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Axial current conservation in the Bethe-Salpeter approach to the nuclear two-body problem

V. Dmitrašinović
Physics Department, University of Colorado, Nuclear Physics Lab, P.O. Box 446, Boulder, Colorado 80309-0446

~Received 6 June 1996; revised manuscript received 16 September 1996!

We investigate the structure of the one- and two-nucleon axial-current operators necessary for the partial
conservation of the nuclear axial-current elastic matrix element in the one-boson-exchange approximation to
the two-nucleon Bethe-Salpeter equation. We use three models for this purpose:~a! the linear sigma model,~b!
the nonlinear sigma model,~c! a hybrid model, which is, roughly speaking, a linear combination of~a! and~b!.
We construct a partially conserved nuclear axial-current elastic matrix element in models~a! and~c! provided
that the associated nuclear wave functions are solutions to the Bethe-Salpeter equation with a potential made
of one-boson-exchange diagrams. In the nonlinear sigma model the nuclear one-body axial current is partially
conserved by itself, without reference to the nuclear wave function, whereas the two-body axial current partial
conservation is violated by terms of order 1/f p

2 . The complete axial current in models~a! and ~c! and the
one-body axial current in model~b! are applicable to the construction of the deuteron electroweak process
amplitudes, for example. The divergence of the axial-current matrix element is proportional to the pion
absorption nuclear matrix element, which leads to another potential application in the foundation of chiral
perturbation theory for pion-two-nucleon processes. Consistency between the nuclear axial-currents and the
underlying nuclear dynamics in models~a! and ~c! is a new condition imposed by the partial conservation of
the nuclear axial-current matrix element. We also examine conditions imposed on the form of the nucleon
self-energy by the nucleon and meson axial Ward-Takahashi identities, as well as the approximations that
satisfy the said conditions. We show that besides the first Born approximation, the so-called Hartree1random-
phase approximation satisfies chiral Ward-Takahashi idenitities in models~a! and ~c!.
@S0556-2813~96!05512-4#

PACS number~s!: 21.45.1v, 11.30.Rd, 25.30.2c, 11.10.St
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I. INTRODUCTION AND SUMMARY

The search for non-nucleonic degrees of freedom in
clei is an old one. The best-known discovery made thus fa
the observation of the electromagnetic~EM! meson-
exchange currents~MEC! @1#. Close analogy between th
vector and axial-vector currents in the standard model se
to imply the existence of axial MEC as well. The prese
status of axial MEC, however, is not nearly as well est
lished as that of the electromagnetic currents@2#. There may
be several reasons for this state of affairs: For one, ther
substantially less weak interaction data, the measured c
sections being fewer and smaller, than there are EM o
That may explain the absence of conclusive experime
evidence for the existence of axial MEC, so far. Anoth
reason, on the theoretical side, may be that theraison d’etre
for the axial MEC seems somewhat weaker than the one
EM currents: The exact conservation of the nuclear EM c
rent matrix elements has impeccable credentials to be
trasted with ‘‘merely’’ partially conservedaxial current
~PCAC!. It is well known that EM current conservation, o
equivalently gauge invariance, plays a pivotal role in t
‘‘nailing down’’ of the EM MEC. We shall show that PCAC
can be as good a principle for constraining axial currents
gauge invariance is for EM ones. Another reason behind
lesser use of PCAC as a guiding principle may be the
that PCAC is a consequence of bothspontaneouslyandex-
plicitly broken chiral symmetry of the strong interaction
which even in the case of a single nucleon and in the limi
no explicit breaking, i.e., in the chiral limit, is rather comp
cated and not fully understood. Specifically, there are~at
540556-2813/96/54~6!/3247~19!/$10.00
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least! two distinct ways chiral symmetry can be realized
Nature:~i! the linear, and~ii ! the nonlinear realization. The
jury is still out on the question of which realization is th
‘‘right’’ one, or if the question is a meaningful one. Th
standard approach to the axial current in particle physics i
start from the~unphysical! limit of exact chiral symmetry in
which the pion is massless and the axial current exactly c
served, and build on it a ‘‘perturbative’’ expansion in th
chiral symmetry breaking parameters such as the pion m
for the observables in the theory. This procedure, pionee
by Dashen, Weinberg, and others@3–5#, and now referred to
as the chiral perturbation theory (xPT! relies on the nonlin-
ear realization of chiral symmetry implemented via the m
general allowed effectivepN Lagrangian. Efforts at extend
ing this method to nuclear few-body physics began only
cently @6,7#.

It is the purpose of this paper to examine constraints
posed on the nuclear axial two-body currents and the nuc
dynamics by PCAC, within the one-boson-exchange~OBE!
approximation to the two-nucleon Bethe-Salpter~BS! Eq.
@8#. We limit ourselves to the study of three specific mode
one of which is essentially the two-flavor nonlinear sigm
model used in the nuclear applications ofxPT @6,7#, because
we do not see features that are sufficiently common to al
a general discussion, such as the one developed for the
tromagnetic current by Gross and Riska@2#. The problem
here is the same one that appeared in the single-nucleon
there are two different realizations of chiral symmetr
Therefore we examine three typical chiral models of t
pNN interaction and their associated axial currents:~a! the
linear sigma model@4#, ~b! the nonlinear sigma model@3–5#,
3247 © 1996 The American Physical Society
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3248 54V. DMITRAŠINOVIĆ
~c! the hybrid model@4,9–11#, which can roughly be though
of as a linear combination of~a! and ~b! that allows a
nucleon axial couplinggA that is different from unity. All
three of these models can be straightforwardly extende
include isoscalarvector and axial-vector mesons, as well
less than maximalUA(1) breaking@12#. Isovector spin-one
fields, on the other hand, are more difficult to include if w
insist on preserving the chiral symmetry. The mixing of
ovector axial-vector mesons with the pions greatly com
cates the analysis, and will not be pursued here. Furtherm
nonchiral corrections we consider are limited to the fin
pion mass—various smaller chiral-symmetry-break
(xSB! effects, like the pion and nucleon mass splittings a
deviations from the Goldberger-Treiman~GT! relation are
not considered. Extensions to other, reduced, relativistic t
body equations are not examined here either.

In models ~a! and ~c! the nuclear axial current matri
element is shown to beconserved only when the axial on
and two-nucleon operators are consistent with the nucl
wave functions, i.e., with the underlying nuclear dynamic
This result is, to our knowledge, new.1 Thus we have pro-
gressed to the stage where the nuclear axial-current m
elements are at the same level of conceptual developme
the EM ones.2 The stated relativistic dynamics is specified
a BS equation. We base our analysis on~a! axial ~chiral!
Ward-Takahashi identities~WT! for the axial currents, and
~b! validity of the appropriate BS equation in the one-boso
exchange approximation. In this way we essentially follo
the example set by Gross and Riska in their analysis of
current conservation in the two-nucleon problem as
scribed by a BS equation@2#. In contrast to Gross and Riska
however, we find that we cannot introduce arbitrary nucle
and/or meson axial form factors without essentially modi
ing the underlying dynamics. The best example of this is
question of the nucleon axial coupling constant that diff
from unitygAÞ1, which can be thought of as the simplest
all nucleon axial form factors. At least one of the mode
used here, model~a!, does not allow an easy incorporation
such an axial coupling constant. Indeed it is for that rea
that model~b! and in particular model~c! were introduced.
In the nonlinear sigma model, case~b!, there is, however, a
curious exception to the rules valid for models~a! and ~c!,
and a potentially important problem in the implementation
our program: In this model the one-body axial current
~partially! conservedby itself and without any reference t
the nuclear dynamics or wave function. Hence, there is
obligation to include two-body axial currents, as there is
models~a! and~c!. If one nevertheless does so, one finds t
the ~uniquely defined! two-body axial current isnot exactly
conservedeven in the chiral limit. Rather, the two-body cur
rent is only approximately conserved, with a PCAC-violati

1Model ~a! has been considered before by Bentz@13#, but he
worked in configuration space and thus did not specify his result
a form that can be easily compared with ours.
2One of the important lessons learned in the process of const

ing gauge-invariant nuclear EM current matrix elements is that h
ing the correct EM current operators is not enough—the initial- a
final-state wave functions must be solutions to the nuclear dynam
that are consistent with the said currents@2#.
to

-
-
re,

d

o-

r

rix
as

-

-

n
-
e
s
f

n

f

o

t

‘‘remnant’’ of order 1/fp
2 . Although the least well known of

the three, model~c! seems to be the most viable, or at lea
the most adaptable candidate for the role of a chirally inva
ant meson-nucleon field theory: We find both a partially co
served nuclear axial current andgAÞ1. Model ~c! is closely
related to the nonlinear sigma model at the Lagrangian le
but its chiral transformation properties of hadron fields a
linear; therefore we classify it as a linear realization of chir
symmetry. All this indicates that in nuclear two-body app
cations, models with nonlinear realization of chiral symm
try behave substantially differently from the linear one
Two, ~b! and ~c!, of the model nuclear axial-current matri
elements, as well as several of the hybrid model proper
reported here seem to be the first in the literature.

