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Energy dependent potentials determined by inversion: Thep1a potential up to 65 MeV

S. G. Cooper and R. S. Mackintosh
Physics Department, The Open University, Milton Keynes, MK7 6AA, United Kingdom

~Received 13 February 1996!

The iterative perturbative inversion method is extended to determine explicitly energy and parity dependent
potentials fromSmatrices specified at a series of discrete energies. The energy dependence is inserted only in
the potential magnitude, although enhanced ‘‘energy bite’’ techniques allow this approximation to be tested.
With a linear energy dependence in both real and imaginary components,S-matrix data forp1a scattering is
fitted with a single potential for a wide range of energies above the inelastic threshold. The imaginary potential
is shown to be parity dependent. The real potential is consistent, in both the potential shape and the parity and
energy dependence, with potentials established for subthreshold energies. The method is also applied to
resonating group model~RGM! phase shifts forn116O andp1a scattering to give energy and parity depen-
dent potentials in both cases. Forp1a, a close correspondence is obtained between the RGM and the
empirical potentials in both the energy and parity dependence up to about 65 MeV. Forn116O, potentials are
determined for positive and negative energies.@S0556-2813~96!03312-2#

PACS number~s!: 25.40.Cm, 25.101s, 24.10.Ht, 03.65.Nk
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I. INTRODUCTION

Fixed energyS-matrix to potential inversion has now
been used to establish local potentials for a wide range
scattering cases. However, most of the available meth
~see Refs.@1–5#!, will not handle spin-1/2 cases and a
inappropriate to few-nucleon systems at low energies wh
very few partial waves contribute. Inversion is possible
such cases with the iterative perturbative~IP! inversion
method. This can handle channel spin 1/2 and, by mean
the ‘‘mixed case’’ extension@6,7# of fixed energy inversion,1

can give meaningful results in cases where there is infor
tion from only a few partial waves. IP inversion also mak
possible~i! the determination of parity dependent potentia
essential for few-nucleon cases, and~ii ! the fitting of bound
and resonant state energies. Point~ii ! allows the determina-
tion of potentials which are valid over a range of both ne
tive and positive energies@8#. Using these techniques, pote
tials have been determined from empirical phase shifts
p1a @6# and 3He 1 a @8# scattering and from resonatin
group model~RGM! phase shifts for several low energ
nucleon-nucleus cases,@9,10#. In most cases, parity depen
dent potentials are required to reproduce the phase sh
These potentials have been applied in reaction studies
example, the three-body model for6He @11# or (a,g) cap-
ture reactions@12#.

One problem, not properly addressed up to now, is t
many local potentials are energy dependent. The nucle
nucleus potential is an obvious example@9,10#. Energy de-
pendence has been established by applying inversion
sequence of energies@6#. However, it is useful to have en
ergy dependent potentials that can be evaluated at any
quired energy, and having energy dependence param
that can be directly compared with those of theoretical

1‘‘Mixed case’’ inversion is intermediate between fixed ener
inversion and fixed partial wave inversion; i.e., one determine
potential fromSl j (Ei) for a limited set ofl j and energiesEi .
540556-2813/96/54~6!/3133~20!/$10.00
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empirical models. Not only are such potentials required
many applications, but inversion may sometimes be imp
sible without energy dependence. For example, mixed c
inversion for energies just above the inelastic threshold
only possible when energy dependence is explicitly includ
in the imaginary components. EmpiricalS matrices which
have been established forp1a scattering in several phas
shift analyses above the inelastic threshold@13–16# are inac-
cessible both to energy independent inversion and to the
ergy bite techniques previously used to establish energy
pendence.

Our first aim in this paper is to present and test a subs
tial new extension of the IP method to energy depend
inversion. For anyS-matrix elements given at discrete ene
giesEi or parametrized over a range of energies, inversio
applied to determine the energy dependent potential tha
produces the givenSmatrix. Symbolically,

Sl j ~Ei ! or Sl j ~E!→V~E,r !1 l–sVso~E,r !.

Bound state and resonance energies can be fitted at the
time, leading to a consistent representation of bound
scattering states. The energy dependence of each pote
component~i.e., real, imaginary, parity dependent or pari
independent, central or spin orbit! is treated separately. Th
major restriction at present is that the radial geometry of
components of the potential is held fixed; previous mix
case studies forp1a suggested that this approximation
reasonable. It is straightforward to avoid ambiguities aris
from supersymmetry@17#.

The first application is to theoretical~RGM! phase shifts
for p1a andn116O scattering, for energies up to 50 Me
and 30 MeV~c.m.!, respectively@18,19#. The smooth energy
dependence of the RGM phase shifts permits very pre
inversions and should provide an ideal test. Previous ‘‘
ergy bite’’ analyses revealed that both the parity depend
and parity independent components of the potential w
strongly energy dependent, but the bound states energie
n116O were not reproduced. Applying energy dependent
a
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3134 54S. G. COOPER AND R. S. MACKINTOSH
version over energy bites allows us to assess the energy
pendence of the potential geometry.

The second major objective here is to present poten
obtained by inversion ofS matrices at energies above th
inelastic threshold. Three sets of empirical data are con
ered@13–15# extending to 70 MeV. Allowing for parity de-
pendence, corresponding degrees of freedom are neces
However, only four extra parameters are required, additio
to those necessary for energy independent inversion, so
energy dependent inversion yields an extremely econom
description of considerable data.

In order to study the continuity~or otherwise! of the real
parts at the inelastic threshold and to compare the en
dependent empirical potentials with the RGM potentials,
ergy dependent inversion is also applied to the subthres
phase shifts previously studied@6#. A more complete com-
parison than previously made is now possible@9,10# between
the real empirical and RGM-derived potentials over a w
energy range, establishing the contributions of antisymme
zation to the radial shape, depth, and energy dependen
the empirical potential.

Parity dependence in the imaginary components of
empirical potential can now be studied. Some contribution
expected due to the effect of the underlying nonloca
which couples the imaginary potential with the strong par
dependence in the real components. Evidence for this e
is found in the empiricalS matrices, for whichuSu is mark-
edly ,1 for l52. Fixed energy inversion at 65 MeV als
gives smoother potentials if the parity dependence is per
ted in both real and imaginary components@10#.

Energy dependence has been included in conventiona
tical model fits to subthresholdp1a scattering data; see
e.g., @20#. Energy dependence was introduced into the r
potential either as a linear energy dependence of the dep
in the Woods-Saxon radius parameter. However, with
limitations of the optical potential geometry, the imperfe
reproduction of the data and absence of parity depende
imply that such fits provide no conclusive evidence conce
ing thep1a energy dependence.

The structure of the paper is as follows. The IP proced
is reviewed in the first part of Sec. II. A method for dete
mining energy dependent potentials is then presented in
second part of Sec. II. In Sec. III, energy dependent po
tials are determined from RGM phase shifts for bothp1a
andn116O. In Sec. IV the procedure is applied to empiric
phase shifts forp1a scattering, first below and secon
above the inelastic threshold. In Sec. V the results of
various inversions forp1a are compared to ascertain th
general features of thep1a potential which have been es
tablished for the complete energy range up to;65 MeV.
The comparison with the results of the inversions from
RGM phase shifts is used to establish which features in
resultant potential can be reliably ascribed as due to the
fects of antisymmetrisation. Finally conclusions are p
sented. In the following text we refer at several points to R
@21#, in which fuller details and further discussion can
found.

