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Axial current conservation in the Bethe-Salpeter approach to the nuclear two-body problem
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We investigate the structure of the one- and two-nucleon axial-current operators necessary for the partial
conservation of the nuclear axial-current elastic matrix element in the one-boson-exchange approximation to
the two-nucleon Bethe-Salpeter equation. We use three models for this puigdke:linear sigma mode(b)
the nonlinear sigma modek) a hybrid model, which is, roughly speaking, a linear combinatio@oéand(b).

We construct a partially conserved nuclear axial-current elastic matrix element in ni@defsl (c) provided

that the associated nuclear wave functions are solutions to the Bethe-Salpeter equation with a potential made
of one-boson-exchange diagrams. In the nonlinear sigma model the nuclear one-body axial current is partially
conserved by itself, without reference to the nuclear wave function, whereas the two-body axial current partial
conservation is violated by terms of orderfﬁ/ The complete axial current in modelg) and (c) and the
one-body axial current in modéb) are applicable to the construction of the deuteron electroweak process
amplitudes, for example. The divergence of the axial-current matrix element is proportional to the pion
absorption nuclear matrix element, which leads to another potential application in the foundation of chiral
perturbation theory for pion-two-nucleon processes. Consistency between the nuclear axial-currents and the
underlying nuclear dynamics in moddk and(c) is a new condition imposed by the partial conservation of

the nuclear axial-current matrix element. We also examine conditions imposed on the form of the nucleon
self-energy by the nucleon and meson axial Ward-Takahashi identities, as well as the approximations that
satisfy the said conditions. We show that besides the first Born approximation, the so-called-Harickam-

phase approximation satisfies chiral Ward-Takahashi idenitities in modgs and (c).
[S0556-28186)05512-4

PACS numbgs): 21.45:+v, 11.30.Rd, 25.36-c, 11.10.St

I. INTRODUCTION AND SUMMARY leas) two distinct ways chiral symmetry can be realized in
Nature: (i) the linear, andii) the nonlinear realization. The
The search for non-nucleonic degrees of freedom in nujury is still out on the question of which realization is the
clei is an old one. The best-known discovery made thus far iSright” one, or if the question is a meaningful one. The
the observation of the electromagnetiEM) meson- standard approach to the axial current in particle physics is to
exchange current§MEC) [1]. Close analogy between the start from the(unphysical limit of exact chiral symmetry in
vector and axial-vector currents in the standard model seemshich the pion is massless and the axial current exactly con-
to imply the existence of axial MEC as well. The presentserved, and build on it a “perturbative” expansion in the
status of axial MEC, however, is not nearly as well estab<chiral symmetry breaking parameters such as the pion mass
lished as that of the electromagnetic currdiafs There may for the observables in the theory. This procedure, pioneered
be several reasons for this state of affairs: For one, there iy Dashen, Weinberg, and oth¢Bs-5], and now referred to
substantially less weak interaction data, the measured crogs the chiral perturbation theoryPT) relies on the nonlin-
sections being fewer and smaller, than there are EM onegar realization of chiral symmetry implemented via the most
That may explain the absence of conclusive experimentgjeneral allowed effectiverN Lagrangian. Efforts at extend-
evidence for the existence of axial MEC, so far. Anothering this method to nuclear few-body physics began only re-
reason, on the theoretical side, may be thatrétison d'etre  cently[6,7].
for the axial MEC seems somewhat weaker than the one for It is the purpose of this paper to examine constraints im-
EM currents: The exact conservation of the nuclear EM curposed on the nuclear axial two-body currents and the nuclear
rent matrix elements has impeccable credentials to be cortlynamics by PCAC, within the one-boson-exchafQ8E)
trasted with “merely” partially conservedaxial current approximation to the two-nucleon Bethe-Salpt&S) Eq.
(PCAQ). It is well known that EM current conservation, or [8]. We limit ourselves to the study of three specific models,
equivalently gauge invariance, plays a pivotal role in theone of which is essentially the two-flavor nonlinear sigma
“nailing down” of the EM MEC. We shall show that PCAC model used in the nuclear applicationsyd®T [6,7], because
can be as good a principle for constraining axial currents, age do not see features that are sufficiently common to allow
gauge invariance is for EM ones. Another reason behind the general discussion, such as the one developed for the elec-
lesser use of PCAC as a guiding principle may be the factromagnetic current by Gross and Risk&l. The problem
that PCAC is a consequence of bahontaneouslandex-  here is the same one that appeared in the single-nucleon case:
plicitly broken chiral symmetry of the strong interactions,there are two different realizations of chiral symmetry.
which even in the case of a single nucleon and in the limit ofTherefore we examine three typical chiral models of the
no explicit breaking, i.e., in the chiral limit, is rather compli- 7NN interaction and their associated axial currefis:the
cated and not fully understood. Specifically, there @ae linear sigma modgl4], (b) the nonlinear sigma modg8-5],
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(c) the hybrid mode[4,9—11], which can roughly be thought “remnant” of order LffT. Although the least well known of
of as a linear combination ofa) and (b) that allows a the three, modelc) seems to be the most viable, or at least
nucleon axial couplingy, that is different from unity. All  the most adaptable candidate for the role of a chirally invari-
three of these models can be straightforwardly extended tant meson-nucleon field theory: We find both a partially con-
includeisoscalarvector and axial-vector mesons, as well asserved nuclear axial current agg+ 1. Model(c) is closely
less than maximaU (1) breaking[12]. Isovector spin-one related to the nonlinear sigma model at the Lagrangian level,
fields, on the other hand, are more difficult to include if webut its chiral transformation properties of hadron fields are
insist on preserving the chiral symmetry. The mixing of is- linear; therefore we classify it as a linear realization of chiral
ovector axial-vector mesons with the pions greatly compli-symmetry. All this indicates that in nuclear two-body appli-
cates the analysis, and will not be pursued here. Furthermoreations, models with nonlinear realization of chiral symme-
nonchiral corrections we consider are limited to the finitetry behave substantially differently from the linear ones.
pion mass—various smaller chiral-symmetry-breakingTwo, (b) and(c), of the model nuclear axial-current matrix
(xSB) effects, like the pion and nucleon mass splittings andelements, as well as several of the hybrid model properties
deviations from the Goldberger-Treimd@T) relation are reported here seem to be the first in the literature.
not considered. Extensions to other, reduced, relativistic two- The resulting relativistic nuclear axial-current matrix ele-
body equations are not examined here either. ments in all three models are ready for applications, such as
In models (a) and (c) the nuclear axial current matrix the calculation of electroweak form factors of the deuteron.
element is shown to beonserved only when the axial one- Minimal modifications are necessary for the extension to in-
and two-nucleon operators are consistent with the nucleaelastic matrix elementghe final state is a differer{excited
wave functionsi.e., with the underlying nuclear dynamics. stat¢ solution to the inhomogeneous BS equation with the
This result is, to our knowledge, newlhus we have pro- same kerngl Those modifications open the door to applica-
gressed to the stage where the nuclear axial-current matrijons of this formalism to reactions with astrophysical sig-
elements are at the same level of conceptual development aificance, such as thep— De™ v, in stars[14]. Another line
the EM one<. The stated relativistic dynamics is specified by of potential applications lies in the direction of pion-nuclear
a BS equation. We base our analysis @ axial (chiral) processeq7]. All of the partially conserved axial-current
Ward-Takahashi identitie@VT) for the axial currents, and matrix elements contain terms wherein the axial current is
(b) validity of the appropriate BS equation in the one-boson-irst “transformed” into a pion(for two flavors, or some
exchange approximation. In this way we essentially followother pseudoscalar meson for higher symmetréesl only
the example set by Gross and Riska in their analysis of EMhen “hits” the nucleus. Thes€‘pion pole”) graphs, with
current conservation in the two-nucleon problem as dethe pion propagator “amputated,” define exactly the pion-
scribed by a BS equatidr2]. In contrast to Gross and Riska, nuclear absorption/production amplitddeénat is demanded
however, we find that we cannot introduce arbitrary nucleorby PCAC. It is well known that PCAC plays an important
and/or meson axial form factors without essentially modify-role in pion-nuclear reactiond,16], and thexPT is begin-
ing the underlying dynamics. The best example of this is thening to see its applications to light nuclé,7]. The present
question of the nucleon axial coupling constant that differpaper provides aonsistentelativistic field-theoretic formal-
from unity g4 # 1, which can be thought of as the simplest of ism for models based on linear realization of chiral symme-
all nucleon axial form factors. At least one of the modelstry, on which a systematigPT expansion for pion-nuclear
used here, modéh), does not allow an easy incorporation of reactions on few-body nuclei can also be built. In that con-
such an axial coupling constant. Indeed it is for that reasomext one must keep in mind, however, that the nonchiral ef-
that model(b) and in particular mode{c) were introduced. fects discussed in this paper do not constitute the complete
In the nonlinear sigma model, caé®, there is, however, a set of ySB terms, but rather represent only the leading term,
curious exception to the rules valid for modé#s and (c), due to the pion massWe shall not concern ourselves with
and a potentially important problem in the implementation ofnuclear yPT in this paper beyond comments indicating its
our program: In this model the one-body axial current isrelationship with the present formalism.
(partially) conservedby itselfand without any reference to The above results all depend on certain specific assump-
the nuclear dynamics or wave function. Hence, there is ndions concerning the form of the nucleon propagator and the
obligation to include two-body axial currents, as there is inaxial current vertices, which, as pointed out above, prevent
models(a) and(c). If one nevertheless does so, one finds thatan easy incorporation of weak form factors for the hadrons.
the (uniquely definefltwo-body axial current isiot exactly  The simplest approximation that is consistent with these re-
conserveceven in the chiral limitRather, the two-body cur- quirements is the first Born, or the “tree” approximation:
rent is only approximately conserved, with a PCAC-violatingthe nucleon mass is a constant, and the axial Ward identities

