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At a pion kinetic energy of 292 MeV, comparison of averages of ground-gges¢ and double analog
(DIAS) cross sections on isotopes of Ni and Se suggests that the g.s. cross section is comparable to that per
nucleon pair for the DIAS[S0556-28186)03412-1

PACS numbd(s): 25.80.Gn, 27.506:e

Many models of pion-induced double charge exchange B
(DCX) predict for the double isobaric analog staHAS) a A=a+ a
forward-angle cross section of the form:
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The a, 8 formalism is somewhat more natural because all the
where A, T are mass number and isospin of the targetspin-dependent effects are g none ina.
nucleus,A, is a constant, and,.q is either independent of Subsequent derivations have demonstrated that the com-
A, T or very slowly dependent. Expressions of this type haveplete generalized seniority expressions are more complicated
been tested for data on many nuclei at an incident pion kif3]; i.e., requiring a third amplitudélus phasgand, for the
netic energy of 292 MeV. Differences in the models arenonanalog ground states, an additiof@hknown normal-
small enough and uncertainties in the data are large enoughation factor, whose magnitude depends on details of
that meaningful exclusion of models has not been possiblenuclear structure.

Nonanalog cross sections -2 ground states are an- In every model of DCX, the DIAS cross section contains
other matter. They are extremely small at 292 MeV—a factor ofn(n—1)/2 which multiplies the square of a re-
significantly smaller than predicted in, e.g., seniofitygen-  duced amplitude that is a very slow function mfor even
eralized senioritymodels. The purpose of the present note isindependent of. For the DIAS, it thus seems reasonable to
to point out a previously unrecognized relationship betweerefineo .= opas/[N(n—1)/2]. The g.s. cross section con-
ground statég.s) and DIAS cross sections in two chains of tains no sucm(n—1)/2 factor, but is merelyB|? times the

isotopes. square of a coefficient of order unity that depends slowly on
In seniority models of DCX, the DIAS amplitude is a n—reaching a maximum in midshell.
linear combination of two amplitude& and B (or « and Even in models more general than those with good senior-

B), only the second of which has a coefficient that dependgty, or generalized seniority, it is likely that botd,.q and
onN, Z (or T) [apart from the overall (2T—1) factorl. In o4 will depend slowly om.
these models, the g.s. cross section is proportion|to(or These formulas have been testgtl4] in DCX on
|8%). In generalized seniority, with only one type of nucleon %8%%628{j at an incident pion kinetic energy of 292 MeV
[i.e., valence neutrons outside a closed prdamd neutrop  and a scattering angle of 5°. The quantitiesand 8 (or A
shell, or proton holes accompanied by a filled neutron ghell andB) are supposed to be independent\oindZ within a
the expressions for #*,77) double charge exchange shell, but do depend on energy and angle. The only depen-
(DCX) leading to the double isobaric analog stdldAS)  dence on target mass is @q;tc factor, which we suppress
and ground statég.s) are[1,2] for clarity. Relevant cross sections from Rgf] are listed in
Table I.
2 In Ref. [1], a fit to Ni DIAS cross sections alone gave a
' value of B that predicted g.s. cross sections significantly
larger than observed. It was possible to accommodatée both
g.s. and DIAS cross sections in a fit, but with a pogyér
Tos= n(n—2)(2Q+2-n) 18I2. Inclusion of g.s. data naturally drove the fit to smajrbut
9% 2(2Q+1)(n-2) it also drove the relative phase betweerand 8 to 0°. We
might expecta and B to have a relative phase of 0° or
Here,n is the neutron exceds—Z, and is also twice the 180°, because all the nuclear structure numbers are real, and
isospin:n=2T. The quantity Z) is the number of nucleons the pion distortions are common to bathand S.

n(n—1) B
2 ‘Oﬁ n—

0’ =
DIAS 1

(of one type required for a full shell. The feature that DIAS-only fits produce values@®fthat
The parametera andg are related to thé& andB of Ref.  overpredict g.s. cross sections is a general one, having been
[2] as observed in a number df7/2 nuclei. The value ofp, the
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TABLE I. Ground state and DIAS cross sections at 292 MeV 6
and 5° for isotopes of Ni and Se.
o (nb/sp —
Target g.s. DIAS SC
5o @ 125+ 13 )
60N P 61+ 23 295+55 3
62N P 3+9 471+72 ha
64Nj P 41+30 974+ 172
2 —
o5’ 14+8 547+ 73 e |
783 6=6 802+ 81 | | | | |
BOSeC 17i10 1100&100 0 |||60||||65||||70||||75||||80|||
825e° 13+13 1,520~ 150 A
ZPhys. Rev. G50, 306(1994. FIG. 1. Points are values dfe=[opias/[T(2T—1)]]"'? for
CReference{l]. isotopes of Ni and Se. Hatched areas ayg for these nuclei. Both
Referencd4]. are for 292 MeV and 5°. Curve representsfar distortion factor

in the amplitude.

