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Determination of pion-baryon coupling constants from QCD sum rules
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We evaluate therNN, 7% 3,, and7X A coupling constants using QCD sum rules based on pion-to-vacuum
matrix elements of correlators of two interpolating baryon fields. The parts of the correlators with Dirac
structurekys are used, keeping all terms up to dimension 5 in the OPE and including continuum contributions
on the phenomenological side. The ratios of these sum rules to baryon mass sum rules yield stable results with
values for the couplings of ,yn=12*5, g,ss=7=*4, andg,.s,=6*3. The sources of uncertainty are
discussed[S0556-28186)05412-X]

PACS numbdis): 13.75.Gx, 11.55.Hx, 14.26.¢, 24.85+p

[. INTRODUCTION largek?, as in Refs[2,3,6], cannot distinguish the pole term
of the lowest meson from the contributions of higher-mass
Meson-baryon coupling constants form an important in-states in the same meson channel which give the sakde 1/
gredient in many calculations of strong-interaction processebehavior at large?.
and one would like to determine these quantities from QCD. We note that modified versions of the OPE of three-point
In the absence of treatments from first principles, the methodorrelators for processes with small momentum transfer have
of QCD sum ruleg1] has proved to be a very powerful tool been developed in Reff7,8]. The essence of these methods
for studying various properties of low-lying hadron states.is the inclusion of “bilocal power corrections,” which effec-
Here we apply this method to the calculation of the couplingtively sum up the series of power terms irkk3by matching
constants of pions to the lowest states of the baryon octethem to the contributions of mesonic states in the relevant
N, A, andZ. channel. The contributions of low-lying mesons to the form
The pion-nucleon coupling constagy has previously factors play an increasingly important role as the momentum
been studied within the framework of QCD sum rules bytransfer decreases. Meson-baryon coupling constants can be
several group$2-5|]. Reinders, Rubinstein, and Yazdld]  obtained from the OPE of three-point correlators with bilocal
explored two different approaches, one based on the correlgower corrections by going to the meson pole. At the pole
tor of three interpolating fields sandwiched between vacuunthis treatment of the three-point correlators yields the same
states, and one based on the pion-to-vacuum matrix elemergsults as the method based on two-point correlators which is

of the correlator of two interpolating nucleon fieldg, used in this papefcf. [9]).
o The particular sum rules that we study here are con-
(O] T{n(x) »(0)}| m(k)). (1)  structed from the part of the correlat() with Dirac struc-

ture Kys. We chose this structure because it provides a de-
The particular sum rule they studied was based on the softermination of the pion-baryon couplings that is not simply
pion limit of the part of the two-point correlatql) with related to the sum rules for the baryon masses. In contrast the
Dirac structureys. However those authors took into account soft-pion limit of the OPE for theys piece of the two-point
only the leading term of the operator product expansiorcorrelator forg,ny has exactly the same form as that for the
(OPE) and they neglected continuum contributions. Shiominucleon sum rulg10,8] involving condensates of odd di-
and Hatsudd4] extended the analysis of this sum rule to mension, up a factor of 1/ [3,4]. Shiomi and Hatsud§]
include condensates up to dimension 7 in the OPE as well ashowed that the ratio of thes sum rule to one for the
a perturbative estimate of continuum contributions. nucleon mass takes the form of the Goldberger-Treiman re-

The sum rules that we use here are also constructed frofation withg,=1, provided that the continuum thresholds are

two-point correlatorg1) of the appropriate baryon interpo- taken to be the same in both cases. Those authors took dif-
lating fields. The advantage of this method is that it allowsferent thresholds in the two sum rules in order to get around
one to calculate hadron properties at low values of the mothis problem with the implied value afy .
mentum transfer to the baryon. In contrast, the straightfor- However, we stress that taking the soft-pion limit of the
ward use of the OPE for the three-point correlator is validys piece of the two-point correlatqdl) does not lead to an
only for large spacelike meson momenta and therefore a déndependent determination of the coupling constant. In the
termination of the coupling constant requires an extrapolaease ofg,.yy, the usual soft-pion theorefd 1] can be used
tion to zero momentum where the OPE is clearly not validto express the correlatgt) in the form
because of large power corrections. Estimates of the cou- i
pling constant from the coefficient of K& determined at —E<0|[Q§.T(7I(X).nT(O))]|0>
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where Qg is the axial charge and we have made use of th&ys, wherek is the pion momentum. We work here to lead-
transformation properties of the interpolating field undering order in a chiral expansion, neglecting higher-order terms
axial rotationg12,13, [Q2, 7]= — 1/2ys7®7. The anticom- in the pion momentum or current quark mass. To illustrate
mutator withys picks out the part of the two-point correlator the derivation of the sum rules for pion-baryon couplings, we
proportional to the unit Dirac matrix. The phenomenologicalconsider first the sum rule fag.yy. The differences that
side of the resulting sum rule is thiiys/f . times the cor-  arise for the pion-hyperon couplings will then be discussed
responding expression for the odd-condensate nucleon su@id the forms of the resulting sum rules presented.
rule. This matches exactly with the structure found for the We consider the two-point correlation function
OPE side in Refd3,4].