II. GENERALIZING THE IP INVERSION PROCEDURE

A. IP procedure and parity dependence

The iterative-perturbative~IP! procedure was first devel
oped for fixed energy spin-0 scattering@22# and extended to
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spin 1/2 @23#. The method has been further extended
mixed-case inversion@7#, which also permits the applicatio
of ‘‘energy bite’’ techniques for inversion of phase shif
parametrized as a function of energy@6#. An additional ad-
aptation allows inversion from both bound and resonant s
energies@8#. Although the iterative-perturbative inversio
method has been described in many previous publicatio
for example@24#, the essentials of the method, together w
some of these extensions, are repeated here to define ce
terms frequently referred to later. The considerable versa
ity of the procedure allows further extensions to be incorp
rated, such as the determination of parity dependent po
tials in a single inversion and the inclusion ofs-wave
scattering length as input data. Previously, parity depend
potentials were established by separate inversions on eve
odd partial waves, but it is more convenient to determ
both the parity independent and parity dependent com
nents simultaneously when energy dependence is also
cluded. All the features of the IP procedure described be
are embodied in the codeIMAGO @25# which we can make
available.

In general, the input or ‘‘target’’ data for the inversio
consists of real or complex elastic scattering phase shifts
one or more energies. They may also include a set of kno
bound and resonant state energies and thes-wave scattering
length. The procedure outlined below applies for both spi
and spin-1/2 scattering. The resulting potential may be eit
real or complex and, where appropriate, have spin-orbit
parity dependent components.

In the following discussion, the partial wave indexk de-
fines both the quantum numbersl , j and the energyE, cor-
responding to the wave numberk ~unless stated otherwise a
energies quoted are laboratory energies!. A complex
S-matrix element for givenk in the target set is denote
Sk
tar and Nk represents the total number of complex pha
shifts. The indexn denotes a specific bound~or resonant!
state which, in addition to thel , j and state energyEn , also
defines the number of radial nodes in the state wave funct
Then Nn denotes the total number of bound or reson
states.

The potential resulting from the inversion should be
close approximation to the potentialVtar(r ), which satisfies
the radial Schro¨dinger equation

F2
d2

dr2
1
l ~ l11!

r 2
1
2m

\2 @VC~r !1Vtar~r !#2k2Guk~r !50,

~1!

for all values ofk. VC(r ) is a standard Coulomb potentia
and the constants use conventional definitions. Asympt
cally, the radial wave functionuk(r ) satisfies

uk~r !.I k~r !2Sk
tarOk~r !, ~2!

where I k and Ok are the ingoing and outgoing Coulom
wave functions, respectively, for givenl andE. If the target
data include bound or resonant states,Vtar(r ) must also sat-
isfy the bound state radial Schro¨dinger equation for eachn.
The resultant real wave functionfn(r ) then behaves asymp
totically asfn(r );Ol

2(r ) or fn(r );Gl(r ) for bound or
resonant states, respectively.
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54 3135ENERGY DEPENDENT POTENTIALS DETERMINED BY . . .
In practice the potential calculated by inversion,Vinv(r ),
will not be identical toVtar(r ), for example, because of ir
regularities in the target data which should not be fitted. I
convenient to define a quantitys2 which measures how
closely the target data set is reproduced byVinv(r ). This
measure contains separate contributions from theS-matrix
elements and from the bound or resonant states. Repla
Vtar(r ) and Sk

tar in Eqs. ~1! and ~2! with Vinv(r ) and Sk
inv ,

respectively, defines theS matrix Sinv, which in general
ÞStar. For the bound or resonant states, two solutionsf1

n and
f2
n , corresponding to the regions inside and outside

matching radiusr5Rm, respectively, are calculated usin
the Schro¨dinger equation with the potentialVinv(r ) and tar-
get energyEn . The functionf1

n is calculated by integrating
the Schro¨dinger equation outwards from the origin and mu
contain the correct number of radial nodes. The funct
f2
n is determined by integrating inwards from the corre

asymptotic form at large radii. A valid solution is obtaine
only if the logarithmic derivatives off1

n and f2
n , respec-

tively, rf81
n/f1

n and rf82
n/f2

n , are equal atr5Rm. In gen-
eral this is not true and there are two alternative procedu
which may now be used. An energyEn

inv may be inserted into
the Schro¨dinger equation, in place ofEn , and varied until the
wave functions obtained for the two regions match correc
at r5Rm. However, it is more convenient here to work wi
the logarithmic derivatives. Finally, the phase shift distan
s2 is defined as

s25(
k

wk
2uSk

tar2Sk
invu21W2(

n
U f82

n

f2
n 2

f81
n

f1
n U

r5Rm

2

. ~3!

The termwk represents a weighting factor, which by defa
is unity for all k, but may be varied either to give mor
emphasis on the higherl or to incorporate the estimated e
rors in the empiricalS matrix ~see Ref.@24# for further de-
tails!. The second weighting factorW establishes the relativ
accuracy to whichVinv(r ) determines the bound state ene
gies compared to the accuracy to whichVinv(r ) determines
Star.

At the start of the procedure an initial choice ofVinv(r ) is
required, i.e., the ‘‘starting reference potential,’’ denot
Vsrp(r ). Up to eight components may be required f
Vinv(r ). Above the inelastic thresholdVinv(r ) must be com-
plex. For spin-1/2 scattering both central,Vcen(r )1
iWcen(r ) and spin-orbit terms 2l•s@Vso(r )1 iWso(r )# are
required, and where parity dependence is necessary, ea
Vcen(r ), Wcen(r ), Vso(r ), or Wso(r ) can have the form
V1(r )1(21)lV2(r ). Each of the possible eight componen
is treated independently in the inversion. The subscripc
refers to a particular component. Some or all of the ei
possible components may be zero in the starting refere
potential.

To minimizes2, perturbations must be added toVinv(r )
or, initially, Vsrp(r ). These perturbations are added se
rately to each potential component and are obtained from
expansion overNc

b basis functionsvci(r ). The resulting po-
tential is obtained:
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Vc
new~r !5Vc

inv~r !1(
i51

Nc
b

lcivci~r !, ~4!

where thelci are expansion coefficients to be optimized
the inversion. Typically Gaussian or zeroth order Bes
functions are used for thevci(r ), although the functions
should be linearly independent.

For a small potential perturbationlcivci(r ), the Born ap-
proximation can be applied to obtain an approximate exp
sion for the related change in theS-matrix element
dSk5Sk

new2Sk
inv , i.e.,

dSk5S 2
ilcimCc

\2kk
D E

0

`

vci~r !@uk~r !#2dr, ~5!

whereuk(r ) is the radial wave function obtained from th
Schrödinger equation for the indexk using the potential
Vinv(r ). The coefficientCc is a constant specific to the po
tential componentc. For the real and imaginary termsCc is
set equal to 1 andi , respectively. For the spin-orbit term
Cc is further multiplied by 2̂l•s& and for the parity depen
dent termsV2, Cc is additionally multiplied by (21)l . A
term corresponding to the imaginary spin-orbit parity dep
dent potential then hasCc52 i ^ l•s&(21)l .

In the case of bound or resonant states, the perturbatio
added toVinv(r ) to correct the difference between the log
rithmic derivatives off1

n andf2
n at r5Rm. As above, the

Born approximation can be applied to a small change in
real potential,lcivci(r ), to obtain a simple expression fo
lci , i.e.,

lciCcH 1

@f1
n~R!#2

E
0

R

vci~r !@f1
n~r !#2dr

1
1

@f2
n~R!#2

E
R

Rm
vci~r !@f2

n~r !#2drJ
5S f82

n

f2
n 2

f18
n

f1
n D

r5Rm

. ~6!