Model (a) has been considered before by Beft8], but he 3This rule is by no means new, indeed Blin-Stoyle and Tint made
worked in configuration space and thus did not specify his results iran attempt at relating pion-deuteron absorption with axial MEC in
a form that can be easily compared with ours. nuclear beta decay as early as 196%]. What is new here i&) the

20ne of the important lessons learned in the process of constructiemand that the pion absorption/emission Hamiltonian and the two-
ing gauge-invariant nuclear EM current matrix elements is that havaucleon axial current beonsistentwith the two-nucleon potential
ing the correct EM current operators is not enough—the initial- ancbinding the nucleus, ang) the relativistic dynamics.
final-state wave functions must be solutions to the nuclear dynamics*Pion-nuclear reactions are particularly sensitivey®B effects,
that are consistent with the said curref2é due to their being subject to so-called low-energy theorems.
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are satisfied, but the nucleon cannot have any structure thatal set of degrees of freedom includes nucleon and pion

would manifest itself in a nontrivial axial form factor, or fields. As discussed in the Introduction, we shall work with

otherwise. We look for nonperturbative solutions that satisfythree models, two of which involve an additional scalar iso-

the Ward-Takahashi identities. The said identities conceriscalarc meson field. We can add, one independently from

the nucleon axial current, which “flows,” at least some of the other, the isoscalar vectan) and axial vector {;) me-

the time, through a pion. Hence we need a nonperturbativeons to all three models without disturbing the chiral sym-

method to describe a nontrivial axial current in the baryonmetry and without adding any new terms to the axial current.

numberB=0, rather than in th&=2 sector. It seems only The same cannot be said of the isovector vegiprand axial

natural that, in a closed self-consistent approximation to th&ector (A;) mesons which have t) be inserted together

nuclear dynamics, the crossed channels be described by theo the theory in order to preserve chiral invarianée)

same, or at least closely related set of diagrams those in  involve intricate mixing between the pion and the longitudi-

the “direct” channel. TheB=0 channel is whereNN  nal component of the axial vector meson, &gt demand

(bound states live, besides mesons. Some of the latter, sudhtroduction of new terms into the axial current. All of this

as the pseudoscalars, are subject to strict constraints imposgtkes the analysis of axial current conservation substantially

by chiral invariance. Hence, we have to show that NN more Complicated with thﬁ,Al mesons than without them.

dynamics that is produced by our mog@ldoes not spoil the For this reason we exclude the isovector spin-one mesons

chiral symmetry of the mesons with the same quantum numfrom the present paper.

bers. That we show in an approximation that is one step . .

below the “true” one-boson exchange approximation and 1. The linear sigma model

does not exist in th8= 2 sector: in the Hartree plus random  The Lagrangian densftyof the linear sigma model is

phase approximatiotH+RPA)® [17]. H + RPA is the only given by

nonperturbative approximation consistent with our assump-

tion Fhag the nucleon self-energy shows no off-shell  r— yijpy—qgoulo+iysm 7]v+ 10,02~ V(?),

variation! 1)
This paper falls into five sections. After the Introduction,

in Sec. Il we briefly review the elements of our three modelsyhere

and of the methods used to solve them. Section Il is devoted

to the construction of the partially conserved axial current o=(o,m),

matrix elements in the three models. The proof of partial

conservation of the axial current matrix elements is shown irgng

Sec. IV. In Sec. V we examine chiral symmetry in tRé\

sector. The proof of chiral Ward identities is shown in Sec. ) L 2,0, N0, o0

V B. In Sec. VI we summarize and discuss our results. V(¢ )=e0— 3 uod™t ()" @

We assume hengg and,ug are positive, which ensures spon-
taneous symmetry breaking at the first Bdtree approxi-
A. The models mation level, anct = —fwmi which ensures explicit break-
ing of the chiral symmetry.

In this paper we confine ourselves to two flavors, i.e., to . . : . .
three SU2), ® SU(2)s=0(4) symmetric models. The mini- The vector Ndher (isospin current in this model reads

Il. PRELIMINARIES: THE MODELS AND THE METHOD

a

— 7
a__ = a
. _ _ J.= aﬁyM21/1 +(mXxd,m?°, (©)]
Conservation laws, such as the baryon number conservation, may
prevent certain channels from receiving contributions from some of ) . .
the diagrams. whereas the axial-vector Ker current is
SWhenever we say RPA, we mean relativistic RPA. Throughout a
this paper we workn vacua = <_ T ) a
= = —(mwoto— od*m)°. 4
"Though this approximation has been used widely in many-body 1S "M"ySZ v ( ) @)

physics, nevertheless we do not consider it a realistic one in the

NN sector. The true one-boson exchange approximation can bdow we choose a stable, positive-parity ground state of the
made self-consistent and chirally invariant by addition of the so-model, which means shifting the sigma field by its vacuum
called Fock term{17] to the above mentioned Hartree one-body expectation valué ., and call the shifted scalar fiekl The
Schwinger-Dysor{SD) equation. This new, Hartree-Fock, approxi- interaction potential in the new field reads

mation provides a self-consistent nonperturbative meson cloud

structure to the nucleon, which in turn modifies its electroweak

properties(form factors and static momentsAlthough we do not 8We use the “West Coast” metric defined by the signature
pursue further that line of research in this paper, we consider if+———); most other conventions coincide with those in R&8].
significant to inform the reader that the present HartiRPA ap- Swith explicit chiral symmetry breaking induced in this way one
proximation is the lowest one on a systematically expandablenust be careful to identify and separate out terms that come about
“tree” of self-consistent, relativistic, symmetry-preserving nonper- due to the inadequacy of an approximation from those due to ex-
turbative approximations. plicit chiral symmetry breaking.
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The resulting scalar meson and pion propagators are

Ag(p—k)= (6a)

1
(p—k)2—m2’

Ar(p—k)= (6b)

1
(p—k)?=mZ’
where the scalar meson and pion masses squared are
(7a)
(7b)

mZ=—ug+3\ov?,

2

m,n.— /L(2)+>\002.

The axial current becomes
_ T a
Jis=( YYuYs5 ¢) —(wo*s—si*m)2+f 0w (8)

Note that the axial coupling constant of the nucleon is ex
actly identity in the Born approximation to the linear sigma
model° That has been one of the primary reasons for goin
to the nonlinear sigma model.

2. The nonlinear sigma model

V. DMITRASINOVIC
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defined by the power series expansi¢fhat is essentially
the method used in chiral perturbation thepryhe above
form of the nonlinear Lagrangiat®) differs by the presence
of ga in the denominators of the factorg. (yn/2Mgp) from
the standard textbook versi¢pal]. The source of this differ-
ence, as emphasized by Weinb¢2d], is the need to have
both theg, factor in the axial current and the empirically
correct two-pion-nucleon contact interaction.

The exact vector and axial-vector ter currents in the
nonlinear sigma model are rather complicated, so they will
not be shown here—they can be found in Re&2]. We
expand the Lagrangia®) to the second nontrivial order, i.e.,
to O(f_?), and find

=

— 1 4 1
Ezlﬂ[iﬂ—M](//-l-E 1—Fﬁ>(ﬁﬂﬁ)2—§<l—mﬂ->miﬂ2
f\ — ., 1\2
+ m_ﬂ- (¢7M75T¢) ~otar— E
X (ry, 7h) - (X IPa) + - -, (10)

which is essentially the Lagrangian that Schwinger first
wrote down in Ref[23]. He introduced a new set of chiral
transformation laws that only leave the Lagrangiaf) in-
variant to first order in ¥/.. Unfortunately, this means that

the associated Nber current isnot exactly conservedut
only up to a remnant of finite order infl/, in this case

(2.