The soft-pion limit for theys piece of the correlatofl) :-f 4 o — +
thus yields a sum rule favly/f ,=g,yn/da. The value for H(p)=1 | d'xexplip-x){0T{mp(x) 7a( O} |7 (k)),
the coupling determined from such a rum rule follows from )
the odd-condensate sum rule for the nucleon mass and th . _
Goldberger-Treiman relatiofor an approximation to it tak- Where we use the loffe interpolating figfitio] for the proton,
ing ga=1). The sum rule can be thought of as just a chiral _ ar\T b udc
rotatié\)n of the odd-condensate nucleon sum rule roican 7p(X) = €and UT(X)"C, () 757 d(), @
independent determination gf,yy. Physically this resultis  and the corresponding neutron fiejg which is obtained by
quite natural since in the soft-pion limi#B and B states interchangingu andd quark fields and multiplying by- 1.
become degenerate and can be related to each other by chifgérea,b,c are the color indices an@ is the charge conju-
transformations. In this paper, by considering terms beyongation matrix. Other choices of interpolating field can be
the soft-pion limit, we obtain values for pion-baryon cou- ysed, as discussed in detail by LeinweFEf]. For the odd-
plings that are not simply consequences of chiral symmetrycondensate nucleon sum rule, which we make use of in our

In addition we note that a potentially important piece of determination ofg,yy, it turns out that the loffe field is
the phenomenological side is missing from previous sumgjose to optima[17] and so we do not consider more general
rule determinations off .. This term corresponds to tran- fie|ds.
sitions where a ground-state baryon created by the interpo- | the deeply Euclidean region, whep# is large and

lating field absorbs the pion and is excited into thepegative, the OPE of the product of two interpolating fields
continuum. Since they are not suppressed by the Borel trangakes the following general form

formation such terms should be included in a consistent sum-

rule analysis, as pointed out long a@®,14] and stressed i 4 i _

recently by loffe[15,16. In the soft-pion limit of theys sum 'J d*xexp(ip - X) T{ 7,(x) Wn(o)}:; Cn(pP)Oy, (5
rule, such terms generate contact interactions where the pion

couples directly to the baryon fieldB(p)| 7n(0)|7(k)), and  \where C,(p) are the Wilson coefficients an@, are local
which are essential if the correct soft-pion limit is to be ob-gperators constructed out of quark and gluon fielelt
tained. The omission of these terms in R¢84] can explain  renormalized at some scaig. Using this OPE in correlators
why the correct Goldberger-Treiman relation was not foundyf the form(3), we find that only operators of odd dimension

there. Indeed, as the authorg4f point out, a quick estimate  contripute. The leading term in this expansion involves op-
of these unsuppresséd* contributions suggests that they erators with dimension 3 and is given by

could be as large as 25%: enough to remove the discrepancy

with the Goldberger-Treiman relation. 1
As discussed above, the sum rules studied here provide H3(p. k)=~ ﬁpzm(_pz)
values for the pion-baryon couplings that are not simply re- L
lated to the baryon masses by chiral symmetry. We include X (0|dy*ysu| 7T (K)) yays+ -, (6)

all condensates up to dimension 5 as well as mixed con-
tinuum terms. These are essential for assessing the reliabilityhere terms that do not contribute to the Dirac structure of
of the sum rules and estimating the uncertainties in the reinterestkys, have been suppressed. The matrix element here
sults. The application of these sum rulesgtoyy has been s just the usual one for pion decay:
described briefly if5]. Similar sum rules have been applied _
to other pion couplings, especially in the contextlbfand (0]dy*ysu|w* (K))=iy2f k<, (7
B mesons, as discussed[@®] and references therein.
The paper is organized as follows: in Sec. Il we derive thevheref ;=93 MeV is the pion decay constant. Hence we can
sum rules for the pion-baryon couplings from the relevantwrite the leading term as
two-point correlators; the numerical analysis of the sum rules 1
gep():r.eﬁle.nted in Sec. lII; finally our results are summarized in Ts(p,K) = —i \EF p2In(—p2)f Kyst---. (8