The resulting relativistic nuclear axial-current matrix el
ments in all three models are ready for applications, such
the calculation of electroweak form factors of the deuter
Minimal modifications are necessary for the extension to
elastic matrix elements@the final state is a different~excited
state! solution to the inhomogeneous BS equation with t
same kernel#. Those modifications open the door to applic
tions of this formalism to reactions with astrophysical s
nificance, such as thepp→De1ne in stars@14#. Another line
of potential applications lies in the direction of pion-nucle
processes@7#. All of the partially conserved axial-curren
matrix elements contain terms wherein the axial curren
first ‘‘transformed’’ into a pion~for two flavors, or some
other pseudoscalar meson for higher symmetries! and only
then ‘‘hits’’ the nucleus. These~‘‘pion pole’’ ! graphs, with
the pion propagator ‘‘amputated,’’ define exactly the pio
nuclear absorption/production amplitude3 that is demanded
by PCAC. It is well known that PCAC plays an importa
role in pion-nuclear reactions@1,16#, and thexPT is begin-
ning to see its applications to light nuclei@6,7#. The present
paper provides aconsistentrelativistic field-theoretic formal-
ism for models based on linear realization of chiral symm
try, on which a systematicxPT expansion for pion-nuclea
reactions on few-body nuclei can also be built. In that co
text one must keep in mind, however, that the nonchiral
fects discussed in this paper do not constitute the comp
set ofxSB terms, but rather represent only the leading te
due to the pion mass.4 We shall not concern ourselves wit
nuclearxPT in this paper beyond comments indicating
relationship with the present formalism.

The above results all depend on certain specific assu
tions concerning the form of the nucleon propagator and
axial current vertices, which, as pointed out above, prev
an easy incorporation of weak form factors for the hadro
The simplest approximation that is consistent with these
quirements is the first Born, or the ‘‘tree’’ approximation
the nucleon mass is a constant, and the axial Ward ident

in

ct-
v-
d
cs

3This rule is by no means new, indeed Blin-Stoyle and Tint ma
an attempt at relating pion-deuteron absorption with axial MEC
nuclear beta decay as early as 1967@15#. What is new here is~a! the
demand that the pion absorption/emission Hamiltonian and the t
nucleon axial current beconsistentwith the two-nucleon potentia
binding the nucleus, and~b! the relativistic dynamics.
4Pion-nuclear reactions are particularly sensitive toxSB effects,

due to their being subject to so-called low-energy theorems.
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54 3249AXIAL CURRENT CONSERVATION IN THE BETHE- . . .
are satisfied, but the nucleon cannot have any structure
would manifest itself in a nontrivial axial form factor, o
otherwise. We look for nonperturbative solutions that sati
the Ward-Takahashi identities. The said identities conc
the nucleon axial current, which ‘‘flows,’’ at least some
the time, through a pion. Hence we need a nonperturba
method to describe a nontrivial axial current in the bary
numberB50, rather than in theB52 sector. It seems only
natural that, in a closed self-consistent approximation to
nuclear dynamics, the crossed channels be described b
same, or at least closely related set of diagrams,5 as those in
the ‘‘direct’’ channel. TheB50 channel is whereNN̄
~bound! states live, besides mesons. Some of the latter, s
as the pseudoscalars, are subject to strict constraints imp
by chiral invariance. Hence, we have to show that anyNN̄
dynamics that is produced by our model~s! does not spoil the
chiral symmetry of the mesons with the same quantum n
bers. That we show in an approximation that is one s
below the ‘‘true’’ one-boson exchange approximation a
does not exist in theB52 sector: in the Hartree plus rando
phase approximation~H1RPA!6 @17#. H 1 RPA is the only
nonperturbative approximation consistent with our assum
tion that the nucleon self-energy shows no off-sh
variation.7

This paper falls into five sections. After the Introductio
in Sec. II we briefly review the elements of our three mod
and of the methods used to solve them. Section III is devo
to the construction of the partially conserved axial curr
matrix elements in the three models. The proof of par
conservation of the axial current matrix elements is shown
Sec. IV. In Sec. V we examine chiral symmetry in theNN̄
sector. The proof of chiral Ward identities is shown in S
V B. In Sec. VI we summarize and discuss our results.

II. PRELIMINARIES: THE MODELS AND THE METHOD

A. The models

In this paper we confine ourselves to two flavors, i.e.,
three SU~2! L^SU(2)R.O(4) symmetric models. The mini

5Conservation laws, such as the baryon number conservation,
prevent certain channels from receiving contributions from som
the diagrams.
6Whenever we say RPA, we mean relativistic RPA. Through

this paper we workin vacuo.
7Though this approximation has been used widely in many-b

physics, nevertheless we do not consider it a realistic one in
NN̄ sector. The true one-boson exchange approximation can
made self-consistent and chirally invariant by addition of the
called Fock term@17# to the above mentioned Hartree one-bo
Schwinger-Dyson~SD! equation. This new, Hartree-Fock, approx
mation provides a self-consistent nonperturbative meson c
structure to the nucleon, which in turn modifies its electrowe
properties~form factors and static moments!. Although we do not
pursue further that line of research in this paper, we conside
significant to inform the reader that the present Hartree1RPA ap-
proximation is the lowest one on a systematically expanda
‘‘tree’’ of self-consistent, relativistic, symmetry-preserving nonpe
turbative approximations.
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mal set of degrees of freedom includes nucleon and p
fields. As discussed in the Introduction, we shall work w
three models, two of which involve an additional scalar is
scalars meson field. We can add, one independently fro
the other, the isoscalar vector (v) and axial vector (f 1) me-
sons to all three models without disturbing the chiral sy
metry and without adding any new terms to the axial curre
The same cannot be said of the isovector vector (r) and axial
vector (A1) mesons which have to~a! be inserted togethe
into the theory in order to preserve chiral invariance,~b!
involve intricate mixing between the pion and the longitud
nal component of the axial vector meson, and~c! demand
introduction of new terms into the axial current. All of th
makes the analysis of axial current conservation substant
more complicated with ther,A1 mesons than without them
For this reason we exclude the isovector spin-one mes
from the present paper.

1. The linear sigma model

The Lagrangian density8 of the linear sigma model is
given by

L5c̄ i ]”c2g0c̄@s1 ig5p•t#c1 1
2 ~]mf!22V~f2!,

~1!

where

f5~s,p!,

and

V~f2!5«s2 1
2 m0

2f21
l0

4
~f2!2. ~2!

We assume herel0 andm0
2 are positive, which ensures spon

taneous symmetry breaking at the first Born~tree! approxi-
mation level, and«52 f pmp

2 which ensures explicit break
ing of the chiral symmetry.9

The vector No¨ther ~isospin! current in this model reads

Jm
a5S c̄gm

t

2
c D a1~p3]mp!a, ~3!

whereas the axial-vector No¨ther current is

Jm5
a 5S c̄gmg5

t

2
c D a2~p]ms2s]mp!a. ~4!

Now we choose a stable, positive-parity ground state of
model, which means shifting the sigma field by its vacuu
expectation valuefp , and call the shifted scalar fields. The
interaction potential in the new field reads

ay
f

t

y
e
be
-

d
k

it

le

8We use the ‘‘West Coast’’ metric defined by the signatu
~1222!; most other conventions coincide with those in Ref.@18#.
9With explicit chiral symmetry breaking induced in this way on

must be careful to identify and separate out terms that come a
due to the inadequacy of an approximation from those due to
plicit chiral symmetry breaking.
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3250 54V. DMITRAŠINOVIĆ
V5 1
2 ~ms

2s21mp
2p2!2Sms

22mp
2

2 f p
D s~s21p2!

1Sms
22mp

2

8 f p
2 D ~s21p2!2. ~5!

The resulting scalar meson and pion propagators are

Ds~p2k!5
1

~p2k!22ms
2 , ~6a!

Dp~p2k!5
1

~p2k!22mp
2 , ~6b!

where the scalar meson and pion masses squared are

ms
252m0

213l0v
2, ~7a!

mp
252m0

21l0v
2. ~7b!

The axial current becomes

Jm5
a 5S c̄gmg5

t

2
c D a2~p]ms2s]mp!a1 f p]mpa. ~8!

Note that the axial coupling constant of the nucleon is
actly identity in the Born approximation to the linear sigm
model.10 That has been one of the primary reasons for go
to the nonlinear sigma model.

2. The nonlinear sigma model

The Lagrangian density of Weinberg’s nonlinear sigm
model @20# is given by

L5c̄@ i ]”2M #c1 1
2R@R~]mp!22mp

2p2#

1RS f

mp
D ~ c̄gmg5tc!•]mp

2RS gpNN

2gAM
D 2~ c̄gmtc!•~p3]mp!, ~9!

where

R5F11S gpNN

2gAM
D 2p2G21

5F11S 1

2 f p
D 2p2G21

,

and

S f

mp
D5S gA2 f p

D5S gpNN

2M D .
The nonlinear function of the pion fields is to be understo
as a series expansion in powers ofp/ f p . Manifestly, such a
series has infinitely many terms, which makes it impossi
to use in its entirety with our present methods. Rather,
Feynman rules and the associated No¨ther currents are also

10The one-loop correction is finite and negative@19#, which only
exacerbates the problem.
-

g

d

e
e

defined by the power series expansion.~That is essentially
the method used in chiral perturbation theory.! The above
form of the nonlinear Lagrangian~9! differs by the presence
of gA in the denominators of the factors (gpNN/2MgA) from
the standard textbook version@21#. The source of this differ-
ence, as emphasized by Weinberg@20#, is the need to have
both thegA factor in the axial current and the empirical
correct two-pion-nucleon contact interaction.

