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Comparison of instant form and front form one-particle exchange models
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We study the use of the Okubo method for constructing effective two-particle, instant form and front form,
one-particle exchange models, starting from quantum field theory vertices. The truncation of the field theory
that is made in applying the Okubo method leads to mass operators that are not exactly Rowacknet. It
is found that when the spurious terms that destroy the exact Poiimsaméance are eliminated the instant and
front form potentials come out essentially the same, however they wind up in slightly different two-particle
Lippmann-Schwinger equations. In order to study the practical consequences of this difference, a numerical
comparison is made between instant and front form one-meson-exchange models of the two-nucleon system
that have been fit to the same partial-wave analysis of the two-nucleon data. These models assume the
exchange ofr, 7, p, », 8, ando mesons. No dramatic differences are found between the instant form and front
form vertex parameters obtained from the fjt80556-28186)00508-0

PACS numbsgs): 13.75.Gx, 11.86-m, 13.75.Cs, 24.10.Jv

[. INTRODUCTION dependence of the amplitudes obtained from time-ordered
perturbation theory. This leads to instantaneous interactions

Recently we have developed techniques for constructingvhich can be conveniently used in calculating the properties
Poincareinvariant, particle-exchange models for systemsof system with more than two nucleons. This approach is not
such as the nucleon-nucleon and pion-nucleon systemsanifestly covariant; nor does it fall within the framework of
[1-4]. These techniques make it possible to construct genene of Dirac’s forms of relativistic quantum mecharibss).
erators of the Poincarmgroup, which act in the Hilbert space It should be noted, however, that the potentials and
of a few-particle system; and moreover lead to quantumiippmann-Schwinger equation obtained in our recent front
mechanical state vectors which transform from one inertiaform, one-boson-exchange model of the two-nucleon system
frame to another according to unitary representations of thg3] turn out to be almost identical to those employed in the
Poincaregroup. This guarantees that probabilities calculatedBonn one-boson-exchange modglS,14.
for example, fromS-matrix elements are invariant under in-  In constructing our Poincar@variant models we have
homogeneous Lorentz transformations. We have developagsed an extension of the @Gkie-Muller implementatiof 16]
these techniques in the context of Dirac’s instant and fronbf Okubo’s formalism[17] to derive two-particle potentials
forms of relativistic quantum mechani€s,6]. The purpose from the field-theory vertices. In the Okubo method an at-
of the present work is to compare models obtained usingempt is made to block diagonalize the quantum field theory
these two forms, since it turns out that the final few particleHamiltonian, so as to find an effective Hamiltonian that acts
models are somewhat different. in a few particle subspace of Fock space. Of course, some

The basic ingredients of a particle exchange model are itborm of perturbation theory must be used in this attempt. At
vertices. The nature of the coupling at a vertex is specifiedhe level of one-particle-exchange models the effective
by a Lorentz invariant, Lagrangian density; as well as a formHamiltonian is given by E¢(3.7). In our context, this essen-
factor or vertex function. The purpose of the vertex functiontially defines instant and front form ladder approximations. If
is to take into account the extension of a strong interactiorthe quantum field theory is quantized oh=a0 hypersurface,
vertex, which in general involves composite particles. Inthen the quantum field theory generators define an instant
most cases these vertex functions are phenomenological. form of relativistic quantum mechanics. The three-

These vertices can be related to the observables of a hadtomentum operatd? and the angular momentum operaior
ronic system in a manifestly covariant way by using theare noninteracting, while the Hamiltonidh and the genera-
Bethe-Salpeter equatidif], or one of its three-dimensional tor of rotationless boostk contain interactions. The effec-
reductions. The three-dimensional reductions that are mosive two-particle Hamiltonian obtained with the Okubo
widely used are due to Blankenbecler-Sug8tf, and to method will satisfy the correct commutation relations with
Gross[9]. Tjon and his collaboratorgl0] have employed respect to the projections & and J onto the two-particle
both the Bethe-Salpeter equation and the Blankenbeclesubspace, however it is difficult to find an effecti{e to
Sugar equation. The most recent application of the Grossomplete the Poincaralgebra. Similar problems arise when
equation to the two-nucleon system is given1d], and to  the field theory is quantized on the null plane, which leads to
the pion-nucleon system ii2]. a front form of relativistic quantum mechanics.

Extensive use of time-ordered perturbation theory has We have chosen to use the Bakamjian-Thomas method
been used in developing the so-called Bonn meson-exchand&8,6] for constructing a set of two-particle generators that
model for the nucleon-nucleon interaction, starting from a sesatisfy the Poincaralgebra. Here the focus is on construct-
of meson-nucleon verticep13,14. Johnson’s method of ing a Poincareinvariant mass operator. In constructing a
folded diagramg15] has been used to eliminate the energymass operator it is important to realize that the relation be-
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tween the quantum field theory mass operator and the quafinearly in the front formmass-squar®perator. One of our
tum field theory Hamiltonian is not the same in the instantpurposes here is to study the effect of this difference. It
and front forms. The instant form mass-square operator ishould be emphasized that this difference does not imply that
quadratic in the instant form Hamiltonian, while the front there is some fundamental inconsistency between the two
form mass-square operator is linear in the front form Hamil-forms of relativistic quantum mechanics; it is simply a con-
tonian. As a consequence of this, when the Okubo method i&eguence of the fact that the necessary approximations that
used to obtain a one-particle-exchange interaction to use in@€ made in deriving the models from the field-theory verti-

two-particle mass operator, this interaction appears linear§€S Play out differently in the two forms. Here we compare
in the instant formmassoperator, and linearly in the front numerical results obtained with the two forms in the context

form mass-squareperator of a fairly realistic one-boson-exchange model of the two-
We have found2—4] thét the Okubo method for obtain- nucleon system. The exchange mechanisms assumed here

