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Coulomb-Sturmian separable expansion approach:
Three-body Faddeev calculations for Coulomb-like interactions
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We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for
generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for
several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agree-
ment with the ones established in the literature are achieved for short-range interactions. We outline the
formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a
three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good
agreement with the answer from a recent stochastic-variational-method calcylai666-28136)00207-5

PACS numbg(s): 21.45:+v, 03.65.Ge, 02.30.Rz, 02.60.Nm

[. INTRODUCTION tages of the separable expansion can be exploited in solving
the two- and three-body integral equations.
Separable expansion schemes have always been ex- The CS separable expansion method has been extensively
tremely useful in solving few-body problems. For example,teSted before in two-body problems. Not only were bound

in three-body systems, at any time starting from the 1960 ’nd resonant states Wit.h a variety of shqrt-rangg plus Cou-
important new results have been achieved by solving th omb potentialg 8] investigated but scattering solutions were

Faddeev equations with some sort of separable represen also obtained9]. In these works also convergence studies
q P P ere performed and subsequently extended to the multichan-

tion of the two-body subsystentor a review see, e.g., Ref. o] coulomb problenfil1]. Computer codes for the CS sepa-
[1]). In more recent times, above all the separable expansiopyple expansion of any local or nonlocal two-body interac-
method proposed by Ernst, Shakin, and Th@lr(the so-  tion in the presence of Coulomb-like potentials were
called EST methodhas proven very useful. Indeed, the first published in Ref[10]. In Sec. Il below we shall recall some
three-nucleon scattering results with such realistic mesomef the most important formulas for the two-body problem.
exchangeN-N interactions as the Paris potential were The principal advantage of the CS separable expansion is
achieved with this methof8], and they were later confirmed the fact that the matrix elements of the Coulomb Green’s
by a direct solution of the Faddeev equati¢ak operator can be calculated analytically in the two-body sys-
Even nowadays, when three-body Faddeev equations cdfm. Besides the sepa_rable representation of the short-ra_mge
directly be solved on supercomputéfsr a recent review of part of the full interaction, this turns out to be an essential

the state of th rt Ref5)) rabl XDANSION requirement for an efficient and accurate solution of the
€ staie of the ar, see , Separable expansio three-body system. For the latter we may thus follow the

schemes have their r_elevance._Not only dqes an acc“rafﬁtegral-equation approach and thereby guarantee the imple-
separable representation of the input dynamics allow one tgyentation of the appropriat€oulomb-like asymptotics. In
save much computer time in arriving at standard resultsgec. 11l below we shall demonstrate how the matrix elements
separable expansion methods may also help a lot in obtainingf the three-body Coulomb Green's operator can be calcu-
solutions to hitherto unsolved problems. In this respect wdated in a reliable way.
may mention the solution of the three-nucleon scattering We prove the efficiency of our method through the solu-
problem with realistidN-N interactions and Coulomb forces tion of the Faddeev equations for three-body bound states
at any energy; so far only limited solutions below or aboveinteracting via various short-range forces and in a case with
breakup threshold have been obtair(sde, e.g., Refd.6] additional Coulomb interaction among all three particles. We
and[7)). adhere to problems for which benchmark results from other
In this paper we deal with a separable expansion methof€thods have been obtained already. It is found that in all
that is well adapted to treating few-body problems including@Ses excellent_agreement is _achleved. The method therefore
long-range forces. Its essence lies in the expansion of th@PPears promising as an efficient tool for solving three-body
potential operatov® of the short-range part of any interac- systems, as it can he adapted to more genergl (arszisd-
tion with the use of Coulomb-Sturmia&S) functions[8]. If ing three-body forcesand extended to scattering under the

the full potential also contains a Coulomb interactioh, presence of long-range interactions.

