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Determination of pion-baryon coupling constants from QCD sum rules
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We evaluate thepNN, pSS, andpSL coupling constants using QCD sum rules based on pion-to-vacuum
matrix elements of correlators of two interpolating baryon fields. The parts of the correlators with Dirac
structurek”g5 are used, keeping all terms up to dimension 5 in the OPE and including continuum contributions
on the phenomenological side. The ratios of these sum rules to baryon mass sum rules yield stable results with
values for the couplings ofgpNN51265, gpSS5764, andgpSL5663. The sources of uncertainty are
discussed.@S0556-2813~96!05412-X#

PACS number~s!: 13.75.Gx, 11.55.Hx, 14.20.2c, 24.85.1p
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I. INTRODUCTION

Meson-baryon coupling constants form an important
gredient in many calculations of strong-interaction proces
and one would like to determine these quantities from QC
In the absence of treatments from first principles, the met
of QCD sum rules@1# has proved to be a very powerful too
for studying various properties of low-lying hadron state
Here we apply this method to the calculation of the coupl
constants of pions to the lowest states of the baryon oc
N, L, andS.

The pion-nucleon coupling constantgpNN has previously
been studied within the framework of QCD sum rules
several groups@2–5#. Reinders, Rubinstein, and Yazaki@3#
explored two different approaches, one based on the cor
tor of three interpolating fields sandwiched between vacu
states, and one based on the pion-to-vacuum matrix elem
of the correlator of two interpolating nucleon fields,h:

^0uT$h~x!h̄~0!%upa~k!&. ~1!

The particular sum rule they studied was based on the s
pion limit of the part of the two-point correlator~1! with
Dirac structureg5. However those authors took into accou
only the leading term of the operator product expans
~OPE! and they neglected continuum contributions. Shio
and Hatsuda@4# extended the analysis of this sum rule
include condensates up to dimension 7 in the OPE as we
a perturbative estimate of continuum contributions.

The sum rules that we use here are also constructed
two-point correlators~1! of the appropriate baryon interpo
lating fields. The advantage of this method is that it allo
one to calculate hadron properties at low values of the m
mentum transfer to the baryon. In contrast, the straight
ward use of the OPE for the three-point correlator is va
only for large spacelike meson momenta and therefore a
termination of the coupling constant requires an extrapo
tion to zero momentum where the OPE is clearly not va
because of large power corrections. Estimates of the c
pling constant from the coefficient of 1/k2 determined at
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largek2, as in Refs.@2,3,6#, cannot distinguish the pole term
of the lowest meson from the contributions of higher-ma
states in the same meson channel which give the samek2

behavior at largek2.
We note that modified versions of the OPE of three-po

correlators for processes with small momentum transfer h
been developed in Refs.@7,8#. The essence of these metho
is the inclusion of ‘‘bilocal power corrections,’’ which effec
tively sum up the series of power terms in 1/k2 by matching
them to the contributions of mesonic states in the relev
channel. The contributions of low-lying mesons to the fo
factors play an increasingly important role as the moment
transfer decreases. Meson-baryon coupling constants ca
obtained from the OPE of three-point correlators with biloc
power corrections by going to the meson pole. At the p
this treatment of the three-point correlators yields the sa
results as the method based on two-point correlators whic
used in this paper~cf. @9#!.

The particular sum rules that we study here are c
structed from the part of the correlator~1! with Dirac struc-
ture k”g5. We chose this structure because it provides a
termination of the pion-baryon couplings that is not simp
related to the sum rules for the baryon masses. In contras
soft-pion limit of the OPE for theg5 piece of the two-point
correlator forgpNN has exactly the same form as that for t
nucleon sum rule@10,8# involving condensates of odd di
mension, up a factor of 1/f p @3,4#. Shiomi and Hatsuda@4#
showed that the ratio of theg5 sum rule to one for the
nucleon mass takes the form of the Goldberger-Treiman
lation withgA51, provided that the continuum thresholds a
taken to be the same in both cases. Those authors took
ferent thresholds in the two sum rules in order to get arou
this problem with the implied value ofgA .