Equations~5! and ~6! define a set of first derivatives o
eitherSk

inv or f81
n/f1

n2f82
n/f2

n which are linearly dependen
on lci . These equations can now be inserted into the le
squares minimization ofs2. A set of linear equations is the
obtained which are overdetermined if ((cNc

b),Nn12Nk .
The solutions for thelci are obtained by applying singula
value decomposition~SVD! to solve the matrix equations
This process permits the introduction of a tolerance limit
eliminate the smallest singular values, so that for any reas
able basis and starting reference potential an optimized s
expansion coefficientslci can be calculated. Theselci de-
termine a new potentialVnew(r ), for which the correspond-
ing value ofs2 should be smaller than that forVsrp(r ).

The above process can be repeated on an iterative b
until satisfactory convergence is achieved. While the int
duction of parity dependence introduces some ambigui
into the inversion, notably near the origin, the problem
ameliorated by imposing a restriction to smooth potentials
use of a truncated basis and a high SVD tolerance.



t
ng

rg
n
ffi
fi-
s

o
pl

tia

po
n
a

th
n
ns

n

lin
s.
di

es
t

i-
i.e
,
er

n

-
t

To

-

be

n-

ly.
tur-

tion

,

the
ned

3136 54S. G. COOPER AND R. S. MACKINTOSH
Using expressions closely analogous to those above,
IP procedure can also be extended to fit the scattering le
at zero energy@21#.

B. Determining energy dependent potentials

The IP procedure is easily extended to determine ene
dependent potentials, under the assumption that the pote
geometry is independent of energy. The method is su
ciently versatile to permit the introduction of further modi
cations to overcome the restriction if necessary. In sub
quent sections an extension of the energy bite technique@6#
is introduced which permits a more detailed investigation
the energy dependence of the potential shape. The com
procedure has been implemented in the codeIMAGO @25#.

If the geometry is independent of energy, any poten
componentc can be expressed in the form

Vc~E,r !5Fc~E!Uc~r !,

with Fc(E) defined separately for each component. Com
nents can then be kept energy independent in the inversio
appropriate. Separate functions are required for the real
imaginary potentials.

For the real components, the most general form of
energy dependenceFc(E) is obtained from an expansio
over a set of Nc

E energy dependent basis functio
f ci(E2Eref) analogous to the radial basis functionsVi(r )
@now added only toUc(r )#, i.e.,

Fc~E!511(
i

Nc
E

jci f ci~E2Eref!, ~7!

whereEref is a fixed reference energy and thejci are energy
expansion coefficients determined in the inversion. The fu
tion Uc(r ) then specifies the potential componentc at
E5Eref . The simplest form of energy dependence is the
ear formFc(E)511jcE, sufficient in many practical case
The applications of the procedure in Secs. III and IV ad
tionally use the functionsf ci(E)5Ei and f ci(E)5E1/i .

For the imaginary components, a slightly different expr
sion for the energy dependence is required to ensure tha
potentials vanish at the inelastic threshold,E5E0. In the
following formulation it is implicitly assumed that the imag
nary components are zero below the inelastic threshold,
for E,E0, Fc(E)50. A further reference energy
Eref8 .E0, is required. The most general form considered h
is

Fc~E!5S E2E0

Eref8 2E0
D p1(

i

Nc
E

jcigci~E2Eref!. ~8!

Herep is chosen to optimize the inversion and the functio
gci(E) must satisfygci(E)→0 asE→E0. The gci(E) con-
sequently differ from the functionsf ci(E) used in Eq.~7!.
For a linear energy dependencep51 and no further expan
sion coefficient is required because the energy gradien
jointly determined byEref8 and the magnitude ofUc(r ).

The energy dependent potential Vc
inv(E,r )5

Fc
inv(E)Uc

inv(r ) is expanded:
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Vc
new~r ,E!5FFc

inv~E!1(
i51

Nc
E

jci f ci~E2Eref!G
3FUc

inv~r !1(
i51

Nc
b

lcivci~r !G , ~9!

with an equivalent form for the imaginary components.
first order, the cross termsf ci(E2Eref)vci(r ) can be ne-
glected, leaving the perturbation

Uc
inv~r !(

i51

Nc
E

jci f ci~E2Eref!1Fc
inv~E!(

i51

Nc
b

lcivci~r !,

~10!

which is linear in bothf ci andvci(r ). For a small perturba-
tion Fc

inv(E)lcivci(r ), the Born approximation yields a cor
rection fordSk5Sk

new2Sk
inv which is identical to Eq.~5! ex-

cept that the right hand side of the equation must
multiplied by the additional factorFc

inv(Ek). The correction
to Sk arising from a small perturbation in the energy depe
dence,Uc

inv(r )jci f ci(E2Eref), is similar, giving

dSk5S 2
i jcimCcf ci~Ek2Eref!

\2kk
D E

0

`

Uc
inv~r !@uk~r !#2dr,

~11!

where all other coefficients are as defined previous
Equivalent terms can be obtained for the imaginary per
bations.

In the case of the bound or resonant states, the correc
to the logarithmic derivatives follow from Eq.~6!. The cor-
rections forFc

inv(En
inv)lcivci(r ) are obtained by multiplying

the left hand side of Eq.~6! by Fc
inv(En

inv). For the perturba-
tion Uc

inv(r )jci f ci(En
inv2Eref) the correction becomes

jci f ci~En
inv2Eref!CcH 1

@f1
n~R!#2

E
0

R

Uc
inv~r !@f1

n~r !#2dr

1
1

@f2
n~R!#2

E
R

Rm
Uc
inv~r !@f2

n~r !#2drJ
5S f28

n

f2
n 2

f18
n

f1
n D

r5Rm

. ~12!

Equations~11! and ~12! define changes in theS-matrix
elements or the logarithmic derivatives off1

n andf2
n which

are approximately linear in bothjci andlci . A least squares
minimization of s2, following the procedure in Sec. II A
then produces a set of linear equations forjci and lci and
SVD techniques can be applied, as before, to determine
unknown coefficients. The equations remain overdetermi
providing that

(
c

~Nc
b1Nc

E!,Nn12Nk .
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The relative importance of the two sets of functions can
introduced by varying the magnitude of one set of ba
functions.

III. ENERGY DEPENDENT POTENTIALS
FROM RGM PHASE SHIFTS

Phase shifts from theoretical models such as the sin
channel RGM provide an ideal test case for the new inv
sion techniques since the phase shifts, having no experim
tal ‘‘noise,’’ should be very precisely reproduced. Ener
dependent real potentials are here determined by inversio
RGM phase shifts forp1a andn116O scattering. The data
for the latter case include two bound state energies.

In a previous study@9# of p1a at energies below the
inelastic threshold, inversion of the RGM phase sh
yielded parity dependent potentials very similar to those
termined from empirical data. The restriction to the sing
channel RGM did not greatly effect the energy depende
of these potentials. The parity dependent potentials for b
p1a andn116O scattering have also been investigated o
a much wider energy range, as part of an extensive stud
the nucleon1 nucleus potential in which fixed energy inve
sion using narrow energy bites was applied to single chan
RGM phase shifts@10#. For both target nuclei, the centra
parity independent (V1) components varied approximate
linearly with energy and the potential geometry had
clearly discernible dependence on energy. The central pa
dependent (V2) components were found to be very differe
for the two cases, but, in both cases, the magnitude decre
with energy. For thep1a case, the geometry of theV2 term
depended weakly on energy, although this dependence m
have arisen due to the restriction to a small inversion ba
For n116O scattering, theV2 term was much smaller but th
geometry had a significant variation with energy, so that
new techniques may be less appropriate. The two bo
states predicted by the RGM theory for then116O case can-
not be reproduced by energy independent potentials obta
by inversion from narrow energy bites.