ing one-particle-exchange potentials is equivalent to a sligh‘?lre the Isame ast t:j%?e. employed in outrhearheL work ofn the
variation of the standard Feynman diagram rules. The poterjf\-’vo'nuc eon systems), 1.e, we assume the exchangem

tials can be obtained by first drawing the relevant second?: P» @ & ando mesons. We fit the coupling constants, the

order Feynman diagrams, and then determining the four1asses of some of the mesons, and the cytoﬁ masses in _the
vertex functions to a recent Nijmegen partial wave analysis

momentum of the virtual, exchanged particle in each f the t | datflo]: and th "
diagram by assuming that the total four-momentum is con?! the two-nucieon aa , and compare the resufing pa-

served either at the vertex on the right or at the vertex on théameterf. Wet find no dramatic difference between the two
left, but not necessarily at both vertices. The potentials ar@a[ﬁ:ne ertlg,e S'f th . foll Section 11 simol
obtained by adding together the two resulting Feynman-like . € outiin€ oT th€ paper IS as 107lows. Section 11 Simply
amplitudes and dividing by 2. In order to have a model thadives the relation between the front form and canonical com-
is complete in the sense that it leads to a representation of t |o:1]§ntt)2tcv)\f;2r? {E:r?:;zegsé?a& ?Srzlt%r’ I?IZr}rI]viﬁlcir?i:rfzeir:etlﬁé
Poincaregroup, it is necessary to specify other operators a

well egroup y pecify P instant and front forms. The relevant features of the Okubo

In a Bakamjian-Thomagl8,6] construction of an instant f_ormahsm[l?] are summar_|z_ed in Sec. I.”' Sectlon_IV out-
nes the procedure for deriving two-particle potentials from

form model the other operators are usually taken to be th%_l . . .
three-momentum operatd?, the canonical spin operator ield-theory vertices, and also introduces the relative three-
7. and the Newton-Wignér position operatss while in momentum variables that we employ. Section V summarizes
thcé front form they are usually taken to be thfeent form the techn?ques used to EXpress the potentials obtai.ned with
éhe modified Feynman rules in terms of these relative mo-

components of the momentum, denoted collectively her . - o
by P, thefront form spin operatot; , and the generators of mentum varlz_;\bles, and also _speC|f|es the prescriptions th_at
' ! must be applied to the potentials so as to ensure exact Poin-

the so-calledront form boostsdenoted here bi{; andB. In P . .
s Ks care invariance. The numerical results for the one-boson-

either form only the mass operatigr contains an interaction; h del of the t | ¢ X .
the other operators are assumed to be the same as thoseSgF1aNge Model of the two-nucieon systems are given in
Sec. VI. A discussion of the results and suggestions for fu-

the corresponding noninteracting system. Instant form gen: . )
erators and front form generators can be constructed from thtéf're work are given in Se_c. \./”' .
sets M, P, 7. X} and {M;,P,7: ,B,K3}, respectively. The Throughout we use units in whidb=c=1.
subscripts on the mass operators indicate that the mass op-

erators associated with the two forms are in general different Il. MOMENTUM AND MASS OPERATORS

from each other. The instant form and front form generators |, the instant form and the front form it is convenient to
will satisfy the Poincaralgebra exac_tly as Ion_g as the sets se respectively, the canonicad)(and front form §) com-
{M¢,P.J; X} and{M¢,P.J; ,B,K3} satisfy certain relatively nonents of four-vectors and four-vector operators. For the

simple commutation relations. When the instant and fronty r-momentum operator we work with the two sets of com-
form mass operators obtained with the Okubo method arBonents

examined it is found that they do not satisfy these simple

commutation rules exactly. The approximate instant form in- P=(P° P!,P2,P3)=(H,,P), (2.13
teractions contain spurious dependence on the total three- o
momentum of the two-particle system, while the front form P=(P°PL,P2P3)=(P,H/), (2.1b

interactions contain spurious dependence on the orientation

of the null plane. Thus the violations of Poincaneariance  where we have used the caret to distinguish the canonical
that result from the truncation of the quantum field theorycomponents from the front form components. Heligis the
play out differently in the two forms of relativistic quantum instant form Hamiltonian, P is the three-momentum,
mechanics. The interesting result is that when the spurioup=(p° P! P?), andH; is the front form Hamiltonian. In
terms are eliminated, the instant form potential and the fronthe instant formP is noninteracting or kinematic and inter-
form potential have essentially the same dependence on thgtions are put int¢d., while in the front formP is kine-

relative momentum variables and spins of the particles. Iinatic and interactions are put inkd; . The relation between
turns out, however, that the final Lippmann-Schwinger equathe two sets of components is given by

tions that we solve to calculate the scattering amplitudes are L L

somewhat different in the instant and front forms. This is a PO=(P°+P3/v2, P3=(P°-P3/v2, (2.29
consequence of the fact that our one-particle-exchange inter- o

actions appear linearly in the instant formmassoperator, but P, =(P1,P?)=(PP?). (2.2b
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The mass operata¥l plays a central role in relativistic The structure of this result is very similar ¢dd-fashionecor
guantum mechanics, and is defined in terms of the two setéme-ordered perturbation theory. We note that the denomi-

of components by nators in Eq.(3.7) contain eigenvalues dfl, which corre-
5 S o o3 2 spond to either the initial state or the final state, and that the
M?=P.P=(P")*=P*=2P"P°—P1. (2.3 two possibilities appear in a symmetric way.