However, we stress that taking the soft-pion limit of th
g5 piece of the two-point correlator~1! does not lead to an
independent determination of the coupling constant. In
case ofgpNN , the usual soft-pion theorem@11# can be used
to express the correlator~1! in the form

2
i

f p
^0u@Q5

a ,T„h~x!,h†~0!…#u0&

5
i

2 f p
$g5t

a,^0uT„h~x!,h†~0!…u0&%, ~2!ian
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54 3241DETERMINATION OF PION-BARYON COUPLING . . .
whereQ5
a is the axial charge and we have made use of

transformation properties of the interpolating field und
axial rotations@12,13#, @Q5

a ,h#521/2g5t
ah. The anticom-

mutator withg5 picks out the part of the two-point correlato
proportional to the unit Dirac matrix. The phenomenologic
side of the resulting sum rule is thusig5 / f p times the cor-
responding expression for the odd-condensate nucleon
rule. This matches exactly with the structure found for t
OPE side in Refs.@3,4#.

The soft-pion limit for theg5 piece of the correlator~1!
thus yields a sum rule forMN / f p5gpNN /gA . The value for
the coupling determined from such a rum rule follows fro
the odd-condensate sum rule for the nucleon mass and
Goldberger-Treiman relation~or an approximation to it tak-
ing gA51). The sum rule can be thought of as just a chi
rotation of the odd-condensate nucleon sum rule andnot an
independent determination ofgpNN . Physically this result is
quite natural since in the soft-pion limitpB and B states
become degenerate and can be related to each other by
transformations. In this paper, by considering terms bey
the soft-pion limit, we obtain values for pion-baryon co
plings that are not simply consequences of chiral symme

In addition we note that a potentially important piece
the phenomenological side is missing from previous su
rule determinations ofgpNN . This term corresponds to tran
sitions where a ground-state baryon created by the inte
lating field absorbs the pion and is excited into t
continuum. Since they are not suppressed by the Borel tr
formation such terms should be included in a consistent s
rule analysis, as pointed out long ago@8,14# and stressed
recently by Ioffe@15,16#. In the soft-pion limit of theg5 sum
rule, such terms generate contact interactions where the
couples directly to the baryon field,^B(p)uh̄n(0)up(k)&, and
which are essential if the correct soft-pion limit is to be o
tained. The omission of these terms in Refs.@3,4# can explain
why the correct Goldberger-Treiman relation was not fou
there. Indeed, as the authors of@4# point out, a quick estimate
of these unsuppressedN* contributions suggests that the
could be as large as 25%: enough to remove the discrep
with the Goldberger-Treiman relation.

As discussed above, the sum rules studied here pro
values for the pion-baryon couplings that are not simply
lated to the baryon masses by chiral symmetry. We incl
all condensates up to dimension 5 as well as mixed c
tinuum terms. These are essential for assessing the reliab
of the sum rules and estimating the uncertainties in the
sults. The application of these sum rules togpNN has been
described briefly in@5#. Similar sum rules have been applie
to other pion couplings, especially in the context ofD and
B mesons, as discussed in@9# and references therein.

The paper is organized as follows: in Sec. II we derive
sum rules for the pion-baryon couplings from the relev
two-point correlators; the numerical analysis of the sum ru
is presented in Sec. III; finally our results are summarized
Sec. IV.

II. TWO-POINT CORRELATORS AND SUM RULES

Our sum rules are obtained from the two-point correla
~1! just discussed, but instead of the piece with Dirac str
tureg5 considered in Refs.@3,4# we work with the structure
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k”g5, wherek is the pion momentum. We work here to lea
ing order in a chiral expansion, neglecting higher-order ter
in the pion momentum or current quark mass. To illustr
the derivation of the sum rules for pion-baryon couplings,
consider first the sum rule forgpNN . The differences that
arise for the pion-hyperon couplings will then be discuss
and the forms of the resulting sum rules presented.