For our purposes it ought to be sufficient to expand ev-
erything throughO(f;l). This means keeping terms of the
two lowest orders in the polar-vector ther (isospin current

The Lagrangian density of Weinberg’'s nonlinear sigma

model[20] is given by

L=ylib—M]p+ IRIR(3,m)2— m2 ]

f _
+R m—)(l!wﬂsﬂ/f)-&"w

| g ) (i, @
where
gonn |2 L] 2,
R=|1+ ZQWAM> nz} = 1+(E) 772} ,
and

f

m

da

9a gaNN
2f .

2M

el

m

The nonlinear function of the pion fields is to be understood

as a series expansion in powerszgff .. Manifestly, such a

series has infinitely many terms, which makes it impossible
to use in its entirety with our present methods. Rather, the

Feynman rules and the associatedtido currents are also

%The one-loop correction is finite and negatf®], which only
exacerbates the problem.

a

9
2f

a__
J.=

Iyug'/’ +(mX (9M7T)a<

2
ft) )
XUy ysTyX m

since the leading term is «ﬂ’(fi), and three lowest orders in
the axial-vector Nther current

since the leading term is aP(f,). Such power expansions
can be tedious, so one may ask if there is a model which
incorporates the best of moddl and(b)? Such a model is
considered next.

1y

a

1

T P
+f.0 FET m

Y
Jus=Oa| ¥YuYs5 ¥

X(%’ﬂﬂﬂx i, (12

3. The hybrid sigma model
The Lagrangian density of the hybrid sigma mogb—

11] is given by

L=iby—goplo+iysm T+ £ (0,)2—V($)
— 1 .

s

f2
— T
¢7M75§ |- (oo a—mi*o)

+ (X M)

+ , (13
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P2 ky P2
+ z

FIG. 1. The two-body Bethe-SalpetdBS)
equation(a) and the kernelrelativistic potential
of the BS equation in the one-boson-exchange
(OBE) approximation(b). The dashed line denotes
a pion; a zig-zag line denotes a sigma meson, the
solid line denotes a nucleon and the double solid
line in (a) represents a deuteron. The “blob” (a)
represents the deuteron wave function, and the box
represents the relativistic potential.

(a)

(b)

where ¢p= (o, 7) is a column vector an¥ is the same po- s — T
tential as in the linear sigma model, E). The hybrid  Jus=9a| ¥7,¥55 ¥
model is the first and, so far, the only example of a chirally

+f 0" @+ (S0t — mots)?

symmetric field theoretic model that implements the ga—1\[[— P
“mixed” pion-nucleon coupling[25]. This model predicts a + —fz—)[( YYuyvsy b m|mts(2f,+s)
definite value for the Gross mixing parameter &
A=(1/g,)=0.8 in the(first) Born approximation. — - \2 - a
The vector Nther (isospin current in this model reads X\ ¥vurs5 ¥ +(fo+s) VYYum X m (16)
— 7 |\? ga—1 ! ) )
X = ‘ME‘” +(mXd,m)%+ 2 ) Note that the first two terms on the right-hand side(18)

are identical with those in the nonlinear sigma model axial
_ s \a current(12), i.e., the nucleon has acquired an axial coupling
X z//yMySE l/l) } constantg,# 1 without any expansions, which was the pur-
pose of this model. The vector and axial currefit), (15),
(14)  (16) are, to the best of our knowledge, new results.

a

X4 | @wX +o

— 7
w@wxﬂ

This is an exact result—no power expansion was used. Note

" . . . B. Nucl two-bod i
the additional pieces due to the nonlinear terms in the La- Hclear two-body equation

grangian Eq.(13), which modify the EM current, as well. Having defined our models, we next specify the two-body
The partially conserved axial-vector Me@r current in this dynamics. This is done by specifying the form of the OBEP
model reads kernelV(p,k;P) (“the relativistic potential”), Fig. 1(b), in
the BS equation, Fig.(d),
- a -1
5=\ ¢y ’)’sz'ﬂ) —(mwoto— o m)®+ gAz ) d*k
s e E SH PSP UPPI=T [ o V(BKPIUKP) |
— T o = T \? 17
X\ 9vuvsy - m|m+ o gy ys5 i
where
—_— T a
+o —yXaw| |, (15
P } p1=(3 P+p), (189

[compare with Eq(4) in Ref.[9] and, Eq.(9) in Ref.[10], L

which apparently can be traced back to E§53 in Ref. p2=(z P—p) (18b
[11]]. After shifting the sigma field we find that the axial-

vector Ndher current(15) can be written as are the four-momenta of the two nucleons.
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1. The linear sigma model

For example, in the linear sigma model and within the

OBE approximation, the relativistic potential Figib) reads , .

V(p,k;P)=V(p—k)

= Q(Z)[As(p_ K) = (71)" 7(2)) 7?1)7?2)AW(P_ k)1,
(19

D’

P2

whereA (p—k),A .(p—Kk) are given in Eq(6a) and (6b).

2. The nonlinear sigma model (a)

4

V(p,k;P)=V(p—k) i
2 $

In the nonlinear sigma model, in the OBE approximation
the relativistic potential reads

P1

5
(71 72)(P—=K) w¥(1) Y1)

m’ﬂ

X(P=K),¥(2) Y2 A n(p—K), (20)

where the pion propagator is given in Eb). We note that
the coupling constant is regular in the chiral linnit,— 0,
although that is not obvious from the above form.

P2 P2

(b)
3. The hybrid sigma model FIG. 2. Feynman diagrams contributing to the ot@-and the
In the hybrid model the OBE potential is a linear combi- two-body axial current elastic matrix elemeb). The circle with a
nation of the linear and nonlinear sigma model potentialsross denotes a complete axial current single nucleon vertex as
plus additional “cross terms” due to diagrams with one ver-depicted in Fig. 3 and a wavy line denotes an external axial current.
tex determined by the “linear sigma model part” of the The box in(b) denotes a two-body, or meson-exchange axial cur-

model, and the other determined by the “nonlinear part”

V(p,k;P)=V(p—k)
=g(2)[As(p— K) = (7(1)" 7(2)) A (P~ K) 7(51)7?2)]
_(gA_l

2
X | 9ol (P—K) . ¥(1) 7;51) 7'(52)_ ’}’?1)

)(7(1)'7(2))A7T(P_k)

ga—1
X(p_k)MYsz)YEZ)]_(T)
X(p— k);ﬂ’ﬁ) 7?1)(p_ k)u?’zz)y(sz)] . (21

where, again, the sigma and the pion meson propagators are

shown in Eq.(6a), (b). Despite its complicated structure, the

rent.

a d4p d4pr -
<JM5>:f (27T)4J (277.)4w(p,!D,)

X‘JZS(pliDripiD)w(va) ’ (22)

where

J#%3(p’ D';p,D)=—i(2m)*S;}(p,)
X 8*(po— py)i {3 (p1,p1)
—i(2m)*S1)(py)
X 8*(p1—p1) il (P p2)

+J5pas(P’.D";p,D), (23)

potential(21) can be represented by the same graphs as the

potential in the linear sigma model, FigblL

IIl. NUCLEAR AXIAL CURRENT MATRIX ELEMENT

Following Ref.[2], we write the axial current two-body
bound state matrix element as

is the sum of two parts(i) the one-body, Fig. @), and (i)

the two-body current, Fig. (). The four-momenta
P1,P2.P1.P» are related to the relative and center-of-mass
(CM) four momentg’,D’,p,D via Eqgs.(183, (b). We shall
also need the pion absorption nuclear matrix element, which
we define as follows:
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P

Is(p'p) = >Mv~ - >vvwi N ><W
p p

P

(a)

FIG. 3. The complete single-nucleon axial

. current vertexa), the single-meson axial current
p.n pi.m n vertex(b), and the nucleon-pion axial current ver-
. tex (c). Here a wavy line denotes an external

\ . . . .
N axial current, solid line is a nucleon, the dashed

N A
3 \
B ) g 1
[uspp) = = + N A YaVa line represents the pion and the “vertextof)
§ converting the axial current into the pion is pro-
b G portional to the pion decay constant. A zig-zag
’ p.-© o line denotes the sigma meson. Other, “mixed”
nucleon-meson axial-current vertices such as the

ones appearing in Fig.(d),(c) are constructed

(b) analogously from a “direct” and a “pion pole”

term.
p’ P’ P’
TN, IS
Nispp)=-= = koo M e el aE VA VAVA
p p p
(c)
d*p ‘p’ — L 7
(I1%)= J 2" J @m0 Q5 (P! P =S (P 98+ 48 'S (P 1
xI1%(p’,D’;p,D)(p.D), (24 mZ,
o = mz | 970
where, as above, the total pion absorption operator breaks " A
down into the sum of the one-body and the two-body pion Cre—1/y (i) a1 (i)
absorption operators =[S (P ) Y8+ 98'S) (P)]l—-
a m2
I1%(p’,D";p,D) —f,n.(qz_—mz f‘i)(p{,pi), (27
=—i(2m)*S3)(P2) 8*(P2— P T1{1)(P1,P1)
i - , , hich foll f he al ici i
—I(27T)4S(1§(p1)54(p1—pl)Hf‘Z)(pz,pz) which follows from the algebraic identity
+ 115 poafP’,D’;p,D). (25) dys=2Mys+S H(p+qQ)yst+¥sS H(p), (29
A. The one-body current and the Goldberger-TreimafGT) relation M=g,f,.. The

