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Comparison of instant form and front form one-particle exchange models

Michael G. Fuda and Yingfang Zhang
Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260

~Received 23 February 1996!

We study the use of the Okubo method for constructing effective two-particle, instant form and front form,
one-particle exchange models, starting from quantum field theory vertices. The truncation of the field theory
that is made in applying the Okubo method leads to mass operators that are not exactly Poincare´ invariant. It
is found that when the spurious terms that destroy the exact Poincare´ invariance are eliminated the instant and
front form potentials come out essentially the same, however they wind up in slightly different two-particle
Lippmann-Schwinger equations. In order to study the practical consequences of this difference, a numerical
comparison is made between instant and front form one-meson-exchange models of the two-nucleon system
that have been fit to the same partial-wave analysis of the two-nucleon data. These models assume the
exchange ofp, h, r, v, d, ands mesons. No dramatic differences are found between the instant form and front
form vertex parameters obtained from the fits.@S0556-2813~96!00508-0#

PACS number~s!: 13.75.Gx, 11.80.2m, 13.75.Cs, 24.10.Jv
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I. INTRODUCTION

Recently we have developed techniques for construct
Poincare´-invariant, particle-exchange models for system
such as the nucleon-nucleon and pion-nucleon syste
@1–4#. These techniques make it possible to construct g
erators of the Poincare´ group, which act in the Hilbert space
of a few-particle system; and moreover lead to quantu
mechanical state vectors which transform from one inert
frame to another according to unitary representations of
Poincare´ group. This guarantees that probabilities calculate
for example, fromS-matrix elements are invariant under in
homogeneous Lorentz transformations. We have develo
these techniques in the context of Dirac’s instant and fro
forms of relativistic quantum mechanics@5,6#. The purpose
of the present work is to compare models obtained us
these two forms, since it turns out that the final few partic
models are somewhat different.

The basic ingredients of a particle exchange model are
vertices. The nature of the coupling at a vertex is specifi
by a Lorentz invariant, Lagrangian density; as well as a fo
factor or vertex function. The purpose of the vertex functio
is to take into account the extension of a strong interact
vertex, which in general involves composite particles.
most cases these vertex functions are phenomenological

These vertices can be related to the observables of a h
ronic system in a manifestly covariant way by using th
Bethe-Salpeter equation@7#, or one of its three-dimensiona
reductions. The three-dimensional reductions that are m
widely used are due to Blankenbecler-Sugar@8#, and to
Gross @9#. Tjon and his collaborators@10# have employed
both the Bethe-Salpeter equation and the Blankenbec
Sugar equation. The most recent application of the Gro
equation to the two-nucleon system is given in@11#, and to
the pion-nucleon system in@12#.

Extensive use of time-ordered perturbation theory h
been used in developing the so-called Bonn meson-excha
model for the nucleon-nucleon interaction, starting from a s
of meson-nucleon vertices@13,14#. Johnson’s method of
folded diagrams@15# has been used to eliminate the energ
5456-2813/96/54~2!/495~12!/$10.00
ing
s
ms
n-

m-
ial
the
d,
-
ed
nt

ng
le

its
ed
m
n
on
In
.
ad-
e

ost

ler-
ss

as
nge
et

y

dependence of the amplitudes obtained from time-orde
perturbation theory. This leads to instantaneous interacti
which can be conveniently used in calculating the propert
of system with more than two nucleons. This approach is
manifestly covariant; nor does it fall within the framework o
one of Dirac’s forms of relativistic quantum mechanics@5,6#.
It should be noted, however, that the potentials a
Lippmann-Schwinger equation obtained in our recent fro
form, one-boson-exchange model of the two-nucleon sys
@3# turn out to be almost identical to those employed in t
Bonn one-boson-exchange models@13,14#.

In constructing our Poincare´ invariant models we have
used an extension of the Glo¨ckle-Müller implementation@16#
of Okubo’s formalism@17# to derive two-particle potentials
from the field-theory vertices. In the Okubo method an
tempt is made to block diagonalize the quantum field the
Hamiltonian, so as to find an effective Hamiltonian that ac
in a few particle subspace of Fock space. Of course, so
form of perturbation theory must be used in this attempt.
the level of one-particle-exchange models the effect
Hamiltonian is given by Eq.~3.7!. In our context, this essen
tially defines instant and front form ladder approximations.
the quantum field theory is quantized on at50 hypersurface,
then the quantum field theory generators define an ins
form of relativistic quantum mechanics. The thre
momentum operatorP and the angular momentum operatorJ
are noninteracting, while the HamiltonianH and the genera-
tor of rotationless boostsK contain interactions. The effec
tive two-particle Hamiltonian obtained with the Okub
method will satisfy the correct commutation relations wi
respect to the projections ofP and J onto the two-particle
subspace, however it is difficult to find an effectiveK to
complete the Poincare´ algebra. Similar problems arise whe
the field theory is quantized on the null plane, which leads
a front form of relativistic quantum mechanics.

We have chosen to use the Bakamjian-Thomas met
@18,6# for constructing a set of two-particle generators th
satisfy the Poincare´ algebra. Here the focus is on construc
ing a Poincare´ invariant mass operator. In constructing
mass operator it is important to realize that the relation
495 © 1996 The American Physical Society
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496 54MICHAEL G. FUDA AND YINGFANG ZHANG
tween the quantum field theory mass operator and the qu
tum field theory Hamiltonian is not the same in the insta
and front forms. The instant form mass-square operator
quadratic in the instant form Hamiltonian, while the fron
form mass-square operator is linear in the front form Ham
tonian. As a consequence of this, when the Okubo method
used to obtain a one-particle-exchange interaction to use
two-particle mass operator, this interaction appears linea
in the instant formmassoperator, and linearly in the front
form mass-squareoperator.

We have found@2–4# that the Okubo method for obtain-
ing one-particle-exchange potentials is equivalent to a slig
variation of the standard Feynman diagram rules. The pot
tials can be obtained by first drawing the relevant secon
order Feynman diagrams, and then determining the fo
momentum of the virtual, exchanged particle in eac
diagram by assuming that the total four-momentum is co
served either at the vertex on the right or at the vertex on
left, but not necessarily at both vertices. The potentials a
obtained by adding together the two resulting Feynman-li
amplitudes and dividing by 2. In order to have a model th
is complete in the sense that it leads to a representation of
Poincare´ group, it is necessary to specify other operators
well.