We consider the two-point correlation function

P~p!5 i E d4xexp~ ip•x!^0uT$hp~x!h̄n~0!%up1~k!&,

~3!

where we use the Ioffe interpolating field@10# for the proton,

hp~x!5eabc@u
a~x!TCgmu

b~x!#g5g
mdc~x!, ~4!

and the corresponding neutron fieldhn which is obtained by
interchangingu andd quark fields and multiplying by21.
Herea,b,c are the color indices andC is the charge conju-
gation matrix. Other choices of interpolating field can
used, as discussed in detail by Leinweber@17#. For the odd-
condensate nucleon sum rule, which we make use of in
determination ofgpNN , it turns out that the Ioffe field is
close to optimal@17# and so we do not consider more gene
fields.

In the deeply Euclidean region, wherep2 is large and
negative, the OPE of the product of two interpolating fiel
takes the following general form

i E d4xexp~ ip•x!T$hp~x!h̄n~0!%5(
n

Cn~p!On , ~5!

whereCn(p) are the Wilson coefficients andOn are local
operators constructed out of quark and gluon fields~all
renormalized at some scalem). Using this OPE in correlators
of the form~3!, we find that only operators of odd dimensio
contribute. The leading term in this expansion involves o
erators with dimension 3 and is given by

P3~p,k!52
1

2p2 p
2ln~2p2!

3^0ud̄gag5uup1~k!&gag51•••, ~6!

where terms that do not contribute to the Dirac structure
interest,k”g5, have been suppressed. The matrix element h
is just the usual one for pion decay:

^0ud̄gag5uup1~k!&5 iA2 f pk
a, ~7!

wheref p593 MeV is the pion decay constant. Hence we c
write the leading term as

P3~p,k!52 iA2
1

2p2 p
2ln~2p2! f pk”g51•••. ~8!

At dimension 5 the only relevant contribution arises fro
the second-order term in the covariant expansion of the n
local operatord̄(0)gag5u(x). This is a specific feature o
the Ioffe nucleon interpolating field@10# which we used to
calculatePN. This term has the form
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3242 54MICHAEL C. BIRSE AND BORIS KRIPPA
P5~p!5
5

9p2 ln~2p2!^0ud̄gag5D
2uup1~k!&gag51•••.

~9!

Up to corrections of higher order in the current mass,
matrix element here can easily be reexpressed in terms
mixed quark-gluon condensate

^0ud̄gag5D
2uup1~k!&5

gs
2

^0ud̄gag5smnG
mnuup1~k!&

1O~mc
2!. ~10!

With some further manipulation this can be rewritten in t
form

^0ud̄gag5D
2uup1~k!&52gs~^0ud̄G̃amgmuup1~k!&

2 igs^0ud̄Gmagmg5uup1~k!&!,

~11!

where G̃mn5 1
2emnrsG

rs. ~We use the convention
e0123511.! The second term in this expression is of high
order in the chiral expansion~see Ref.@18# for details! and so
we neglect it here.

The first term in Eq.~11! is of leading order in the chira
expansion. It involves a matrix element that has been
tracted by Novikovet al. @18# from two QCD sum rules for
the pion. They expressed it in the form

gs^0ud̄G̃amgmuup1~k!&5A2id2f pk
a, ~12!

and obtainedd25(0.2060.02) GeV2. In both their sum
rules the four-quark condensateas^0u(q̄q)2u0& makes a cru-
cial contribution. Novikovet al. @18# used the factorization
approximation for this quantity in their analysis. Howeve
direct determinations of it from other sum rules lead to v
ues @19–21# that are at least 2–3 times bigger than tho
obtained from factorization. These give correspondin
larger values ford2, a point we shall come back to in th
analysis of the sum rules in Sec. III. Our final expression
the dimension-5 term in the sum rule is

P5~p!52 iA2
5

9p2 ln~2p2!d2f pk”g51•••. ~13!