The exact vector and axial-vector No¨ther currents in the
nonlinear sigma model are rather complicated, so they
not be shown here—they can be found in Ref.@22#. We
expand the Lagrangian~9! to the second nontrivial order, i.e
to O( fp

22), and find

L5c̄@ i ]”2M #c1
1

2 S 12
p2

2 f p
2 D ~]mp!22

1

2 S 12
p2

4 f p
2 Dmp

2p2

1S f

mp
D ~ c̄gmg5tc!•]mp2S 1

2 f p
D 2

3~ c̄gmtc!•~p3]mp!1•••, ~10!

which is essentially the Lagrangian that Schwinger fi
wrote down in Ref.@23#. He introduced a new set of chira
transformation laws that only leave the Lagrangian~10! in-
variant to first order in 1/f p . Unfortunately, this means tha
the associated No¨ther current isnot exactly conserved, but
only up to a remnant of finite order in 1/f p , in this case
O( f p

22).
For our purposes it ought to be sufficient to expand

erything throughO( fp
21). This means keeping terms of th

two lowest orders in the polar-vector No¨ther~isospin! current

Jm
a5S c̄gm

t

2
c D a1~p3]mp!aS 12

p2

2 f p
2 D 2S gA2 f p

D
3~ c̄gmg5tc3p!a1•••, ~11!

since the leading term is ofO( f p
0 ), and three lowest orders in

the axial-vector No¨ther current

Jm5
a 5gAS c̄gmg5

t

2
c D a1 f p]mpaS 12

p2

2 f p
2 D 2S 1

2 f p
D

3~ c̄gmtc3p!a1•••, ~12!

since the leading term is ofO( f p). Such power expansion
can be tedious, so one may ask if there is a model wh
incorporates the best of models~a! and~b!? Such a model is
considered next.

3. The hybrid sigma model

The Lagrangian density of the hybrid sigma model@4,9–
11# is given by

L5c̄ i ]”c2g0c̄@s1 ig5p•t#c1 1
2 ~]mf!22V~f2!

1S gA21

f p
2 D F S c̄gm

t

2
c D •~p3]mp!

1S c̄gmg5

t

2
c D •~s]mp2p]ms!G , ~13!
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FIG. 1. The two-body Bethe-Salpeter~BS!
equation~a! and the kernel~relativistic potential!
of the BS equation in the one-boson-exchan
~OBE! approximation~b!. The dashed line denote
a pion; a zig-zag line denotes a sigma meson,
solid line denotes a nucleon and the double so
line in ~a! represents a deuteron. The ‘‘blob’’ in~a!
represents the deuteron wave function, and the b
represents the relativistic potential.
lly
he

er

o
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ng
r-

dy
P

wheref5(s,p) is a column vector andV is the same po-
tential as in the linear sigma model, Eq.~2!. The hybrid
model is the first and, so far, the only example of a chira
symmetric field theoretic model that implements t
‘‘mixed’’ pion-nucleon coupling@25#. This model predicts a
definite value for the Gross mixing paramet
l5(1/gA).0.8 in the~first! Born approximation.

The vector No¨ther ~isospin! current in this model reads

Jm
a5S c̄gm

t

2
c D a1~p3]mp!a1S gA21

f p
2 D

3H Fp3S c̄gm

t

2
c3pD Ga1sS p3c̄gmg5

t

2
c D aJ .

~14!

This is an exact result—no power expansion was used. N
the additional pieces due to the nonlinear terms in the
grangian Eq.~13!, which modify the EM current, as well
The partially conserved axial-vector No¨ther current in this
model reads

Jm5
a 5S c̄gmg5

t

2
c D a2~p]ms2s]mp!a1S gA21

f p
2 D

3F S c̄gmg5

t

2
c•pD pa1s2S c̄gmg5

t

2
c D a

1sS c̄gm

t

2
c3pD aG , ~15!

@compare with Eq.~4! in Ref. @9# and, Eq.~9! in Ref. @10#,
which apparently can be traced back to Eq.~5.53! in Ref.
@11##. After shifting the sigma field we find that the axia
vector Nöther current~15! can be written as
te
-

Jm5
a 5gAS c̄gmg5

t

2
c D 1 f p]mp1~s]mp2p]ms!a

1S gA21

f p
2 D F S c̄gmg5

t

2
c•pD pa1s~2 f p1s!

3S c̄gmg5

t

2
c D a1~ f p1s!S c̄gm

t

2
c3pD aG . ~16!

Note that the first two terms on the right-hand side of~16!
are identical with those in the nonlinear sigma model ax
current~12!, i.e., the nucleon has acquired an axial coupli
constantgAÞ1 without any expansions, which was the pu
pose of this model. The vector and axial currents~14!, ~15!,
~16! are, to the best of our knowledge, new results.

B. Nuclear two-body equation

Having defined our models, we next specify the two-bo
dynamics. This is done by specifying the form of the OBE
kernelV(p,k;P) ~‘‘the relativistic potential’’!, Fig. 1~b!, in
the BS equation, Fig. 1~a!,

S~1!
21~p1!S~2!

21~p2!c~p,P!5 i E d4k

~2p!4
V~p,k;P!c~k,P! ,

~17!

where

p15~ 1
2 P1p!, ~18a!

p25~ 1
2 P2p! ~18b!

are the four-momenta of the two nucleons.
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1. The linear sigma model

For example, in the linear sigma model and within t
OBE approximation, the relativistic potential Fig. 1~b! reads

V~p,k;P!5V~p2k!

5g0
2@Ds~p2k!2~t~1!•t~2!!g~1!

5 g~2!
5 Dp~p2k!#,

~19!

whereDs(p2k),Dp(p2k) are given in Eq.~6a! and ~6b!.

2. The nonlinear sigma model

In the nonlinear sigma model, in the OBE approximati
the relativistic potential reads

V~p,k;P!5V~p2k!

5S f

mp
D 2~t~1!•t~2!!~p2k!mg~1!

m g~1!
5

3~p2k!ng~2!
n g~2!

5 Dp~p2k!, ~20!

where the pion propagator is given in Eq.~6b!. We note that
the coupling constant is regular in the chiral limitmp→0,
although that is not obvious from the above form.

3. The hybrid sigma model

In the hybrid model the OBE potential is a linear comb
nation of the linear and nonlinear sigma model potent
plus additional ‘‘cross terms’’ due to diagrams with one ve
tex determined by the ‘‘linear sigma model part’’ of th
model, and the other determined by the ‘‘nonlinear part’’

V~p,k;P!5V~p2k!

5g0
2@Ds~p2k!2~t~1!•t~2!!Dp~p2k!g~1!

5 g~2!
5 #

2S gA21

2 f p
D ~t~1!•t~2!!Dp~p2k!

3H g0@~p2k!mg~1!
m g~1!

5 g~2!
5 2g~1!

5

3~p2k!mg~2!
m g~2!

5 #2S gA21

2 f p
D

3~p2k!mg~1!
m g~1!

5 ~p2k!ng~2!
n g~2!

5 J , ~21!

where, again, the sigma and the pion meson propagator
shown in Eq.~6a!, ~b!. Despite its complicated structure, th
potential~21! can be represented by the same graphs as
potential in the linear sigma model, Fig. 1~b!.

III. NUCLEAR AXIAL CURRENT MATRIX ELEMENT

Following Ref. @2#, we write the axial current two-body
bound state matrix element as
s
-

are

he

^Jm5
a &5E d4p

~2p!4
E d4p8

~2p!4
c̄~p8,D8!

3Jm5
a ~p8,D8;p,D !c~p,D ! , ~22!

where

Jm5a~p8,D8;p,D !52 i ~2p!4S~2!
21~p2!

3d4~p22p28! j ~1!
m5a~p18,p1!

2 i ~2p!4S~1!
21~p1!

3d4~p12p18! j ~2!
m5a~p28,p2!

1J2 body
m5a ~p8,D8;p,D !, ~23!

is the sum of two parts:~i! the one-body, Fig. 2~a!, and~ii !
the two-body current, Fig. 2~b!. The four-momenta
p18,p28,p1 ,p2 are related to the relative and center-of-ma
~CM! four momentap8,D8,p,D via Eqs.~18a!, ~b!. We shall
also need the pion absorption nuclear matrix element, wh
we define as follows:

FIG. 2. Feynman diagrams contributing to the one-~a! and the
two-body axial current elastic matrix element~b!. The circle with a
cross denotes a complete axial current single nucleon verte
depicted in Fig. 3 and a wavy line denotes an external axial curr
The box in~b! denotes a two-body, or meson-exchange axial c
rent.
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FIG. 3. The complete single-nucleon axi
current vertex~a!, the single-meson axial curren
vertex~b!, and the nucleon-pion axial current ve
tex ~c!. Here a wavy line denotes an extern
axial current, solid line is a nucleon, the dash
line represents the pion and the ‘‘vertex’’~dot!
converting the axial current into the pion is pro
portional to the pion decay constant. A zig-za
line denotes the sigma meson. Other, ‘‘mixed
nucleon-meson axial-current vertices such as
ones appearing in Fig. 4~b!,~c! are constructed
analogously from a ‘‘direct’’ and a ‘‘pion pole’’
term.
a
n

s

di-

tor
ere

s we
nt

ich
^Pa&5E d4p

~2p!4
E d4p8

~2p!4
c̄~p8,D8!

3Pa~p8,D8;p,D !c~p,D !, ~24!

where, as above, the total pion absorption operator bre
down into the sum of the one-body and the two-body pio
absorption operators

Pa~p8,D8;p,D !

52 i ~2p!4S~2!
21~p2!d

4~p22p28!P~1!
a ~p18,p1!

2 i ~2p!4S~1!
21~p1!d

4~p12p18!P~2!
a ~p28,p2!

1P2 body
a ~p8,D8;p,D !. ~25!