In a Bakamjian-Thomas@18,6# construction of an instant
form model the other operators are usually taken to be
three-momentum operatorP, the canonical spin operator
Jc , and the Newton-Wigner position operatorX; while in
the front form they are usually taken to be threefront form
components of the momentum, denoted collectively he
by P̄, the front form spin operatorJf , and the generators of
the so-calledfront form boosts, denoted here byK3 andB. In
either form only the mass operatorM contains an interaction;
the other operators are assumed to be the same as thos
the corresponding noninteracting system. Instant form ge
erators and front form generators can be constructed from
sets $Mc ,P,Jc ,X% and $M f ,P̄,Jf ,B,K3%, respectively. The
subscripts on the mass operators indicate that the mass
erators associated with the two forms are in general differe
from each other. The instant form and front form generato
will satisfy the Poincare´ algebra exactly as long as the se
$Mc ,P,Jc ,X% and $M f ,P̄,Jf ,B,K3% satisfy certain relatively
simple commutation relations. When the instant and fro
form mass operators obtained with the Okubo method a
examined it is found that they do not satisfy these simp
commutation rules exactly. The approximate instant form i
teractions contain spurious dependence on the total thr
momentum of the two-particle system, while the front form
interactions contain spurious dependence on the orienta
of the null plane. Thus the violations of Poincare´ invariance
that result from the truncation of the quantum field theo
play out differently in the two forms of relativistic quantum
mechanics. The interesting result is that when the spurio
terms are eliminated, the instant form potential and the fro
form potential have essentially the same dependence on
relative momentum variables and spins of the particles.
turns out, however, that the final Lippmann-Schwinger equ
tions that we solve to calculate the scattering amplitudes
somewhat different in the instant and front forms. This is
consequence of the fact that our one-particle-exchange in
actions appear linearly in the instant formmassoperator, but
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linearly in the front formmass-squareoperator. One of our
purposes here is to study the effect of this difference. It
should be emphasized that this difference does not imply tha
there is some fundamental inconsistency between the two
forms of relativistic quantum mechanics; it is simply a con-
sequence of the fact that the necessary approximations tha
are made in deriving the models from the field-theory verti-
ces play out differently in the two forms. Here we compare
numerical results obtained with the two forms in the context
of a fairly realistic one-boson-exchange model of the two-
nucleon system. The exchange mechanisms assumed he
are the same as those employed in our earlier work on the
two-nucleon system@3#, i.e, we assume the exchange ofp,
h, r, v, d, ands mesons. We fit the coupling constants, the
masses of some of the mesons, and the cutoff masses in th
vertex functions to a recent Nijmegen partial wave analysis
of the two-nucleon data@19#; and compare the resulting pa-
rameters. We find no dramatic difference between the two
parameter sets.

The outline of the paper is as follows. Section II simply
gives the relation between the front form and canonical com-
ponents of the four-momentum operator, as well as the rela
tions between the mass operators and Hamiltonians in the
instant and front forms. The relevant features of the Okubo
formalism @17# are summarized in Sec. III. Section IV out-
lines the procedure for deriving two-particle potentials from
field-theory vertices, and also introduces the relative three-
momentum variables that we employ. Section V summarizes
the techniques used to express the potentials obtained wit
the modified Feynman rules in terms of these relative mo-
mentum variables, and also specifies the prescriptions tha
must be applied to the potentials so as to ensure exact Poin
caré invariance. The numerical results for the one-boson-
exchange model of the two-nucleon systems are given in
Sec. VI. A discussion of the results and suggestions for fu-
ture work are given in Sec. VII.

Throughout we use units in which\5c51.

II. MOMENTUM AND MASS OPERATORS

In the instant form and the front form it is convenient to
use respectively, the canonical (c) and front form (f ) com-
ponents of four-vectors and four-vector operators. For the
four-momentum operator we work with the two sets of com-
ponents,

P5~ P̂0,P̂1,P̂2,P̂3!5~Hc ,P!, ~2.1a!

P5~P0,P1,P2,P3!5~ P̄,Hf !, ~2.1b!

where we have used the caret to distinguish the canonica
components from the front form components. HereHc is the
instant form Hamiltonian, P is the three-momentum,
P̄5(P0,P1,P2), andHf is the front form Hamiltonian. In
the instant formP is noninteracting or kinematic and inter-
actions are put intoHc , while in the front formP̄ is kine-
matic and interactions are put intoHf . The relation between
the two sets of components is given by

P05~ P̂01 P̂3!/&, P35~ P̂02 P̂3!/&, ~2.2a!

P'[~P1,P2!5~ P̂1,P̂2!. ~2.2b!
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54 COMPARISON OF INSTANT F
The mass operatorM plays a central role in relativistic
quantum mechanics, and is defined in terms of the two se
of components by

M2[P•P5~ P̂0!22P252P0P32P'
2 . ~2.3!

According to Eq.~2.1! the mass-square operator is quadrat
in the instant form HamiltonianHc , but linear in the front
form HamiltonianHf . We can easily solve Eq.~2.3! for
these Hamiltonians to obtain

Hc5~P21Mc
2!1/2, Hf5~P'

21M f
2!/~2P0!, ~2.4!

where we have put subscripts on the instant and front for
mass operators to indicate that in general they are differe
In Sec. III we outline the Okubo method for constructing
effective Hamiltonians that act in a subspace of the vect
space of a quantum-mechanical system.

III. THE OKUBO METHOD

In the Okubo method@17# the vector space of a system is
divided into two subspaces whose projection operatorsh and
L are orthogonal and satisfy

h1L51. ~3.1!

The basic idea of the method is to construct a unitary oper
tor U that transforms a HamiltonianH according to

H85U21HU, ~3.2!

such that the transformed HamiltonianH8 is block diagonal,
i.e.,

LH8h50. ~3.3!

An effective Hamiltonian that acts only in theh subspace
can then be defined by

Hh[hH8h. ~3.4!