According to Eq.(2.1) the mass-square operator is quadratic
in the instant form Hamiltoniamd ., but linear in the front

form HamiltonianH;. We can easily solve E¢2.3) for In relativistic quantum mechanics it is usually convenient
these Hamiltonians to obtain to define particle states by boosting states associated with a
rest frame of the particle. We will denote the Lorentz trans-
HC:(PZ“LMg)m’ Hf:(Pi“LM?)/(ZPO)’ (2.4 formations that WFt)a use to boost from rest framesl 5(\)\)
nx{vhere the subscripy distinguishes the various possible
oosts, and is a timelike unit vector. If we lekx symbolize
he components of a four-vector in an arbitrary frame, then
}he components of this vector in a rest frame are given by

IV. EFFECTIVE TWO-PARTICLE MODELS

where we have put subscripts on the instant and front for
mass operators to indicate that in general they are differen
In Sec. lll we outline the Okubo method for constructing
effective Hamiltonians that act in a subspace of the vecto
space of a quantum-mechanical system. _

P q y Xp=lgl00x, A2=1, 4.1)

lll. THE OKUBO METHOD where the boost has the property

In the Okubo methofl17] the vector space of a system is
divided into two subspaces whose projection operatoasd lg(M)(1,0)=N\. 4.2
A are orthogonal and satisfy
As indicated in Eq(4.1), the rest-frame components depend
n+A=1. (3.1 on both\ and the choice of the boost. In the instant form it

o _ _ is convenient to use the so-call@dnonical boost(g=c)
The basic idea of the method is to construct a unitary operagiven by

tor U that transforms a HamiltoniaA according to

H'=U~HU, (32 RO=RORE N -xgys X=Xy | R+ % N (43
;uch that the transformed Hamiltoniéti is block diagonal,
l.e., while in the front form it is convenient to use the so-called
AH' 5=0. (3.3 front form boost(g="f) given by
X=vaINOXD, X =VZA XY+ Xpy - (4.9

An effective Hamiltonian that acts only in the subspace

can then be defined b _
y We note that the first three front form componenss,

H7=pH' 7. 3.4 =x%x'x?) transform among themselves under front form
boosts, so that while these boosts are not as well known as
In general, except for some simple modElg], it is not  the canonical boosts, they possess a technical advantage.
possible to findU exactly, and it is therefore necessary to  We let|i h,) denote a rest-frame state of a particle la-
resort to perturbation theory1,2,16,17. In perturbation beled v with spins,, whereh,=-s,,—s,+1,...s,; and
theory the Hamiltonian is divided into two parts according towhere in general, stands for any otheinternal quantum
numbers of interest. For a nucledn,stands for its isospin.
H=Ho+Hy, (3.5  We assume that in the subspace of this particle we have a
unitary representatiotJ (a) of the Lorentz group, where
d ,(@) is a unitary operator corresponding to a Lorentz trans-
formationa. In particular for a three-rotation if we assume
that the state$i h,) are orthonormal, the action of the uni-
_ tary operatorU (r) corresponding to the rotation can be
Hol$) = w()[2), (3.6) defined by

then to second order i, the effective Hamiltonian is
given by[1,2,16,17

used to construct the projection operatgrandA. If {|0)} is
a basis for thep subspace where

. s (S
u,(nli,h,y=> ||VhV>DhS,h (r), (4.5
(ZH7| ") <§H+1H [ A i V

= —_— 1 —_—_—
2 w(£)—Ho whereD®)(r) is the standard unitary, matrix representation
of SU(2) for the spins,. We define the states of a particle

g’> with on-shell momentunp, and massn, by

+w(§')_Ho}Hl
e (3.7) 1p,ih)g=U.[l4(p,/my)]lih,)  (p2=m2), (4.6
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whe_re we note that different boosts lead to different single- g<p1pzﬁ|pipéﬂ'>g
particle states.
We can take for the basis states for the two-particle sub- =(2m)%2ew(p) 8 (pP—p’)A(de) 83(dc—de) Sppr
space the direct product states — /
P P = (2m)32p°8%(p—P") A(0p) 5%(cs— 4}) S
|P1P28)¢=P1i1h1)¢®[P2i2h) g, 4.7 (4.15
where g is the set where
B={i1,hy:is,ho}. 4.9 A(Q)=(2m)2en (A em (D/W(Q). (416
These states Satisfy the equations It has been shown preViOUﬂ]g,4] that if the Hamiltonian
H in Eqg.(3.7) is assumed to be an instant form or front form,
PolP1P2B)g=PIP1P2B)g: Mo|P1P28)g=W|pP1P28)g. quantum field-theory Hamiltonian, appropriate for a particle-

4.9 exchange model, then the effective instant form and front

form Hamiltonians obtained with the Okubo method are
where P, and M, are the four-momentum and mass opera-given to second order by

tors for the noninteracting system, and the total four-

momentump and invariant mas®V are given by «(P1P2BIHIIPIP2B )= (2m)* 8% (p—p’)
p=pi+p2, W:+(p.p)1/2_ (41@ X[Zf\z/v(p)A(qC)éG(qC_%)5,313'
We define relative momentum variablgsfor these states +Ve gpr(P1,P2:P1.P2)],
as the three-momentum of particle 1 in a rest frame related to (4.173

an arbitrary frame as in E¢4.1), therefore we can write L
((Pap2BIH{IP1P3B" )¢ =(2m)°6°(p—P [ A(ay)

=[€m (g),Gg] =14 *(A)p1,
P1ga=Le€m,(Ag), Al =14 (A)ps X 8%(0t—af) g (P2 +W2)

ngA=[em2(qg),—qg]=|;1(/\)p2, .13 +’\7f,,33'(plipz;pi P21,
where the relativistic energies are given by (4.179
en(Q)=(q2+m2)12 4.12 where here particles 1 and 2 are the ones that are interacting

through exchange processes; and the interaction tégms
are determined by a slight variation of the standard Feynman

and we have defined a timelike unit vectbrb
y diagram rules. As pointed out in Sec. I, we can ob¥4jn s’