To estimate the importance of higher-dimension cond
sates, we have also calculated the contribution of what
hope is the most important dimension-7 operator in the O
This is a mixed quark-gluon condensate, which we evalu
in the factorized approximation. Keeping only this contrib
tion explicitly, the dimension-7 piece of the correlator is

P7~p!52
1

12p2
^0ud̄gag5uup1~k!&

3^0u
as

p
G2u0&gag51•••, ~14!

where^0u(as /p)G
2u0& is the gluon condensate in vacuum

We find that the contribution of this condensate is small,
discussed in the following section.
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On the phenomenological side, thepN coupling constant
is contained in the term of the correlator~3! with a double
pole at the nucleon mass. However there are also contin
contributions which cannot be ignored. These inclu
continuum-to-continuum pieces which can be modeled in
usual manner, in terms of the spectral density associated
the imaginary part of the OPE expression for the correla
This continuum is assumed to start at some thresholdSpN .
After Borel transformation, it can be taken over to the OP
side of the sum rule where it modifies the coefficients of
terms involving ln(2p2). In addition one must include
nucleon-to-continuum terms since Borel transformation d
not suppress these with respect to the double-pole t
@8,14–16#. To first order ink, the correlator has the form

P~p!5 iA2k”g5FlN
2MNgpNN

~p22MN
2 !2

1E
W2

`

dsb~s!
1

s2MN
2 S 1

p22MN
2 1

a~s!

s2p2D G1•••,

~15!

where the continuum-continuum terms~and terms with other
Dirac structures! have not been written out. HerelN is the
strength with which the interpolating field couples to t
nucleon:

^0uhN~0!uN~p!&5lNu~p!. ~16!

The sum rule is obtained by equating the OPE and p
nomenological expressions for the correlator~3! and Borel
transforming@1#. Keeping only condensates up to dimensi
5, this has the form

1

2p2M
4E2~xpN!1

5

9p2M
2E1~xpN!d2

5S lN
2MNgpNN

f pM
2 1ADexp~2MN

2 /M2!, ~17!

where M is the Borel mass and En(x)
512(11x1•••1xn/n!)e2x with xpN5SpN /M

2. The sec-
ond term on the right-hand side of this sum rule is the Bo
transform of the nucleon pole term of the nucleon-
continuum piece in Eq.~15!. It involves an undetermined
constantA but, since it contains the same exponential as
nucleon double-pole term, it cannot be ignored. The sec
nucleon-to-continuum term in Eq.~15! leads to a term that is
suppressed by an exponential involving the masses of s
in the continuum. It is thus typically a factor of 3–4 small
than the term included in Eq.~17!. Provided that the first of
these mixed terms is a reasonably small correction to
sum rule, it should be safe to neglect the second, as discu
by Ioffe @15,16#.

The construction of sum rules for the pion-hyperon co
plings follows similar lines. For theS1,0 andL we use the
following fields, obtained by SU~3! rotations of Eq.~4! @10#:

hS1~x!5eabc@u
a~x!TCgmu

b~x!#g5g
msc~x!, ~18!

hS0~x!5A2@hY2~x!1hY1~x!#, ~19!
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hL~x!5A2

3
@hY2~x!2hY1~x!#, ~20!

where we have introduced

hY1~x!5eabc@d
a~x!TCgms

b~x!#g5g
muc~x!, ~21!

hY2~x!5eabc@u
a~x!TCgms

b~x!#g5g
mdc~x!. ~22!

It is convenient to evaluate the correlators ofhY1 and
hY2 with theS1 field separately. ConsideringhY1 first, we
find that its correlator has the same basic form as the pro
neutron one just discussed. The only difference is that
smaller by a factor of 2 since it contains only one stran
quark field. For thek”g5 piece of this correlator we therefor
have

PY1~p!52 iA2
1

4p2 p
2ln~2p2! f pk”g5

2 iA2
5

18p2 ln~2p2!d2f pk”g51•••. ~23!