. ) ) second line on the right-hand sideh.s) of Eq. (27) is the
(@) The one-body current of thigh nucleon in the linear  single-nucleon pion absorption operator multiplied by the di-
sigma model, as defined in Fig(&, i.e., with a unit(“nor-  yergence of the axial current factdr,m? and the pion
malized”) nucleon axial coupling reads propagatorA .(q). We see that the pion absorption operator
2 arose naturally from the divergence of the axial current. Here
7g>ﬂ, (26)  We have tacitly assumed that neithgg nor f, have any
2 momentum dependence. This is a crucial assumption, as we
will see later, for it implies a momentum-independent
and satisfies the elementary fermion axial Ward-Takahashiucleon self-energy, i.e., a constant nucleon nisghis, in
identity turn, limits the type of one-body nuclear dynamics to which

A
q?—m;

G2 (P i) = ‘}’S)_wago(
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the present discussion pertaifsee Sec. Y, and implicitly ~ which is closely related to the WT identit@27) of the linear
limits the extensions to models with form factors. sigma model. Thus we see that a renormalizédon-

(b) In the nonlinear sigma model the GT relation is modi- trivial” ) axial coupling constameed nottause the “inverse
fied to gaM =g,unf-, Wherega=1.26 and the one-body propagator” part of the whole one-body axial current diver-

current reads gence to vanish, as it does in the nonlinear sigma model.
2 Rather, those parts of the one-body current that are induced

<|>a(p P =0ay 1yt (i) 1D _ ¢ L( AQu )q“W(') a by the “nonlinear p.art” of the interactiqn are partially trans-
! # 5 2 m, | g>—m 0 verse by construction, whereas the “linear part” satisfies a

Ta nontrivial WT identity (32).
<I> ( )q“)} U} (29) The one-body axial currents in the three models we con-
q’- 2

— O sidered are essentially identical for on-shell nucleons,
modulo the overall factog,. Yet, they satisfy two pro-
Consequently the appropriate WT identity becomes foundly different kinds of WT identities. This is a conse-
2 f guence of two different realizations of chiral symmetry being
it M5a(p| pi)= (qz—:n2>( )q(l) (i 2 implemented in these models.
. ( m2 ) 30 B. The two-body current
=—f = , 30
qz_m (.>(p| i) 1. The linear sigma model

The two-body axial current in the linear sigma model,

i.e., the single-nucleon pion absorptlon operator in th|s|:Ig A3, reads

model multiplied by the usual factof . m and the pion

propagator, thus renderirajl one- nucleor(on or off-shel) Jusa

axial-current matrix elements partially conserved in this J5 boaf P1 P2 P1.P2) = 9ol 75 Ta As(P2=P2)A4(P1=P1)
model. That, of course, also means tiiat whatever two-_ M5a(p2 P2ip1i— P +(1-2)],
nucleon currents there are, they will also have to be partially

conserved separately, i.e., by themselv@s, there is no (33

compellingneedfor such two-body currents.
(c) In the hybrid model, on the other hand, the simplerwhere the sigma-pion axial current depicted in Figb)3

version of the GT relatioM = g,f .. still holds, but there are feads
two kinds of #NN couplings: (i) the (“ordinary” linear

sigma model pseudoscalar couplingy, and (ii) the new wba L | o " Q"
pseudovector couplinggl—1)/2f,.. When added ta(i), Jsr (KK == (KT k#+ -m? 7| (mg—m2) |,
term (ii) increases the value of the “effective” on-shell (34
7NN coupling togago=9,nn- The complete axial current
vertex, for off-shell nucleons, is now and satisfies the elementary Ward identity
801 ) =gy 2 - f( b ) e,
b W 2 q?-m’ q,uJMSa(k’ak):_[Aﬂ-l(kl)_Asl(k)]_fﬂr(q2_—n12>95ﬂ”rr'
g1 BES
X 90+T¢1)75')7?.> (31)

This, in turn, leads to the following WT identity for the
Contract this withg* to find complete two-body current

. 7 J
0,050/ P ={0a4~ [200f ,+ (Ga— 1)1} y5—3 5500/ P3:P2iP1 P2

f( m?2 +<gA—1)q ) = —g5{ 7" 7 As(P2—P5) A 4(Pi— Py)
R 9o YRR 7 _ , _ ,
q*—m; 2t 7] X[AS X(ps—p2)— AL (P P+ (1-2))
s m?2 2
=[d—2M]ys—" (') fw(z—wz) —f i ALy Ad(pa—p))
g —m:, w m Osw=0l Y5 7(1)RAs(P2— P2
_1 ,
*|got ng Mfg) XAL(P1— Py +(12)]
a == gg{ Ygl)f(al)[Aw(pi_ P1)
=[P+ AP0 1S m2
) AdPa= PRI+ (L2 1| (oo
m T
—f | |11 : 32 .
(qz—m L5 (pi-p), (32 XI5 poayf P1,P2: P1.P2).- (36)
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leading to the complete vertex

. ™ . TOR(p kip,a) =T 8% (0" kip,a) +T &% (p' k;p.q)
1
o 1 S 10 0q
_ ) = M v
~|2f. 72 2(q2—mi (k+Q)V7’(i)}

Hence, the two-body axial current in the nonlinear sigma
model, shown in Fig. @), reads

—
a

= WA
VAV VAVAVARRC BN > - =

JH 03 4(P1.P5;P1.P2)
2

. 1
:lgA(F (71X 72))2
q,U-
/\ X{ Yty qz_—mz>(Pi—p1—Q)V7(Vl>}
f N i X(pé—pz),,y(vz)yfz)Aw(pé—pz)—(1<—>2)].
(40
(c) Note the factor 1/2 in front of the second term in E40),

which can be traced back to the third line of Ef0). That
FIG. 4. Diagrams contributing to the two-body axial current factor is the source of axial-current nonconservation in this
deuteron elastic matrix element considered in this paper: The twomodel, within the present approximation, even in the chiral
nucleon axial, or meson-exchange curréMEC) in the linear  |imit. If the said factor were unity, the axial current would be
sigma model(a); the axial MEC in the nonlinear sigma mod®);  partially conserved. As it stands, however, this MEC does
the axial MEC in the hybrid sigma modet), where the graphical ot conform with the tenets of PCAC. To be sure, this was to
symbols have the same meaning as in Fig. 3. For each diagrage expected: the nonlinear sigma model as we have used it in

explicitly shown there is another diagram that can be obtained fronfhis aper. is defined onlv throua®(f~1). and the noncon-
the first one by the exchange of nucleon No. 1 by the nucleon baper, y it "),

; ; -2
No. 2. serving term isO(f ).
2. The nonlinear sigma model 3. The hybrid sigma model

The elementary building block of the two-body axial cur- ~ There are three kinds of axial MEC's in this model.
rent in the nonlinear sigma model is the new axial-current— (&) First, the sum of the familiar linear sigma model MEC,

nucleon-pion vertex Eqg. (33) and a variation obtained from it by replacing the
pseudoscalarrNN coupling with a pseudovector one in Fig.
1 4(a),
F(i)a "k |~ .0 X a 3
usa) (P Kp,a)= of Y (Tiy X )%, (37)
34 aay(a (P1P2:P1.P2)

. . . . -1
stemming from the_th|rd term in Ed12), wher?n is the :_90[(90+(92AT)(F’1—P1)V7&)> 7/(51)1.(a1>
isospin wave function of the pion. Another, “compensat- m
ing,” piece comes from the second interaction term in Egs. N / ) /
©) (10 q X AP =PRIt (Pp=PaiP1—PY)

XAW(Di—p1)+(1<—>2)}, (41)
) — 1
Il (p' kp,a)= E) - (k+a),7)

wherej#3(k’ k) is defined in Eq(34). This MEC has the

ST

X (75X )8, (38)  following divergence:
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qMJ’z‘ggdy(A)(pi,pé;pl,pz) Jggﬁdym)(piapéml,pz)
(ga—1 ga—1
-1 =i —— (7)X72)% | Do+ 5
ga ’ v (1) 2fﬂ. 2f77
=o| | Yot | 55 (P1=P1)w¥(1) | 75 71
X (pa— Pz)u?’(z)) {7’(1)"‘ q——mf,)