At dimension 5 the only relevant contribution arises from
the second-order term in the covariant expansion of the non-
Our sum rules are obtained from the two-point correlatodocal operatord(0)y*ysu(x). This is a specific feature of
(1) just discussed, but instead of the piece with Dirac structhe loffe nucleon interpolating fielffl0] which we used to

ture y5 considered in Refg:3,4] we work with the structure calculatelIN. This term has the form

Il. TWO-POINT CORRELATORS AND SUM RULES
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5 — On the phenomenological side, thé&\ coupling constant
II5(p) = Gz'”(—p2)<0|d7“75D2U|7T+(k)>7a75+ I is contained in the term of the correlat(8) with a double
9) pole at the nucleon mass. However there are also continuum
contributions which cannot be ignored. These include
Up to corrections of higher order in the current mass, thecontinuum-to-continuum pieces which can be modeled in the
matrix element here can easily be reexpressed in terms of@sual manner, in terms of the spectral density associated with
mixed quark-gluon condensate the imaginary part of the OPE expression for the correlator.
This continuum is assumed to start at some thresBgjg.
After Borel transformation, it can be taken over to the OPE
side of the sum rule where it modifies the coefficients of the
terms involving InEp?). In addition one must include
+0O(m?). (100 nucleon-to-continuum terms since Borel transformation does

. . . . . . not suppress these with respect to the double-pole term
With some further manipulation this can be rewritten in the[g 14-18. To first order ink, the correlator has the form

form

_ g _
(0ldy*ysD?ul 7" (k) =5 (0]dy*¥50,,G*"ul 7" (K))

— — A2M NG
(Oldy*ysD2ulm " (K)) = = g (O] dG -, ul " (k)) 11(p) =i \2Zkys| o
J— N
—i pa T(k
i95(0[dG**y,, ysu| 77 (K))), +Fd L1 s |,
v w8 smmig| g e

where EWZ%EMWG’”- (We use the convention (15

€®1%= 1+ 1)) The second term in this expression is of higher

order in the chiral expansidisee Ref[18] for detail9 and so where the continuum-continuum terrfand terms with other

we neglect it here. Dirac structureshave not been written out. Hepg, is the
The first term in Eq(11) is of leading order in the chiral strength with which the interpolating field couples to the

expansion. It involves a matrix element that has been exducleon:

tracted by Novikowet al. [18] from two QCD sum rules for

the pion.yThey expresse[d ii’l in the fom? (O[7n(0)IN(P)) =Anu(p).- (16)

o + _ [ 2f pa The sum rule is obtained by equating the OPE and phe-
95(0/dG 7““'” (k)) \/§|5 Fak®, (12) nomenological expressions for the correlat8 and Borel
and obtaineds?=(0.20£0.02) Ge\2. In both their sum transforming[1]. Keeping only condensates up to dimension
rules the four-quark condensaig(0|(qq)2|0) makes a cru- 2 this has the form
cial contribution. Novikovet al. [18] used the factorization
approximation for this quantity in their analysis. However,

1 5
=5 M*E(Xn) + == M2E (X,n) 62
direct determinations of it from other sum rules lead to val- 2@ 2(Xan) 9m 1%

ues[19-21 that are at least 2—3 times bigger than those \2M
obtained from factorization. These give correspondingly :(LQJQT’“‘+A exp(—M3Z/M?), (17)
larger values fors?, a point we shall come back to in the f-M

analysis of the sum rules in Sec. Ill. Our final expression for _
the dimension-5 term in the sum rule is where M is the Borel mass and E;(x)
=1—(1+x+---+x"nl)e X with x,y=S,5/M?. The sec-
5 ond term on the right-hand side of this sum rule is the Borel
I5(p)=—i \/Eﬁm(—pz)tsszhﬁ . (13  transform of the nucleon pole term of the nucleon-to-
continuum piece in Eq(15). It involves an undetermined