A. The one-body current

~a! The one-body current of thei th nucleon in the linear
sigma model, as defined in Fig. 3~a!, i.e., with a unit~‘‘nor-
malized’’! nucleon axial coupling reads

j m5
~ i !a~pi8,pi !5Fgm

~ i !22 f pg0S qm

q22mp
2 D Gg5

~ i !
t~ i !
a

2
, ~26!

and satisfies the elementary fermion axial Ward-Takaha
identity
ks

hi

qm j ~ i !
m5a~pi8,pi !5@S~ i !

21~pi8!g5
~ i !1g5

~ i !S~ i !
21~pi !#

t~ i !
a

2

2 f pS mp
2

q22mp
2 D g0t~ i !

a

5@S~ i !
21~pi8!g5

~ i !1g5
~ i !S~ i !

21~pi !#
t~ i !
a

2

2 f pS mp
2

q22mp
2 DP~ i !

a ~pi8,pi !, ~27!

which follows from the algebraic identity

q”g552Mg51S21~p1q!g51g5S
21~p!, ~28!

and the Goldberger-Treiman~GT! relationM5g0f p . The
second line on the right-hand side~r.h.s.! of Eq. ~27! is the
single-nucleon pion absorption operator multiplied by the
vergence of the axial current factorf pmp

2 and the pion
propagatorDp(q). We see that the pion absorption opera
arose naturally from the divergence of the axial current. H
we have tacitly assumed that neitherg0 nor f p have any
momentum dependence. This is a crucial assumption, a
will see later, for it implies a momentum-independe
nucleon self-energy, i.e., a constant nucleon massM . This, in
turn, limits the type of one-body nuclear dynamics to wh
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the present discussion pertains~see Sec. V!, and implicitly
limits the extensions to models with form factors.

~b! In the nonlinear sigma model the GT relation is mo
fied to gAM5gpNNf p , wheregA51.26 and the one-body
current reads

j m5
~ i !a~pi8,pi !5gAgm

~ i !g5
~ i !

t~ i !
a

2
2 f p

f

mp
S qm

q22mp
2 Dq” ~ i !g5

~ i !t~ i !
a

5gAFgm
~ i !2S qm

q22mp
2 Dq” ~ i !Gg5

~ i !
t~ i !
a

2
. ~29!

Consequently the appropriate WT identity becomes

qm j ~ i !
m5a~pi8,pi !52 f pS mp

2

q22mp
2 D S f

mp
D q” ~ i !g5

~ i !t~ i !
a

52 f pS mp
2

q22mp
2 DP~ i !

a ~pi8,pi !, ~30!

i.e., the single-nucleon pion absorption operator in t
model multiplied by the usual factorfpmp

2 and the pion
propagator, thus renderingall one-nucleon~on- or off-shell!
axial-current matrix elements partially conserved in t
model. That, of course, also means that~i! whatever two-
nucleon currents there are, they will also have to be parti
conserved separately, i.e., by themselves,~ii ! there is no
compellingneedfor such two-body currents.

~c! In the hybrid model, on the other hand, the simp
version of the GT relationM5g0f p still holds, but there are
two kinds of pNN couplings: ~i! the ~‘‘ordinary’’ linear
sigma model! pseudoscalar couplingg0, and ~ii ! the new
pseudovector coupling (gA21)/2f p . When added to~i!,
term ~ii ! increases the value of the ‘‘effective’’ on-she
pNN coupling togAg05gpNN . The complete axial curren
vertex, for off-shell nucleons, is now

j m5
~ i !a~pi8,pi !5gAgm

~ i !g5
~ i !

t~ i !
a

2
2 f pS qm

q22mp
2 D

3S g01gA21

2 f p
q” Dg5

~ i !t~ i !
a . ~31!

Contract this withqm to find

qm j ~ i !
m5a~pi8,pi !5$gAq”2@2g0f p1~gA21!q” #%g5

t~ i !
a

2

2 f pS mp
2

q22mp
2 D Fg01S gA21

2 f p
D q” Gt~ i !

a

5@q”22M #g5

t~ i !
a

2
2 f pS mp

2

q22mp
2 D

3Fg01S gA21

2 f p
D q” Gt~ i !

a

5@S~ i !
21~pi8!g5

~ i !1g5
~ i !S~ i !

21~pi !#
t~ i !
a

2

2 f pS mp
2

q22mp
2 DP~ i !

a ~pi8,pi !, ~32!
s

ly

r

which is closely related to the WT identity~27! of the linear
sigma model. Thus we see that a renormalized~‘‘non-
trivial’’ ! axial coupling constantneed notcause the ‘‘inverse
propagator’’ part of the whole one-body axial current dive
gence to vanish, as it does in the nonlinear sigma mo
Rather, those parts of the one-body current that are indu
by the ‘‘nonlinear part’’ of the interaction are partially tran
verse by construction, whereas the ‘‘linear part’’ satisfies
nontrivial WT identity ~32!.

The one-body axial currents in the three models we c
sidered are essentially identical for on-shell nucleo
modulo the overall factorgA . Yet, they satisfy two pro-
foundly different kinds of WT identities. This is a conse
quence of two different realizations of chiral symmetry bei
implemented in these models.

B. The two-body current

1. The linear sigma model

The two-body axial current in the linear sigma mod
Fig. 4~a!, reads

J2 body
m5a ~p18,p28;p1 ,p2!5g0

2@g5
~1!t~1!

a Ds~p22p28!Dp~p182p1!

3 j sp
m5a~p282p2 ;p12p18!1~1↔2!#,

~33!

where the sigma-pion axial current depicted in Fig. 3~b!
reads

j sp
m5a~k8,k!52F ~k81k!m1S qm

q22mp
2 D ~ms

22mp
2 !G ,

~34!

and satisfies the elementary Ward identity

qm j sp
m5a~k8,k!52@Dp

21~k8!2Ds
21~k!#2 f pS mp

2

q22mp
2 D gspp .

~35!

This, in turn, leads to the following WT identity for th
complete two-body current

qmJ2 body
m5a ~p18,p28;p1 ,p2!

52g0
2$g5

~1!t~1!
a Ds~p22p28!Dp~p182p1!

3@Ds
21~p282p2!2Dp

21~p182p1!#1~1↔2!%

2 f pS mp
2

q22mp
2 D gsppg0

2@g5
~1!t~1!

a Ds~p22p28!

3Dp~p182p1!1~1↔2!#

52g0
2$g5

~1!t~1!
a @Dp~p182p1!

2Ds~p22p28!#1~1↔2!%2 f pS mp
2

q22mp
2 D

3P2 body
a ~p18,p28;p1 ,p2!. ~36!
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2. The nonlinear sigma model

The elementary building block of the two-body axial cu
rent in the nonlinear sigma model is the new axial-curren
nucleon-pion vertex

Gm5~A!
~ i !a ~p8,k;p,q!5S 1

2 f p
Dgm

~ i !~t~ i !3p!a, ~37!

stemming from the third term in Eq.~12!, wherep is the
isospin wave function of the pion. Another, ‘‘compensa
ing,’’ piece comes from the second interaction term in E
~9!, ~10!:

Gm5~B!
~ i !a ~p8,k;p,q!5S 21

4 f p
D S qm

q22mp
2 D ~k1q!ng~ i !

n

3~t~ i !3p!a, ~38!

FIG. 4. Diagrams contributing to the two-body axial curre
deuteron elastic matrix element considered in this paper: The
nucleon axial, or meson-exchange current~MEC! in the linear
sigma model~a!; the axial MEC in the nonlinear sigma model~b!;
the axial MEC in the hybrid sigma model~c!, where the graphica
symbols have the same meaning as in Fig. 3. For each diag
explicitly shown there is another diagram that can be obtained f
the first one by the exchange of nucleon No. 1 by the nucl
No. 2.
–

.

leading to the complete vertex

Gm5
~ i !a~p8,k;p,q!5Gm5~A!

~ i !a ~p8,k;p,q!1Gm5~B!
~ i !a ~p8,k;p,q!

5S 1

2 f p
D Fgm

~ i !2
1

2S qm

q22mp
2 D ~k1q!ng~ i !

n G
3~p3t~ i !!

a. ~39!

Hence, the two-body axial current in the nonlinear sigm
model, shown in Fig. 4~b!, reads

J2 body
m5a ~p18,p28;p1 ,p2!

5 igAS 1

2 f p
D 2~t~1!3t~2!!

a

3H Fg~1!
m 1

1

2S qm

q22mp
2 D ~p182p12q!ng~1!

n G
3~p282p2!ng~2!

n g~2!
5 Dp~p282p2!2~1↔2!J .

~40!

Note the factor 1/2 in front of the second term in Eq.~40!,
which can be traced back to the third line of Eq.~10!. That
factor is the source of axial-current nonconservation in t
model, within the present approximation, even in the ch
limit. If the said factor were unity, the axial current would b
partially conserved. As it stands, however, this MEC do
not conform with the tenets of PCAC. To be sure, this was
be expected: the nonlinear sigma model as we have used
this paper, is defined only throughO( fp

21), and the noncon-
serving term isO( fp

22).

3. The hybrid sigma model

There are three kinds of axial MEC’s in this model.
~a! First, the sum of the familiar linear sigma model MEC

Eq. ~33! and a variation obtained from it by replacing th
pseudoscalarpNN coupling with a pseudovector one in Fig
4~a!,

J2 body,~A!
m5a ~p18,p28;p1 ,p2!

52g0F S g01S gA21

2 f p
D ~p182p1!ng~1!

n Dg5
~1!t~1!

a

3Ds~p22p28! j sp
m5a~p282p2 ;p12p18!