X (Ag(p2—p2) —AL(p1— pl))+(1H2)}

m? X(pé_pZ_q)V'}’(Vl)}AW(pé—pz)_(le)],
_fﬂ-(q2_—mz) Hgbody(A)(pi,pé;pl,pz)_ (42

(47)
(b) There is a purely pionic axial MEC, very much as in with the divergence
the nonlinear sigma model of the previous subsec{iGme q,J (P45 P1,P2)
of two main differences between the hybrid and the nonlin-"* #5508, (P1PiP1,
ear sigma model is that in the former we have two kinds of [ga—1 a gA
7NN couplings(pseudoscalar and pseudovettat the sec- N (70X 72)% | Qo+ | 57— (pz
ond vertex versus pure pseudovector in the Igttks. el- i
ementary building block is new axial-current—pion-nucleon 5
vertex, shown in Fig. @), which consists of two parts: —P2),Y(2) | Y2)(P2— P2), ¥(1)A (P2 — P2) —(12)
2
L% (p' k;p.a) = (QT) Y (mX 7)) (43 —fw(qz_—mi)HSbodyw(pi,pé;pl,pz), (48)

(c) The third two-body axial current in the hybrid sigma
stemming from the second line in E(.2), and model is theor-exchange MEC. Its elementary building block
is the new axial-current—nucleon-sigma meson vertex,
graphically identical to the vertex shown in FigicBwhen

M
I‘ﬁ)ss,(p k:p,q)=i 9a~ )( 2q z)(k—Q)W(Vi) the outgoing pion is replaced by a sigma, which together
2f, Jlg°=my with its compensating piece, coming from the second inter-
X (X 7)) (44) action term in Eq(13), reads
A—1 o g
i i i i is | &P kip,a)=| || 29—
coming from the second interaction term in E§j3). It is in >C 2f uw Y5 92— m2

this second term that we find the crucial difference from the

nonlinear sigma model: there is no factor 1/2 multiplying the < (Kt , 5
second term. When put together the two yield a new axial- (k+a), 7674
current—nucleon-pion vertg¥ig. 3(c)],

T(é‘i Y (49

and satisfies the WT identity

ga—1 " _ 2
p5a = n v , ga—1 ) mZ
Lae(p’ kip,q)=i 2f ) Yiy© <q2_2'_mw (k+Q)y?’<|)} du ﬁ5é(p K;p,q)= 2Af ){(qv—ky)y(i)—fﬁ<m)

><(17>< ’T(i))a, (45) .
X(k+a),y()| v8' 7). (50)

which satisfies the WT identity
This leads to the followingr-exchange two-body current,

ga—1 2 Fig. 4(c):
.

(’ZTX ’T(i))a. (46)

Q.45 (p’ kip,a) =i >

718 4(P2—P2)

’7T

5 q*
X\ 2v(y vy~ ( 9= mz)
o

ga—1
LR body(c)(P1,P2:P1,P2) = 90( )

[The complete nonlinear sigma model veri@9) doesnot

satisfy this WT identity due to the aforementioned factor of X (q+ps— pZ)V'y(Vl)'yf’l))
1/2. This is the second major difference between the hybrid

and the nonlinear sigma modgIZhis leads to the following }

two-body current, depicted in Fig(i): +(1-2)|, (51
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with the divergence

0,95 Dagyc)(P1.P%:P1.P2)

:go(
2

+(1H2)]—f7(qz_—7n

ga—

2f )[T(l)Aa _pz)(q_pé"'pz)v?’(vl)'}’?l)

2 ) TT3 hodyc)(P1,P2: P1,P2) -
(52

The total two-body axial current is the sum of the two-
body axial currentdA-C) (41), (47), (51). This is a new

result, as is the pion absorption two-nucleon operator defined

by I14, g+ c. The linear sigma model result, EG@3), might
be retrievable from the configuration space work by Bent
[13]. The axial meson exchange curré#®) in the nonlinear
sigma model is not acceptable as a result within the BS equ

axial-current matrix elements, defined in Eg2) as the sum
of the relevant one- and two-body axial currents, obey PCA
in the linear and hybrid sigma models as we shall show in
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Now we use the BS equatiqid?) to write this as

q#<‘]1bod)> J(ZW)L‘J’ (277)4¢(p D)

’ 7?1) (1) Ta
XIV(p' =p= s a) s s

XV(p'—p—3q)+V(p'—p+3q)
P 7y
XA+ V(P —pt 3 )

2

m< a
_mz)mlbody, (54

le(plD)_fﬂ'(qZ

Avhich is as far as simplification of this term can go without

specifying the relativistic potentidl. We emphasize again

tion approach due o its violation of PCAC. The completeqhat the above formula holds for the linear and hybrid models

only; the nonlinear model contains only the pion absorption
erm and is independent of the potential. We will now exam-
ne the one-body current divergence, model by model.

the next section. In the nonlinear sigma model only the one- . :
body axial current ought to be used in the matrix element, 1. Linear sigma model

where the nuclear wave function isot constrained by We insert Eq.(19) into Eq. (54) above and simplify to
PCAC. The total axial currents are ready for their applicafind

tions, provided the respective BS relativistic wave functions

are used for the linear and the hybrid models. For use irg ,u5a)> g2
weak interactions the necessary polar-vector weak current ig*" " bod 0 (277
to be calculated using the same Lagrangian as for the axial . " .
current and applying the Gross-Riska mettiag X{As(p'—p—zA) 5 71y~ AP —p—30Q)
(2) _a , 1 (2) _a
X +A —p+3
IV. CONSERVATION OF NUCLEAR AXIAL CURRENT Vs Tt AP P 2 Q)T
MATRIX ELEMENTS —AL(p' —p+ 3 )y 1)} (p,D)

We can effectively separate this task into an evaluation of 2
the divergences of the one- and two-body currents using the — fﬂ( il (Hlbon (55)
above Ward identities. 9

A. One-body axial current divergence 2. Nonlinear sigma model

The generic form of the divergence of the axial one-body AS & consequence of the Ward identity H§0), the
current in the linear and hybrid sigma models is nuclear axial one-body current divergence matrix element is

equal to the nuclear one-body pion absorption matrix ele-
_ ment,independently of the nuclear wave functions
qu(‘]lbod) J(Z?T)Llf (277)4¢(p D ) _|(27T)4
)

2

2

m7T
0u( I Boay = frr<qz_—mi)<nibod)>' (56)

x 8*(po— pg)s(‘g(pz){sa}(pi)yé”
This fact alleviates the need for a two-body axial current in

ol , this model.
sk py) 2 >}—|<2w>45“(p1—p1>
3. The hybrid model
In the hybrid model thé\N potential Eq.(21) consists of

the linear sigma model potential E¢L9) plus three other
terms, which we shall call the “mixed’(two) terms and the

(2) (2) 7'(aZ)

xs(‘ﬁ(pl)[ 2(P2) 7 =

2
el (2) _ ms, “nonlinear” (one term. The latter is essentially identical, up
S<2>(p2) “ ¥(p.D) f”( qz—mzﬂ) to an overall multiplicative factor, to thidN potential in the
a nonlinear sigma model. Upon inserting the hybrid potential
X(I17 poay - (53)  (21) into Eq. (54) above and simplifying we find
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Q{5 boay = f(zw f(z )4z/f(p D’ )(go[As(p —p= 3 )7 ey~ AP P+ 3 Q)98 Ty (Lo 250 — )]

ga—1

MY )(f<1)><f<z>)a[(p’—p—%q)m”zmsz)(p’—p—%q)m&)Aw(p’—p—%q)

9
— (12509 — )]+ Go| o

){[7(1)(p - %Q)VYE)z)?’?z)Aw(p/_p_ 39+ (1-2;0--q)]
(70X 72) (P~ P+ 3 9, ¥ Y An(p' — P+ 3 A)— (1-2;0< —q)]} | ¥(p,D)

m2 .
—fa = (I7 by - (57)

B. Two-body axial current divergence
1. Linear sigma model

Using the two-body WT identity36), we see that the divergence of the axial two-body current in the linear sigma model
reads

05 oy = J 2 f (277)4¢<p D’ ){go[y“)r?l)m,,(pi—p1>—As(pz—pg)]+<192>]
m
_f’T(qz——mz 15 pogy(P',D";p,D) { (p,D)

(2,”_)4j (277)4¢(p D {go[AS(p —p— 2Q)'}’ Ta
—AL(p —p— 3 DY AP —p+ 3 Q)Y T, —A (P —p+ 3 a)¥s 7y 1h(p.D)

mZ,
_fﬂ<m)<ngb0d}>' (58

But, comparison of this result with E§55) shows that the first term on the left-hand sitlb.s) of Eq. (58) is exactly the
negative of the first term in the one-body current divergeid&, leading to

2
m
0,u( 5 boayt I5 body = fw(q—) (T poayt T15 poay (59

which completes the proof of partial conservation of the axial-current matrix element in the linear sigma model.