In general, except for some simple models@17#, it is not
possible to findU exactly, and it is therefore necessary to
resort to perturbation theory@1,2,16,17#. In perturbation
theory the Hamiltonian is divided into two parts according t

H5H01H1 , ~3.5!

whereH0 is a solvable Hamiltonian whose eigenstates can
used to construct the projection operatorsh andL. If $uz&% is
a basis for theh subspace where

H0uz&5v~z!uz&, ~3.6!

then to second order inH1, the effective Hamiltonian is
given by @1,2,16,17#

^zuHhuz8&5 K zUH1
1

2
H1F L

v~z!2H0

1
L

v~z8!2H0
GH1Uz8L

1••• . ~3.7!
ts

t.

r

a-

e

The structure of this result is very similar toold-fashionedor
time-ordered perturbation theory. We note that the denom
nators in Eq.~3.7! contain eigenvalues ofH0 which corre-
spond to either the initial state or the final state, and that th
two possibilities appear in a symmetric way.

IV. EFFECTIVE TWO-PARTICLE MODELS

In relativistic quantum mechanics it is usually convenien
to define particle states by boosting states associated with
rest frame of the particle. We will denote the Lorentz trans
formations that we use to boost from rest frames byl g~l!
where the subscriptg distinguishes the various possible
boosts, andl is a timelike unit vector. If we letx symbolize
the components of a four-vector in an arbitrary frame, the
the components of this vector in a rest frame are given by

xgl5 l g
21~l!x, l251, ~4.1!

where the boost has the property

l g~l!~1,0!5l. ~4.2!

As indicated in Eq.~4.1!, the rest-frame components depend
on bothl and the choice of the boost. In the instant form it
is convenient to use the so-calledcanonical boost(g5c)
given by

x̂05l̂0x̂cl
0 1l•xcl , x5xcl1S x̂cl

0 1
l•xcl

l̂011
D l, ~4.3!

while in the front form it is convenient to use the so-called
front form boost(g5 f ) given by

x05&l0xfl
0 , x'5&l'xfl

0 1xfl' . ~4.4!

We note that the first three front form components,x̄
5(x0,x1,x2) transform among themselves under front form
boosts, so that while these boosts are not as well known
the canonical boosts, they possess a technical advantage.

We let u i nhn& denote a rest-frame state of a particle la-
beled n with spin sn , wherehn52sn ,2sn11,...,sn ; and
where in generali n stands for any otherinternal quantum
numbers of interest. For a nucleon,i n stands for its isospin.
We assume that in the subspace of this particle we have
unitary representationUn(a) of the Lorentz group, where
Un(a) is a unitary operator corresponding to a Lorentz trans
formationa. In particular for a three-rotationr , if we assume
that the statesu i nhn& are orthonormal, the action of the uni-
tary operatorUn(r ) corresponding to the rotationr can be
defined by

Un~r !u i nhn&5(
hn8

u i nhn8&Dh
n8hn

~sn!
~r !, ~4.5!

whereD (sn)(r ) is the standard unitary, matrix representation
of SU~2! for the spinsn . We define the states of a particle
with on-shell momentumpn and massmn by

upni nhn&g[Un@ l g~pn /mn!#u i nhn& ~pn
25mn

2!, ~4.6!

497ORM AND FRONT FORM . . .
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498 54MICHAEL G. FUDA AND YINGFANG ZHANG
where we note that different boosts lead to different sing
particle states.

We can take for the basis states for the two-particle su
space the direct product states

up1p2b&g[up1i 1h1&g^ up2i 2h2&g , ~4.7!

whereb is the set

b[$ i 1 ,h1 ; i 2 ,h2%. ~4.8!

These states satisfy the equations

P0up1p2b&g5pup1p2b&g , M0up1p2b&g5Wup1p2b&g ,

~4.9!

whereP0 andM0 are the four-momentum and mass oper
tors for the noninteracting system, and the total fou
momentump and invariant massW are given by

p5p11p2 , W51~p•p!1/2. ~4.10!

We define relative momentum variablesqg for these states
as the three-momentum of particle 1 in a rest frame related
an arbitrary frame as in Eq.~4.1!, therefore we can write

p1gL5@em1
~qg!,qg#5 l g

21~L!p1 ,

p2gL5@em2
~qg!,2qg#5 l g

21~L!p2 , ~4.11!

where the relativistic energies are given by

em~q!5~q21m2!1/2, ~4.12!

and we have defined a timelike unit vectorL by

L[p/W. ~4.13!

We note that Eqs.~4.10! and ~4.11! imply

W5W~q!5em1
~q!1em2

~q!. ~4.14!

Instead of labeling the states~4.7! with (p1 ,p2) we can label
them with ~p,qc! or ~p̄,qf!. We assume that our two-particle
states are normalized according to@3,4#
-

-

-
-

to

g^p1p2bup18p28b8&g

5~2p!32eW~p!d3~p2p8!D~qc!d
3~qc2qc8!dbb8

5~2p!32p0d3~ p̄2 p̄8!D~qf !d
3~qf2qf8!dbb8 ,

~4.15!

where

D~q!5~2p!32em1
~q!em1

~q!/W~q!. ~4.16!

It has been shown previously@2,4# that if the Hamiltonian
H in Eq. ~3.7! is assumed to be an instant form or front form,
quantum field-theory Hamiltonian, appropriate for a particle
exchange model, then the effective instant form and fron
form Hamiltonians obtained with the Okubo method are
given to second order by

c^p1p2buHc
hup18p28b8&c5~2p!3d3~p2p8!

3@2eW
2 ~p!D~qc!d

3~qc2qc8!dbb8

1Ṽc,bb8~p1 ,p2 ;p18 ,p28!#,

~4.17a!

f^p1p2buHf
hup18p28b8& f5~2p!3d3~ p̄2 p̄8!@D~qf !

3d3~qf2qf8!dbb8~p'
21W2!