To estimate the importance of higher-dimension condenconstantA but, since it contains the same exponential as the
sates, we have also calculated the contribution of what waucleon double-pole term, it cannot be ignored. The second
hope is the most important dimension-7 operator in the OPEUCleon-to-continuum term in E¢L5) leads to a term that is
This is a mixed quark-gluon condensate, which we evaluatguppressed by an exponential involving the masses of states
in the factorized approximation. Keeping only this contribu-in the continuum. It is thus typically a factor of 3—4 smaller

tion explicitly, the dimension-7 piece of the correlator is  than the term included in E17). Provided that the first of
these mixed terms is a reasonably small correction to the
1 — . sum rule, it should be safe to neglect the second, as discussed
7(p)=— W(de ysulm " (k) by loffe [15,16.
The construction of sum rules for the pion-hyperon cou-

as _, plings follows similar lines. For th& *° and A we use the
x(0l~G*0)vayst- -+, 14 following fields, obtained by S(@) rotations of Eq(4) [10]:
where(0|(as/7)G?|0) is the gluon condensate in vacuum. 75 +(X) = €apd UA(X) TCy,uP(X) ] ys¥*s%(x),  (18)

We find that the contribution of this condensate is small, as
discussed in the following section. 750(X) = V2[ 7y2(X) + 7y1(X)], (19
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2 . AsAAMyQzsa
na(X)= \ﬁ[’?YZ(X)_ 7v1(X)], (20 HA(p): —iKys— Z-M2)2 +ee (27
3 (p )
where we have introduced where only the pole terms have been written out. In the

A3 correlatorMy denotes the average hyperon mass since
7v1(X) = €pd d3(X)TCy,8°(¥)]y57#u%(X), (21  we neglect the mass difference between Yhand A. (The
numerical coefficients in the definitions of the coupling con-
Mv2(X) = €5 d UA(X)TCy,8°(X)]y5¥#d%(X). (22 stants can be found if22].)
Taking the combinations of they,; and »y, correlators
that correspond to th&° and A and equating them to the
r{:)henomenological expressions, we obtain the sum rules

It is convenient to evaluate the correlators 9§, and
7y, With the >+ field separately. Consideringy, first, we
find that its correlator has the same basic form as the proto

neutron one just discussed. The only difference is that it is 5 5
smaller by a factor of 2 since it contains only one strange- 1272 M*Ep(X,s) + WMZEl(XwE)‘sZ
quark field. For thekys piece of this correlator we therefore
have A2Msg,
:(zf—f\/lzﬁJrAE exp—M2/M?),  (28)

1
[T (p) =~ 25— p?In(—p)f ks

4 25 2
M7 E,(X7p) + 36772M E1(X74) &

1272

-5
—i ﬁl%zm(— p2) 8% Kys+---. (23

+A,

AsA Myg..
=\/§<EA—Y92A exp(—M2/M?). (29)

f_M?

The OPE for the correlator ofypy, starts with a

dimension-3 term of the form In the limit of exact SW3) symmetry there two indepen-

1 dent couplings of pseudoscalar mesons to the baryon octet,
Hj{z(p)=i\/§24 sp?In(—p?)f Kys+ - - -. (29 usually denoted= and D corresponding to antisymmetric
™ and symmetric combinations of the octet fields. T cou-
Unlike the corresponding terms in Eq8) and (23), which pling is proportional td=+ D and the hyperon couplings can

have the formkys/x® in coordinate space, this term arises P& Written as
from one of the formxx-k/x. This difference in the

coordinate-space structure means that the corresponding Grys=2aGmn, (30)
dimension-5 term coming from the expansion of ’
d(0)y*ysu(x) has a different relative coefficient compared Ursa=—=(1—a)g N> (32)
to that in Egs.(13) and (23). It involves the same matrix V3
element(12) discussed above and has the form
where
5
M3%(p) =i255—In(—p?) &f Kys+---. (25 . FFD @2
+

One might have expected an additional contribution of this .