The OPE for the correlator ofhY2 starts with a
dimension-3 term of the form

P3
Y2~p!5 iA2

1

24p2 p
2ln~2p2! f pk”g51•••. ~24!

Unlike the corresponding terms in Eqs.~8! and ~23!, which
have the formk”g5 /x

6 in coordinate space, this term aris
from one of the formx”x•k/x8. This difference in the
coordinate-space structure means that the correspon
dimension-5 term coming from the expansion
d̄(0)gag5u(x) has a different relative coefficient compare
to that in Eqs.~13! and ~23!. It involves the same matrix
element~12! discussed above and has the form

P5
Y2~p!5 iA2

5

72p2 ln~2p2!d2f pk”g51•••. ~25!

One might have expected an additional contribution of t
form from the background gluon field in the quark propag
tor. However it turns out that such a term vanishes for
k”g5 piece of the correlator ofhY2 and uS1 because of a
cancellation of contributions from the coordinate-spa
forms k”g5 /x

4 andx”x•k/x6.
At dimension 7 there are mixed quark-gluon condens

terms, which are similar to the term in the the nucleon co
elator~14!. The first SU~3!-breaking term also appears at th
order. This involves a condensate of the for
ms^0uq̄qd̄gag5uup1(k)&, stemming from the mass term i
the strange-quark propagator. The term can be estimate
the factorization approximation and we find that it gives
very small~less than 5%! contribution to the OPE side of th
sum rules. We therefore neglect it in our analyses.

The phenomenological expressions for the hyperon c
elators are

PS~p!5 ik”g5

lS
2MSgpSS

~p22MS
2 !2

1•••, ~26!
n-
is
-

ing

s
-
e

e

te
-

in

r-

PL~p!52 ik”g5

lSlLMYgpSL

~p22MY
2 !2

1•••, ~27!

where only the pole terms have been written out. In
LS correlatorMY denotes the average hyperon mass si
we neglect the mass difference between theS andL. ~The
numerical coefficients in the definitions of the coupling co
stants can be found in@22#.!

Taking the combinations of thehY1 andhY2 correlators
that correspond to theS0 andL and equating them to the
phenomenological expressions, we obtain the sum rules

5

12p2M
4E2~xpS!1

5

12p2M
2E1~xpS!d2

5S lS
2MSgpSS

f pM
2 1ASDexp~2MS

2 /M2!, ~28!

7

12p2M
4E2~xpL!1

25

36p2M
2E1~xpL!d2

5A3S lSlLMYgpSL

f pM
2 1ALDexp~2MY

2/M2!. ~29!

In the limit of exact SU~3! symmetry there two indepen
dent couplings of pseudoscalar mesons to the baryon o
usually denotedF and D corresponding to antisymmetri
and symmetric combinations of the octet fields. ThepN cou-
pling is proportional toF1D and the hyperon couplings ca
be written as

gpSS52agpNN , ~30!

gpSL5
2

A3
~12a!gpNN , ~31!

where

a5
F

F1D
~32!

~see, for example,@23,24#!. Comparing our sum rules~28!
and~29! with these forms we see that, if the strengthslB are
SU~3! symmetric, the correlator ofhY1 contributes to the
couplingF1D, while hY2 contributes toF2D. In this limit
the dimension-3 terms in these sum rules would lead to
F/D ratio of 5/7 @3#, although the dimension-5 terms wou
tend to reduce this value. For comparison, SU~6! quark mod-
els giveF/D52/3, and SU~3!-symmetric analyses of pion
baryon couplings@23,24# or baryon axial couplings@25# tend
to give values around 0.58. One should remember that SU~3!
is significantly broken by the strange quark mass and s
may not be possible to represent the couplings in terms
F andD.