1Ṽf ,bb8~p1 ,p2 ;p18 ,p28!#,

~4.17b!

where here particles 1 and 2 are the ones that are interacti
through exchange processes; and the interaction termsṼg,bb8
are determined by a slight variation of the standard Feynma
diagram rules. As pointed out in Sec. I, we can obtainṼg,bb8
by first drawing the relevant one-particle-exchange Feynma
diagrams, and then determining the four-momentum of th
virtual exchanged particle in each diagram by assuming th
the total four-momentum is conservedeitherat the vertex on
the right or at the vertex on theleft, but not necessarily at
both vertices. We then add together the two amplitudes, an
divide by 2. As an example, the interaction between two
nucleons due to the exchange of a scalar meson~d or s! is
given by @3#
Ṽg,bb8
b

~p1 ,p2 ;p18 ,p28!5gb
2^ i 1i 2uGbu i 18i 28& f b@~p12p18!2# f b@~p22p28!2#

3
1

2 F ūg~p1 ,h1!ug~p18 ,h18!ūg~p2 ,h2!ug~p28 ,h28!

~p12p18!22mb
2 1~1↔2!G , b5d,s, ~4.18a!
Gd5t1•t2 , Gs51, ~4.18b!

whereu i 1i 2& is an isospin state for the two nucleons. Here the
gb are coupling constants, thetn are isospin vectors for the
nucleons, thef b are form factors which take into account the
extension of the vertices, and theug are Dirac spinors. These
spinors are normalized according to
ūg~pn ,hn!ug~pn ,hn8!52mNdhnhn8
, ~4.19!

and are defined in terms of rest-frame spinorsu(h) by

ug~pn ,hn![S@ l g~pn /mn!#u~hn!, ~4.20!
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54 499COMPARISON OF INSTANT FORM AND FRONT FORM . . .
where for an arbitrary Lorentz transformationa the matrix
S(a) satisfies@20#

S21~a!gmS~a!5am
ngn. ~4.21!

We note that in the instant form and front form the Dirac
spinors are defined in terms of canonical and front form
boosts, respectively.

V. POINCARÉ INVARIANCE

In order to develop a Poincare´-invariant model it is nec-
essary to construct 10 Hermitian generators that satisfy th
Poincare´ algebra@5,6#. A practical way of doing this is by
means of a so-called Bakamjian-Thomas construction@6,18#.
With this procedure the 10 generators are expressed in term
of other operators which satisfy relatively simple commuta
tion rules. In the instant form the generators are usually take
to beHc , P, J, andK ; where the angular momentum opera-
tor J generates three-rotations, andK is the generator of
canonical boosts. We can write@4,6#

Hc5~P21Mc
2!1/2, J5X3P1Jc ,

K52
1

2
~HcX1XHc!2

P3Jc
Mc1Hc

, ~5.1!

whereMc is the instant form mass operator,Jc is called the
canonical spin operator, andX is the Newton-Wigner posi-
tion operator. The only nonzero commutators of the mem
bers of the set$Mc ,P,Jc ,X% are

@Xj ,Pk#5 id jk , @Jcj ,Jck#5 i e jklJcl , ~5.2!

which makes it simpler to construct models for this set tha
for the Poincare´ generators. If the members of the set
$Mc ,P,Jc ,X% satisfy the correct commutation relations, then
the 10 generators$Hc ,P,J,K % defined by Eq.~5.1! satisfy the
Poincare´ algebra. In an instant form model, the mass opera
tor Mc is interacting whileP, Jc , andX are noninteracting.
According to Eq.~5.1! this implies thatHc andK are inter-
acting while the other six generators are noninteracting.

In front form dynamics the 10 Poincare´ generators
are usually taken to beHf ,P̄,J3[e3•J, K3[e3•K , B[~K'

2e33J!/&, andS[~K'1e33J!/&. Heree3 is a unit vector
along the three-axis and' indicates spatial components
transverse to this axis. The three generatorsK3 andB gener-
ate the front form boosts defined by Eq.~4.4!. In the front
form the three generatorsHf andSare taken to be interacting
while the other seven generators are taken to be nonintera
ing. As a consequence of the fact that the front form boos
generators,K3 andB, are noninteracting, the unitary operator
U( l f) that maps a quantum-mechanical state vector from
rest frame to an arbitrary frame is noninteracting; thus it i
simpler to boost state vectors in the front form than in the
instant form. On the other hand, the transverse componen
of the angular momentum,J'5@e33~B2S!#/&, are interact-
ing, which makes the treatment of angular momentum in th
front form more complicated than in the instant form. In the
front form a Bakamjian-Thomas construction focuses on th
set of operators$M f

2 ,P̄,Jf ,B,K3% whereM f
2 andJf are the

front form mass-square and spin operator, respectively. Th
e
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e

e

instant form and front form spin operators differ from eac
other due to the fact that these operators are related to r
frame angular momenta, and the two forms involve differe
rest frames@3,4,6#. The six operatorsP̄, B, andK3 are Poin-
carégenerators, so their commutation relations are part of t
Poincare´ algebra. The commutation relations among the
six operators are satisfied by taking them to be nonintera
ing. In the usual Bakamjian-Thomas construction,Jf is
taken to be noninteracting, which implies@3,6# that in order
to ensure that the members of the set$M f

2 ,P̄,Jf ,B,K3% sat-
isfy the correct commutation relations, it is only necessary
ensure thatM f

2 commute with the other members of the se
If the Poincare´ generators that do not belong to this set a
defined by

Hf[~P'
21M f

2!/~2P0!,

J3[~B2 /P
0!P12~B1 /P

0!P21Jf3,

S[~1/P0!@P'K31HfB1e3

3~M fJf'1P'Jf3!#, ~5.3!

then as long as the members of the set$M f
2 ,P̄,Jf ,B,K3%

satisfy the correct commutation relations, the above gene
tors in combination withP̄, B, andK3 will satisfy the Poin-
caréalgebra.

In ensuring that the various operators satisfy the corre
commutation relations, it is very helpful to work with basi
states that lead to simple representations for these operat
Unfortunately the simple direct product states~4.7! do not
have this property. For the instant form it is convenient
take as basis states@4#

upqcb&[U@ l c~L!#up1cLp2cLb&c ~ instant form!
~5.4!

while for the front form we use@3#

u p̄qfb&[U@ l f~L!#up1 fLp2 fLb&c ~ front form!,
~5.5!

where the kets on the right-hand sides of these equations
defined by~4.5!–~4.8!, and the single-particle momentapngL

are defined by~4.11!–~4.13!. We note that the kets on the
right-hand sides of these equations are both defined as
direct product of single-particle states which are obtained
canonical boosts from the single-particle rest frames. Th
states defined by Eqs.~5.4! and ~5.5! can be expressed as
linear combinations of the simple direct product states~4.7!,
with coefficients that are the elements of a unitary transfo
mation ~see Eq.~3.25! of @3# and Eq. ~3.6! of @4#!. This
implies that Eqs.~5.4! and~5.5! also satisfy the orthogonality
relations~4.15!.