A=p/W. (4.13 by first drawing the relevant one-particle-exchange Feynman

diagrams, and then determining the four-momentum of the

We note that Eqsi4.10 and(4.11) imply virtual exchanged particle in each diagram by assuming that
the total four-momentum is conservedherat the vertex on
W=W(q) = €m, (Q) + €m,(Q). (4.14  theright or at the vertex on théeft, but not necessarily at

both vertices. We then add together the two amplitudes, and
Instead of labeling the staté4.7) with (p;,p,) we can label divide by 2. As an example, the interaction between two
them with(p,q.) or (p,gs). We assume that our two-particle nucleons due to the exchange of a scalar mésoor o) is
states are normalized according[&)4] given by[3]

Vo 5 (P1.P2:P1.P5) = 05 (iai 2 Tli1i5) Fol (P2 = P12 o[ (P2~ P5)?]
L [Ug(P1,n1)ug(P1,h)Ug(P2,N2)ug(P3 1)
2 (P1—P1)>—m

+(1-2)|, b=d0, (4.183

F5: T1° T2, Fo:1! (418b u_g(py1hv)ug(pvih;):2mN6thL! (419)

whereli,i,) is an isospin state for the two nucleons. Here the

g, are coupling constants, the, are isospin vectors for the and are defined in terms of rest-frame spinafh) by
nucleons, thé, are form factors which take into account the

extension of the vertices, and thg are Dirac spinors. These

spinors are normalized according to Ug(py,h,)=l4(p,/m,)]Juch,), (4.20
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where for an arbitrary Lorentz transformatienthe matrix  instant form and front form spin operators differ from each

S(a) satisfieq 20] other due to the fact that these operators are related to rest-
. frame angular momenta, and the two forms involve different
S (a)y*S(a)=a*,y". (4.21)  rest frame$3,4,6]. The six operator®, B, andK 5 are Poin-

) ) _caregenerators, so their commutation relations are part of the
We note that in the instant form and front form the Dirac pgincarealgebra. The commutation relations among these
spinors are defined in terms of canonical and front formgjy gperators are satisfied by taking them to be noninteract-

boosts, respectively. ing. In the usual Bakamijian-Thomas constructiof, is
i taken to be noninteracting, which implig3,6] that in order
V. POINCARE INVARIANCE to ensure that the members of the &dt? ,P,7; ,B,K;} sat-

isfy the correct commutation relations, it is only necessary to
nsure thaM ? commute with the other members of the set.
the Poincaregenerators that do not belong to this set are
efined by

In order to develop a Poincamvariant model it is nec-
essary to construct 10 Hermitian generators that satisfy th
Poincarealgebra[5,6]. A practical way of doing this is by d
means of a so-called Bakamjian-Thomas construdiiobg].

With this procedure the 10 generators are expressed in terms
of other operators which satisfy relatively simple commuta-
tion rules. In the instant form the generators are usually taken

H=(P?+M?$)/(2P?),

to beH,, P, J, andK; where the angular momentum opera- J3=(B,/P%)P1—(B,/P%)P?+ 7,
tor J generates three-rotations, akd is the generator of
canonical boosts. We can wrifd,6] S=(1/PO[P, Kz+H(B+e;
H.=(P?+MH)¥2  J=XxP+ 7, X (M¢JE+P, 7], (5.3
X Te then as long as the members of the &ét? ,P—,jf,B,Kg}

1 P
K=—> (HX+XH¢)—

2 MorH,  ©F

satisfy the correct commutation relations, the above genera-
tors in combination withP, B, andK 5 will satisfy the Poin-
whereM, is the instant form mass operatgf, is called the carealgebra.

canonical spin operatgrand X is the Newton-Wigner posi- In ensuring that the various operators satisfy the correct
tion operator. The only nonzero commutators of the mem<commutation relations, it is very helpful to work with basis
bers of the sefM.,P, 7. , X} are states that lead to simple representations for these operators.
_ ‘ Unfortunately the simple direct product stat@s?7) do not
[X‘,Pk]=i5jk, [j‘c,j‘é]=iejk,jc, (5.2 have this property. For the instant form it is convenient to

take as basis stat¢4]

which makes it simpler to construct models for this set than
for the Poincaregenerators. If the members of the set |pacB)=U[I(A)]|P1caP2caB)c  (instant form)
{M.,P.J. X} satisfy the correct commutation relations, then (5.4)
the 10 generatordH . ,P,J,K} defined by Eq(5.1) satisfy the
Poincarealgebra. In an instant form model, the mass operawhile for the front form we usé3]
tor M. is interacting whileP, 7., andX are noninteracting.
According to Eq.(5.1) this implies thatH. andK are inter- [P0 BY=U[1:(A)]|p1saP2:aB)e (front formy),
acting while the other six generators are nqninteracting. (5.5)

In front form dynamics the 10 Poincargenerators

are usually taken to bél;,P,J;=e;-J, Ky=€;-K, B=(K,  \yhere the kets on the right-hand sides of these equations are
—€3XJ)V2, andS=(K , +e;xJ)/v2. Heree; is a unit vector  gefined by(4.5—(4.8), and the single-particle momenag

along the three-axis and indicates spatial components are defined by4.11)—(4.13. We note that the kets on the
transverse to this axis. The three generakoyandB gener-  right-hand sides of these equations are both defined as the
ate the front form boosts defined by E@.4). In the front  gjrect product of single-particle states which are obtained by
form the three generatok$; andSare taken to be interacting canonical boosts from the single-particle rest frames. The
while the other seven generators are taken to be noninteradates defined by Eq¢5.4) and (5.5 can be expressed as
ing. As a consequence of the fact that the front form boosfinear combinations of the simple direct product stdte3),
generatorsk ; andB, are noninteracting, the unitary operator yith coefficients that are the elements of a unitary transfor-
U(ly) that maps a gquantum-mechanical state vector from @yation (see Eq.(3.29 of [3] and Eq.(3.6) of [4]). This

rest frame to an arbitrary frame is noninteracting; thus it ismplies that Eqs(5.4) and(5.5) also satisfy the orthogonality
simpler to boost state vectors in the front form than in theygations(4.15.