3Dp~p182p1!1~1↔2!G , ~41!

where j sp
m5a(k8,k) is defined in Eq.~34!. This MEC has the

following divergence:

o-

m
m
n
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qmJ2 body,~A!
m5a ~p18,p28;p1 ,p2!

5g0F S g01S gA21

2 f p
D ~p182p1!ng~1!

n D g5
~1!t~1!

a

3„Ds~p22p28!2Dp~p182p1!…1~1↔2!G
2 f pS mp

2

q22mp
2 DP2 body,~A!

a ~p18,p28;p1 ,p2!. ~42!

~b! There is a purely pionic axial MEC, very much as
the nonlinear sigma model of the previous subsection.@One
of two main differences between the hybrid and the non
ear sigma model is that in the former we have two kinds
pNN couplings~pseudoscalar and pseudovector! at the sec-
ond vertex versus pure pseudovector in the latter.# Its el-
ementary building block is new axial-current–pion-nucle
vertex, shown in Fig. 3~c!, which consists of two parts:

G~ i !c8
m5a

~p8,k;p,q!5 i S gA21

2 f p
Dg~ i !

m ~p3t~ i !!
a, ~43!

stemming from the second line in Eq.~12!, and

G~ i !c9
m5a

~p8,k;p,q!5 i S gA21

2 f p
D S qm

q22mp
2 D ~k2q!ng~ i !

n

3~p3t~ i !!
a, ~44!

coming from the second interaction term in Eq.~13!. It is in
this second term that we find the crucial difference from
nonlinear sigma model: there is no factor 1/2 multiplying t
second term. When put together the two yield a new ax
current–nucleon-pion vertex@Fig. 3~c!#,

G~ i !c
m5a~p8,k;p,q!5 i S gA21

2 f p
D Fg~ i !

m 2S qm

q22mp
2 D ~k1q!ng~ i !

n G
3~p3t~ i !!

a, ~45!

which satisfies the WT identity

qmG~ i !c
m5a~p8,k;p,q!5 i S gA21

2 f p
D Fkng~ i !

n 1S mp
2

q22mp
2 D

3~k1q!ng~ i !
n G ~p3t~ i !!

a. ~46!

@The complete nonlinear sigma model vertex~39! doesnot
satisfy this WT identity due to the aforementioned factor
1/2. This is the second major difference between the hyb
and the nonlinear sigma models.# This leads to the following
two-body current, depicted in Fig. 4~b!:
-
f

e

l-

f
id

J2 body,~B!
m5a ~p18,p28;p1 ,p2!

5 i S gA21

2 f p
D ~t~1!3t~2!!

aH S g01S gA21

2 f p
D

3~p282p2!ng~2!
n Dg~2!

5 Fg~1!
m 1S qm

q22mp
2 D

3~p282p22q!ng~1!
n GDp~p282p2!2~1↔2!J ,

~47!

with the divergence

qmJ2 body,~B!
m5a ~p18,p28;p1 ,p2!

5 i S gA21

2 f p
D ~t~1!3t~2!!

aH S g01S gA21

2 f p
D ~p28

2p2!ng~2!
n D g~2!

5 ~p282p2!ng~1!
n Dp~p282p2!2~1↔2!J

2 f pS mp
2

q22mp
2 DP2 body,~A!

a ~p18,p28;p1 ,p2!, ~48!

~c! The third two-body axial current in the hybrid sigm
model is thes-exchange MEC. Its elementary building bloc
is the new axial-current–nucleon-sigma meson vert
graphically identical to the vertex shown in Fig. 3~c! when
the outgoing pion is replaced by a sigma, which toget
with its compensating piece, coming from the second int
action term in Eq.~13!, reads

G~ i !C
m5a~p8,k;p,q!5S gA21

2 f p
D F2gm

~ i !g5
~ i !2S qm

q22mp
2 D

3~k1q!ng~ i !
n g~ i !

5 Gt~ i !
a , ~49!

and satisfies the WT identity

qmG~ i !C
m5a~p8,k;p,q!5S gA21

2 f p
D F ~qn2kn!g~ i !

n 2 f pS mp
2

q22mp
2 D

3~k1q!ng~ i !
n Gg5

~ i !t~ i !
a . ~50!

This leads to the followings-exchange two-body current
Fig. 4~c!:

J2 body,~C!
m5a ~p18,p28;p1 ,p2!5g0S gA21

2 f p
D Ft~1!

a Ds~p282p2!

3S 2g~1!
m g~1!

5 2S qm

q22mp
2 D

3~q1p282p2!ng~1!
n g~1!

5 D
1~1↔2!G , ~51!
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with the divergence

qmJ2 body,~C!
m5a ~p18,p28;p1 ,p2!

5g0S gA21

2 f p
D @t~1!

a Ds~p282p2!~q2p281p2!ng~1!
n g~1!

5

1~1↔2!#2 f pS mp
2

q22mp
2 DP2 body,~C!

a ~p18,p28;p1 ,p2! .

~52!

The total two-body axial current is the sum of the tw
body axial currents~A-C! ~41!, ~47!, ~51!. This is a new
result, as is the pion absorption two-nucleon operator defi
by PA1B1C . The linear sigma model result, Eq.~33!, might
be retrievable from the configuration space work by Be
@13#. The axial meson exchange current~40! in the nonlinear
sigma model is not acceptable as a result within the BS eq
tion approach due to its violation of PCAC. The comple
axial-current matrix elements, defined in Eq.~22! as the sum
of the relevant one- and two-body axial currents, obey PC
in the linear and hybrid sigma models as we shall show
the next section. In the nonlinear sigma model only the o
body axial current ought to be used in the matrix eleme
where the nuclear wave function isnot constrained by
PCAC. The total axial currents are ready for their applic
tions, provided the respective BS relativistic wave functio
are used for the linear and the hybrid models. For use
weak interactions the necessary polar-vector weak curre
to be calculated using the same Lagrangian as for the a
current and applying the Gross-Riska method@2#.

IV. CONSERVATION OF NUCLEAR AXIAL CURRENT
MATRIX ELEMENTS

We can effectively separate this task into an evaluation
the divergences of the one- and two-body currents using
above Ward identities.

A. One-body axial current divergence

The generic form of the divergence of the axial one-bo
current in the linear and hybrid sigma models is

qm^J1 body
m5a &5E d4p

~2p!4
E d4p8

~2p!4
c̄~p8,D8!H 2 i ~2p!4

3d4~p22p28!S~2!
21~p2!FS~1!

21~p18!g5
~1!

t~1!
a

2

1g5
~1!S~1!

21~p1!
t~1!
a

2 G2 i ~2p!4d4~p12p18!

3S~1!
21~p1!FS~2!

21~p28!g5
~2!

t~2!
a

2

1g5
~2!S~2!

21~p2!
t~2!
a

2 G J c~p,D !2 f pS mp
2

q22mp
2 D

3^P1 body
a &. ~53!
d

z

a-

C
n
-
t,

-
s
in
is
ial

f
e

y

Now we use the BS equation~17! to write this as

qm^J1 body
m5a &5E d4p

~2p!4
E d4p8

~2p!4
c̄~p8,D8!

3HV~p82p2 1
2 q!g5

~1!
t~1!
a

2
1g5

~1!
t~1!
a

2

3V~p82p2 1
2 q!1V~p82p1 1

2 q!

3g5
~2!

t~2!
a

2
1g5

~2!
t~2!
a

2
V~p82p1 1

2 q!J
3c~p,D !2 f pS mp

2

q22mp
2 D ^P1 body

a &, ~54!

which is as far as simplification of this term can go witho
specifying the relativistic potentialV. We emphasize again
that the above formula holds for the linear and hybrid mod
only; the nonlinear model contains only the pion absorpt
term and is independent of the potential. We will now exa
ine the one-body current divergence, model by model.

1. Linear sigma model

We insert Eq.~19! into Eq. ~54! above and simplify to
find

qm^J1 body
m5a &5g0

2E d4p

~2p!4
E d4p8

~2p!4
c̄~p8,D8!

3$Ds~p82p2 1
2 q!g5

~1!t~1!
a 2Dp~p82p2 1

2 q!

3g5
~2!t~2!

a 1Ds~p82p1 1
2 q!g5

~2!t~2!
a

2Dp~p82p1 1
2 q!g5

~1!t~1!
a %c~p,D !

2 f pS mp
2

q22mp
2 D ^P1 body

a &. ~55!

2. Nonlinear sigma model

As a consequence of the Ward identity Eq.~30!, the
nuclear axial one-body current divergence matrix elemen
equal to the nuclear one-body pion absorption matrix e
ment, independently of the nuclear wave functions

qm^J1 body
m5a &52 f pS mp

2

q22mp
2 D ^P1 body

a &. ~56!

This fact alleviates the need for a two-body axial current
this model.

3. The hybrid model

In the hybrid model theNN potential Eq.~21! consists of
the linear sigma model potential Eq.~19! plus three other
terms, which we shall call the ‘‘mixed’’~two! terms and the
‘‘nonlinear’’ ~one! term. The latter is essentially identical, u
to an overall multiplicative factor, to theNN potential in the
nonlinear sigma model. Upon inserting the hybrid poten
~21! into Eq. ~54! above and simplifying we find
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qm^J1 body
m5a &5E d4p

~2p!4
E d4p8

~2p!4
c̄~p8,D8!S g02@Ds~p82p2 1

2 q!g5
~1!t~1!

a 2Dp~p82p1 1
2 q!g5

~1!t~1!
a 1~1↔2;q↔2q!#

1 i S gA21

2 f p
D 2~t~1!3t~2!!

a@~p82p2 1
2 q!ng~2!

n g~2!
5 ~p82p2 1

2 q!mg~1!
m Dp~p82p2 1

2 q!