form from the background gluon field in the quark propaga-(S€€, for example{,23,24). Comparing our sum rule€28)

tor. However it turns out that such a term vanishes for thétnd(29) with these forms we see that, if the strengihsare
Kys piece of the correlator ofjy, and s+ because of a SU(3) symmetric, the correlator ofyy; contributes to the

cancellation of contributions from the coordinate-spacec@UPINGF+D, while 7y, contributes td=—D. In this limit
forms Kys /x* andxx-k/x®. the dimension-3 terms in these sum rules would lead to an

At dimension 7 there are mixed quark-gluon condensaté&’/P ratio of 5/7[3], although the dimension-5 terms would

terms, which are similar to the term in the the nucleon corr{€Nd to reduce this value. For comparison,(Ujuark mod-

elator(14). The first SUW3)-breaking term also appears at this els give F/D_:2/3' and SL(B)-symmgtric analyses of pion-
order. This involves a condensate of the formParyon coupling$23,24 or baryon axial couplingk25] tend

ms(0|®dy"y5u|rr+(k)>, stemming from the mass term in to give values around 0.58. One should remember th&a8SU

the strange-quark propagator. The term can be estimated IR significantly broken by the strange quark mass and so it

the factorization approximation and we find that it gives all”:nay ggt be possible to represent the couplings in terms of
very small(less than 5%contribution to the OPE side of the andb.
sum rules. We therefore neglect it in our analyses.

The phenomenological expressions for the hyperon corr- IIl. ANALYSIS

elators are We now turn to the numerical analysis of these sum rules.

First, one should get rid of the unknown constafygs Mul-

ANEMsGss i 2 2012
3(p)=ikys—5—gs + -, (26)  tiplying the sum rules byM“expM/M?, we see that the
*(p?-M3)? right-hand sides become linear functiondwf. By acting on
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these forms of the sum rules with £IM?9/dM?) [8] (or  nucleon sum rules, where two sum rules can be defi6H
equivalently by fitting a straight line to the left-hand sides(involving either odd or even dimension operajdosit nei-
and extrapolating td12=0 [14]) we can in principle deter- ther shows good stability. Nonetheless the ratio of these
mine value for the couplings. However we are unable to findeads to a more stable expression for the nucleon mass. We
a region of Borel mass in which the left-hand sides are aphave therefore taken the ratio of our sum rules to those for
proximately linear functions oM?2, and hence there is no the corresponding baryons. We obtain the most stable results
region of stability for the extracted .gg . from the ratios to the following baryon sum rulgs0,8,3
This lack of stability is similar to the situation for the (see alsd26-2§),

1 4 — 1 — 2 2 2/n12
~ 2,2 M Ex(xn)(0[qq|0) + 5(0[qq|0){0] (ad/ ) G*|0) =AM nexp( — M/ M?), (33
ms 6 1 4 Py 4 PR 2 2 2
6.4M Ez(Xz)—mM El(Xz)<0|SS|0>+§ms<0|(QQ) |0)=ASMsexp—Ms/M?), (34)
mg 6 M4 N 4 —\2 —_— 2 2 2
_48774M EZ(XA)_W(4<O|qQ|O>_<o|§|0>)E1(XA)+ §ms[3<0|(QQ) |0)—(0[(qq)(ss)|0)]=M A iexp —M1/M?),

(39

and so we present here only the results for these cases. Taking such ratios also has the advantage of eliminating the
experimentally undetermined strengihs from the sum rules. Note that we have allowed for a different continuum threshold
Sg in each of the sum rules and have defingg Sg/M?.
Again we describe first the sum rule fgryy and then discuss the additional features that arise for the hyperons. We take
the ratio of the sum rule€l7) and (33

1 6 S 4 T ¥s ~2
WM EZ(X)‘FWM Ei(x)& +1—2M EO(X)<O|?G |O>
fﬂT :ngN"—AN’MZy (36)