A. p1a potential

1. Energy dependence of the potential geometry

The phase shifts of Reichstein and Tang@18# are here
reanalyzed to assess how well simple forms of energy de
dence can fit the phase shifts for a wide range of energ
However, before inverting the tabulated phase shifts for
entire energy range 0–50 MeV~c.m.!, the energy depen
dence of the radial geometry is studied as follows: An eff
tive range parametrization of the tabulated RGM phase sh
is evaluated over wide energy bitesEcen61 MeV ~c.m.!.
Energy dependent potentials with parity dependent, cen
and spin-orbit components, of the form
Uc(r )(11jc 1E) for each component, are then determin
by inversion of these 2 MeV ‘‘wide’’ sequences of pha
shifts for all l values. In this way, potentials are calculat
for Ecen5 10, 20, 30, 40, and 50 MeV~c.m.!, with Eref50 in
all cases.

In Fig. 1 potentials are presented forEcen510, 30, and 50
MeV evaluated atE50 @i.e.,Uc(r )# and the expansion co
efficientsjci are tabulated in Table I for all cases.~The jci
e
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are given in terms of laboratory energies to allow a dir
comparison in later sections with calculations from empiri
phase shifts.! Comparing the new potentials with the prev
ously determined energy independent potentials~shown in
Fig. 2 of Ref.@10#! reveals that much of the energy depe
dence has been incorporated into the coefficientsjci . The
differences between the variousUc(r ) are remarkably small,
particularly for the centralV1 component. In effect, poten
tials are determined for energies of 29–31 MeV and 49–
MeV which, when extrapolated back to zero energy, are
remarkable agreement in both magnitude and radial sh
Some of the residual differences may be due to the incre
ing numbers of partial waves which contribute asEcen in-

FIG. 1. Forp1a, the real zero energy radial potentialsUc(r )
for the central and spin-orbitV1 andV2 components obtained by
inversion of RGM phase shifts over the energy bitesEcen61 MeV
centered at the energiesEcen510 MeV ~solid lines!, Ecen530 MeV
~dashed lines!, andEcen550 MeV ~dotted lines!.

TABLE I. The coefficientsjc 1 in MeV21 for the four real
potential components calculated from RGM phase shifts for the
energy bitesEcen61 MeV.

Ecen CentralV1 CentralV2 Spin orbitV1 Spin orbitV2

10.0 20.0049 20.0180 0.0122 20.00051
20.0 20.0033 20.0131 0.0128 20.00040
30.0 20.0036 20.0130 0.0075 0.00002
40.0 20.0036 20.0117 0.0060 20.000061
50.0 20.0037 20.0096 0.0151 20.00269
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3138 54S. G. COOPER AND R. S. MACKINTOSH
creases. AtEcen510 MeV, the two lowest partial wave
dominate the inversion more effectively than at the hig
energies. Differences between the spin orbit component
Ecen550 MeV and at other energies are due to the influe
of theh-wave phase shifts.

The volume integral ofUc(r ) for the centralV1 compo-
nent increases from 532.8 to 578.2 MeV fm3 as Ecen in-
creases from 10 to 50 MeV~but corresponding to an overa
decrease with energy in volume integral of the complete
ergy dependent potential!. The corresponding rms radius o
Uc(r ) increases from 2.32 to 2.55 fm. For the centralV2
component, the magnitude of the volume integral and
rms radius ofUc(r ) both decrease more dramatically wi
Ecen, from 218.9 to 106.1 MeV fm3 for the volume integral
and from 2.83 to 1.32 for the rms radius for the same ene
range. Overall, the energy dependence of the potential ge
etry is relatively small for the centralV1 term but is larger
for the V2 component. This energy dependence inV2 will
limit the accuracy to which the phase shifts from 0 to
MeV can be fitted with a fixed geometry potential.

The coefficientsjci for both theV1 andV2 components
reflect the expected decrease in the potential magnitude
increasing energy, with the centralV2 term having the stron-

FIG. 2. Forp1a, RGM phase shifts~solid dots! for the partial
wavess1/2, p1/2, p3/2, d3/2, f 5/2, andg7/2 compared with the re-
sults of inversion using an energy independent potential, case~1!
~solid lines!, and two energy dependent potentials, solutions~2!
~dashed lines! and ~4! ~dotted line!, as described in the text.
r
at
e

-

e

y
m-

ith

gest energy dependence. The energy dependence is not
pletely linear since thejci decrease in magnitude fairly sys
tematically withEcen for the centralV2 component. For the
spin-orbit potential, thejci do not represent a consistent e
ergy dependence, but the values ofjci for theV2 component
are much smaller than for the other components. Nonlin
terms may be necessary in the inversion over a wider ene
range.

2. Energy dependent potentials fitting 0 to 50 MeV (c.m.)

Potentials are presented below determined from~real!
RGM phase shifts for the entire energy range from 0 to
MeV ~c.m.!. The following forms of the energy dependen
Fc(E) are considered.

~1! Energy independenceVc(r )5Uc(r ), Fc(E)51.

~2! Linear energy dependence

Vc~E,r !5Uc~r !~11jc 1E!.

~3! Expansion in powers ofE, i.e.,

Vc~E,r !5Uc~r !~11jc 1E1jc 2E
21••• !.

~4! Energy expansion of the form

Vc~E,r !5Uc~r !~11jc 2AE1jc 1E!.

The inversion for these four cases gaves 5 2.07, 0.39, 0.30,
and 0.20, respectively. The phase shifts cannot be re
duced precisely, since the potential geometry is fixed o
this energy range, as discussed above. These are show
Fig. 2 for cases~1!, ~2!, and ~4! together with the RGM
phase shifts~shown as solid circles! for selectedl , j values.
In the corresponding comparisons for thed5/2, f 7/2, g9/2,
andh partial waves, the RGM phase shifts are reproduced
an accuracy at least that of thed3/2 andg7/2 phase shifts. The
energy independent potential~1! clearly gives an inadequat
description of the RGM phase shifts and the introduction
just a linear energy dependence provides a significant
provement. Further relatively small improvements follo
from the addition of higher order terms in the energy dep
dent expansion. The most successful expansion is case~4!
containing the term;AE. Used alone, an energy expansio
}AE leads to a greater energy dependence at lower ene
as is consistent with the coefficients,jci in Table I.

The radial functionsUc(r ) ~potentials evaluated a
E50) are displayed in Fig. 3. There are significant diffe
ences between the energy independent and the energy d
dent solutions for the centralV1 and the spin-orbitV2 com-
ponents. The different shape for case~1! probably
compensates for the lack of energy dependence. The t
energy dependent solutions agree more closely, particul
for the centralV1 term and, for this term, the potentia
Vc(E,r ) are closest atE;25 MeV, i.e., near the center o
the energy range included in the inversion. However,
centralV2 and spin-orbitV1 components are more consiste
towards 50 MeV~c.m.!, presumably because of the larg
influence of the higherl values. This overall behavior is
confirmed by examining the volume integrals@21#. The spin-
orbit volume integrals show a considerable consiste
which suggests that the apparent radial differences betw
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54 3139ENERGY DEPENDENT POTENTIALS DETERMINED BY . . .
solutions~1! and~2! and solutions~3! and~4! simply reflect
the limitations of inversion with energy independent rad
forms.

The expansion coefficientsjci for the energy dependen
potentials are tabulated in Table II. For solutions~3! and~4!
the coefficients are only listed to second order but, wher
third term has been included, for all potential compone
jc 3 is very small. The coefficients for solution~3! represent
only a small modification to the coefficients for the line
solution ~2!.