2~1↔2;q↔2q!#1g0S gA21

2 f p
D $@t~1!

a ~p82p2 1
2 q!ng~2!

n g~2!
5 Dp~p82p2 1

2 q!1~1↔2;q↔2q!#

1 i ~t~1!3t~2!!
a@~p82p1 1

2 q!ng~1!
n g~2!

5 Dp~p82p1 1
2 q!2~1↔2;q↔2q!#% Dc~p,D !

2 f pS mp
2

q22mp
2 D ^P1 body

a & . ~57!

B. Two-body axial current divergence

1. Linear sigma model

Using the two-body WT identity~36!, we see that the divergence of the axial two-body current in the linear sigma m
reads

qm^J2 body
m5a &5E d4p

~2p!4
E d4p8

~2p!4
c̄~p8,D8!H g02@g5

~1!t~1!
a @Dp~p182p1!2Ds~p22p28!#1~1↔2!#

2 f pS mp
2

q22mp
2 DP2 body

a ~p8,D8;p,D !J c~p,D !

52E d4p

~2p!4
E d4p8

~2p!4
c̄~p8,D8!$g0

2@Ds~p82p2 1
2 q!g5

~1!t~1!
a

2Dp~p82p2 1
2 q!g5

~2!t~2!
a 1Ds~p82p1 1

2 q!g5
~2!t~2!

a 2Dp~p82p1 1
2 q!g5

~1!t~1!
a #%c~p,D !

2 f pS mp
2

q22mp
2 D ^P2 body

a &. ~58!

But, comparison of this result with Eq.~55! shows that the first term on the left-hand side~l.h.s.! of Eq. ~58! is exactly the
negative of the first term in the one-body current divergence~55!, leading to

qm^J1 body
m5a 1J2 body

m5a &52 f pS mp
2

q22mp
2 D ^P1 body

a 1P2 body
a &, ~59!

which completes the proof of partial conservation of the axial-current matrix element in the linear sigma model.

2. Nonlinear sigma model

The axial two-body current divergence is

qm^J2 body
m5a &52 igAS gA

2 f p
D 2~t~1!3t~2!!

aE d4p

~2p!4
E d4p8

~2p!4
c̄~p8,D8!$ 1

2 ~p182p11q!ng~1!
n ~p282p2!ng~2!

n g~2!
5 Dp~p282p2!

2~1↔2!%c~p,D !2 f pS mp
2

q22mp
2 D ^P2 body

a &

5O~ f p
22!2 f pS mp

2

q22mp
2 D ^P2 body

a &. ~60!

This is manifestly not conserved even in the chiral limit: a term ofO( f p
22) remains, as mentioned earlier. It is interesting

note that the same MEC diagram is conserved when evaluated between on-shell nucleon states. This is a ra
illustration of differences between on- and off-shell nucleons. Future studies ought to take the present analysis one st
in powers of 1/fp , which procedure ought to produce the correct leading-order axial MEC in the nonlinear sigma mo
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3. The hybrid model

The divergence of the axial two-body current in the hybrid sigma model reads

qm^J2 body
m5a &5E d4p

~2p!4
E d4p8

~2p!4
c̄~p8,D8!S 2g0

2@Ds~p82p2 1
2 q!g5

~1!t~1!
a 2Dp~p82p2 1

2 q!g5
~2!t~2!

a

1Ds~p82p1 1
2 q!g5

~2!t~2!
a 2Dp~p82p1 1

2 q!g5
~1!t~1!

a #2g0S gA21

2 f p
D $@t~1!

a ~p82p2 1
2 q!ng~2!

n g~2!
5

3Dp~p82p2 1
2 q!1~1↔2;q↔2q!#2 i ~t~1!3t~2!!

a@~p82p1 1
2 q!ng~1!

n g~2!
5 Dp~p82p1 1

2 q!

2~1↔2;q↔2q!#%2 i S gA21

2 f p
D 2~t~1!3t~2!!

a@~p82p2 1
2 q!ng~2!

n g~2!
5 ~p82p2 1

2 q!m

3g~1!
m Dp~p82p2 1

2 q!2~1↔2;q↔2q!# Dc~p,D !2 f pS mp
2

q22mp
2 D ^P2 body

a &, ~61!
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where we used the elementary Ward identity Eq.~35!. But,
this is the negative of the one-body current divergence~57!,
modulo terms ofO( f pmp

2 ),

qm^J1 body
m5a 1J2 body

m5a &52 f pS mp
2

q22mp
2 D ^P1 body

a 1P2 body
a &,

~62!

which completes the proof of partial conservation of t
axial current in the hybrid sigma model.

C. Summary and discussion

The axial one- and two-body current operators derived
Sec. III and graphically depicted in Figs. 2, 3, and 4, a
their nuclear matrix elements are the main results of
paper. We have shown that these nuclear axial-current m
elements are partially conserved in the OBE potential
proximation to the two-nucleon dynamics. In two, the line
and the hybrid, of three chiral models considered the tw
body currents and consistent nuclear wave functions pla
crucial role in the proof of PCAC. In the third~the nonlinear
sigma! model, however, the one-body current obeys PC
by itself, irrespective of the nuclear wave functions us
The corresponding two-body axial current is not conserv
leaving a divergence ofO( f p

22), even in the chiral limit. The
remedy for that is, presumably, to keep going to higher
ders in the expansions of the axial-current operator and of
relativistic potential in powers of 1/f p , which will further
increase the order in 1/f p of the chiral divergence remnan
Such axial-current matrix elements can be used in the ev
ation of electroweak processes involving the deuteron,
example, which arenot very sensitive to the divergence o
the axial current. Processes such as the low-energy
production/absorption/scattering are not to be evalua
without a careful inclusion of all possible chiral-symmetr
breaking (xSB! effects, since the results are highly sensiti
to the latter.

Thus we have learned how to ensure~partial! conserva-
tion of the nuclear axial-current elastic matrix element
two-nucleon nuclei based on the Bethe-Salpeter equation
~almost! chirally invariant nuclear dynamics. To our know
n
d
is
rix
-
r
-
a

.
d,

-
he

u-
r

on
d

r
nd

edge, the nonlinear and hybrid sigma model results are n
The linear sigma model has been treated by Bentz@13# but
with an emphasis on formal renormalization questions an
configuration space.11 We suspect, but have not proven, th
a similar analysis can be carried through for at least so
three-dimensional reductions of the BS equation, such as
Gross@2,25# and the Blankenbecler-Sugar@26# equations.

Another lesson stemming from our deliberations is
some importance for the pion-nuclear physics: the div
gence of the axial current matrix element yields, due
PCAC and the pion-pole dominance, the correct soft-p
nuclear absorption/emission amplitude with otherwise
changed initial and final states~which need not coincide!. In
other words, our procedure determines automatically
pion-nuclear amplitudes that are consistent with chiral sy
metry of the underlying nuclear dynamics. The rule is
follows: Take the diagrams entering Fig. 2, as defined
their respective models, and remove the external axial c
rent and the pion propagator from the pion-pole diagram
see, e.g., Figs. 3, 4, to find the consistent nuclear pi
absorption/emission graphs.~The initial and final states nee
not be the same as long as they both satisfy the same
equation.! This prescription is by no means new—Blin
Stoyle and Tint@15# knew about it almost thirty years ago
Rather, it is the emphasis on the consistency between
reaction mechanism and the underlying nuclear dynam
that removes thead hocnature of many such calculation
@15,27#.

The above shown proofs of axial current matrix eleme
~partial! conservation crucially depend on the validity of e
ementary axial Ward-Takahashi identities, such as Eqs.~27!,
~30!, which typically involve the divergence of an axial cu
rent vertex and various particle propagators. These prop
tors differ from one approximation to another. In all of th
above considerations we used propagators with constant,

11The controversy about the presence or absence of cancella
between the two-body and wave-function renormalization ter
arising in the papers of Bentz@13# and Zhuet al. @24# cannot be
resolved on the basis of the present work without further deta
calculations.
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3260 54V. DMITRAŠINOVIĆ
four-momentum squared independentself-energies.12 That
fact greatly restricts the shape and form of the axial curr
vertices used. For example, neither electroweak nor str
nucleon and/or pion form factors are allowed by this cho
of propagator.13 We will show in the next section that such
nucleon self-energy is closely tied to the so-called Hart
approximation to the one-body Schwinger-Dyson~JD! equa-
tion which in turn plays a crucial role in maintaining chir
symmetry in theNN̄ channel.14

In conclusion we emphasize that the chiral-symmet
breaking (xSB! effects are notcompletein our three models.
There are many sources of nonchiral corrections, such as
aforementioned pion and nucleon mass differences, de
tions from the Goldberger-Treiman~GT! relation, isospin-
breaking effects in thepN coupling constants, etc. Indee
each source of isospin breaking corrections in nuclear ph
ics is also a source of nonchiral corrections. The latter
mittedly constitute effects smaller than those of the p
mass itself, but are not entirely without consequences.15 Such
nonchiral terms are not always important, but when they
they may carry the day. ThesexSB effects arenot included
in our simple versions of these models~which does not mean
that they cannot be incorporated!. Moreover, the way of in-
cluding thexSB pion mass term into, say, the nonline
sigma model is not unique@22#. Fortunately, that ambiguity
does not afflict the vertices we use in this calculation, bu
is sufficiently important to cause a discrepancy of up to
factor of 2 in the calculation of thep2p scattering lengths
@22,23,20#. Careful extensions of these models beyond
chiral limit are the subject of chiral perturbation theo
(xPT! and thus beyond the purview of the present article