this is kept in the Green’s operator. Thereby all difficulties Il COULOMB-STURMIAN SEPARABLE EXPANSION
associated with gseparablgexpansion of the Coulomb po-

tential are avoided, while at the same time correct asymptotic We give a short account of the formalism of the CS sepa-
properties of all quantities are guaranteed. Still the advanrable expansion in the two-body system with short-range
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plus Coulomb interactions. Here we specify our notation andt has a unique solution if and only if
provide the formulas that are needed later in the solution of

the three-body problem. def[g/(E)] *~v{}=0. €)
A Basis functions The matrices involved are made up from the elements
The short-range potential operatgrin some angular mo- g I?m/(E) =(nl |g,°(E)|WT) (10
mentum staté will be expanded on the basis of Coulomb- -
Sturmian functions and
| 1/2 s _ S| n/
N D I +15-bry 21+1 v e =(nlofn’l). (1D
(r|nl) T2 1)1 (2br)' T te P T (2br),

While the latter matrix elements may be evaluatedmeri-
(n=0,1,2...), (1) cally) for any given short-range potential either in configu-

ration or in momentum space, the matrix elements of the
which are the solutions of the Sturm-Liouville problem of Coulomb Green’s operator between CS states can be calcu-
the hydrogenic systerfiL2]. Here,LﬁI+l represent the La- lated analytically[8]; the corresponding computer code is
guerre polynomials and relates to the energy in the Sturm- available from Ref[10]. This fact then also allows one to
Liouville equation. We takeb as a fixed parameter, thus calculate the matrix elements of the full Green’s operator in
working with energy-independent CS functions. They form athe whole complex plane,

complete set c L os1
\ gi(B)={lg/(E)] "—uvy} 7, (12

1=limy . > |m><nl|=limNHx1N, (20 which will be needed later on in the solution of the three-
n=0 body problem with charged particles.
After solving Eq.(8) for the coefficientsA |, the bound

where
state|#) can be expressed as

~ 1
r|nly= =(r|nl). ©) . ~
(r[nl)=—(r|n) |¢|>:n§0 B ngC(E)[nl), (13)

With the Nth order unit operatoty in Eq.(2) we can now

expand the short-range potential operator in the form where the new coefficients result from the matrix multiplica-

tion B;=v A . We note that expressidf3) is distinct from

the usual expansion of the stdi#) with certain test func-

tions. The explicit occurrence of the Coulomb Green'’s op-

(4) erator always ensures the correct asymptotic behd@br
This is an immediate consequence of the fact that only the

If N remains finite, we end up with a ramk-separable ap- short-range potentialbut not the wave functionis ex-

proximation. As a consequence the two-body problem campanded.

then be solved by algebraic methdds.

N

vp=limy_. o fly=lmy_.. > |m)(nl|v|s|n’l><,n\’ll|.
n,n’=0

Ill. SOLUTION OF THE THREE-BODY

B. Short-range plus Coulomb interactions BOUND-STATE PROBLEM
Let us now assume a two-potential case of short-range We now extend the CS basis to the three-body system and
plus Coulomb-like interactions, demonstrate the solution of the Faddeev equations for bound

states of three particles with any short-range interactions and

— S C
v=vrtur, ®) Under the presence of Coulomb forces.

and consider the homogeneous Lippmann-Schwinger equa-

tion for the bound statéy,) in some partial wavé, A. Short-range interactions
¢ s The integral equations for the three Faddeev components
|40 =0r (E)vilih). ®  _ of the bound-state wave functio read
C H ’

Hereg,"(E) is the two-body Coulomb Green'’s operator |‘I'a>=Ga(E)[Uﬂ‘PﬁHviN’y)] (14)