2. Nonlinear sigma model
The axial two-body current divergence is

2 —
qM<J’2‘ﬁ§dQ=—igA<§TA7T> (7(1)><7'(2))aJ' (27)4](2:)4¢(p D'){3 (p1— P1+d), Y1 (P2~ pz)ﬂ’(zﬂ’ AL (p2—P2)

m2
_(le)}w(p!D)_ f7T( (:12_—7;]727)<H621b0d)>

m?2
:O(fwz)_fw(qﬁv')ﬂ_[z bod;) (60)

This is manifestly not conserved even in the chiral limit: a tern@@f;z) remains, as mentioned earlier. It is interesting to
note that the same MEC diagram is conserved when evaluated between on-shell nucleon states. This is a rather stark
illustration of differences between on- and off-shell nucleons. Future studies ought to take the present analysis one step further
in powers of 1f _, which procedure ought to produce the correct leading-order axial MEC in the nonlinear sigma model.
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3. The hybrid model
The divergence of the axial two-body current in the hybrid sigma model reads

d4p d p/ _
%<J’z‘?>2d>>=f—(zﬁ)4f —(ZW)w(p’.D’)(—gé[As(p’—p 3a)ys ey~ A —p— s )Ty

+Ap' —p+ 3 Q)Y 7 — AL (P —p+ 3 Q)T - 90( ){[f"" (P'—P=39),%2 702
XA (P —p— 30+ (12,00 — )] =i (70X 72)L (P =P+ 5 4), 71 ¥ An(p —P+ 5 0)

gA_l 2 al v 5 ’ 1
—(1=2,0--B—i| 57| (70X 72) (P’ —P— 20),%(2¥2(P' —P—30),

m?,
Xy(HAn(p' —p— %q)—(1H2;qH—q)]) df(p,D)—fw( qz_—mz> (T15 pogy (61)

where we used the elementary Ward identity BBp). But,  edge, the nonlinear and hybrid sigma model results are new.
this is the negative of the one-body current diverge(®@®,  The linear sigma model has been treated by Béh8t but
modulo terms of(f,m?2), with an emphasis on formal renormalization questions and in
configuration spact: We suspect, but have not proven, that
a a a similar analysis can be carried through for at least some
(I17 pody™ 15 poay s three-dimensional reductions of the BS equation, such as the
(62) Gross[2,25] and the Blankenbecler-Sugdt6] equations.
Another lesson stemming from our deliberations is of
which completes the proof of partial conservation of theSome importance for the pion-nuclear physics: the diver-
ax|a| current in the hybnd S|gma mode| gence of the axial current matrix element y|e|dS due to
PCAC and the pion-pole dominance, the correct soft-pion
nuclear absorption/emission amplitude with otherwise un-
changed initial and final statéa/hich need not coincideln
The axial one- and two-body current operators derived irother words, our procedure determines automatically the
Sec. Il and graphically depicted in Figs. 2, 3, and 4, andpion-nuclear amplitudes that are consistent with chiral sym-
their nuclear matrix elements are the main results of thignetry of the underlying nuclear dynamics. The rule is as
paper. We have shown that these nuclear axial-current matrifollows: Take the diagrams entering Fig. 2, as defined in
elements are partially conserved in the OBE potential aptheir respective models, and remove the external axial cur-
proximation to the two-nucleon dynamics. In two, the linearrent and the pion propagator from the pion-pole diagrams,
and the hybrid, of three chiral models considered the twosee, e.g., Figs. 3, 4, to find the consistent nuclear pion-
body currents and consistent nuclear wave functions play absorption/emission graph@he initial and final states need
crucial role in the proof of PCAC. In the thirdhe nonlinear not be the same as long as they both satisfy the same BS
sigma model, however, the one-body current obeys PCACequation) This prescription is by no means new—Blin-
by itself, irrespective of the nuclear wave functions usedStoyle and Tinf 15] knew about it almost thirty years ago.
The corresponding two-body axial current is not conservedRather, it is the emphasis on the consistency between the
leaving a divergence ad(f?), even in the chiral limit. The reaction mechanism and the underlying nuclear dynamics,
remedy for that is, presumably, to keep going to higher orthat removes thed hocnature of many such calculations
ders in the expansions of the axial-current operator and of thl5,27.
relativistic potential in powers of 1/, which will further The above shown proofs of axial current matrix element
increase the order in fl/ of the chiral divergence remnant. (partia) conservation crucially depend on the validity of el-
Such axial-current matrix elements can be used in the evaliementary axial Ward-Takahashi identities, such as &3,
ation of electroweak processes involving the deuteron, fof30), which typically involve the divergence of an axial cur-
example, which areot very sensitive to the divergence of rent vertex and various particle propagators. These propaga-
the axial current. Processes such as the low-energy pictors differ from one approximation to another. In all of the
production/absorption/scattering are not to be evaluatedbove considerations we used propagators with constant, i.e.,
without a careful inclusion of all possible chiral-symmetry-
breaking ((SB) effects, since the results are highly sensitive
to the latter. 1The controversy about the presence or absence of cancellations
Thus we have learned how to ensypartial) conserva- between the two-body and wave-function renormalization terms
tion of the nuclear axial-current elastic matrix element forarising in the papers of BenfA3] and Zhuet al. [24] cannot be
two-nucleon nuclei based on the Bethe-Salpeter equation andsolved on the basis of the present work without further detailed
(almos} chirally invariant nuclear dynamics. To our knowl- calculations.

2
m

unb5a — 77

d,.{I1 pody™ J bod;) ( P—m?2

C. Summary and discussion
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four-momentum squared independesgif-energies? That
fact greatly restricts the shape and form of the axial current
vertices used. For example, neither electroweak nor strong
nucleon and/or pion form factors are allowed by this choice = -
of propagator:> We will show in the next section that such a

nucleon self-energy is closely tied to the so-called Hartree

approximation to the one-body Schwinger-Dy<4dB) equa-

tion which in turn plays a crucial role in maintaining chiral (a)
symmetry in theNN channef*

In conclusion we emphasize that the chiral-symmetry-
breaking (¢SB) effects are notompletan our three models.
There are many sources of nonchiral corrections, such as the
aforementioned pion and nucleon mass differences, devia-
tions from the Goldberger-TreimafGT) relation, isospin-
breaking effects in therN coupling constants, etc. Indeed (b)
each source of isospin breaking corrections in nuclear phys-
ics is also a source of nonchiral corrections. The latter ad-
mittedly constitute effects smaller than those of the pion

|
|
mass itself, but are not entirely without consequeric&ich A i . L M
- ! i
|
[}
i

»—

nonchiral terms are not always important, but when they are,
they may carry the day. ThegeSB effects arenot included i A
in our simple versions of these modéshich does not mean ! !
that they cannot be incorporated/oreover, the way of in- ©

cluding the ySB pion mass term into, say, the nonlinear
sigma model is not uniqu2]. Fortunately, that ambiguity FIG. 5. Schwinger-Dyson equations defining the Hartree
does not afflict the vertices we use in this calculation, but it a.ppr.oximation' the vacuum alignment equatie)y the one-
is sufficiently important to cause a discrepancy of up to & cleon. or the gar; equatidh), and the one-meson, or N
factor of 2 in the calculation of ther— 7r scattering lengths y ' !