V. CHIRAL SYMMETRY IN THE NN̄ SYSTEM

So far we have only been concerned with axial curr
conservation in the baryon numberB52 sector of the two

12One can only have a theoretician’s prejudice about the viab
of that assumption: the self-energy is not an observable exce
the pole of the propagator, where it equals the observed mass
13One can, of course, introduce purely transverse structures

the vertices byfiat, à la Gross and Riska@2#, but that is not a very
satisfactory solution since it introduces further uncertainties in
form of new free parameters and is essentiallyad hoc. We will seek
a solution that provides thenucleonwith a ‘‘meson cloud’’ struc-
ture that is consistent with thenucleardynamics implemented, ye
is sufficiently flexible to allow for additional substructure due t
e.g., the quarks.
14Hartree plus random phase approximation~H1RPA! is not the

only approximation that satisfies these conditions on the s
energies: the first Born approximation satisfies them as well.~That
was the tacit assumption all along, since we used the bare m
parameters in all of the derivations!. Rather, H1 RPA is the only
nonperturbativeapproximation that does so.
15As an illustration of this point, note that even in the limit o

current quark masses going to zero, the charged pions retain a
of .35 MeV, only the neutral pion becoming massless. The sou
of this mass, non-negligible on nuclear physics scale, is the
interaction within the pion. In the nonchiral case, the latter produ
only a small~4.6 MeV! pion mass difference.
t
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tnucleon problem. In the following we shall briefly consid
theB50 sector, mostly to show the interdependence of
parently unrelated parts of nuclear dynamics and in part
lar the importance of self-consistency, i.e., of the one-bo
SD equation for the nucleon, in preserving chiral symme
in this sector of the linear sigma model and its relative w
isoscalar scalar mesons, the hybrid model. It turns out tha
such models one must make the theory self-consisten
order to preserve the underlying chiral symmetry. This w
be shown next in an approximation that is, however, one s
short of the ‘‘true’’ one-boson exchange approximation16 in
theNN̄ channel: in the H1RPA, Fig. 5. The latter is consis
tent with our assumption that the nucleon self-energy has
four-momentum squared dependence. The nonlinear si
model receives only a vanishing contribution from the H
tree term to the one-body SD equation, thus rendering
H1RPA trivial therein. The H1RPA in hybrid models is
nontrivial only when at least one isoscalar scalar meson

y
at

to

e

f-

el

ass
e
M
s

16The true one-boson exchange approximation can be made
consistent, along with being chirally invariant, by addition of t
so-called Fock term to the one-body SD equation. Such an
panded approximation provides a nonperturbative meson c
structure to the nucleon, which modifies its electroweak proper
such as the form factors and the EM and axial static mome
These statements will not be proven here.

FIG. 5. Schwinger-Dyson equations defining the Hartree1
RPA approximation: the vacuum alignment equation~a!, the one-
nucleon, or the gap equation~b!, and the one-meson, or theNN̄
Bethe-Salpeter equation~c!; ~a 1 b! constitute the Hartree, and~c!
the RPA approximation. The dashed double line in~c! represents
a dressed pion, and the hatched bubbles together with the zig
line leading to it represent the sigma meson vacuum expecta
values.
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present, as it is in our hybrid model. In that model we c
reduce the H1RPA analysis to that in the linear sigm
model.

We start by reviewing the H1RPA scheme and its prop
erties. The most important property of H1RPA is that it
preserves the underlying chiral symmetry of the theory. T
symmetry is made manifest in three properties of the obs
ables, or chiral Ward identities:~i! the Goldstone theorem, o
the masslessness of the pion mode in the chiral limit,~ii ! the
axial Ward-Takahashi identity for the nucleon~27!, or con-
servation of the on-shell nucleon axial current elastic ma
element, and ~iii ! the Goldberger-Treiman relatio
fpgpNN5M , whereg0ÞgpNN between the pion decay con
stant f p , the pion-nucleon coupling constantgpNN and the
constituent nucleonM . We shall prove them one by one.17

A. Hartree plus random phase approximation

The Hartree1 RPA approximation can be defined b
three Schwinger-Dyson integral equations:~i! the zero-body,
or vacuum equation, Fig. 5~a!, ~ii ! the one-fermion, or gap
equation, Fig. 5~b!, and~ii ! the one-meson, or two-fermion
i.e., Bethe-Salpeter equation shown in Fig. 5~c!. Tradition-
ally @17,29#, the lowest order approximation goes under t
name of Hartree for the gap equation, that correspond
keeping only the diagrams in Fig. 5~a! and ~b!; and the
‘‘chain,’’ or random phase approximation~RPA! for the two-
body equation, where only the diagrams in Fig. 5~c! are
kept.18

The Bethe-Salpeter equation for theNN̄ scattering ampli-
tudes is separable and has as the exact solution in
H1RPA the following expression:

2 iDp,s~k!5
2 i

k22Sp,s
~RPA!~k!

, ~63!

whereS (RPA)(k) consists of a single one-nucleon-loop pola
ization diagram and one ‘‘tree’’ diagram shown in Fig. 5~c!.
Note that the above solution is just a geometric series
S (RPA)(k). The Hartree nucleon self-energyS (H) is momen-
tum independent, but the RPA scalarPs

(RPA)(k) and pseudo-
scalarPp

(RPA)(k) polarization functions@Fig. 5~c!# depend on
the four-momentum squaredk2. The Schwinger-Dyson equa
tions now read

v5l0

v3

m0
2 1

i

m0
24g0MNfE d4p

~2p!4
1

p22M2 , ~64a!

17The axial WT identities in the linear sigma model, especially
nucleons immersed in nuclear matter, have been investigated b
University of Tokyo group and W. Bentz in particular, see@28#. The
overlap of the present paper with those cited in Ref.@28# seems
minimal, however.
18As shown by Barnes and Ghandour@30#, the Hartree1 RPA

can equally well be viewed as a variational calculation in
Schrödinger representation of quantum field theory~QFT! @31,32#.
The associated ansatz for the ground-state wave functional
Gaussian one, thereby earning the title of Gaussian functiona
proximation for the method@31,32#.
n

is
v-

x

e
to

he

in

S~H!5M5M01g0v, ~64b!

Sp
~RPA!~k!52m0

21l0v
21g0

2Pp
~RPA!~k!, ~64c!

Ss
~RPA!~k!52m0

213l0v
21g0

2Ps
~RPA!~k!. ~64d!

Note that Eq.~64b! is nothing but the Goldberger-Treima
~GT! relation for Dirac fermions (gA51), which becomes
exact in the chiral limit~here that means vanishing ba
nucleon massM050). Several comments are in order her

~i! Note that the nucleon self-energyS (H) is a
k-independent constantM , in contrast to the pion and sigm
self-energiesSp,s

(RPA)(k) that have receivedk-dependent con-
tributions from the nucleon loop diagram in Fig. 5~c!. We
have thus introduced a distinction between nucleons and
sons in this approximation.19 The first Born approximation
can be obtained from the H1RPA by setting all nucleon-
loop contributions in Eqs.~64a!, ~64c!, ~64d! equal to zero.
Equation~64a! remains unchanged, however.

~ii ! These self-energies satisfy the following algebra
identities that will be useful in the proof of chiral Ward iden
tities:

2 iPp
~RPA!~k!54NfE d4p

~2p!4
1

p22M222Nfk
2I ~k!,

~65a!

2 iPs
~RPA!~k!54NfE d4p

~2p!4
1

p22M2

22Nf~k
224M2!I ~k!, ~65b!

where we have introduced the logarithmically divergent
tegral

I ~k!5E d4p

~2p!4
1

@p22M2#@~p1k!22M2#
, ~66!

which plays an important role in subsequent calculations
~iii ! It is important to appreciate that Eqs.~65a! and~65b!

are a result of a formal manipulation of divergent integra
In order to make this procedure legitimate one must regu
~‘‘cut off’’ ! this and all other divergent integrals appearing
these calculations in a chirally invariant manner, i.e., so a
retain the above formal relations. We will therefore hand
them as if they were Pauli-Villars~PV! regularized@18# even
though we will not indicate that explicitly, in order to kee
the notation as simple as possible. This step is particul
important if one decides to treat this calculation as an ‘‘
fective field theory,’’ i.e., if one does not renormalize, b
rather keeps the momentum cutoff, as one often does
nuclear few-body physics. It is then crucial to ensure that t
cutoff does not spoil the chiral WT identities.

r
the

a
p-

19It is perhaps worth noting that the present H1 RPA can be
viewed as incomplete: one does not have any one-boson-loop
grams. Introduction of the said graphs does not make a chang
principle, since all of the chiral Ward identities can be preserved
shown in Ref.@33#.
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B. Proof of chiral Ward identities

In order to prove the Goldstone theorem in the chiral lim
(M050), we divide Eq.~64a! by v, and then use the GT
relation ~64b! to rewrite it as

15l0

v2

m0
2 1

i

m0
24g0

M

v
NfE d4p

~2p!4
1

p22M2 ,

2m0
21l0v

2524ig0
2NfE d4p

~2p!4
1

p22M2 . ~67!

Now we insert this into Eqs.~64c!, ~64d! to find

Sp
~RPA!~0!524ig0

2NfE d4p

~2p!4
1

p22M21g0
2Pp

~RPA!~0!,

~68a!

Ss
~RPA!~0!52l0v

224ig0
2NfE d4p

~2p!4
1

p22M2

1g0
2Ps

~RPA!~0!. ~68b!

Next we apply Eqs.~65a!, ~65b!