C _ 0 -

9r(E)=(E-h/=0v)~* (™) with a,3,v a cyclic permutation. Here the channel Green'’s
. I . operators are defined b

with the free Hamiltonian denoted b}? Using the expan- P y
sion (4) in Eq. (6) one arrives at a linear system of homoge- G,(E)=(E—H%-p%)" 1, (15)
neous quations for the wave-function coefficients “
An=(nlly): whereH? is the free three-particle Hamiltonian ang the

c 1 s short-range interaction of the paiB(y). In the angular mo-
{{gr(B)]""—v A =0. (8 mentum representatigomitting the explicit spin and isospin
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dependence from our notatiowe define the CS basis for the i.e., the free motions in the two Jacobi coordinates. Then we
expansion of the short-range interactions in the three-particldefine the two-body Hamiltoniahga as

system as

he =hg +v3,. (25)
[nvIN),=|nl),®|v\), (n,v=0,1,2,..), (16 “ «
Since the commutator of the Hamiltoniah§a and h?] van-

with the CS states from Ed1). Herel and N\ denote the ishes

angular momenta of the two-body paj,(y) and of the third
particle « relative to the center of mass of this pair, respec- [h, ,h® 1=0 (26)
tively. In the three-particle Hilbert space we haweéth an- fa' g '

gular momentum summation implicitly included we may apply the convolution theorem by Bianchi and
N Favella[14]
1=limy_.. > [NoIN) qe(nuIN|=limy_ o1y, (17) L
nro Ga(E)=(E—h§a—h%a)_1:2—ﬂ_ijgcde(E—e—hga)_l
where the configuration-space representation in terms of Ja-

cobi coordinate, and », reads X(e—h%a)*l. (27)
— 1 Here the contouC encircles the spectrum df°  without
(EanaNVIN) o =7—(EamalNVIN) . (18 e pec Ta
€aTla penetrating into the spectrum bga (cf. Fig. 1). We note that

After the CS expansion of the potential§ U,Z' andvsy in in this integral the roles oh,,a and hgﬂ may also be inter-

the three-particle space, the Faddeev equations can be rewr@anged. o
ten as After sandwiching the above Green'’s operator between

the CS states, the integral in EQ7) appears in the form
|W ) =G (E)[ 1y 3N gl V) + In ot o AN, | W )] (19
gla)\anv,lt’x)\;n’v’(E)
By applying the CS states(nvI\| from the left, Egs. 1
(19 turn mtg a linear system of homogeneous equations for _ _—_ c dea(m |(E—e—h, )—1|ﬁ,\|7>a
the  coefficients of the Faddeev  components 2i «

A= o{NVINT,): X (VX|(e—h )N, (28)
_1_ —

{[G(B)] viA=0. (20 where the separate matrix elements occurring in the inte-
grand are known from the two-particle case of the previous
section[cf. Eqg. (12)].

def[G(E)] t-v}=0. (21) After solving Eq. (20) for the coefficientsA, , ,, the

o N Faddeev components can be expressed as
The matricesG(E) andv have a block structure and the
matrix elements are given by

A unique solution thereof exists if and only if

N
[Wad= 2 BiamGu(B)WIN),, (29
gla)\anv,lb)\én’v’:(l_5aﬁ)a<nV|)\|U2|n,V,| ,)\,>B "
(22 where the new coefficients again result from the matrix mul-
tiplication B=v A. As before we hint at the advantage that

and the representatiori29) of |¥,) guarantees for the correct
—_— —_— asymptotic behavior of the Faddeev component, due to the
G nniiain v (B)= 8ap o NVING(E) [N/ 1'N7),, explicit occurrence of the Green'’s operator. This is of par-

(23)  ticular importance in the Coulomb case below.

respectively. Notice that the matrix elements of the Green’s B. Coulomb-like interactions

operator are needed only within the same partitiomhereas ) ) )

the matrix elements of the potentials occur only between N this section we extend the formulation of the three-

different partitionsa and 8. The latter may again be evalu- body problem to the case of long-range interactions. We as-

ated numerically either in configuration or in momentum

space. We have adopted the configuration-space version of C

the Balian-Brein method[13]. - x
For the calculation of the matrix elements of the Green’s

operator in Eq(23) we proceed in the following way. We

split the three-particle free Hamiltonian into

FIG. 1. ContourC for the integral in Eq{ 27) in case of the
three-body bound-state problem. To the right of the dotted vertical
line lies the(continuou$ spectrum ofn(,’, , to its left the(discrete