The spin operators have particularly simple, as well
familiar, representations in these new bases@3,4#, i.e.,

^pqci 1h1i 2h2uJc5 (
h18h28

@J~qc!#h1h2 ,h18h28^pqci 1h18i 2h28u,

~5.6a!
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^ p̄qf i 1h1i 2h2uJf5 (
h18h28

@J~qf !#h1h2 ,h18h28^ p̄qf i 1h18i 2h28u,

~5.6b!

where

J~q![I 1^ I 2~ i¹q3q!1S1^ I 21I 1^S2 , ~5.7!

with I n and Sn the unit matrix and spin-matrix vector for
particle n, respectively. For nucleons,Sn5sn /2. The
Newton-Wigner position operator, which only plays a role i
the instant form, has the representation@4#

^pqcbuX5F i¹p2
ip

2eW
2 ~p!G^pqcbu. ~5.8!

It can be shown@3,4# that replacing the basis states
up1p2b&c andup1p2b& f in Eq. ~4.17! with upqcb& and up̄qfb&,
respectively; is equivalent to replacing the Dirac spinors@in
~4.18a!, for example# according to the rules

ug~pn ,hn!→S@ l g~L!#uc~pngL ,hn!,

ug~pn8 ,hn8!→S@ l g~L8!#uc~pngL8
8 ,hn8!, ~5.9!

where

uc~pngL ,hn!5@emn
~qg!1mn#1/2F xhn

~21!n11sn•xgxhn

G ,
xg5

qg
emn

~qg!1mn
, ~5.10!

with

x1.25F10G , x21/25F01G . ~5.11!

According to Eq.~4.17!, in both the instant and front
forms only three of the components of the four-momentu
are conserved, which implies that the final-state, two-partic
rest frame is not the same as the initial one. We see tha
follows from Eq.~4.1! that these two frames are related by

xgL5 l g
21~L!l g~L8!xgL8 , L5p/W, L85p8/W8,

~5.12!

whereW5W~qg! andW85W(qg8). The front form boosts
form a subgroup of the Lorentz group@6#, therefore the Lor-
entz transformation in Eq.~5.12! is a front form boost when
g5 f . In general, the canonical boosts do not form a su
group, however the delta function in Eq.~4.17a! implies that
the boostsl c~L8! and l c~L8! are along the commonp5p8
direction; which in turn implies that the Lorentz transforma
tion in Eq. ~5.12! is a canonical boost wheng5c. In fact it
can be shown that@3,4#

l g
21~L!l g~L8!5 l c~Vg!, Vg5@cosh~zg!,ug sinh~zg!#,

~5.13a!
le
it

-

zc5tanh21F eW~p!2eW8~p!

eW~p!eW8~p!2p2
upuG , uc5

p

upu
,

~5.13b!

z f5 ln~W/W8!, uf5e35~0,0,1!. ~5.13c!

We note that the initial and final rest frames are related by
canonical boost in both forms; with this canonical boos
along the commonp5p8 direction in the instant form, and
along the three-axis in the front form.

By evaluating the invariant momentum transfers that o
cur @in Eq. ~4.18a!, for example# in thexgL frame, and using
Eqs.~5.12!, ~5.13!, and~4.11!; we can express them in terms
of the relative momentum variablesqg andqg8 . The result is

~pn2pn8!25emn

2 ~qg!22emn
~qg!emn

~qg8!cosh~zg!1emn

2 ~qg8!

2~qg2qg8!212~21!n sinh~zg!

3@emn
~qg!ug•qg82emn

~qg8!ug•qg#

12@cosh~zg!21#~ug•qg!~ug•qg8!, n51,2.

~5.14!

The spinor products that occur in Eq.~4.18a! can be ex-
pressed in terms ofqg andqg8 by using Eqs.~5.9!, ~5.10!, and
the relation@3,4#

S21@ l g~L!#S@ l g~L8!#5S@ l c~Vg!#5expS 12 ug•azgD ,
~5.15!

where the components ofa are the usual Dirac matrices.
After making the replacements~5.9! in Eq. ~4.18!, and using
Eq. ~5.15! we find the following scalar meson-exchange po
tential in the spin-isospin space of the two-nucleons:

Vg
b~p1 ,p2 ;p18 ,p28!

5
gb
2Gb

2
f b@~p12p18!2# f b@~p22p28!2#

3F 1

~p12p18!22mb
2 1

1

~p22p28!22mb
2G @emN

~qg!

1mN#@emN
~qg8!1mN#@cosh~zg/2!~12s1•xgs1•xg8!

1sinh~zg/2!~s1•ugs1•xg82s1•xgs1•ug!#

3@cosh~zg/2!~12s2–xgs2•xg8!2sinh~zg/2!

3~s2•ugs2•xg82s2•xgs2•ug!#, b5d,s. ~5.16!

In order to establish Poincare´-invariant instant and front
form models, we now turn our attention to the mass operat
As pointed out above, in the instant form we focus on the s
of operators$Mc ,P,Jc ,X%, and takeP, Jc , andX to be the
same as the operators for the noninteracting system. In or
to ensure Poincare´ invariance it is only necessary to choos
the mass operator so that it commutes withP, Jc , andX; the
other commutation relations of the set$Mc ,P,Jc ,X% are au-
tomatically satisfied by our choice ofP, Jc , andX. With the



l

o

-

r

.

in
m

-

o
r
an

is

tain
ible

we
r-

in

n

ve
-

tor
Eq.
on

ob-
he

b-
-

he
and
me

54 501COMPARISON OF INSTANT FORM AND FRONT FORM . . .
help of Eqs.~5.6a! and ~5.7a! we can show that our mode
will be Poincare´ invariant if the matrix elements of the mas
operator are of the form@4#

^pqcbuMcup8qc8b8&5~2p!32@eW~p!eW8~p!#1/2d3~p2p8!

3^buMc~qc ,qc8!ub8&, ~5.17!

whereMc(qc ,qc8) is a rotationally invariant function ofqc ,
qc8 , and s’s, and is independent of p. Here
ub&5u i 1 ,h1 ; i 2 ,h2& is a spin-isospin state vector for the tw
nucleons. Settingp50 in Eq. ~4.17a!, and using Eqs.~5.1!
and ~5.17!, suggests that anMc(qc ,qc8) with the desired
properties can be defined by

Mc~qc ,qc8!5W~qc!D~qc!d
3~qc2qc8!1

Vc~qc ,qc8!