The small fall ins due to the terms beyond second ord
suggests that a good representation ofFc(E) has been ob-
tained. Further reductions ins require an energy depende

FIG. 3. Forp1a, the real zero energy potentialsUc(r ) deter-
mined by inversion from RGM phase shifts for the energy range
to 62.5 MeV ~lab! corresponding to the four forms of energy d
pendence described in the text,~1! solid lines,~2! dashed line,~3!
dotted lines, and~4! dash-dotted lines.
l

a
s

r

potential geometry and this is confirmed by inversions c
fined to a more restricted energy range@21#.

3. Effects of channel coupling

The sensitivity of the potentials to the details of the RG
calculations has been investigated by using two alterna
sets of RGM phase shifts@9#, which, respectively, include
and exclude coupling to thed13He channel. Potentials lin
early dependent on energy, as in solution~2! in the preceding
section, have also been determined for both the sin
channel~SC! and coupled channel~CC! cases. The phas
shifts are calculated only for energies below the inelas
threshold at 23 MeV~lab!, but the resulting potentials repro
duce the phase shifts accurately up to the threshold ene
The potentials determined in the SC calculation now dif
slightly from the previously established solution~2! in that
the centralV1 component is slightly deeper and the cent
V2 component is reduced in magnitude. These differen
reflect the differentN-N interactions and other details of th
RGM calculations. The coefficientsjc 1 are 20.0061 and
20.0168 MeV21 for the centralV1 and V2 components,
respectively. The corresponding potentials obtained from
CC phase shifts have very similarUc(r ), although the coef-
ficients jc 1 for the centralV1 and V2 coefficients are
20.0066 and20.0196 MeV21, respectively.

We conclude that general features of the energy dep
dent potential are not very dependent on the particu
nucleon-nucleon potential used in the RGM calculation. T
coupling to thed13He channel does not significantly affe
the potential except to increase the energy dependence o
parity dependent term.

B. n116O potential

Energy dependent potentials forn116O are obtained by
inversion of the single-channel RGM phase shifts@19# stud-
ied previously with fixed energy inversion@10#. The phase
shifts are tabulated up toE530 MeV ~c.m.! and two bound
states are predicted by the RGM, forl50 at23.26 MeV and
l52 at21.50 MeV. The RGM calculations treatn116O as
spin-0 scattering and only central but parity dependent
tentials are determined.

Inversion of phase shifts for the complete energy rang
not satisfactory, leading to a highly irregular radial shape
theV2 component. This is probably due to the strongly e
ergy dependent radial shape revealed by fixed energy stu
However, potentials which depend linearly on energy, a
having a reasonable radial geometry, can be obtained by
version over smaller energy ranges, up to 10 MeV wi

p

TABLE II. The coefficientsjci in MeV21, up to i52, for the four components~labeled c51–4!
determined by inversion using three energy dependent expansions@the cases~2!–~4! described in the text#
from RGM phase shifts forE50 to 50 MeV ~c.m.!.

CentralV1 CentralV2 Spin orbitV1 Spin orbitV2

Case j11 j12 j21 j22 j31 j32 j41 j42

~2! 20.0038 20.0137 0.0024 20.0086
~3! 20.0038 20.000007 20.0138 20.0002 0.0077 20.00003 20.0113 20.0002
~4! 20.0030 20.0034 0.0013 20.1151 20.0069 0.1276 20.0102 0.0053



as

w
o

y
g
ry
th
nt
o
5
gy
e
io

n

i-

po
er
e.

r-
de-
cal
s

o 20
er
tial
he
gly
l

the
rm
d
tab-
ter-
V,
ter-

an
the
re

ls.
-
ng
he
ob-

o a
y
-
r
ter-
tly
o

ach

in a

ith

ie

3140 54S. G. COOPER AND R. S. MACKINTOSH
Three potentials have been determined from RGM ph
shifts for the energy ranges:~1! 25–5 MeV,~2! 5–15 MeV,
and ~3! 15–25 MeV ~c.m.!. The three functionsUc(r ) are
displayed in Fig. 4. The first energy range includes the t
bound states for which the first solution gives energies
23.26 and21.511 MeV for l50 and l52, respectively.
The energy dependence of the phase shifts is accuratel
produced by the potentials for the respective energy ran
up to l55. From Fig. 4 it is evident that the radial geomet
of theV1 component has little energy dependence, while
radial geometry for theV2 component has a more significa
dependence on energy. The differences between the s
tions for V2 are proportionally very large between 2 and
fm, which is why the inversion for the complete ener
range was unsuccessful. The energy dependences of thV1
component is not exactly linear as is clear from the variat
in jc 1 which is 20.0076,20.0058, and20.0053 MeV21

for the three solutions, respectively. The energy depende
thus decreases with increasing energy, as for thep1a case
in Sec. III A 1. The values ofjc 1 for theV2 component are,
in order,20.041,20.043, and20.026 MeV21. The energy
dependence forV2 is therefore greater than in thep1a case,
but for n116O, theV2 potential is much smaller in magn
tude and the coefficientsjc 1 are less consistent.

The above results represent a uniform picture of the
tential above and below zero energy, even though no en
independent form can be obtained for the potential shap

FIG. 4. Forp116O, the real zero energy potentialsUc(r ) deter-
mined by inversion of RGM phase shifts and bound state energ
The inversions are made for three energy intervals,25–5 MeV and
including bound state energies~solid lines!, 5–15 MeV ~dashed
lines!, and 15–25 MeV~dotted lines!, all as c.m. energies.
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IV. ENERGY DEPENDENT POTENTIALS
FROM EMPIRICAL PHASE SHIFTS

A. Below the inelastic threshold

In a previous analysis@6#, using techniques based on na
row energy bites, real parity dependent potentials were
termined by fixed energy inversion of subthreshold empiri
phase shifts forn1a andp1a scattering. The analysis wa
applied to two parametrizations ofp1a phase shifts: the
R-matrix parametrization, of Stammbach and Walter@26#
and the effective range parametrization of Schwandtet al.
@27#. Separate inversions were made for even and oddl val-
ues for each set of phase shifts forl<3 in order to establish
parity dependent potentials at selected energies from 12 t
MeV ~lab!. Potentials were later determined at much low
energies by increasing the weighting given to higher par
waves @28#. This procedure forces a reasonable fit for t
d- and f -wave phase shifts as well as for the more stron
energy dependents- and p-wave phase shifts. The centra
potentials for bothp1a andn1a depend significantly on
energy and this energy dependence is also evident when
potentials are expressed in the parity dependent fo
V1(r )1(21)lV2(r ). In this section, except where state
otherwise, energy and parity dependent potentials are es
lished from phase shift parametrizations evaluated at in
vals of 0.5 MeV over the energy range from 0.5 to 20 Me
for l<3. The present analysis compares potentials de
mined for both of the phase shift parametrizations.

1. Inversion of phase shift parametrizations

Inversion over a wide energy range does not yield
energy independent potential which accurately fits
p1a parametrized phase shifts. If all partial waves a
weighted equally, a reasonable~smooth potential! fit is ob-
tained only for thes- andp-wave phase shifts. Fitting alll
closely induces pronounced radial oscillations in potentia
A typical set of values fordk

inv obtained from a smooth en
ergy independent potential determined by inverti
R-matrix phase shifts is shown in Fig. 5, together with t
two sets of empirical phase shifts and the phase shifts
tained from an energy dependent potential~described be-
low!. The energy independent potential corresponds t
value for s which is about 2.5 times that for the energ
dependent potential. Thedk

inv for the energy independent po
tential clearly fail to reproduce the phase shifts for highel
and higher energies. Energy independent potentials de
mined from the effective-range phase shifts yield sligh
improved fits to thes- and p-wave phase shifts, but not t
other l values. The fit to thed- and f -wave phase shifts can
be improved with a judicious choice of thewk @defined in
Eq. ~3!#, but this change leads to worse fits for lowl .