0_h1o0 0
H™= h§a+ hﬂa’ (24 and continuousspectrum ofh; .
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sume the subsystem interaction to be a sum of short-rangesulting from the CS expansion. The matrix elements of the
plus (repulsivg Coulomb interactions Green'’s operatoGS(E) can again be calculated by the con-
s, ¢ tour integral as before. We are then left with the integral
v¥=vtuv,, (30)

=<C
. . e AN IW] E
and adhere to the Faddeev equations in the form as mod|f|e%'aka””"a”a“ v (E)

by Noble[15]: 1
=5 % c d6“<n||(E_€_h§a)_1|n'|'>(m

W) =Ga(E)[v W) +uil¥,)] (3D
TN RN
with the Coulomb-like Green’s operator X (N[ (e=hy )"V ), (39)
GS(E)=(E—H—v3—0vS—0§—0vS) L (32  whereh =h0 +uf andh; =h +v5+vg.

The calculation of the Faddeev amplitu¢¥ ) in Eq.
Herein all long-range interactions for all subsystems are col¢31) is completely analogous to the short-range case of the
lected, in complete analogy to the two-body cést Eq.  previous section. Only in Eq(29) the Green’s operator
(6)]. G,(E) must now be replaced by the Coulomb Green’s op-
As in the previous section the short-range potentials areratorG$(E) of Eq. (32).
expanded on the CS basis leading to an equation similar to
(19). A unique solution thereof exists if and only if V. TESTS OF THE METHOD
del{[gc(E)]‘l—g}=0, (33 In this section we demonstrate the performance of the
method in calculations of various three-body bound states.
where the matrices have the same block structure as before e have selected cases for which benchmark results are al-
Eq. (21). The important point is thai contains only matrix ready available in the literature. The comparisons will prove
elements of the short-range interactions; in fact they arehe efficiency of our method, especially in the situation when
completely equivalent to Eq22). Coulomb forces are present.
For the calculation of the matrix elements of the
Coulomb-like Green’s operator we proceed along the lines of

the two-potential formalisni16]. First we rewrite it using ) )
the resolvent equation Before presenting the final results, let us demonstrate the

convergence of the results for the three-body bound-state en-
GS(E)=GS(E)+6§(E)(02+U$—US)GS(E) (34) ergies. For this purpose we take the example of the Ali-
Bodmer (AB) potential [17] betweena particles of mass

A. lllustration of the convergence of the CS expansion

with G€ defined by M
~ vS(r)="500 exp—(0.7r)?]— 130 expp—(0.475)?] (40)
EY(E) = (E—HO—p5 —pC— )1, (35) (r) h—(0.7)°] h—( )] (
without and
Here we have introduced the auxiliary potenti@l, which is
required to have the asymptotic form v(r)=vS(r)+4e%r 41
c ZdZptZ,) 36 with Coulomb interaction. We use units such that
Ua N (38 42/M=10.366 75 MeV frf ande?=1.44 MeV fm.

Evidently the quality of the results will depend on the
as n,—». It may be viewed as the effective Coulomb number of terms employed in the separable expansion of the
potential between the center of mass of the subsysiem (short-rangg potential. We quote the values of the binding
(with chargeZz+2.,) and the third particlewith charge energies from calculatiqns .witho(JTabIe I)_and with(Table
Z,). The important role of the potentiaf is that asymptoti- II) Coulomb forces, taking into account different numbers of
cally it compensates the Coulomb tail of the long-range pohannelsng,=1,2,3,4(corresponding to angular momentum
tentials vS+vS in Eq. (34). Thus the combination States up td=A=0,1=r=2,[=\=4, andl=\=6 em-
U=v§+v§—u can be subject to a separable expansion an@loyeq. I_n all cases it is observed that convergence up to
effectively be treated as a short-range potential. With thd!Ve Significant digits is comfortably achieved witd=20

help of the formal solution of Eq.34) we may now express terms applied fom and » in the separablg expansion. Re-
the inverse matriXG S(E)] ! as markably, the speed of the convergence is everywhere simi-

lar, irrespective of how many angular momentum channels
are included and whether or not Coulomb forces are present.
We note especially for the Coulomb case that the satisfactory
convergence stems from reliable separable expansions of the
potentialsy® andU, which—from the point of view of scat-
tering theory—are both short-range potentials; the falloff of
U is much slower than that af®, though.