III. ANALYSIS

We now turn to the numerical analysis of these sum ru
First, one should get rid of the unknown constantsAB . Mul-
tiplying the sum rules byM2expMN

2/M2, we see that the
right-hand sides become linear functions ofM2. By acting on
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these forms of the sum rules with (12M2]/]M2) @8# ~or
equivalently by fitting a straight line to the left-hand sid
and extrapolating toM250 @14#! we can in principle deter-
mine value for the couplings. However we are unable to fi
a region of Borel mass in which the left-hand sides are
proximately linear functions ofM2, and hence there is n
region of stability for the extractedgpBB .

This lack of stability is similar to the situation for th
u
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te

nd
of

ult

no
e
u
on
t t

in
ty

.0
he
d
-

nucleon sum rules, where two sum rules can be derived@10#
~involving either odd or even dimension operators! but nei-
ther shows good stability. Nonetheless the ratio of th
leads to a more stable expression for the nucleon mass.
have therefore taken the ratio of our sum rules to those
the corresponding baryons. We obtain the most stable res
from the ratios to the following baryon sum rules@10,8,3#
~see also@26–28#!,
ating the
hold

take
2
1

4p2M
4E1~xN!^0uq̄qu0&1

1

24̂
0uq̄qu0&^0u ~as/p!G2u0&5lN

2MNexp~2MN
2 /M2!, ~33!

ms

16p4M
6E2~xS!2

1

4p2M
4E1~xS!^0us̄su0&1

4

3
ms^0u~ q̄q!2u0&5lS

2MSexp~2MS
2 /M2!, ~34!

2
ms

48p4M
6E2~xL!2

M4

12p2 ~4^0uq̄qu0&2^0us̄su0&!E1~xL!1
4

9
ms@3^0u~ q̄q!2u0&2^0u~ q̄q!~ s̄s!u0&#5MLlL

2 exp~2ML
2 /M2!,

~35!

and so we present here only the results for these cases. Taking such ratios also has the advantage of elimin
experimentally undetermined strengthslB from the sum rules. Note that we have allowed for a different continuum thres
SB in each of the sum rules and have definedxB5SB /M

2.
Again we describe first the sum rule forgpNN and then discuss the additional features that arise for the hyperons. We

the ratio of the sum rules~17! and ~33!

fp

1

2p2M
6E2~x!1

5

9p2M
4E1~x!d21

1

12
M2E0~x!^0u

as

p
G2u0&

2
1

4p2M
4E1~xN!^0uq̄qu0&1

1

24̂
0uq̄qu0&^0u ~as/p G2!u0&

5gpNN1AN8M
2, ~36!
the

es
un-
the
s

ed

the

e
re-
e
the

le
our

s on
of
and use the method discussed above to eliminate the
known mixed nucleon-to-continuum term,AN8M

2 ~where
AN8 5ANf p /lN

2MN). The results forgpNN are shown in Fig. 1
as a function of the Borel massM2. These have been ob
tained using the following typical values of the condensa
and thresholds: ^0uq̄qu0&52(0.245 GeV)3,
^0u(as /p)G

2u0&.0.012 GeV4, d250.35 GeV2, SN52.5
GeV2, andSpN52.15 GeV2. Stable values ofgpNN.11.7
are found over a regionM2.0.821.8 GeV2. Corrections
due to theAN8M

2 term are small, at most 5%. The seco
such term in Eq.~15! is expected to be smaller by a factor
3–4, and so we are justified in neglecting it.

