to binding ene
gies our method also provides accurate three-body wa
functions, we calculated the root-mean-square~rms! radius
^r 2&1/2. Corresponding results are given in Table IV for the
MTVb potential, in which case we can compare to the ca
culations of the Los Alamos–Iowa group@19#. For both the
binding energy and the rms radius the channel-by-chann
comparison indicates perfect agreement.

In the case of the MTI-III potential for a system of three
fermions, acting in singlet and triplet states, we may compa
to the two-channels calculation of the Los Alamos–Iow
group. For the MTI-III potential as parametrized in Ref.@25#,

n TABLE III. Binding energies in the case of the MTVa potential
for a system of three bosons.

Angular momentum channels
1 2 3 4

This work 8.04251 8.22953 8.24978 8.25215
Faddeev@19# 8.0424 8.228 8.249 8.251
Faddeev@20# 8.25273
ATMS @21# 8.26~1!

GFMC @22# 8.26~1!

IDEA @23# 8.25
SVM @24# 8.2527

TABLE IV. Binding energies and root-mean-square radii for the
MTVb potential for a system of three bosons.

Angular momentum channels
1 2 3 4

2EB This work 7.5398 7.7147 7.7338 7.7361
Faddeev@19# 7.540 7.714 7.733 7.735

^r 2&1/2 This work 1.7265 1.7117 1.7098 1.7095
Faddeev@19# 1.727 1.711 1.710 1.710
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54 55COULOMB-STURMIAN SEPARABLE EXPANSION APPROACH: . . .
we obtain a binding energy~converged result! of
E58.5358 in comparison toE58.536 calculated by the Los
Alamos–Iowa collaboration.

Finally we come to the comparison of the results for th
binding energy of a system of three bosons interacting
the AB and AB plus Coulomb potential~Table V!. We may
compare our four-channels result to calculations with t
ATMS method @21# ~uncharged case only! and the SVM
@24,26#. We do not know of any Faddeev results in this cas
Again we show predictions for the binding energies and rm
radii. All the values quoted in Table V show a convincin
agreement of our results with the ones from the other a
proaches. We specially stress the agreement of the resul
the case of rigorously including the Coulomb interactio
with the rather reliable answer from the SVM.

V. CONCLUSION

We have suggested a separable expansion scheme, re
on Coulomb-Sturmian basis functions, for solving the thre
body problem. The method is especially suited to the ca
when Coulomb-like interactions are present in one or all su
systems. It allows one to solve the three-body integral eq
tions by expanding only the short-range part of the intera

TABLE V. Binding energies and root-mean-square radii in th
case of the Ali-Bodmer and Ali-Bodmer plus Coulomb potentia
@Eqs.~40! and ~41!, respectively# for a system of three bosons.

Ali-Bodmer WithoutvC With vC

This work 5.181 2.871
2EB ATMS @21# 5.18

SVM @24# 5.18 2.872
This work 2.434 2.517

^r 2&1/2 ATMS @21# 2.43
SVM @24# 2.43 2.517
e
via

he

e.
s
g
p-
t for
n

lying
e-
se
b-
ua-
c-

tion in a separable form while keeping the effect of the lon
range part in an exact manner via a proper integr
representation of the three-body Coulomb Green’s operat
As a consequence the method has good convergence pro
ties and can in practice be made arbitrarily accurate by e
ploying an increasing number of terms in the separable e
pansion. The usage of the Coulomb-Sturmian basis
essential to allow for the accurate evaluation of the matr
elements of the Coulomb Green’s operator.

Beyond the studies of the method in systems with tw
body asymptotics conducted before@8–11#, we have now
demonstrated its convergence properties and efficiency
~benchmark! calculations of the three-body bound-stat
problem without and with Coulomb interactions. In bot
cases the solution of the Faddeev equations shows a ra
convergence, and, whenever a comparison is possible to
isting results in the literature, correct predictions for th
binding energies and wave functions are achieved.

The method is capable of treating any kind of short-ran
interactions, even in the case when Coulomb-like forces a
present. The solution of the three-body bound-state probl
was carried out here. However, the method is also applica
for scattering problems. In this regard it has been prov
useful already in the two-body case@9–11#. To solve the
corresponding problem for a~charged! three-body system
with the Faddeev equations some technical details in conn
tion with the evaluation of the then occurring matrix ele
ments still need to be worked out.
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