2@W~qc!W~qc8!#1/2
,

~5.18!

with

Vc~qc ,qc8!5(
b

Vc
b~p1 ,p2 ;p18 ,p28!up5p850 . ~5.19!

Theb5d,s contributions to the sum in Eq.~5.19! are deter-
mined by Eq.~5.16!, while the contributions from pseudo
scalar ~p,h! and vector~r,v! meson exchange are deter
mined by Eqs.~4.11! and ~4.12! of @3#, respectively.

As pointed out above, in constructing a Poincare´ invariant
front form model we focus on the set of operato
$M f

2 ,P̄,Jf ,B,K3%, and chooseP̄,Jf ,B, andK3 to be nonin-
teracting. In order to ensure Poincare´ invariance we then
only need to require that the mass-square operator comm
with P̄,Jf ,B, andK3. We can show@3# that this requirement
will be satisfied if the matrix elements of the mass-squa
operator are of the form

^ p̄qfbuM f
2u p̄8qf8b8&5~2p!32p0d3~ p̄2 p̄8!

3^buM f
2~qf ,qf8!ub8&, ~5.20!

whereM f
2(qf ,qf8) is a rotationally invariant function ofqf ,

qf8 , and thes’s; and is independent ofp̄. Using Eqs.~2.1b!,
~2.3!, ~4.15!, and~4.17b!, we find that aM f

2(qf ,qf8) with the
desired properties can be defined by

M f
2~qf ,qf8!5W2~qf !D~qf !d

3~qf2qf8!1Vf~qf ,qf8!,
~5.21!

with

Vf~qf ,qf8!5(
b

Vf
b~p1 ,p2 ;p18 ,p28!

~uf-dependent terms are dropped!.

~5.22!

The fact that it is necessary to impose the requireme
indicated in Eqs.~5.19! and~5.22! on potentials such as Eq
~5.16! in order to ensure Poincare´ invariance is related to our
use of Bakamjian-Thomas constructions in which th
Newton-Wigner position operatorX in the instant form and
the spin operatorJf in the front form are assumed to be
s

-

s

ute

re

nts

e

noninteracting. There is no fundamental reason forX andJf
to be noninteracting, and in fact in general they can conta
interactions@6,21,22#. The prescriptions adopted here see
to be the simplest possibilities. Another possibility@2# for the
front form is to average over the direction ofuf in Eq. ~5.16!.
This cannot be done analytically, so this prescription com
plicates calculations. According to Eqs.~5.13b!, and~5.13c!,
on shell, i.e., whenW5W8, we havezc5z f50; which im-
plies that the prescriptions~5.19! and~5.22! do not effect the
on-shell limit of Eq.~5.16!. These prescriptions also have n
effect in the nonrelativistic limit. This is true of the othe
one-boson-exchange potentials, as well; therefore we c
think of the prescriptions~5.19! and ~5.22! as defining the
high-energy, off-shell extensions of the potentials. In th
regime the vertex functionsf b@(pn2pn8)

2# come into play,
and since in general these are phenomenological and con
adjustable parameters, our prescriptions are both sens
and practical.

When the prescriptions~5.19! and ~5.22! are applied to
the momentum transfers~5.14! we find that in the instant
form (pn2pn8)

2→@emv
(qc)2emv

(qc8)#
22(qc2qc8)

2, while

in the front form (pn2pn8)
2→2(qf2qf8)

2. Since the front
form result gives better convergence at high momenta,
also adopt it for the instant form. We also improve conve
gence in the front form by approximating the factor@see Eq.
~5.16!# cosh2(z f /2)5(W1W8)2/4WW8 by 1. Both of these
modifications have no effect on the on-shell potential, or
the nonrelativistic limit.

Our final result for the potentials due to scalar meso
exchange is

Vb~qg ,qg8!52gb
2Gb

f b
2@2~qg2qg8!2#

mb
21~qg2qg8!2

@emN
~qg!1mN#

3@emN
~qg8!1mN#~12s1•xgs1•xg8!

3~12s2•xgs2•xg8!, b5d,s. ~5.23!

We see that our instant form and front form potentials ha
the same functional form; the only difference is in the defi
nitions of the relative momentum variablesqg and qg8 @see
Eqs. ~4.11!, ~4.3!, and ~4.4!#. This identity of forms also
occurs with the potentials due to pseudoscalar and vec
meson exchange. With the same prescriptions that led to
~5.23!, the potentials due to pseudoscalar and vector mes
exchange are given by Eqs.~4.31! and~4.32! of @3#, respec-
tively. As pointed out previously@3,23#, the potentials~5.23!,
as well as the pseudoscalar meson-exchange potentials
tained in the same approximation, agree exactly with t
Bonn, one-boson-exchange potentials given by Eqs.~E.32!–
~E.34c! of @13#. The vector-meson-exchange potentials o
tained in the same approximation differ slightly in the so
called tensor-tensor terms.

VI. THE SCATTERING AMPLITUDES

The fact that the instant and front form potentials have t
same dependence on the relative momentum variables
the nucleon spins does not imply that they lead to the sa
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scattering amplitudes. According to Eqs.~5.17!, ~5.18!,
~5.20!, and ~5.21! the mass operators in the two forms a
given by

Mc5M01Vc M f
25M0

21Vf , ~6.1!

where the matrix elements of the potentials are given by

^pqcbuVcup8qc8b8&5~2p!32@eW~p!eW8~p!#1/2d3~p2p8!

3K bU V~qc ,qc8!

2@W~qc!W~qc8!#1/2
Ub8L ,

~6.2a!

^ p̄qfbuVf u p̄8qf8b8&5~2p!32p0d3~ p̄2 p̄8!^buV~qf ,qf8!ub8&,

~6.2b!

with

V~q,q8!5(
b

Vb~q,q8!. ~6.3!

The b5d,s contributions to Eq.~6.3! are given by Eq.
~5.23!.

The transition operators for the two forms satisfy t
equations

TABLE I. One-boson-exchange model parameters obtain
with two forms of relativistic quantum mechanics. All masses a
in MeV, andnb51 except fornr5nv52.