instant form. On the other hand, the transverse components The spin operators have particularly simple, as well as
of the angular momentund, =[e;x (B—S)J/vV2, are interact-  familiar, representations in these new bad], i.e.,

ing, which makes the treatment of angular momentum in the

front form more complicated than in the instant form. In the

front form a Bakamjian-Thomas construction focuses on the (pi1hsish,] 7= > [ () Tnh hh{Paci 1hgizhgl,

set of operator$M ?,P,7; ,B,K 3} whereM ? and 7; are the hih} v

front form mass-square and spin operator, respectively. The (5.68
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— . — . ew(Pp) — ew (P) p
i,hyih,| 7= T ' ihlioh, =tanh ! , Ue=7T,
(Pari 1haizh,| T hizhé[ (9) Ihyhy,hyhy (PG thyi o0 Le D) emr (0)— 2 |pl “Tpl
(5.6b (5.13bh
where L=In(W/W'"), us=e3=(0,0,1). (5.130

TD=1101,(iVX )+ 5,0 1,+1,8S,, (5,77  We note that the initial and final' rest frames are related by a
canonical boost in both forms; with this canonical boost

with |, and S, the unit matrix and spin-matrix vector for 2long the commomp=p’ direction in the instant form, and

particle v, respectively. For nucleonsS,=e,/2. The @&long the three-axis in the front form.

Newton-Wigner position operator, which only plays a role in By evaluating the invariant momentum transfers th_at oc-

the instant form, has the representatiéh cur[in Eq. (4.183, for examplg in the xy, frame, and using
Egs.(5.12), (5.13, and(4.11); we can express them in terms

ip of the relative momentum variableg andqg . The result is

2eq(p) 68

(pacA.

<pqc,8|X:[in_ ) )
(P,—P})?=€n (dg) —2€m (Gg) €m, (0g) COSH £g) + €, (dlg)

—(gg—dg)?+2(—1)" sinh({g)
X [emy(qg)ug' qé_ emV(Qé)ug' QQ]

+2[cosh{y) —1](ug-dg)(Ug-dg),

It can be shown[3,4] that replacing the basis states

Ip1p2B)c and|p1p,B); in Eq. (4.17) with [pa.A) and[pg;p),
respectively; is equivalent to replacing the Dirac spirams
(4.183, for examplé according to the rules

ug(pv vhv)ﬁa:lg(A)]uc(png 1hy)a

v=1,2.
(5.19

The spinor products that occur in E¢.183 can be ex-
pressed in terms af andqé by using Egs(5.9), (5.10, and
the relation[3,4]

ug(p,',,h,’,)—>S[|g(A’)]uc(p;gA,,h;), (5.9

where

Xh,

— 1/2)
uc(pngahy)_[emV(qg)+mv] (_1)1/*10-]).)(th”

1
: Sl[|g(A)]S[|g(A’)]=S[|C(Qg)]=e><p(§ ug-a§g>,
(5.19

X :L, (5.10  Where the components af are the usual Dirac matrices.
¢ €m (dg) +M, After making the replacements.9) in Eq. (4.18, and using
Eq. (5.195 we find the following scalar meson-exchange po-
with tential in the spin-isospin space of the two-nucleons:
1 0 Ve(P1,P2:P1,P3)
X1.2:{0}, Xl/zz{l}- (5.1 o v

S oy Pl (P2 )]
According to Eq.(4.17), in both the instant and front 2 oL P Tl (P27 P2

forms only three of the components of the four-momentum 1

are conserved, which implies that the final-state, two-particle
rest frame is not the same as the initial one. We see that it
follows from Eq.(4.1) that these two frames are related by

Xgr=lg {(M)Ig(A)Xgrr, A=p/W, A'=p'/W',
(5.12

where W=W(qy) and W' =W(qg). The front form boosts
form a subgroup of the Lorentz gro(if], therefore the Lor-
entz transformation in Eq5.12) is a front form boost when
g=f. In general, the canonical boosts do not form a sub-
group, however the delta function in E@.173 implies that
the boostd(A') and I (A') are along the commop=p’

X

! + ! 6
(e ppZ—m2 " (py—pyy2—mp Lemil o)

+ My ][ €m, (dg) +MyI[COSH{y/2) (1= 071 Xg071- Xg)
+SINN({/2) (071 Ugory - Xg— 01 Xgory - Ug) ]
X[cosh{y/2)(1— 05-Xq075- Xg) — SINN({4/2)

!

X (02 UgOz-Xg— 02 Xg03-Ug)],  b=6,0. (5.1

In order to establish Poincaievariant instant and front
form models, we now turn our attention to the mass operator.
As pointed out above, in the instant form we focus on the set

direction; which in turn implies that the Lorentz transforma- of operator§M.,P, 7., X}, and takeP, ., andX to be the

tion in Eq.(5.12 is a canonical boost wheg=c. In fact it  same as the operators for the noninteracting system. In order
can be shown thdi3,4] to ensure Poincarivariance it is only necessary to choose
the mass operator so that it commutes WAth7, , andX; the
other commutation relations of the gl ,P,J. X} are au-
tomatically satisfied by our choice & 7., andX. With the

I3 H(A)IG(A)=16(Qg),  Qg=[cosh{g),ug SiNN(g)],
(5.133
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help of Egs.(5.68 and (5.7@ we can show that our model noninteracting. There is no fundamental reasonand 7;
will be Poincarenvariant if the matrix elements of the mass to be noninteracting, and in fact in general they can contain

operator are of the forry]
(PABIM [P a8 )= (2m)32[ ew(p) ew (P)]28%(p—p’)
X(BIMc(ac,a0)|B"), (5.17

whereM(q.,q;) is a rotationally invariant function od,
q., and o’s, and is independent ofp. Here

|B)=li1,hy;i,,h,) is a spin-isospin state vector for the two

nucleons. Settingg=0 in Eq. (4.173, and using Eqgs(5.1)
and (5.1, suggests that aM.(q.,q.) with the desired
properties can be defined by