The thresholdSpN has been adjusted so that stable res
are obtained for Borel masses around 1 GeV2, since one may
hope that in this region the Borel transformed sum rule is
too sensitive to the approximations that have been mad
both the OPE and phenomenological sides of the sum r
The existence of a window of stability provides a check
the consistency of this assumption. We also demand tha
thresholdsSN and SpN should lie significantly above this
window so that the continuum is not too heavily weighted
the Borel transform. We find that the window of stabili
moves rapidly upwards asSpN is increased for fixedSN . For
the typical parameter values above, only the region 2
GeV2<SpN<2.22 GeV2 satisfies these requirements. T
value ofgpNN varies by at most60.2 over this region.
n-

s

s
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We have examined the dependence of our results to
threshold in the nucleon sum ruleSN . Varying this from 2.2
to 2.8 GeV2, readjustingSpN to maintain stability, changes
gpNN by 60.2. To estimate the sensitivity of our sum rul
to the contributions of dimension-7 condensates and to
certainties in the gluon condensate, we have varied
dimension-7 term in Eq.~17! between zero and twice it
standard value. Our results forgpNN change by60.5 over
this range.

As a further check on our results, we have examin
whether the individual sum rules~17! and ~33! satisfy the
criteria suggested by Leinweber@17#. We find that the high-
est dimension condensates contribute less than 10% of
OPE to both sum rules forM2.0.8 GeV2. The procedure of
differentiation with respect toM2 does tend to increase th
size of the continuum contribution. Nonetheless it does
main within Leinweber’s limit, forming about 40% of th
phenomenological side of the differentiated version of
sum rule~17! for M2 up to 1.4 GeV2, the point at which the
continuum reaches 50% of the odd-condensate sum rule~33!.
We therefore use the regionM2.0.821.4 GeV2 since this
provides a window within which our results are both stab
with respect to the Borel mass and not too sensitive to
approximations.

We have also examined the dependence of our result
the other input parameters. One of the most important
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these is the matrix elementd2, defined by Eq.~12!. As al-
ready mentioned, this parameter was extracted by Novi
et al. @18# from an analysis of two sum rules for the pio
Their results depend crucially on the four-quark condens
as^0u(q̄q)2u0&, for which they made the factorization ap
proximation and took a value of about 231024 GeV6. With
this input, both of their sum rules yield consistent results
d2 in the region 0.2060.02 GeV2. However, sum-rule analy
ses oft decay ande1e2 annihilation into hadrons lead t
significantly larger values of the four-quark condensate~see
@19–21# and references therein!, in the range
(426)31024 GeV6. Using these in the sum rules of Re
@18# leads to values ford2 ranging from 0.28 to 0.45, al
though the two sum rules do not then give consistent res
As a conservative estimate of the uncertainty ind2 we have
considered the range 0.20 to 0.45 GeV2. The corresponding
variation ingpNN is 62 when the other parameters are he
at their values above andSpN is changed to keep the window
of stability around 1 GeV2.

The second significant source of uncertainty is the qu
condensatê 0uq̄qu0& which appears in the odd-dimensio
sum rule for the nucleon. ‘‘Standard’’ values for this lie
the range2(0.21GeV)3 and2(0.26GeV)3. The values of
the baryon masses determined from sum rules@10# are
strongly correlated with this condensate. There is als
weaker correlation with the chosen value of the thresh
SB . Since we are dividing our sum rules by baryon su
rules, our results are rather sensitive to the value of
condensate. One would like to use values of^0uq̄qu0& and
SN that, for example, give the nucleon mass correctly, but
ratio of the odd and even dimension nucleon sum rules d
not yield completely stable results forMN . The best we can
do is to rule out values of2^0uq̄qu0& below (0.23 GeV)3

FIG. 1. Dependence on the square of the Borel mass of
pNN coupling constant determined from the ratio of sum rules
MN andgpNN . The values of the parameters used are given in
text. The solid line shows the value ofgpNN corrected for the mixed
continuum termAN8M

2, the dashed line corresponds to the unc
rected value ofgpNN .
v
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since they cannot reproduce the nucleon mass within
region of Borel mass and threshold that we consider. Va
ing the quark condensate between2(0.23 GeV)3 and
2(0.26 GeV)3, we find thatgpNN changes by62.