relative phase, is generally poorly determined. In Réf,
e.g., a value near 90° was obtained, whereas the fit in Ref. In Fig. 1, we plot as points the values of
[1] prefers a value near 0°. frei=[opias /[ T(2T—1)]1%? for the isotopes of Ni and Se,
Serious sequential calculations have been performed iand as cross hatching the average valug/ef s for these
the seniority model and for several nuclei whose structure isiuclei. The fact thatr.q and oy s are comparable is appar-
reasonably well described within the nuclear shell m¢dgl  ent.
In every case the predicted nonanalog ground state cross sec-Many comparisons of DIAS DCX have been performed at
tions at 292 MeV are significantly larger than the experimen292 MeV. Count rates are highest there, and energy depen-
tal ones. dence of measured cross sections is weakest. Another favor-
Because botlr.gandog ¢ are slow functions ofi, andto  ite testing ground of DCX theories is the Ca isotopes. Data
improve statistical uncertainties, we choose to average botexist for both ‘Ca [7] and “®Ca [8,9]. [Remember that
for 60626Nj. We usec=3Y,/=Q;, whereY, represents the T=1 (**Ca hergis not relevant for our present purpogest
number of counts for isotopg and Q; the normalization 292 MeV, two independent analyses of the saff@a data
factor for that isotope that converts counts to cross sectiorgive DIAS cross sections of 0.6370.102[7] and 0.587
[This is the correct expression for any count rate and ap#0.106 ub/sr [10]. These correspond tar q4=0.102
proaches the more widely used formula as the number of-0.018 ub/sr. For “®Ca, the DIAS cross section is 1.746
counts grows largé.These average g.s. cross sections arex0.290 ub/sr at 292 MeV[8] and 1.956:-0.297 u b/sr at
listed in Table 1l, along with the averages of 300 MeV [9], giving an average of 0.06600.0074 for
Tre=0pias/[T(2T—1)]. We note a remarkable fact—viz. ¢,4. No g.s. counts were observed for eitfé€a or *’Ca.
the g.s. cross sections afwithin uncertainty equal to the  Limits are<0.076ub/sr for #*Ca[10] and<0.045ub/sr for
DIAS cross sections for a single paire., with the pair  “%Ca [8]. Thus the limits on the ratiosrs/oeq Of 0.75

counting factor divided ouit +0.13 for *‘Ca and 0.66: 0.07 for “®Ca are not inconsistent
The only other chain of isotopes for which DCX measure-with the results for Ni and Se.
ments exist for three or more membé¢adl with T>1) is Se, What is the meaning of the observed near equality of

for which cross sections have been published forg ando.4? Because, in the simplest modets, s is just
76.788085e; Ref[6]. These are also listed in Table I. Again, |B|? times a coefficient of order unity, angl.yis dominated

we averagery s ando ey, and we compare themin Table Il. by « [f.=a+(8/n—1) in generalized seniorily the

As for Ni, we note the remarkable near equality of these twapresent observation suggests approximately equal values of
quantities. The fact that boi, s andoeq are smaller in Se o, at 292 MeV and 5°. This is rather surprising, because
than in Ni presumably reflects tmqaf distortion factor men- we know that, in this formulation, all the spin-dependent
tioned earlier. effects are in3, none are inx.

TABLE II. Averages(nb/s) of oy and o= 0opias/[T(2T—1)] for Ni, Se, and Ca at 292 MeV and

5°.
Targets Ogs. Ored Vogs. fred

606264\ 34.02+11.20 35.0& 3.50 5.83-0.96 5.92-0.30
767880850 12.64.5 16.77-0.89 3.55-0.63 4.16-0.11

44.48Ca <60 70.76.5 <7.7 8.41-0.39
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And we know that AS=1)? terms in DCX fall off as 0gs=131+17 pblsr ando = 14.2-2.4 ublsr at energies
T, increases from 140 to 292 MeV, whildG=0)? terms  near 164 MeV.

increase. It would be very useful to compaog s and These results suggest that the spin-dependent amplitude,
opias/[T(2T—1)] at a lower pion energy, e.g., 164 MeV, B, is indeed much larger than the spin-independeiat en-
where o should be much larger. There, we would expectérgies near 164 Mev.

04s/0eqto be very much larger than unity. A very limited  We acknowledge financial support from the National Sci-
amount of data[7,8] for “Ca and “®Ca suggests ence Foundation.
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