V(e .ac)

2[W(q)W(gg) ¥
(5.19

M (e, 0e) =W(do)A(Qe) 8*(de— ) +

with
vc<qc.qé>=§ VE(P1,P2;PL Pyl ppr—o.  (5.19

The b= 4,0 contributions to the sum in E¢5.19 are deter-

mined by Eq.(5.16), while the contributions from pseudo-
scalar (r,77) and vector(p,w) meson exchange are deter-

mined by Eqs(4.11) and(4.12 of [3], respectively.
As pointed out above, in constructing a Poincaneriant

front _form model we focus on the set of operators

{M?2 P, J: BKj}, and choosé,.7; B, andK to be nonin-

teracting. In order to ensure Poincarevariance we then

interactions[6,21,23. The prescriptions adopted here seem
to be the simplest possibilities. Another possibi[igy for the
front form is to average over the directionwfin Eq. (5.16).
This cannot be done analytically, so this prescription com-
plicates calculations. According to Eq5.13h, and(5.130,
on shell, i.e., wheWW=W’, we have{.= {;=0; which im-
plies that the prescription®.19 and(5.22 do not effect the
on-shell limit of Eq.(5.16). These prescriptions also have no
effect in the nonrelativistic limit. This is true of the other
one-boson-exchange potentials, as well; therefore we can
think of the prescriptiong5.19 and (5.22 as defining the
high-energy, off-shell extensions of the potentials. In this
regime the vertex functionfsb[(p,,—p’v)z] come into play,
and since in general these are phenomenological and contain
adjustable parameters, our prescriptions are both sensible
and practical.

When the prescriptiongs.19 and (5.22 are applied to
the momentum transferé.14) we find that in the instant
form (p,—p;)?—[em (Ac) — €m (Ac)1*— (dc— )%, while
in the front form @,—p’)?— —(g;—q;)2. Since the front
form result gives better convergence at high momenta, we
also adopt it for the instant form. We also improve conver-
gence in the front form by approximating the facfeee Eq.
(5.16] cosH(£/2)=(W+W’')?/AWW by 1. Both of these
modifications have no effect on the on-shell potential, or in
the nonrelativistic limit.

Our final result for the potentials due to scalar meson
exchange is

only need to require that the mass-square operator commute

with P,7; ,B, andK 3. We can show3] that this requirement
will be satisfied if the matrix elements of the mass-square

operator are of the form
(parBIME[p a; B')=(2m)°2p°5%(p—p")
x(BIM%(as,ap)B"), (5.20

whererz(qf ,q¢) is a rotationally invariant function odj ,
as , and theo’s; and is independent qf. Using Eqs.(2.1b),
(2.3, (4.15, and(4.17h, we find that avlf(qf ,q¢) with the
desired properties can be defined by

M?(q¢,af)=W2(a)A(qr) 8%(as—af) + Ve(as,af),
(5.21)

with
Vf(qquf’):%: V2(P1,P2;P1,P5)

(us;-dependent terms are dropped

(5.22

f2 = (ag—ag)?]
m§+(qg_qé)2

X[ €my(Ag) +MyI(1— 01 Xg01 - Xg)

V2(qg.0¢)=—95T [€m,(dg) +My]

><(1—0'2~Xga'2~xé), b=34,0.

(5.23

We see that our instant form and front form potentials have
the same functional form; the only difference is in the defi-
nitions of the relative momentum variablgg and qé [see
Egs. (4.1, (4.3, and (4.4)]. This identity of forms also
occurs with the potentials due to pseudoscalar and vector
meson exchange. With the same prescriptions that led to Eqg.
(5.23, the potentials due to pseudoscalar and vector meson
exchange are given by Eq«t.31) and(4.32 of [3], respec-
tively. As pointed out previousl}3,23], the potential§5.23),

as well as the pseudoscalar meson-exchange potentials ob-
tained in the same approximation, agree exactly with the
Bonn, one-boson-exchange potentials given by E§82-
(E.349 of [13]. The vector-meson-exchange potentials ob-
tained in the same approximation differ slightly in the so-
called tensor-tensor terms.

The fact that it is necessary to impose the requirements

indicated in Egs(5.19 and(5.22 on potentials such as Eq.

VI. THE SCATTERING AMPLITUDES

(5.16 in order to ensure Poincaivariance is related to our

use of Bakamijian-Thomas constructions in which the The fact that the instant and front form potentials have the

Newton-Wigner position operatof in the instant form and same dependence on the relative momentum variables and
the spin operatotJ; in the front form are assumed to be the nucleon spins does not imply that they lead to the same
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TABLE |. One-boson-exchange model parameters obtained TABLE Il. Deuteron and low-energy parameters. Scattering

with two forms of relativistic quantum mechanics.
in MeV, andn,=1 except forn,=n,=2.