Meson Parameters Front form Instant form

p gp
2/4p 13.740 13.897

gp
2~0!/4p 13.541 13.684

mp 138.03 138.03
Lp 1619.7 1572.7

h gh
2/4p 2.7110 3.4066

gp
2~0!/4p 1.7831 1.6636

mh 548.8 548.8
Lh 1262.4 1000.0

r gr
2/4p 1.0062 1.0309

gr
2~0!/4p 0.56899 0.58296

kr 5.01 5.01
mr 769.0 769.0
Lr 2110.0 2110.0

v gv
2/4p 26.561 29.593

gv
2~0!/4p 11.778 11.451

kv 0.0 0.0
mv 782.6 782.6
Lv 1824.6 1702.5

d gd
2/4p 2.9746 3.6529

gd
2~0!/4p 1.8031 2.0015

md 983.0 983.0
Ld 2089.0 1928.6

s, t50, 1 gs
2/4p 17.957, 8.6603 16.143, 7.9127

gs
2~0!/4p 13.716, 7.4169 13.010, 6.9497

ms 704.66, 534.28 674.72, 516.77
L0 1984.8, 1956.6 2110.0, 2061.7
e

e

Tc~z!5Vc1Vc

1

z2M0
Tc~z!,

Tf~z!5Vf1Vf

1

z22M0
2 Tf~z!. ~6.4!

Since the orthogonality relations for the states that appear
Eq. ~6.2! are the same as Eq.~4.15!, these operator equations
lead to the momentum space,T-matrix equations

Tg~q,q8;z!5V~q,q8!1E d3q9

D~q!

V~q,q9!

Dg~q9;z!
Tg~q9,q8;z!,

~6.5a!

Dc~q;z!52W~q!@z2W~q!#, Df~q;z!5@z22W2~q!#.

~6.5b!

The transition operators,Tg(z), are related to theT-matrix
elements,Tg(qg ,qg8 ;z), as in Eq.~6.2!.

We see that with the reasonably natural procedures th
we have followed in determining the instant and front form
potentials, the only difference in the two forms occurs in th
denominator defined by Eq.~6.5b!. In order to assess the
significance of this difference we have fit our potentials t
the Nijmegen partial wave analysis@19# using both possibili-
ties for Dg~q;z!. For the vertex functions we have used
form that was used earlier by us@3,23#, as well as by other
workers@13,14#, i.e.,

f b@2~q2q8!2#5F Lb
22mb

2

Lb
21~q2q8!2G

nb

, ~6.6!

whereLb is a cutoff mass. The two sets of parameters th
result from the fits are given in Table I, while the deutero
properties and the low-energy parameters are given in Ta
II. The two sets of phases that result from the fits are com
pared with each other, and with the Nijmegen phases,
Figs. 1 and 2. The couplings for thepNN andhNN vertices
have been assumed to be pureg5 couplings, also known as
pseudoscalar coupling; which is consistent with the Bonn
model @13,14#. The parameterskr and kv determine the
strength of the tensor-tensor terms in the vector-meso

ed
re

TABLE II. Deuteron and low-energy parameters. Scatterin
lengths and effective ranges are denoted bya and r , respectively,
with the subscript referring to spin singlet (s) and spin triplet (t).
AS andAD are asymptotic normalization parameters for the deute
on’s S andD components, respectively. The experimental value
are from Table 4.2 of Ref.@10#.

Parameter Front form Instant form Experiment

2ed ~MeV! 2.225 2.224 2.224575
PD ~%! 4.64 4.41
AS ~GeV1/2! 0.3918 0.3938 0.393060.0004
AD/AS 0.0256 0.0257 0.025660.0004
as ~fm! 223.72 223.75 223.74860.010
r s ~fm! 2.71 2.73 2.7560.05
at ~fm! 5.407 5.411 5.41960.007
r t ~fm! 1.737 1.741 1.75460.008
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FIG. 1. Nucleon-nucleonnp bar phase shifts for uncoupled states as a function of the nucleon laboratory kinetic energy. The sol
and dashed lines are the front form and instant form results, respectively. The solid circles are from the Nijmegen partial wave ana@19#.
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exchange potentials. In Table I we have also included pa
eters which measure the coupling strength at z
momentum transfer, i.e.,

gb
2~0!/4p[gb

2f b
2~0!/4p. ~6.7!

The parameters that show the most dramatic chang
going from the instant form to the front form aregh

2/4p and
gd
2 /4p, however these change are compensated to som

tent by the change in the cutoff massesLh andLs ; as can be
seen by comparing the parametersgh

2~0!/4p andgd
2~0!/4p. It

is worth noting that there is quite a bit of variation in t
values forgh

2/4p and gd
2/4p among the various relativisti

Bonn, one-boson-exchange potentials@14#; so it appears tha
in general these parameters are not well determined by fi
to the two-nucleon data. It seems reasonable to conclude
am-
ro-

e in

ex-

e

t
ting
that

dramatic differences between the instant form and the fron
form do not show up in an analysis of the elastic, nucleon
nucleon scattering information; at least for lab kinetic ener
gies below 300 MeV.

VII. DISCUSSION

We have found that our final results for the instant and
front form, one-boson-exchange models for the two-nucleo
system turn out to be quite similar. The Lippmann-
Schwinger equations~6.5!, that we solve to obtain the
nucleon-nucleon scattering amplitudes, differ only in the
nucleon-nucleon propagators. For the instant form thi
propagator is

1

2W~q!@z2W~q!#
, ~7.1!
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FIG. 2. Nucleon-nucleonnp bar phase shifts and mixture parameters for coupled states as a function of the nucleon laboratory
energy. The solid lines and dashed lines are the front form and instant form results, respectively. The solid circles are from the N
partial-wave analysis@19#.
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whereas for the front form we have

1

z22W2~q!
, ~7.2!

the potentialsV~q,q8! are the same. The front form propaga
tor has a practical advantage, for if we writez25W2~k!1i e,
then Eq.~7.2! becomes

1

4~k21 ih2q2!
, ~7.3!