1 _ 1
~ -zM*E1(x\)(0[qa|0) + 5(0[qa 0)(0] (a/ 7 G?)|0)

and use the method discussed above to eliminate the un- We have examined the dependence of our results to the
known mixed nucleon-to-continuum terndM? (where threshold in the nucleon sum ru . Varying this from 2.2
AL =Anf,/\3ZMy). The results fog,.y are shown in Fig. 1  to 2.8 Ge\?, readjustingS,, to maintain stability, changes
as a function of the Borel madd?2. These have been ob- g,\n by +0.2. To estimate the sensitivity of our sum rules
tained using the following typical values of the condensateso the contributions of dimension-7 condensates and to un-
and thresholds: (0[qqg|0y=—(0.245 GeV¥, certainties in the gluon condensate, we have varied the
(0|(as/m)G?|0)=0.012 GeVt, 5°=0.35 Ge\?, Sy=2.5 dimension-7 term in Eq(17) between zero and twice its
GeV?, andS,y=2.15 Ge\?. Stable values ofj,ny=11.7 standard value. Our results fgr,y change by+0.5 over
are found over a regioM?=0.8—1.8 Ge\?. Corrections  this range.
due to theA(M? term are small, at most 5%. The second As a further check on our results, we have examined
such term in Eq(15) is expected to be smaller by a factor of whether the individual sum ruled7) and (33) satisfy the
3-4, and so we are justified in neglecting it. criteria suggested by LeinwebEt7]. We find that the high-
The thresholds, has been adjusted so that stable resultest dimension condensates contribute less than 10% of the
are obtained for Borel masses around 1 Ggaince one may OPE to both sum rules fdv1>>0.8 Ge\2. The procedure of
hope that in this region the Borel transformed sum rule is notifferentiation with respect td1? does tend to increase the
too sensitive to the approximations that have been made ogize of the continuum contribution. Nonetheless it does re-
both the OPE and phenomenological sides of the sum rulanain within Leinweber’s limit, forming about 40% of the
The existence of a window of stability provides a check onphenomenological side of the differentiated version of the
the consistency of this assumption. We also demand that theum rule(17) for M2 up to 1.4 Ge, the point at which the
thresholdsSy and S\ should lie significantly above this continuum reaches 50% of the odd-condensate sun{38Je
window so that the continuum is not too heavily weighted inWe therefore use the regid?=0.8—1.4 Ge\? since this
the Borel transform. We find that the window of stability provides a window within which our results are both stable
moves rapidly upwards &,y is increased for fixe®y . For  with respect to the Borel mass and not too sensitive to our
the typical parameter values above, only the region 2.0mpproximations.
GeV?<S_\=2.22 Ge\? satisfies these requirements. The We have also examined the dependence of our results on
value ofg,nn Varies by at most: 0.2 over this region. the other input parameters. One of the most important of
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since they cannot reproduce the nucleon mass within the
cf‘, I region of Borel mass and threshold that we consider. Vary-
el ing the quark condensate between(0.23 GeVy and
? —(0.26 GeV}¥, we find thatgny changes byt 2.

Including all of these sources of uncertainty, our final
result for the pion-nucleon coupling constant is thus
g.nn=12+5, where the error is dominated b§’ and
(0|qq|0). This value is to be compared with those deduced
from NN and 7N scattering. For many years the accepted
value wasg,.yn=13.4[29] but this coupling has been the
subject of some debate in recent years. More recent analyses
lead to values in the range 12.7-1330]. Our result is
obviously consistent with any of these.

The analysis of the pion-hyperon sum rules follows simi-
lar lines. In these cases additional input parameters are
needed to describe the effects of (SUbreaking in the hy-
peron mass sum rulg84) and (35). For the strange quark

T O A R SR R mass, we consider values in the ramge=130-230 MeV
06 08 1 214 16 18 2 [31]. We write the strange quark condensate in the form
M? (0[ss|0)=7(0|gq|0) and considery in the range 0.7-0.9.

To allow for deviations from the factorization approxima-

FIG. 1. Dependence on the square of the Borel mass of thgon,_w;a write the_four—zquark condensates in the form
7NN coupling constant determined from the ratio of sum rules for(0/(aq)“|0)=K((0[qq|0))* and varyK between 1 and 2.
My andg,ny. The values of the parameters used are given in the FOr theg,ss sum rule we find a similar window of Borel
text. The solid line shows the value gfyy corrected for the mixed ~ Stability for values ofS_s in the region 1.8 to 2 Ge¥
continuum termA/,M?2, the dashed line corresponds to the uncor-provided we takeSy in the range 2.8 to 3.0 GEA/ With the
rected value ofj ,ny - typical values for the parameters above ang=180 MeV,