Meson Parameters Front form Instant form
T 92/4m 13.740 13.897
92(0)/4x 13.541 13.684
m, 138.03 138.03
A, 1619.7 1572.7
7 92/Am 2.7110 3.4066
g2(0)/4x 1.7831 1.6636
m, 548.8 548.8
A, 1262.4 1000.0
p g3/4m 1.0062 1.0309
92(0)/Am 0.56899 0.58296
K, 5.01 5.01
m, 769.0 769.0
A, 2110.0 2110.0
w 92/4m 26.561 29.593
g2(0)/4x 11.778 11.451
K, 0.0 0.0
m,, 782.6 782.6
A, 1824.6 1702.5
5 934w 2.9746 3.6529
9%0)/4m 1.8031 2.0015
m; 983.0 983.0
A 2089.0 1928.6
0,t=0,1 g%4x 17.957, 8.6603 16.143, 7.9127
92(0)/4m 13.716, 7.4169 13.010, 6.9497
m 704.66, 534.28 674.72, 516.77

o

Ao 1984.8, 1956.6 2110.0, 2061.7

scattering amplitudes. According to Eq&.17), (5.18),
(5.20, and (5.21) the mass operators in the two forms are
given by

M=Mo+V, M?=M3+V;, (6.1)
where the matrix elements of the potentials are given by

(pAcBIVelp'aLB'y=(2m)32[ ew(p) ew (p)1¥26%(p—p')

V(9c.0c) ,
X<B’ TW(qoW(gn 1™ | P >

(6.29
(pa:BIVip a; B Y=(2m)32p° 83 (p—p"){BIV(a;,a})|B'),
(6.2b

with
V(9,9)=2> V°(q,q"). (6.3

b

The b=6,0 contributions to Eq.(6.3) are given by Eq.
(5.23.

The transition operators for the two forms satisfy the
equations

All masses arelengths and effective ranges are denotedabgndr, respectively,

with the subscript referring to spin singleg)(and spin triplet {).

As andAp are asymptotic normalization parameters for the deuter-
on's S andD components, respectively. The experimental values
are from Table 4.2 of Ref10].

Parameter Front form  Instant form Experiment
—¢4 (MeV) 2.225 2.224 2.224575
Pp (%) 4.64 441
As (GeV?) 0.3918 0.3938 0.39360.0004
Ap/Ag 0.0256 0.0257 0.02560.0004
ag (fm) —23.72 —23.75 —23.748:0.010
re (fm) 2.71 2.73 2.7%0.05
a; (fm) 5.407 5.411 5.4190.007
re (fm) 1.737 1.741 1.75#0.008
1
T(2)=V +V, M, Tc(2),
1
Tf(Z):Vf+Vf ﬁTf(Z). (64)

Since the orthogonality relations for the states that appear in
Eq. (6.2 are the same as E.15), these operator equations
lead to the momentum spacE;matrix equations

d3q// V(q’q/l)

Tg(q,q’:Z)=V(q,q’)+f ACO) ng(Q”,q’;z),
’ (6.53

De(0;2)=2W(q)[z=W(a)], Dy(q;2)=[2"—W?(q)].
(6.50)

The transition operatorsy(z), are related to thd-matrix
elementsT(dq.q4;2), as in Eq.(6.2).

We see that with the reasonably natural procedures that
we have followed in determining the instant and front form
potentials, the only difference in the two forms occurs in the
denominator defined by Ed6.5h. In order to assess the
significance of this difference we have fit our potentials to
the Nijmegen partial wave analygi&9] using both possibili-
ties for D4(qg;2). For the vertex functions we have used a
form that was used earlier by §i18,23], as well as by other
workers[13,14], i.e.,

AZ—m2 ™

A2 )2

fol—(q—q')?]= 6.6
bl —(q—a")“] 2 (g=q (6.6)

where A, is a cutoff mass. The two sets of parameters that
result from the fits are given in Table I, while the deuteron
properties and the low-energy parameters are given in Table
Il. The two sets of phases that result from the fits are com-
pared with each other, and with the Nijmegen phases, in
Figs. 1 and 2. The couplings for theNN and NN vertices
have been assumed to be pyrecouplings, also known as
pseudoscalar couplingwhich is consistent with the Bonn
model [13,14. The parametersc, and «, determine the
strength of the tensor-tensor terms in the vector-meson-
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FIG. 1. Nucleon-nucleonp bar phase shifts for uncoupled states as a function of the nucleon laboratory kinetic energy. The solid lines
and dashed lines are the front form and instant form results, respectively. The solid circles are from the Nijmegen partial wavid @halysis

exchange potentials. In Table | we have also included parandramatic differences between the instant form and the front
eters which measure the coupling strength at zeroform do not show up in an analysis of the elastic, nucleon-
momentum transfer, i.e., nucleon scattering information; at least for lab kinetic ener-
gies below 300 MeV.
02(0)/4m=g2f2(0)/4m. (6.7)
VIl. DISCUSSION
The parameters that show the most dramatic change in We have found that our final results for the instant and

92'”9 from the instant form to the front form agé/47-r and  gont form, one-boson-exchange models for the two-nucleon
g5/4, however these change are compensated to some e

: : &ystem turn out to be quite similar. The Lippmann-
tent by the change in the cutoff massesandA,; as canbe  gehyinger equationg6.5), that we solve to obtain the

seen by comparing the parametgfg0)/4m andg3(0)/4m. It nycleon-nucleon scattering amplitudes, differ only in the

is worth noting that there is quite a bit of variation in the nycleon-nucleon propagators. For the instant form this
values forg%/4m and g¥4m among the various relativistic propagator is

Bonn, one-boson-exchange potentidld]; so it appears that
in general these parameters are not well determined by fitting 1
to the two-nucleon data. It seems reasonable to conclude that 2W(q)[z—W(q) ]’

(7.9
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FIG. 2. Nucleon-nucleomp bar phase shifts and mixture parameters for coupled states as a function of the nucleon laboratory kinetic
energy. The solid lines and dashed lines are the front form and instant form results, respectively. The solid circles are from the Nijmegen
partial-wave analysig19].

whereas for the front form we have without refitting to the nucleon-nucleon scattering informa-
tion. It is interesting to note that the front form propagator