[GUEN=[GUE)] -V, (37
whereU is constructed from the matrix elements

(] C (]
Uit iain = NN @§+0S=uS) 0o/ I'0 "), (39)
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TABLE I. Convergence of the binding energy of a three-boson  TABLE IIl. Binding energies in the case of the MTVa potential

system interacting via the Ali-Bodmer potential, E40), with in- for a system of three bosons.
creasing basis for the separable expandibdenotes the maximum
number of basis states employed foend v in Eq. (19). Angular momentum channels
1 2 3 4
N Number of channelsg,
1 2 3 4 This work 8.04251 8.22953 8.24978 8.25215
Faddee\{19] 8.0424 8.228 8.249 8.251
12 4.13899 5.11756 5.17699 517888  Faddee\[20] 8.25273
13 4.14092 5.11911 5.17862 5.18057  ATMS [21] 8.2611)
14 4.14044 5.11897 5.17846 518043 GFMC[22] 8.2611)
15 4.14046 5.11898 5.17850 5.18047 |DEA [23] 8.25
16 4.14065 5.11917 5.17871 5.18069  svM [24] 8.2527
17 4.14069 5.11926 5.17880 5.18079
18 4.14069 5.11926 5.17881 5.18080
20 400 Silez  SiE2  SIBBL e Vo e ey oo g
21 4.14071 5.11928 5.17884 5.18083 MTVD: V= 14384812,V =570 3316
22 4.14071 5.11929 5.17884 5.18083
23 4.14071 5.11929 5.17884 518083 (here we use units such that/m=41.47 MeV fnf). For
24 4.14071 511929 517884 518083 MTVa we may compare to the results of the Los Alamos—

lowa [19] and Groningen[20] groups, both of which are
obtained from a direct solution of the Faddeev equations in
In principle, the convergence may also depend on th&onfiguration space, and in addition to resglts from an
(range parameteb of the Coulomb-Sturmian functions. We ATMS '(amalgamanon of two—body correlations into mulpple
found, however, that the dependence is weak in a reIativeI%C""tterlng procegs[21] calculation, a Green's function

large interval of possible choices, just as was established ifflonte Carlo (GFMC) calculation [22], an integro-
the two-body casé8,d]. ifferential-equation approadhDEA) [23], and a stochastic

The convergence is practically of the same quality in thevariational methoc(SV_M) [24]. From Table I”,it ?S evident_
case of the other potentials considered below. f[hat our methqd provides very accurate predictions for bind-
ing energies in all cases. This is true for the channel-by-
channel comparison with the Los Alamos—lowa calculation
B. Results for various three-body bound states and likewise for the comparison with the best results from
the other works. With respect to the best results quoted in the
lower rows of Table Il we note that for the corresponding
calculations the number of angular momentum channels em-
ployed is either not definitely known or not specified in a
v(r)=V, exp(—3.1Tr)/r—V, exp(—1.55)/r (42)  scheme like ours.
In order to demonstrate that in addition to binding ener-
) gies our method also provides accurate three-body wave
between two nucleons of masswe consider two cases:  fynctions, we calculated the root-mean-squares) radius
(r?y¥2, Corresponding results are given in Table IV for the
TABLE Il. Same as in Table | for the Ali-Bodmer plus Cou- MTVb potential, in which case we can compare to the cal-