which is the same as the nonrelativistic form. Thus the fro
form potential can be used in a nonrelativistic formalism
-

nt

without refitting to the nucleon-nucleon scattering inform
tion. It is interesting to note that the front form propagat
~7.3! is identical to the one obtained when a Blancenbec
Sugar reduction@8# is applied to the Bethe-Salpeter equati
@7#. This propagator has also been used in developing s
of the relativistic, Bonn, one-boson-exchange potentials@14#;
in particular it has been used for the well-known BonnB
potential. In fact, as pointed out previously@23#; our front
form, one-boson-exchange model turns out to be identica
the Bonn-B model except for a few terms in the tensor-tens
contribution to ther meson-exchange potential. Our insta
form model is similar to the Bonn, one-boson-exchan
models based on the Thompson equation@24#; except for the
just-mentioned difference in ther-meson-exchange poten
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tials, and the fact that the Bonn models assumegmg5 cou-
pling for thep andh mesons, whereas we have assumedg5

coupling.
In a way it is not too surprising that our instant form a

front form potentials come out the same, since they b
derive from Feynman-like amplitudes such as Eq.~4.18!.
However differences arise, essentially for two reasons: in
instant form and front form we use canonical and front fo
spinors, respectively; and in the instant form the total thr
momentump is conserved, while in the front form the firs
three front form components,p̄5(p0,p1,p2), of the total
four-momentum are conserved. What is surprising is that
the most part these differences disappear when we apply
prescriptions that are necessary to achieve Poincare´ invari-
ance. To some extent we forced the identity of the final
tentials by imposing a couple of prescriptions beyond th
necessary to guarantee Poincare´ invariance. Applying the
prescriptions~5.19! and ~5.22! led to meson propagator
given by

1

@emN
~q!2emN

~q8!#22~q2q8!22mb
2 ~7.4!

in the instant form, and by

21

~q2q8!21mb
2 ~7.5!

in the front form. We chose to use the front form propaga
in both cases so as to improve convergence in the ins
form at high momenta. As an alternative to this prescript
we could have stayed with Eq.~7.4! in the instant form, and
modified the instant form vertex functions to improve co
vergence. We improved convergence in the front form
approximating the factor@see Eq. ~5.16!# cosh2(z f /2)
5(W1W8)2/4WW8 by 1. We could have kept this facto
and modified the front form vertex functions to improve co
vergence. We intend to explore these alternatives num
cally, in the future. In this connection, it is intesting to no
that Haidenbauer and Holinde@25# have pointed out that the
Blancenbecler-Sugar reduction@8# of the Bethe-Salpete
equation @7# leads to the meson-propagator~7.5!, while
Gross’s reduction@9,11# leads to Eq.~7.4!.

It appears that once the decision is made to use
Bakamjian-Thomas method@6,18# for constructing Poincare´-
invariant models, there is no simple alternative to the inst
form prescription~5.19!. As pointed out in Sec. V, there is a
alternative prescription for the front form. In thenew picture
formalism for front form dynamics@26# the unit vectoruf ,
defined in Eq.~5.13c!, becomes a variable; and it has be
shown @2# that another plausible prescription for produci
Poincare´-invariant front form models within the Bakamjian
Thomas framework is to average over the direction ofuf .
Although this leads to numerical complications, we intend
explore this possibility in the future.

The basic idea of the Bakamjian-Thomas method is
express the Poincare´ generators in terms of a set of operato
that satisfy simpler commutation rules than the generator
is of course conceivable that Poincare´ invariant few particle
models can be constructed in terms of the generators
rectly. The possibility of doing this by applying the Okub
d
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method@17# simultaneously to the Poincare´ generators of a
quantum field theory has been studied by Glo¨ckle and Müller
@16#, and by one of us@2#. The difficulty here lies with the
use of perturbation theory to determine the unitary transfo
mation that simultaneously block diagonalizes all 10 genera
tors. If, for example, the quantum field theory is formulated
in the instant form, i.e., quantized on a spacelike surface, th
quantum field-theory three-momentum operatorP and angu-
lar momentum operatorJ are noninteracting. The effective
generators that act in the few particle subspace of interest c
simply be taken to be

Ph5hPh, Jh5hJh, ~7.6!

whereh is the projection operator onto this subspace. Th
interacting quantum field theory generators are the Hami
tonianH and the generator of rotationless boostsK , and the
effective few particle generators,Hh and Kh, must be ob-
tained from these by perturbation theory. The commutato
which involve two noninteracting generators, such a
@Pj

h ,Jk
h#, or one noninteracting generator and one interactin

generator, such as@Ph,Hh#, are exactly correct in any order
of perturbation theory; however commutators that involve
two interacting generators, such as@H,K #, are only approxi-
mately correct. This is the reason we have chosen to use t
Bakamjian-Thomas method.

It is clear that the methods described here for constructin
the one-boson-exchange model for the two-nucleon syste
can be extended so as to allow a treatment of more comp
cated exchange mechanisms, such as two-pion exchan
Also the method developed for constructing an exactl
Poincare´-invariant model for the pion-nucleon system@27#
can be applied to the two-nucleon system in order to allow
for coupling toND andDD channels. This will make it pos-
sible to extend the analysis to higher energies, and to ta
inelasticity into account.

It will be of interest to further compare the instant and
front forms. It is known that the various forms of relativistic
quantum mechanics are related by unitary transformation
@28,29#, so in principle any form can be used; however as w
saw here approximations can play out differently in the vari
ous forms. As far as the two-nucleon system is concerne
there does not seem to be any practical advantage of o
form over the other. Most likely this indifference does not
extend to the calculation of electromagnetic form factors an
structure functions, or to the three-nucleon system. It is a
ready known that the front form has certain advantages ov
the instant form with regard to constructing current operator
for composite system. In particular it is possible to develop
sensibly consistent impulse approximation for electromag
netic processes in the front form, but not in the instant form
@6,30#. In going to the three-nucleon system it is necessary t
take into accountcluster separability@6,29,31,22#. Roughly
speaking, this is the requirement that a model of the thre
nucleon system decomposes into a model of the two-nucleo
system and an independent nucleon when this nucleon ha
large spacelike separation from the other two. Because pro
lems with cluster separability arise mainly in connection
with the interacting Poincare´ generators, the implementation
of this requirement plays out differently in the various forms
of relativistic quantum mechanics.
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We conclude by noting that the methods discussed he
can also be applied to few-particle systems in which the in
teractions take place through the exchange of gluons or ph
tons.
e
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