The inclusion of just a linear energy dependence in e
potential component produces an improved fit to thes- and
p-wave phase shifts for both sets of phase shifts. To obta
reasonable fit for alll<3 simultaneously, the higherl values
must be given an increased weighting. In fact, inverting w
wk( l50,1)51 andwk( l52,3)55 gives a fit to thes and

s.
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54 3141ENERGY DEPENDENT POTENTIALS DETERMINED BY . . .
p phase shifts equivalent to that obtained withwk( l )51 ~all
l ), while significantly improving the fit to thed and f waves.
This effect probably arises because the energy dependen
tentials which reproduce alll simultaneously are also a sub
set of the wider family of solutions which reproduce only t
s- andp-wave phase shifts accurately. In Fig. 5, the fou
line ~dash-dotted line! represents thedk

inv corresponding to
the potential linearly dependent on energy obtained w
wk( l52,3)55 from theR-matrix phase shifts. The differ
ence between the latter phase shifts and theR-matrix param-
etrization is visible in Fig. 5 only forl53 and is less than the
difference between the two empirical parametrizations
most l andE. The increase inwk( l ) for the largerl signifi-
cantly affects the parametersjc 1 , particularly for theV2
component.

Two energy dependent solutions, labeled RM~1! and
RM~2!, have been determined by inverting theR-matrix
phase shifts and two solutions, labeled EF~1! and EF~2!, by
inverting effective range phase shifts. In all cas
wk( l52,3)55 and comparable values ofs are obtained.
The full potentials at zero energy,Uc(r ), are shown for all
four solutions in Fig. 6. The volume integrals and root me
square~rms! radii are listed in the top part of Table III an

FIG. 5. For p1a, R-matrix ~solid lines!, and effective-range
~dashed lines! phase shifts for the partial wavess1/2, p1/2, p3/2,
d3/2, d5/2, andf 5/2. The dotted line is an energy independent fit a
the dash-dotted line is the energy dependent fit RM~1! to the
R-matrix phase shifts.
po-
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the correspondingjc 1 are listed in the top part of Table IV
Although there are clear differences between the solution
Fig. 6, certain features appear in all solutions and others
dependent on the particular set of target shifts. The larg
component, the centralV1 term, is defined to within about 5
MeV for most of the radial range, but between about 1 an
fm the effective-range solutions are significantly shallow
Nearr50 the ambiguity betweenV1 andV2 can be observed
and so the sign ofV2(r ) is not determined at small radii. A
negative region for the centralV2 term at the nuclear cente
is consistent with both the previous fixed energy inversio
@6,10# and with the energy dependent potentials determi
from the RGM phase shifts in Sec. III A. The volume int
grals and rms radii also illustrate the dependence of the
lutions on the particular set of phase shifts.

The spin-orbit components are less well established.
rms radii are consistently smaller than for the central pot
tials, but the componentV1 is still not well determined be-
tween 1 and 2 fm. These differences do not appear to
related to the particular set of target phase shifts. TheV2
component is clearly much smaller and consequently v
poorly defined. However, inversions which omit aV2 spin-
orbit term give higher values ofs.

The values ofjc 1 tabulated in Table IV illustrate the ex
pected decrease in the magnitude of the central poten
with energy, always much more rapid forV2 than forV1.

FIG. 6. Real zero energy potentialsUc(r ) deduced from sub-
threshold empirical phase shifts forp1a scattering. Two inver-
sions are fromR-matrix fits @RM~1!, solid line, and RM~2!, dashed
line# and two from effective range fits@EF~1!, dotted line, EF~2!,
dot-dashed line#.
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TABLE III. The volume integralsJ0, in MeV fm3, and rms radii, in fm, for the four potential componen
determined by inversion from effective range,R-matrix phase shift parametrizations, or various sets
empirical phase shifts.

CentralV1 CentralV2 Spin orbitV1 Spin orbitV2

Star J0 ^r 2&1/2 J0 ^r 2&1/2 J0 ^r 2&1/2 J0

R matrix ~1! 603.7 2.22 2153.1 3.22 58.4 1.34 23.1
R matrix ~2! 609.6 2.21 2147.2 3.27 52.0 1.43 27.0
Effective range~1! 592.7 2.28 2161.5 3.06 49.4 1.80 212.3
Effective range~2! 591.7 2.28 2165.0 3.05 54.5 1.62 26.4
Stammbach 599.7 2.22 2165.0 3.10 54.9 1.62 22.6
and Walter
Schwandtet al. 595.3 2.28 2157.2 3.04 47.1 1.70 213.6
Arndt et al. 532.2 2.05 2225.7 3.25 41.1 1.47 221.3
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The values ofjc 1 for the centralV1 term depend strongly on
the set of phase shifts, being of larger magnitude for
R-matrix solutions. A similar dependence is seen to a les
degree for the centralV2 component. The values ofjc 1 for
the spin-orbit components have a much greater spread.

The inversion introduces a bias in favor of energies wh
the phase shifts have the largest energy dependence, so
the potential may be defined more accurately for certain
ergy regions than others. A way of measuring how the
certainty in the potentials depends on energy is to study
volume integrals. The centralV1 potentials are then found t
be most accurately defined at 10 MeV, in the center of
energy range. Strikingly, the variation in the volume in
grals forV1(r )2V2(r ), i.e., the odd parity potential, is onl
3 MeV fm3 at zero energy whereas at 20 MeV the volum
integral for the the sum of the two components, i.e., the e
parity potential, is defined to a similar accuracy. Possibly
two p-wave resonances ensure that the odd parity potenti
well determined at lower energies; the even parity poten
is then determined more accurately at higher energies w
thed-wave phase shifts are larger.

2. Precise form of energy dependence

Fine details of the energy dependence are likely to dep
strongly on the particular set of phase shifts, as shown by
following calculations. Potentials, linearly dependent on
ergy, were determined by inversion over energy bi
Ecen61 for both sets of phase shifts and forEcen55, 10, 15,
and 20 MeV. Figure 7 shows the componentsUc(r ) for one
e
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set of solutions, determined by inversion of theR-matrix
phase shifts using the solution RM~1! as Vsrp(r ), and the
centralV1 component ofUc(r ) is remarkably independent o
Ecen. However, the radial geometry of bothV2 components
is strongly dependent onEcen. For theR-matrix parametri-
zation, these results are stable against changes inVsrp(r ).
Very different results are found for effective range pha
shifts. In this case solutions can be obtained which, wh
displayed on a graph similar to Fig. 7, show no discerni
dependence onEcen in any component except the small spi
orbit V2 term.

The coefficientsjc 1 obtained for the fourEcen are differ-
ent for R-matrix and effective-range phase shifts. A cle
pattern emerges only for the central potentials. For
R-matrix phase shiftsujc 1u increases significantly withEcen
for bothV1 andV2. For the effective-range phase shifts th
dependence onEcen is less clear, but overallujc 1u appears to
decrease in magnitude with increasingEcen.

3. Inversion directly from empirical phase shifts

Mixed case inversion can be applied to phase shifts de
mined separately at each energy~i.e., not involving param-
etrizations.! Parity dependent potentials, depending linea
on energy, have been determined from the discrete ph
shifts of Stammbach and Walter@26#, Schwandtet al. @27#,
and Arndt et al. @29#. Since the phase shifts depend le
smoothly on energy than parametrized phase shifts, the
sulting potentials are less well defined, but these potent
broadly verify the results of Sec. IV A 1. The volume int
ion
.