Including all of these sources of uncertainty, our fin
result for the pion-nucleon coupling constant is th
gpNN51265, where the error is dominated byd2 and
^0uq̄qu0&. This value is to be compared with those deduc
from NN andpN scattering. For many years the accept
value wasgpNN513.4 @29# but this coupling has been th
subject of some debate in recent years. More recent anal
lead to values in the range 12.7–13.6@30#. Our result is
obviously consistent with any of these.

The analysis of the pion-hyperon sum rules follows sim
lar lines. In these cases additional input parameters
needed to describe the effects of SU~3! breaking in the hy-
peron mass sum rules~34! and ~35!. For the strange quark
mass, we consider values in the rangems5130–230 MeV
@31#. We write the strange quark condensate in the fo
^0us̄su0&5g^0uq̄qu0& and considerg in the range 0.7–0.9
To allow for deviations from the factorization approxim
tion, we write the four-quark condensates in the fo
^0u(q̄q)2u0&5K(^0uq̄qu0&)2 and varyK between 1 and 2.

For thegpSS sum rule we find a similar window of Bore
stability for values ofSpS in the region 1.8 to 2 GeV2,
provided we takeSS in the range 2.8 to 3.0 GeV2. With the
typical values for the parameters above andms5180 MeV,
g50.7, andK51, we getgpSS.6.8. The relative uncertain
ties in this arising fromd2 and the quark condensate a
similar to those forgpNN . There are also significant furthe
uncertainties fromms , g, andK, which add another61.
Our final result for this coupling isgpSS5764. A similar
analysis for thegpLS sum rule leads togpLS5663. We
should also point out that there is an additional uncertainty
our determination of the latter coupling since we have
nored theS-L mass splitting in obtaining the sum rule~29!.

Within our large error bars, these results for the pio
hyperon couplings are compatible with the empirical valu
quoted in Ref.@22#, gpSS51362 andgpLS51262, as well
as more recent determinations@23,24#, which yield values in
the range 10–12 for both couplings. However one sho
note that Refs.@23,24# assume SU~3! symmetry of the cou-
plings whereas our results show significant SU~3! breaking
and cannot be expressed in terms ofF andD couplings.

The rather large uncertainties in these results could
reduced if the quark condensate could be determined m
precisely. In addition, the sum rules of Novikovet al. @18#
should be reexamined using larger values of the four-qu
condensate to try to pin down the value ofd2 more exactly.
We also note that there are correlations among the par
eters used, for example betweend2 and the four-quark con-
densate, and so we may have overestimated the total un
tainties to some extent. It might therefore be worth apply
the techniques of Leinweber@17# to these sum rules. How
ever we note that recent applications of that approach to
rules for the axial coupling also lead to results with;50%
uncertainties@32#.

IV. SUMMARY

We have calculated the pion-nucleon and pion-hype
coupling constants using QCD sum rules based on the p

e
r
e

-



r-
to
u
u
E
ul
ry
u
on
dl
a

a
h

and
-
for
le to
are

r
the
-
C

3246 54MICHAEL C. BIRSE AND BORIS KRIPPA
to-vacuum matrix element of a two-point correlator of inte
polating baryon fields. We have included baryon-
continuum terms omitted from previous analyses. Our s
rules are based on the part of the correlator with Dirac str
turek”g5 and include all terms up to dimension 5 in the OP
Stable results are obtained from the ratio of these sum r
to ones for the baryon masses and the unsuppressed ba
to-continuum contributions are found to be small. Contrib
tions from higher-dimension operators and omitted c
tinuum terms are estimated to be small. Within admitte
rather large errors, our results for the coupling constants
consistent with the empirical values.

One should note that the uncertainties in our results
large. While we have indicated ways in which one mig
l.

ys

e,

et

/

-
m
c-
.
es
on-
-
-
y
re

re
t

hope to reduce some of these uncertainties, our results
those of@32# for gA indicate that sum rules for baryon cou
plings are unlikely ever to reach similar accuracy to those
baryon masses. Nonetheless this approach may be ab
yield useful information on other couplings whose values
at present not well determined.
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