v=0.7, andK =1, we getg ,ss=6.8. The relative uncertain-

these is the matrix elemed?, defined by Eq(12). As al- ties in this arising froms? and the quark condensate are
ready mentioned, this parameter was extracted by Novikowimilar to those fogyy . There are also significant further
et al. [18] from an analysis of two sum rules for the pion. Uncertainties fromms, y, andK, which add another-1.
Their results depend crucially on the four-quark condensaté2ur final result for this coupling ig,sx=7*4. A similar
a4(0](qq)2|0), for which they made the factorization ap- analysis for theg; s sum rule leads t@,,s=6+3. We
proximation and took a value of about2.0™* GeV®. With should also point out that there is an additional uncertainty in
this input, both of their sum rules yield consistent results forour determination of the latter coupling since we have ig-
8% in the region 0.280.02 Ge\2. However, sum-rule analy- nored theX-A mass splitting in obtaining the sum rui9).

ses ofr decay ande*e™ annihilation into hadrons lead to  Within our large error bars, these results for the pion-
significantly larger values of the four-quark condendatee hyperor_l couplings are compatible with the empirical values
[19-21 and references therdin in the range duotedinRef[22],g;sx=13*2 andg,,sy=12+2, as well
(4—6)Xx10"* GeVe. Using these in the sum rules of Ref, & more recent determinatiof3,24], which yield values in
[18] leads to values fos? ranging from 0.28 to 0.45, al- the range 10-12 for both couplings. However one should
though the two sum rules do not then give consistent resultd0te that Refs|23,24 assume S(8) symmetry of the cou-

As a conservative estimate of the uncertaintyfnwe have Plings whereas our results show significant(3lUbreaking
considered the range 0.20 to 0.45 GeWhe corresponding 2nd cannot be expressed in termsFoéndD couplings.
variation ing.y is =2 when the other parameters are held The rather large uncertainties in these results could be
at theirvalueg above ar@l., is changed to keep the window reduced if the quark condensate could be determined more
of stability around 1 Ge‘&.N precisely. In addition, the sum rules of Noviket al. [18]

The second significant source of uncertainty is the quarifnould be reexamined using larger valu(%? of the four-quark
condensatg0[qq|0) which appears in the odd-dimension condensate to try to pin down the va[ue more exactly.
sum rule for the nucleon. “Standard” values for this lie in e also note that there are correlations among the param-

the range— (0.21GeV}§ and — (0.26GeV§. The values of eters used, for example betweéhand the four-quark con-
the baryon masses determined from sum rJ&g] are densate, and so we may have overestimated the total uncer

strongly correlated with this condensate. There is also 4iNties to some extent. It might therefore be worth applying
weaker correlation with the chosen value of the thresholdh® techniques of Leinwebgt7] to these sum rules. How-
Ss. Since we are dividing our sum rules by baryon sum&Ver we note that recent applications of that approach to sum
rules, our results are rather sensitive to the value of thigules for the axial coupling also lead to results witrb0%

condensate. One would like to use values/@fgq|0) and ~ uncertaintieg32].
Sy that, for example, give the nucleon mass correctly, but the
ratio of the odd and even dimension nucleon sum rules does
not yield completely stable results fdfy . The best we can We have calculated the pion-nucleon and pion-hyperon
do is to rule out values of-(0[qq|0) below (0.23 GeV§  coupling constants using QCD sum rules based on the pion-

IV. SUMMARY
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to-vacuum matrix element of a two-point correlator of inter- hope to reduce some of these uncertainties, our results and
polating baryon fields. We have included baryon-to-those of[32] for g, indicate that sum rules for baryon cou-
continuum terms omitted from previous analyses. Our sunplings are unlikely ever to reach similar accuracy to those for
rules are based on the part of the correlator with Dirac strucbaryon masses. Nonetheless this approach may be able to
turekys and include all terms up to dimension 5 in the OPE.yield useful information on other couplings whose values are
Stable results are obtained from the ratio of these sum rulest present not well determined.
to ones for the baryon masses and the unsuppressed baryon-
to-continuum contributions are found to be small. Contribu-
tions from higher-dimension operators and omitted con-
tinuum terms are estimated to be small. Within admittedly We are grateful to V. Kartvelishvili and J. McGovern for
rather large errors, our results for the coupling constants aneseful discussions. M.C.B. thanks the TQHN group at the
consistent with the empirical values. University of Maryland for its hospitality during the comple-
One should note that the uncertainties in our results aréon of this work. This work was supported by the EPSRC
large. While we have indicated ways in which one mightand PPARC.
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