TABLE IV. The coefficientsjc 1 in MeV21 for the four potential components determined by invers
from effective range,R-matrix phase shift parametrizations, and various sets of empirical phase shifts

CentralV1 CentralV2 Spin orbitV1 Spin orbitV2

Star j11 j21 j31 j41

R matrix ~1! 20.0065 20.0142 0.0055 20.00014
R matrix ~2! 20.0064 20.0119 0.0097 20.0057
Effective range~1! 20.0043 20.0119 0.0032 0.0344
Effective range~2! 20.0045 20.0123 0.0089 20.00039
Stammbach
and Walter

20.0066 20.0155 0.0153 0.0097

Schwandtet al. 20.0047 20.0111 20.0006 0.0345
Arndt et al. 20.0012 20.0317 20.0123 0 .0323
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54 3143ENERGY DEPENDENT POTENTIALS DETERMINED BY . . .
grals and rms radii ofUc(r ) and the values ofjc 1 are listed
in the lower parts of Tables III and IV which confirm th
consistency of our procedure. Further details are given
Ref. @21#.

4. Wave functions from fixed energy
and energy dependent analyses

Analysis of nuclear reactions often exploits potent
models to calculate wave functions for use in the react
model. These wave functions will be inaccurate for sm
radii due to nonlocality, but can also sometimes have la
errors in the asymptotic radial region. This is most likely
occur where the potential is determined for a single ene
but used at a different energy, the underlying potential be
strongly energy dependent. These effects arise forp1a scat-
tering at low energies where there arep-wave resonances.

Wave functionsuk(r ) corresponding to three parity de
pendent potentials forp1a are presented for thes1/2,
p1/2, andp3/2 partial waves in Fig. 8. Two of the potentia
are energy independent, determined from effective-range
rametrized phase shifts of Schwandtet al. for narrow energy
bites atE51 and 5 MeV. The third is the energy depende
potential EF~1!. The wave functions in the top three pane
of Fig. 8 are calculated at 1 MeV and in the lower thr

FIG. 7. Zero energy potentialsUc(r ) determined from sub-
threshold empirical phase shifts forp1a scattering. The four solu-
tions are all determined from theR-matrix phase shifts by energ
dependent inversion over the energy intervalsEcen61 MeV, with
Ecen5 5 MeV ~solid lines!, 10 MeV ~dashed lines!, 15 MeV ~dotted
lines!, and 20 MeV~dot-dashed lines!.
in

l
n
ll
e

y
g

a-

t

panels at 5 MeV. In each panel, one of the wave function
calculated with a potential determined to reproduce the ph
shifts at that energy correctly and one wave function is c
culated using the potential obtained for the other energy.
energy dependent potential is evaluated at the approp
energy in each case. Clearly, energy dependence in the
tentials is most important for thep-wave functions. The
wave functions calculated at 1 MeV from the 5 MeV pote
tials, or vice versa, have significant errors forr.1 fm. By
contrast, wave functions for thes waves and alsol>2 ~not
shown!, where there are no resonant effects, are calcula
accurately using potentials for the ‘‘wrong’’ energy.

B. Empirical S matrices above the inelastic threshold

Various phase shift analyses have been made forp1a
scattering for energies above the inelastic threshold. For
ergies up to 50 MeV beyond the threshold energy at
MeV, the most comprehensive analyses are those of Pla

FIG. 8. The wave functionsuk(r ) determined forp1a for the
partial wavess1/2, p1/2, andp3/2 at 1 MeV ~lower three panels! and
5 MeV ~upper three panels!. The solid lines representuk(r ) calcu-
lated from potentials found from fixed energy inversion at the ‘‘co
rect’’ energy, e.g., 5 MeV in the upper three panels. The das
lines representuk(r ) for potentials at the ‘‘wrong’’ energy, e.g., a
5 MeV in the lower three panels. The dotted line representsuk(r )
calculated from an energy dependent potential and is evaluate
the respective correct energy.
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TABLE V. The coefficientsp, s, andjc 1 , in MeV
21, for four potentials determined by inversion from

the various sets of empirical phase shifts. Except for the solutions number~4! in each case, the values o
jc 1 are for a linear energy dependence in the real potentials. For solutions~4! coefficients are given for both
the real potential expansion and for a term inE2 in the imaginary components.

Inversion p s CentralV1 CentralV2 Spin orbitV1 Spin orbitV2

Inversion fromSk of Houdayeret al.

~1! 1 0.522 20.0023 20.0159 20.0055 20.0048
~2! 1 0.423 20.0030 20.0135 0.1346 20.0095
~3! 0.5 0.468 20.0019 20.0153 20.0072 20.0087
~4! Real 0.410 20.0021 20.0159 20.0060 20.0098
~4! Imag 1 20.0021 20.0034 20.0020 20.0020
Inversion fromSk of Plattneret al.
~1! 1 0.340 20.0010 20.0170 20.0093 20.0007
~2! 1 0.279 20.0025 20.0147 0.0499 20.0090
~3! 0.5 0.332 20.0003 20.0166 20.0093 20.0119
~4! Real 0.292 20.0006 20.0163 20.0093 20.0078
~4! Imag 1 20.0021 20.0035 20.0019 20.0020
Inversion fromSk of Burzynskiet al.
~5! 1 0.810 20.0054 20.0109 0.0002 20.0028
~6! 0.5 0.730 20.0053 20.0109 0.0004 20.0028
~7! 0.0 0.788 20.0053 20.0108 0.0005 20.0028
~4! Real 0.748 20.0054 20.0133 20.0032 20.0070
~4! Imag 1 20.0015 20.0027 20.0028 20.0029
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et al. @13#, Houdayeret al. @14#, Burzynskiet al. @15#, and
Saito @16#. All these empirical phase shifts have significa
fluctuations in the energy dependence of each partial w
which is particularly evident in the absorption coefficien
The first threeS-matrix sets have the more regular ener
dependence so that these, and not theSmatrix of Saito@16#,
are considered. There are, however, distinct differences
tween these three data sets@15#, which may be due to sys
tematic errors in the phase shift analyses.

The phase shift sets cover different energy ranges,
;19 to;40 MeV for the analysis of Plattneret al., which
includes phase shifts determined for subthreshold energ
;23 to ;50 MeV for the analysis of Houdayeret al. and
;30 to;70 MeV for the analysis of Burzynskiet al. The
S matrix of Houdayeret al. covers the energy range abov
the inelastic threshold most comprehensively.

Close to the inelastic threshold, thed3/2 resonance is a
dramatic feature affecting the behavior of bothuSu and
arg(S) and the very strong effect onuSu persists to energie
well above the resonance energy@13#. This resonance is no
single particle in character, and so we do not attempt to
the resonance phase shifts with a local potential. In the
culations based on theS matrix of Houdayeret al. the em-
pirical d3/2 phase shift foruSu up to 35 MeV is replaced with
the background term in theR-matrix fit of Plattneret al.The
inversion of theSmatrix of Plattneret al.uses this substitu
tion for both uSu and arg(S). No substitution is made in the
calculations based on theS matrix of Burzynski et al.
Anomalous behavior is also found inuSu for the p1/2
S-matrix elements of Houdayeret al., which may be due to
broad p1/2 states. Except where otherwise stated, thep1/2
uSu of Houdayeret al. is replaced with the correspondin
empiricalp3/2 uSu to avoid the possibility of spurious effect
in the inversion calculations due to this anomaly.
t
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Above the inelastic threshold thep1a potential has eight
components if the complex, central, and spin-orbit terms
all parity dependent. However, energy dependent invers
requires only four more free parameters, assuming a lin
energy dependence in the real components, because
imaginary components vanish at the threshold energy.
though the radial basis for each component is kept small,
all of these free parameters are well determined from
empirical data. The large component of ‘‘noise’’ in th
S-matrix data severely limits the accuracy to which this d
can be reproduced by inversion and the lack of known
certainties in the targetS-matrix prohibits proper error esti
mation. Uncertainties are assessed by applying alterna
inversion parameters and choices for the starting refere
potential.