; Bethe-Salpeter equatide); (a + b) constitute the Hartree, and)
[22'23’.29'. Careful extenslons of these models .beyond thqhe RPA approximation. The dashed double lingéhrepresents
chiral limit are the subject of chiral perturbation theory

. . a dressed pion, and the hatched bubbles together with the zig-zag
(xPT) and thus beyond the purview of the present article. |ine jeading to it represent the sigma meson vacuum expectation
_ values.
V. CHIRAL SYMMETRY IN THE NN SYSTEM

So far we have only been concerned with axial currenfiucleon problem. In the following we shall briefly consider

conservation in the baryon numbBr=2 sector of the two the B=0 sector, mostly to show the interdependence of ap-
parently unrelated parts of nuclear dynamics and in particu-
lar the importance of self-consistency, i.e., of the one-body

120ne can only have a theoretician’s prejudice about the viabilitySD equation for the nucleon, in preserving chiral symmetry

of that assumption: the self-energy is not an observable except # this sector of the linear sigma model and its relative with
the po|e of the propagator’ where it equa|s the observed mass. ISOSC3|aI’ Scalar mesons, the hybl’ld mOde|. It turns out that n

130ne can, of course, introduce purely transverse structures int8Uch models one must make the theory self-consistent in
the vertices byfiat, ala Gross and Riskg2], but that is not a very ~order to preserve the underlying chiral symmetry. This will
satisfactory solution since it introduces further uncertainties in thd?€ shown next in an approximation that is, however, one step
form of new free parameters and is essentiatlyhoc We will seek  short of the “true” one-boson exchange approximatfoim
a solution that provides theucleonwith a “meson cloud” struc-  the NN channel: in the HRPA, Fig. 5. The latter is consis-
ture that is consistent with theucleardynamics implemented, yet tent with our assumption that the nucleon self-energy has no
is sufficiently flexible to allow for additional substructure due to, four-momentum squared dependence. The nonlinear sigma
e.g., the quarks. model receives only a vanishing contribution from the Har-

“Hartree plus random phase approximatiph+RPA) is not the  tree term to the one-body SD equation, thus rendering the
only approximation that satisfies these conditions on the selfH+RPA trivial therein. The HRPA in hybrid models is
energies: the first Born approximation satisfies them as @#tiat ~ nontrivial only when at least one isoscalar scalar meson is
was the tacit assumption all along, since we used the bare model
parameters in all of the derivationdRather, H+ RPA is the only
nonperturbativeapproximation that does so. 18The true one-boson exchange approximation can be made self-

15As an illustration of this point, note that even in the limit of consistent, along with being chirally invariant, by addition of the
current quark masses going to zero, the charged pions retain a mass-called Fock term to the one-body SD equation. Such an ex-
of =35 MeV, only the neutral pion becoming massless. The sourcpanded approximation provides a nonperturbative meson cloud
of this mass, non-negligible on nuclear physics scale, is the EMstructure to the nucleon, which modifies its electroweak properties
interaction within the pion. In the nonchiral case, the latter producesuch as the form factors and the EM and axial static moments.
only a small(4.6 MeV) pion mass difference. These statements will not be proven here.
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present, as it is in our hybrid model. In that model we can SH=M=My+geu, (64b)
reduce the H-RPA analysis to that in the linear sigma
model. SRPA(K) = — w2+ N u2+ g3 RPA k), (640

We start by reviewing the HRPA scheme and its prop-
erties. The most important property oftHRPA is that it
preserves the underlying chiral symmetry of the theory. This
symmetry is made manifest in three properties of the observ- ) ) )
ables, or chiral Ward identitiesi) the Goldstone theorem, or NOte that Eq.(64b) is nothing but the Goldberger-Treiman
the masslessness of the pion mode in the chiral litijtthe ~ (GT) relation for Dirac fermions g,=1), which becomes
axial Ward-Takahashi identity for the nucle¢2), or con- exact in the chiral limit(here that means vamshmg bare
servation of the on-shell nucleon axial current elastic matrix?ucleon mass1=0). Several comments are mHord_er here.
element, and (i) the Goldberger-Treiman relation () Note that the nucleon self-energz™ is a
f_g.nn=M, wheregy#g..ny between the pion decay con- k—mdependentRcF&nstaM, in contrast Fo the pion and sigma
stantf_, the pion-nucleon coupling constagtyy and the ~ self-energiest FPA(k) that have received-dependent con-

constituent nucleoM. We shall prove them one by ohé.  tributions from the nucleon loop diagram in Figich We
have thus introduced a distinction between nucleons and me-

sons in this approximatiol?. The first Born approximation
can be obtained from the HRPA by setting all nucleon-

The Hartree+ RPA approximation can be defined by loop contributions in Eqs(64a, (640, (64d) equal to zero.
three Schwinger-Dyson integral equatiofigthe zero-body, Equation(643 remains unchanged, however.
or vacuum equation, Fig.(8), (ii) the one-fermion, or gap (iil) These self-energies satisfy the following algebraic
equation, Fig. B), and(ii) the one-meson, or two-fermion, identities that will be useful in the proof of chiral Ward iden-
i.e., Bethe-Salpeter equation shown in Figc)5 Tradition-  ftities:
ally [17,29, the lowest order approximation goes under the
name of Hartree for the gap equation, that corresponds to (RPA) Ly d*p 1 )
keeping only the diagrams in Fig.(® and (b); and the —I; (k)_4NfJWTM2_2ka 1(k),

™) P

“chain,” or random phase approximatidRPA) for the two- (653
body equation, where only the diagrams in Figc)5are
kept1® L d*p 1
The Bethe-Salpeter equation for tNeN scattering ampli- - inrRPA)(k):4fo (ZT)“ m
tudes is separable and has as the exact solution in the
H+RPA the following expression: —2N¢(k2—4M?)1(k), (65b)

SRPA(K) = — ud+3Nu2+ g2 P (k). (64d)

A. Hartree plus random phase approximation

—iD. (k)= (63) where we have introduced the logarithmically divergent in-
e k2= RPA k)’ tegral
where3, (RPA)(k) consists of a single one-nucleon-loop polar- (k)= f d*p 1 66)
ization diagram and one “tree” diagram shown in Figch 2m)* [p?—M?Z][(p+k)2—M?] "

Note that the above solution is just a geometric series in

3 (RPA)YK). The Hartree nucleon self-enerdy" is momen-  which plays an important role in subsequent calculations.
tum independent, but the RPA scalaf*"(k) and pseudo- (iii) It is important to appreciate that Eq§5a and(65b)
scalarlI(RPA)(k) polarization function$Fig. 5(c)] depend on ~ are a result of a formal manipulation of divergent integrals.

the four-momentum squaréd. The Schwinger-Dyson equa- In order to make this procedure legitimate one must regulate
tions now read (“cut off” ) this and all other divergent integrals appearing in

these calculations in a chirally invariant manner, i.e., so as to
»3 i dp 1 retain th_e above formal r_ela}tions. We will ;herefore handle
v=N\g—5 + —54goM fo —— 2 ————, (648 themasifthey were Pauli-Villarf§’V) regularized 18] even
Mo Mo (2m)" p*=M though we will not indicate that explicitly, in order to keep
the notation as simple as possible. This step is particularly
important if one decides to treat this calculation as an “ef-
1"The axial WT identities in the linear sigma model, especially for fective field theory,” i.e., if one does not renormalize, but
nucleons immersed in nuclear matter, have been investigated by tiiather keeps the momentum cutoff, as one often does in
University of Tokyo group and W. Bentz in particular, §88]. The  nuclear few-body physics. It is then crucial to ensure that this
overlap of the present paper with those cited in R&8] seems cutoff does not spoil the chiral WT identities.
minimal, however.
8As shown by Barnes and Ghanddi®0], the Hartree+ RPA
can equally well be viewed as a variational calculation in the It is perhaps worth noting that the presentHRPA can be
Schralinger representation of quantum field the¢@FT) [31,32. viewed as incomplete: one does not have any one-boson-loop dia-
The associated ansatz for the ground-state wave functional is grams. Introduction of the said graphs does not make a change in
Gaussian one, thereby earning the title of Gaussian functional agerinciple, since all of the chiral Ward identities can be preserved, as
proximation for the methoi31,32. shown in Ref[33].
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B. Proof of chiral Ward identities

p’ p’ p’
In order to prove the Goldstone theorem in the chiral limit
(My=0), we divide Eq.(649 by v, and then use the GT Tsp'p) = = + =
relation (64b) to rewrite it as g\/\/\»
P p p

1_)\vz+i4 M fd“p 1
OM(Z) MS gov f (2m)* p?—M2"

o
. dp 1
_,u§+)\002:—4|g(2)Nf WETMZ (67) + >=.(=,OA/W
p

Now we insert this into Eqe64¢), (640 to find

E(RPA)(O):_4|92N (jzl_p;_FgZH(RPA)(O) (a)
T o'Vt (277_)4 p2_M2 ottnw ’
(683 . - x
: dp 1 x N i
22RPA)(0)=2A0U2_4|gngf WW r:5(P,‘P)= ?V\ﬁ — g\fkfv + g—-(—*'\/\/\/\
+ g5l "A(0). (680 " " ’