1 7.2 (7.3 is identical to the one obtained when a Blancenbecler-

22— W?(q)’ ' Sugar reductiof8] is applied to the Bethe-Salpeter equation

[7]. This propagator has also been used in developing some
the potentiald/(q,q’) are the same. The front form propaga- of the relativistic, Bonn, one-boson-exchange potenfibds;

tor has a practical advantage, for if we write=W2k)+ie,  in particular it has been used for the well-known BdBin-
then Eq.(7.2) becomes potential. In fact, as pointed out previoudl®3]; our front
form, one-boson-exchange model turns out to be identical to
1 73 the BonnB model except for a few terms in the tensor-tensor
4(k*+in—q?)’ ' contribution to thep meson-exchange potential. Our instant

form model is similar to the Bonn, one-boson-exchange
which is the same as the nonrelativistic form. Thus the fronmodels based on the Thompson equati>fl; except for the
form potential can be used in a nonrelativistic formalismjust-mentioned difference in thp-meson-exchange poten-
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tials, and the fact that the Bonn models assupig° cou- method[17] simultaneously to the Poincagenerators of a
pling for the 7~ and » mesons, whereas we have assumed quantum field theory has been studied by ¢kle and Miller
coupling. [16], and by one of u$2]. The difficulty here lies with the

In a way it is not too surprising that our instant form and use of perturbation theory to determine the unitary transfor-
front form potentials come out the same, since they botimation that simultaneously block diagonalizes all 10 genera-
derive from Feynman-like amplitudes such as E4.18. tors. If, for example, the quantum field theory is formulated
However differences arise, essentially for two reasons: in the the instant form, i.e., quantized on a spacelike surface, the
instant form and front form we use canonical and front formquantum field-theory three-momentum operaand angu-
spinors, respectively; and in the instant form the total threelar momentum operatal are noninteracting. The effective
momentump is conserved, while in the front form the first generators that act in the few particle subspace of interest can
three front form component®=(p° p*,p?), of the total simply be taken to be
four-momentum are conserved. What is surprising is that for
the most part these differences disappear When,we apply the P7=yPy, J7=7dy, (7.6
prescriptions that are necessary to achieve Poinicaasi-

ance. To some extent we forced the identity of the final poyyhere 7 is the projection operator onto this subspace. The
tentials by imposing a couple of prescriptions beyond thosgyeracting quantum field theory generators are the Hamil-
necessary to guarantee Poincamgariance. Applying the  ionjanH and the generator of rotationless bodstsand the
prescrlpt|ons(5.19) and (5.22 led to meson propagators effective few particle generators]” and K7, must be ob-
given by tained from these by perturbation theory. The commutators
which involve two noninteracting generators, such as
— — (7.4 [P{,J{], or one noninteracting generator and one interacting
[ €m(A) — €m(a)]°=(q—0q")"—mj generator, such d$7,H7], are exactly correct in any order
of perturbation theory; however commutators that involve
in the instant form, and by two interacting generators, such [4$,K ], are only approxi-
mately correct. This is the reason we have chosen to use the
-1 (7.5 Bakamjian-Thomas method.
(q—q')%+mi ' It is clear that the methods described here for constructing
the one-boson-exchange model for the two-nucleon system
in the front form. We chose to use the front form propagatorcan be extended so as to allow a treatment of more compli-
in both cases so as to improve convergence in the instamiated exchange mechanisms, such as two-pion exchange.
form at high momenta. As an alternative to this prescriptionAlso the method developed for constructing an exactly
we could have stayed with E¢7.4) in the instant form, and Poincareinvariant model for the pion-nucleon systdi®7]
modified the instant form vertex functions to improve con-can be applied to the two-nucleon system in order to allow
vergence. We improved convergence in the front form byfor coupling toNA andAA channels. This will make it pos-
approximating the factor[see Eq. (5.16] cost({;/2) sible to extend the analysis to higher energies, and to take
=(W-+W')2/4AWW by 1. We could have kept this factor inelasticity into account.
and modified the front form vertex functions to improve con- It will be of interest to further compare the instant and
vergence. We intend to explore these alternatives numerfront forms. It is known that the various forms of relativistic
cally, in the future. In this connection, it is intesting to note quantum mechanics are related by unitary transformations
that Haidenbauer and Holind@5] have pointed out that the [28,29, so in principle any form can be used; however as we
Blancenbecler-Sugar reductiof8] of the Bethe-Salpeter saw here approximations can play out differently in the vari-
equation[7] leads to the meson-propagat6r.5, while  ous forms. As far as the two-nucleon system is concerned
Gross's reductio9,11] leads to Eq(7.4). there does not seem to be any practical advantage of one
It appears that once the decision is made to use th&orm over the other. Most likely this indifference does not
Bakamjian-Thomas methd®,18] for constructing Poincare  extend to the calculation of electromagnetic form factors and
invariant models, there is no simple alternative to the instanstructure functions, or to the three-nucleon system. It is al-
form prescription(5.19. As pointed out in Sec. V, there is an ready known that the front form has certain advantages over
alternative prescription for the front form. In tinew picture  the instant form with regard to constructing current operators
formalism for front form dynamic$26] the unit vectoru;,  for composite system. In particular it is possible to develop a
defined in Eq.(5.139, becomes a variable; and it has beensensibly consistent impulse approximation for electromag-
shown[2] that another plausible prescription for producing netic processes in the front form, but not in the instant form
Poincareinvariant front form models within the Bakamjian- [6,30]. In going to the three-nucleon system it is necessary to
Thomas framework is to average over the directiorupf  take into accountluster separability{6,29,31,22 Roughly
Although this leads to numerical complications, we intend tospeaking, this is the requirement that a model of the three-
explore this possibility in the future. nucleon system decomposes into a model of the two-nucleon
The basic idea of the Bakamjian-Thomas method is tesystem and an independent nucleon when this nucleon has a
express the Poincaggenerators in terms of a set of operatorslarge spacelike separation from the other two. Because prob-
that satisfy simpler commutation rules than the generators. lems with cluster separability arise mainly in connection
is of course conceivable that Poincaneariant few particle  with the interacting Poincargenerators, the implementation
models can be constructed in terms of the generators dof this requirement plays out differently in the various forms
rectly. The possibility of doing this by applying the Okubo of relativistic quantum mechanics.

1
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