Sp
~RPA!~0!524ig0

2NfE d4p

~2p!4
1

p22M2

14ig0
2NfE d4p

~2p!4
1

p22M2

50, ~69a!

Ss
~RPA!~0!52l0v

224ig0
2NfE d4p

~2p!4
1

p22M2

14ig0
2NfE d4p

~2p!4
1

p22M218ig0
2NfM

2I ~0!

52l0v
218ig0

2NfM
2I ~0!

52l0v
224M2

g0
2

g2
. ~69b!

The functiong(k) that appears in these equations is defin
by

g22~k!522NfiI ~k!5g22Fp~k!, ~70a!

g225~]k2Pp
~RPA!!k250 , ~70b!

Fp~k!5I ~k!/I ~0!. ~70c!

Equation~69a! guarantees the existence of a massless G
stone mode in the pseudoscalar isovector channel, whe
Eq. ~69b! determines the mass of the scalar isoscalar me

Since the dynamically generated quark massM that enters
all these expressions is determined by the gap equa
M5S (H), one finds in the H1RPA approximation that

2 iDp~k!5
2 i

Z~k!k2
, ~71a!
t

d

d-
as
n.

on

2 iD s~k!5
2 i

Z~k!@k22Ss8 ~k!#
, ~71b!

where

Z~k!512
g0
2

g2~k!
, ~72a!

Z~k!Ss8 ~k!52l0v
224M2S g0g D 2. ~72b!

We deliberately left Eqs.~70a!–~c!, ~72a!–~b! in a form in
which they can be rendered finite either by the process
renormalization, or by keeping a momentum cutoff in t
integrals.

Equations~71a!, ~b! summarize the linear sigma model
H1RPA: the validity of the gap equation and the GT relati
ensures the existence of a massless pseudoscalar exci
that is associated with the pion as the Goldstone mode of
linear sigma model model. Furthermore they also ensure
conservation of the nucleon’s axial current~CAC! in
H1RPA. To prove this last claim, we start from the on
nucleon axial current as given in Fig. 6~a!:

FIG. 6. Diagrams contributing to the conserved nucleon~a! and
meson~b! axial current matrix elements in Hartree1 RPA. The
nucleon effective axial current~encircled cross! in ~b! is defined in
~a!. Compare with Fig. 3~a!,~b!.
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j m5
a 5gmg5

ta

2
1 i @v24g0MiI ~q!#qmiDp~q!g0g5t

a .

~73!

We contract Eq.~73! with qm to find

qm j m5
a 5qmgmg5

ta

2
2q2@v24g0MiI ~q!#Dp~q!g0g5t

a

5qmgmg5

ta

2
2q2@v24g0M iI ~q!#

3
1

q2~124g0
2i I ~q!!

g0g5t
a

5qmgmg5

ta

2
2g0vg5t

a

5~p82p!mgmg5

ta

2
2Mg5t

a

5@S21~p8!g51g5S
21~p!#

ta

2
, ~74!

which proves that the H1 RPA nucleon axial currentj m5
a

and propagatorS(p) satisfy the WT identity~27!, ~32!, as
noted. Note that we have used the vacuum and one-body
equations~64a!, ~64b! on several occasions in these proo
Without them, i.e., without self-consistency, the proof wou
have been impossible in the linear and the hybrid sig
models.

Similarly, the reader can convince himself that the on
meson axial current defined in Fig. 6~b! and thep,s meson
propagators~63!, ~71a!, ~b! satisfy the WT identity~35!.20

Thus we have demonstrated the necessity of a self-consi
gap equation for the chiral invariance of the solutions to
few-body nuclear dynamics in the present approximati
This completes our discussion of Hartree1 RPA in the lin-
ear sigma model.

Similar considerations hold in the hybrid sigma mod
within H1RPA. Finally, as far as the nonlinear sigma mod
is concerned, self-consistency does not seem to make a
ference since there are no scalar mesons in the model.
calar scalars are the only mesons that make the Hartree
equation nontrivialin vacuo, i.e., at zero density.

VI. SUMMARY AND CONCLUSIONS

In summary, in this paper we have done the following
We constructed the No¨ther currents in three typica

chirally symmetric hadronic models. These currents in
hybrid model of Refs.@11,10,9# are new.

We constructed one- and two-nucleon axial current ope
tors that are necessary for the construction of the parti
conserved nuclear axial current matrix elements in th
models. The resulting nuclear axial current matrix eleme
are new and ready for applications.

20If the reader has trouble proving this, let him consult Sec. III
and in particular Eq.~3.14! of Ref. @34#.
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We have proven partial conservation of the nuclear ax
current matrix elements in the baryon numberB52 sector
under the assumption of validity of axial Ward-Takahas
identities for nucleon and meson vertices. We showed
these WT identities are true for vertices in the first Bo
approximation for the three models considered. We d
cussed the need for consistency between the axial cur
operators and the nuclear two-body dynamics, as defined
the Bethe-Salpeter equation within the one-boson-excha
approximation.

We examined the relation between the WT identities a
the one-body Schwinger-Dyson~SD! equation. We estab
lished and discussed the relation between the Hartree1 ran-
dom phase approximation in the linear sigma model and
two-body equation in theB50 sector.

We proved the Goldstone theorem, the Goldberg
Treiman relation and axial-current conservation in the H
tree1 random phase approximation to theB50 sector, and
showed the interdependence between this sector and
Ward identities in theB52 sector.

We havenot attempted to do the following.
Include the vector and axial vector mesons.
Examine the chiral symmetry breaking effects beyond

terms induced by the finite pion mass.
Include form factors for nucleons or mesons, either el

troweak or strong. We believe that this problem is inextric
bly related to the question of the meson cloud around h
rons, that, as pointed out above, is closely tied to the F
terms and the vector and axial vector mesons.

Include Fock terms in the self-consistency equation~see
comments above!.

Discuss the chiral symmetry in relativistic reductions
the Bethe-Salpeter equation, such as the spectator~Gross!
and the Blankenbecler-Sugar equations.

Treat mesons in a self-consistent way when work
within the Hartree1 RPA, as was done in Ref.@33#.

Axial current~partial! conservation ought to be an impo
tant criterion in the construction of the elastic parit
violating electron or neutrino nuclear scattering matrix e
ments. Despite their great importance for nucle
astrophysics @35,14#, the axial two-body, or meson
exchange, currents had not, to our knowledge, been ex
ined from the viewpoint of the principle of partial conserv
tion of the axial current~PCAC! in a relativistic BS equation
formalism, with the exception of work by Bentz@13#. The
present paper presents a solution to that problem. We h
not, as yet, applied our results to specific physical proces

Furthermore, we have not tackled the problem of chi
symmetry in theNN̄ system beyond the Hartree1 RPA
approach in this paper. This is somewhat unsatisfactory s
one of our conclusions was that we have to go beyond H
tree1 RPA in order to achieve the true chirally invaria
OBE approximation that dresses the nucleon with a ‘‘mes
cloud’’ to the same degree as it binds the nucleons in
nucleus. We will display a solution to this problem in th
sequel to this paper. There we will show that the true o
boson exchange approximation can be made self-consis
along with being chirally invariant, by addition of the so
called Fock terms to the one-body SD equation. Such
extended approximation provides thenucleonwith a nonper-
turbative meson cloud structure that is consistent with
,
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nucleardynamics. Nevertheless, we believe that the pres
paper had to be written in order to~a! show the necessity o
this type of investigation, which can lead to relations amo
seemingly unrelated structures within a theory, such as
axial Ward-Takahashi identities~27!,~30! on one side and the
one-body SD equation~64a!–~d!; and~b! prepare the ground
for the technically more demanding true one-boson excha
approximation.

Nonperturbative approximation schemes of this type
relativistic meson-nucleon models have been formulated
elaborated under the name of quantum hadrodynam
~QHD! ~for a review see Ref.@29#!. The main aim of that
effort has been the nuclear many-body problem and its
plications to astrophysics, the approximate methods of s
tion were directly inspired by similar methods in the nonr
ativistic many-body theory@17#. Some of these, or simila
methods were independently developed by particle theo
interested in implementing chiral symmetry in theories w
bound states@36# and in ‘‘finite QED’’ @37#. Unfortunately
the influence of these methods on the nuclear few-body p
lem practitioners has been weak in the past. We hope
remedy that situation with this paper. We also hope to h
made it manifest that only a few nonperturbative metho
make sense in the relativistic nuclear many-body prob
with chiral symmetry in the sense that they alone form
chirally invariant self-consistent approximation scheme
this does not seem to have been realized before@29#.

In the process of construction of axial currents obey
y
ics
,
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PCAC we observed that the results have important con
quences for chiral perturbation theory (xPT! of pion-nuclear
processes. Inclusion of chiral symmetry into nuclear phys
is a subject that was begun only recently: some work
nonrelativisticmany-body systems has even entered a te
book @16#, but there is no attempt at asystematic relativistic
approach in the literature even for the simplest of few-bo
problems. Variousnonrelativisticmodels of two-body axial
currents constrained by PCAC are reviewed in Ref.@1#. The
main drawback of such calculations, as compared with si
lar calculations of EM MEC’s is that, although the axi
MEC’s do obey PCAC, constraints on the axial currents i
posed by the nuclear dynamics are often not considere
all. In other words, the two-nucleon potential used to cal
late the nuclear wave function in such models isnot neces-
sarily related to the two-nucleon axial current. In this pap
we have shown that such independence of axial two-b
current from the nuclear two-body potential is highly mod
dependent, at least in relativistic formalisms based on the
equation. A similar analysis of nonrelativistic theories s
remains to be done.
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