Next we apply Eqs(653, (65b)
4

“w v
dp 1 . "
(RPA) — _Ain?2
E’JT (O) 4|gOfo (277.)4 p2_M2 \l\l@w\ J\Q\M

+4ig2N f d'p ! (b)
190Ny W W '
=0, (693 FIG. 6. Diagrams contributing to the conserved nuclérand
meson(b) axial current matrix elements in Hartree RPA. The
d4p 1 nucleon effective axial curreriencircled crossin (b) is defined in
EETRPA)(O)ZZ)\OUZ_AfigngJ W W (a). Compare with Fig. @&),(b).
+4ig2N J dp 1 +8ig2N¢M?2I(0) iD(K) _ (71b)
oNf | o NFR2_n\2 o'Nf —ID, = )
(2m)” p"=M Z(K)[K2=3 (k)]
=2\ou2+8ig3N;M?1(0)
2 where
5 59
=2 \gv°—4M ? (69b)
2
| | o 2(k)=1- =, (723
The functiong(k) that appears in these equations is defined g°(k)
by
] 3 2
g~ 2(k)=—2Nsil (k) =g~ *F -(k), (709 Z(k)E(',(k)=2)\0v2—4M2(%) _ (72b)
97 %= (0l T 20, (70b)

We deliberately left Eqs(70a—(c), (72a@—(b) in a form in
FA(k)=1(k)/1(0). (700  which they can be rendered finite either by the process of
renormalization, or by keeping a momentum cutoff in the
Equation(69a guarantees the existence of a massless Goldntegrals.
stone mode in the pseudoscalar isovector channel, whereas Equationg71a), (b) summarize the linear sigma model in
Eq. (69b) determines the mass of the scalar isoscalar mesom+RPA: the validity of the gap equation and the GT relation
Since the dynamically generated quark mislsthat enters  ensures the existence of a massless pseudoscalar excitation
all these expressions is determined by the gap equatioat is associated with the pion as the Goldstone mode of the
M=3M, one finds in the HRPA approximation that linear sigma model model. Furthermore they also ensure the
conservation of the nucleon’s axial curref€AC) in
H+RPA. To prove this last claim, we start from the one-
(719 ) ; L e
nucleon axial current as given in Fig(ah:

_ti(k)Zw.
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el We have proven partial conservation of the nuclear axial-
125:7M75§+i[v—490'\/”| (@)]9,iD () goys™ - current matrix elements in the baryon numiier2 sector
(73  under the assumption of validity of axial Ward-Takahashi
identities for nucleon and meson vertices. We showed that
We contract Eq(73) with g# to find these WT identities are true for vertices in the first Born
approximation for the three models considered. We dis-
) ' ) cussed the need for consistency between the axial current
q*j Z5=q“7#75§—q2[v—4goMll (@)D A(a)Goys™ operators and the nuclear two-body dynamics, as defined by
the Bethe-Salpeter equation within the one-boson-exchange
(R i approximation.
=0"y.ys5 —qTv—4goMil(q)] We examined the relation between the WT identities and
the one-body Schwinger-Dysof8D) equation. We estab-
lished and discussed the relation between the Hartrean-
xmmg()%”a dom phase approximation in the linear sigma model and the
two-body equation in th&=0 sector.
o We proved the Goldstone theorem, the Goldberger-
=0"YuYs5 ~Qov V57 Treiman relation and axial-current conservation in the Har-
tree + random phase approximation to tBe=0 sector, and
—(p'—p)* T My showed the interdependence between this sector and the
P =P Yuys5 s Ward identities in thé8=2 sector.
We havenot attempted to do the following.
Include the vector and axial vector mesons.
Examine the chiral symmetry breaking effects beyond the
terms induced by the finite pion mass.
which proves that the H- RPA nucleon axial currenjts Include form factors for nucleons or mesons, either elec-
and propagatoB(p) satisfy the WT identity(27), (32), as  troweak or strong. We believe that this problem is inextrica-
noted. Note that we have used the vacuum and one-body SBly related to the question of the meson cloud around had-
equations(64a, (64b) on several occasions in these proofs.rons, that, as pointed out above, is closely tied to the Fock
Without them, i.e., without self-consistency, the proof wouldterms and the vector and axial vector mesons.
have been impossible in the linear and the hybrid sigma Include Fock terms in the self-consistency equatisee
models. comments abovye
Similarly, the reader can convince himself that the one- Discuss the chiral symmetry in relativistic reductions of
meson axial current defined in Fig(tp and thew,o meson the Bethe-Salpeter equation, such as the spect@wmss
propagators63), (71a), (b) satisfy the WT identity(35).>°  and the Blankenbecler-Sugar equations.
Thus we have demonstrated the necessity of a self-consistent Treat mesons in a self-consistent way when working
gap equation for the chiral invariance of the solutions to thévithin the Hartree+ RPA, as was done in Reff33].
few-body nuclear dynamics in the present approximation. Axial current(partia) conservation ought to be an impor-
This completes our discussion of HartréeRPA in the lin-  tant criterion in the construction of the elastic parity-
ear sigma model. violating electron or neutrino nuclear scattering matrix ele-
Similar considerations hold in the hybrid sigma modelments. Despite their great importance for nuclear
within H+RPA. Finally, as far as the nonlinear sigma modelastrophysics [35,14, the axial two-body, or meson-
is concerned, self-consistency does not seem to make a digxchange, currents had not, to our knowledge, been exam-
ference since there are no scalar mesons in the model. Isdged from the viewpoint of the principle of partial conserva-
calar scalars are the only mesons that make the Hartree g&ipn of the axial currentPCACQ) in a relativistic BS equation
equation nontriviain vacugq i.e., at zero density. formalism, with the exception of work by Benf43]. The
present paper presents a solution to that problem. We have
not, as yet, applied our results to specific physical processes.
Furthermore, we have not tackled the problem of chiral
In summary, in this paper we have done the following. symmetry in theNN system beyond the Hartre¢ RPA
We constructed the Nber currents in three typical approach in this paper. This is somewhat unsatisfactory since
chirally symmetric hadronic models. These currents in theone of our conclusions was that we have to go beyond Har-
hybrid model of Refs[11,10,9 are new. tree + RPA in order to achieve the true chirally invariant
We constructed one- and two-nucleon axial current opera©BE approximation that dresses the nucleon with a “meson
tors that are necessary for the construction of the partiallgloud” to the same degree as it binds the nucleons in the
conserved nuclear axial current matrix elements in thre@ucleus. We will display a solution to this problem in the
models. The resulting nuclear axial current matrix elementsequel to this paper. There we will show that the true one-
are new and ready for applications. boson exchange approximation can be made self-consistent,
along with being chirally invariant, by addition of the so-
called Fock terms to the one-body SD equation. Such an
20f the reader has trouble proving this, let him consult Sec. Il C,extended approximation provides thecleonwith a nonper-
and in particular Eq(3.14 of Ref.[34]. turbative meson cloud structure that is consistent with the

— —1/ A7 -1 T_a
[S (") yst vsS “(p)] 5 (74

VI. SUMMARY AND CONCLUSIONS
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nucleardynamics. Nevertheless, we believe that the presefPCAC we observed that the results have important conse-
paper had to be written in order ta) show the necessity of quences for chiral perturbation theoryRT) of pion-nuclear
this type of investigation, which can lead to relations amongprocesses. Inclusion of chiral symmetry into nuclear physics
seemingly unrelated structures within a theory, such as thg a subject that was begun only recently: some work on
axial Ward-Takahashi identiti€27),(30) on one side and the nonrelativisticmany-body systems has even entered a text-
one-body SD equatio(64a—(d); and(b) prepare the ground pook[16], but there is no attempt atsystematic relativistic
for the technically more demanding true one-boson exchanggpproach in the literature even for the simplest of few-body
approximation. problems. Variousionrelativisticmodels of two-body axial
Nonperturbative approximation schemes of this type forcyrrents constrained by PCAC are reviewed in Ref. The
relativistic meson-nucleon models have been formulated anghain drawback of such calculations, as compared with simi-
elaborated under the name of quantum hadrodynamicgr calculations of EM MEC's is that, although the axial
(QHD) (for a review see Refl29]). The main aim of that MEC'’s do obey PCAC, constraints on the axial currents im-
effort has been the nuclear many-body problem and its apyosed by the nuclear dynamics are often not considered at
plications to astrophysics, the approximate methods of solug||. In other words, the two-nucleon potential used to calcu-
tion were directly inSpired by similar methods in the nonre|-|ate the nuclear wave function in such models & neces-
ativistic many-body theory17]. Some of these, or similar sarily related to the two-nucleon axial current. In this paper
methods were independently developed by particle theoristge have shown that such independence of axial two-body
interested in implementing chiral symmetry in theories withcurrent from the nuclear two-body potential is highly model-
bound state$36] and in “finite QED” [37]. Unfortunately  dependent, at least in relativistic formalisms based on the BS

the influence of these methods on the nuclear few-body probsquation. A similar analysis of nonrelativistic theories still
lem practitioners has been weak in the past. We hope t@emains to be done.

remedy that situation with this paper. We also hope to have

made it manifest that only a few nonperturbative methods

m.ake sense in the rellat|V|st|c nuclear many-body problem ACKNOWLEDGMENTS

with chiral symmetry in the sense that they alone form a
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