We now present our converged results for the Malfliet-
Tjon (MT) [18] and AB[17] potentials and compare them to
other benchmark calculations. For the MT potential

lomb potential, Eq(41). culations of the Los Alamos—lowa gro(ift9]. For both the
binding energy and the rms radius the channel-by-channel
N Number of channels, comparison indicates perfect agreement.
1 2 3 4 In the case of the MTI-I potential for a system of three

fermions, acting in singlet and triplet states, we may compare

12 1.90151 2.81629 2.86703 2.86839 h h | lculati f th |
oo e e amse o0 WOCeR aelor of e [os danoctlons
14 1.90368 2.81796 2.86871 2.87014 '
15 1.90373 2.81797 2.86875 2.87019
16 1.90404 281819 2.86899 2.87044 TABLE IV. Binding energies and root-mean-square radii for the
17 1.90397 2.81824 2.86904 2.87049 MTVb potential for a system of three bosons.
18 1.90401 2.81824 2.86905 2.87050

Angular momentum channels
19 1.90400 2.81824 2.86905 2.87050 1 2 3 4
20 1.90401 2.81825 2.86906 2.87051
21 1.90402 2.81826 2.86907 2.87053 —Eg This work 7.5398 7.7147 7.7338 7.7361
22 1.90402 2.81827 2.86908 2.87053 Faddee\{19] 7.540 7.714 7.733 7.735
23 1.90402 2.81827 2.86908 2.87053 (r?)'?2 Thiswork  1.7265 1.7117 1.7098 1.7095

24 1.90402 2.81827 2.86908 2.87053 Faddee19] 1.727 1.711 1.710 1.710
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TABLE V. Binding energies and root-mean-square radii in thetion in a separable form while keeping the effect of the long-
case of the Ali-Bodmer and Ali-Bodmer plus Coulomb potentialsrange part in an exact manner via a proper integral

[Egs.(40) and(41), respectively for a system of three bosons. representation of the three-body Coulomb Green’s operator.
: - c — As a consequence the method has good convergence proper-
Ali-Bodmer Withoutv With v ties and can in practice be made arbitrarily accurate by em-
This work 5.181 2871 ploying an increasing number of terms in the ;eparablg ex-
_ pansion. The usage of the Coulomb-Sturmian basis is
Eg ATMS [21] 5.18 . . .
essential to allow for the accurate evaluation of the matrix
SVM [24] 5.18 2.872 )
: elements of the Coulomb Green’s operator.
This work 2.434 2.517 - . .
(22 ATMS [21] 243 Beyond the _studles of the method in systems with two-
: body asymptotics conducted befof@—11], we have now
SVM [24] 243 2.517

demonstrated its convergence properties and efficiency in
(benchmark calculations of the three-body bound-state
we obtain a binding energy(converged result of  Problem without and with Coulomb interactions. In both

E=8.5358 in comparison t& = 8.536 calculated by the Los C3S€S the solution of the Faddeev equations shows a rapid
Alam.os—lowa collaboration ' convergence, and, whenever a comparison is possible to ex-

Finally we come to the comparison of the results for theisting results in the literature, correct predictions for the
binding energy of a system of three bosons interacting viz?'nd'ng energies and wave functlpns are a}ch|eved.
the AB and AB plus Coulomb potentigTable V). We may . The T“eth"d IS gapable of treating any Kind O.f short-range
compare our four-channels result to calculations with thd"teractions, even in the case when Coulomb-like forces are
ATMS method[21] (uncharged case onlyand the SVM present. The solution of the three-body bound-state problem
[24,26. We do not know of any Faddeev resuilts in this caseVas carried out here. However, the method is also applicable
Again we show predictions for the binding energies and rmgOr scattering problems. In this regard it has been proven

radii. All the values quoted in Table V show a convincing useful already in the two-body ca$6-11. To solve the
corresponding problem for é&harged three-body system

agreement of our results with the ones from the other ap ith the Fadd i technical details i
proaches. We specially stress the agreement of the result fdf € raddeev equations some technical details in connec-

the case of rigorously including the Coulomb interaction " tW'tr:.I;‘he ea/etlluztmn oli tge t?en occurring matrix ele-
with the rather reliable answer from the SVM. ments still need to be worked out.
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