In Secs. IV B 1 and IV B 2 we briefly compare potentia
for the Houdayer and BurzynskiS-matrix sets. For an ac
count of similar studies involving theS-matrix of Plattner
et al., see Ref.@21#; the numerical results are included
Tables V and VI. An overall comparison of all the solution
including a comparison with the subthreshold solutions,
made in Sec. V.

1. Inversion from the S matrix of Houdayer et al.

A considerable improvement in the fit over that obtain
from energy independent potentials follows from the intr
duction of a linear energy dependence into both the real
imaginary components. However, some trends in the ene
dependence ofuSk

taru are not well reproduced with a linea
energy dependence in the imaginary component. Nonlin
energy dependence of the imaginary potentials is there
considered. There is no empirical parametrization of th
phase shifts so direct inversion is used as in Sec. IV A 3
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TABLE VI. The volume integralsJ0, in MeV fm3, and rms radii, in fm, for the central and spin-orb
V1 andV2 components of the four solutions determined by inversion from the various empiricalS-matrix
sets. The volume integrals are given for the real potentials atE50 and for imaginary components a
E530. Where the rms radii could not be calculated due to long range radial oscillations aboutV(r )50, the
value is marked with a hyphen.

CentralV1 CentralV2 Spin orbitV1 Spin orbitV2

The real components, atE50
Solution J0 ^r 2&1/2 J0 ^r 2&1/2 J0 ^r 2&1/2 J0

Inversion ofSk of Houdayeret al.
~1! 550.3 2.38 2231.2 2.90 67.3 1.89 225.8
~2! 542.2 2.38 2218.4 2.47 4.85 2.52 260.3
~3! 543.3 2.33 2230.3 2.63 81.0 1.71 224.5
~4! 545.1 2.33 2240.9 2.66 72.4 1.76 230.6
Inversion ofSk of Plattneret al.
~1! 548.9 2.44 2242.9 2.63 72.0 1.74 221.3
~2! 555.9 2.44 2239.2 2.31 9.52 2.69 261.6
~3! 540.5 2.42 2254.7 2.52 84.6 1.58 220.3
~4! 544.1 2.41 2253.9 2.51 77.8 1.69 225.9
Inversion ofSk of Burzynskiet al.
~4! 607.8 2.28 2205.2 2.07 76.8 1.82 210.9
~5! 591.1 2.33 2176.0 2.87 59.2 1.84 210.0
~6! 591.9 2.34 2170.8 2.81 59.1 1.83 29.60
~7! 594.3 2.36 2159.2 2.69 59.6 1.82 28.73

The imaginary components, atE530 MeV
J0 ^r 2&1/2 J0 ^r 2&1/2 J0 ^r 2&1/2 J0

Inversion ofSk of Houdayeret al.
~1! 34.4 3.04 13.0 2.86 13.7 — 12.9
~2! 35.5 2.66 15.8 2.48 5.09 — 4.5
~3! 55.1 2.93 17.1 2.71 16.3 — 18.1
~4! 43.4 2.89 21.8 2.73 19.2 — 18.2
Inversion ofSk of Plattneret al.
~1! 43.2 3.27 23.5 3.19 12.9 — 10.8
~2! 43.2 3.06 25.33 3.10 4.86 — 3.09
~3! 48.1 3.05 20.0 3.10 17.8 — 19.0
~4! 46.3 3.40 27.8 3.62 19.3 — 16.8
Inversion ofSk of Burzynskiet al.
~4! 35.6 2.86 17.0 1.45 17.3 — 16.0
~5! 26.7 3.19 6.4 1.87 0.95 — 0.34
~6! 56.6 3.17 112.2 — 2.1 — 0.6
~7! 95.2 3.00 13.8 — 4.3 — 1.5
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Four distinct solutions have been determined, all with r
components linearly dependent on energy. The energy
pendence of the imaginary components for the solutions
~1! linear energy dependence for both real and imagin
components,~2! as in ~1! but with the SVD tolerance de
creased to yield a significantly lower value ofs and corre-
spondingly a more oscillatory potential,~3! energy depen-
dence of the imaginary components withp50.5, and~4!
energy dependence of the imaginary components with b
the linear term and the second order termjc 2E

2. The same
radial basis has been used for all four cases and the valu
s obtained for each case are listed in Table V. A marke
less accurate fit, i.e.,s;0.7, was found withp52 in a fur-
ther calculation similar to case~3!.

In Figs. 9 and 10 theSk
inv resulting from the four cases ar

compared with the empiricalS-matrix elements of Houdaye
et al. for the lowest l values. The energy dependence
l
e-
re
ry

th
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Sk
inv is very consistent for the four solutions for most part
waves. The empirical arg(Sk), particularly the s and p
waves, are generally well reproduced by inversion, but
uSk

taru are less well reproduced. The energy dependence
uSu for the s, p3/2, d5/2, and f waves is reasonably wel
predicted using the simple linear energy dependence,
though solution~4!, with the additional term inE2, provides
a better description at the highest energies. However, a n
linear energy dependence withp50.5, case~3!, leads to a
marginally better description of the very strong absorption
the d3/2 phase shifts. No conclusive evidence is therefo
found for a nonlinear energy dependence in the imagin
potential.

The real parts of the four solutions atE50, Uc(r ), are
shown in Fig. 11. The centralV1 potential is the best defined
with solution ~2! differing most from the other solutions
However, solution~2! has a rather irregular radial depe
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dence which is probably due to over-fitting and can be d
counted. Solutions~1!, ~3!, and~4! closely agree forr.1.5
fm and r,4 fm and are greater in magnitude than the s
threshold solutions shown in Fig. 6. The parametersjc 1 in
Table V for solutions~1!, ~3!, and~4! are reasonably consis
tent for the central potentials and a linear energy depende
in the real potentials can be considered fairly well est
lished for theSmatrix of Houdayeret al.The rms radii and
volume integrals atE50 are listed in Table VI and are rea
sonably well defined for the centralV1 component. An even
closer agreement is found for the volume integrals at
MeV. For the real centralV2 component both the volum
integrals and rms radii, even without solution~2!, have a
slightly larger spread in values. The rms radius for the c
tral V2 component is still significantly larger than that of th
V1 component.

A similar degree of consistency is found for the real sp
orbit potentials to that found for the real central potentia
Discounting the overdetermined and anomalous solution~2!
the solutions ofV1(r ) agree with the potentials calculated
subthreshold energies. The parity dependent (V2) spin-orbit

FIG. 9. For p1a above the inelastic threshold, arg(Sl j ) for
l<3 andg7/2. The empirical values of Houdayeret al. ~solid dots!
are compared with arg(Sl j ) for the four solutions described in th
text, ~1! solid lines,~2! dashed lines,~3! dotted lines, and~4! dash-
dotted lines.
-

-

ce
-

0

-

-
.

potentials appear to be an order of magnitude greater
the subthreshold solutions, but this component is not w
determined. However, the parametersjc 1 , listed in Table V,
now show a decrease in the potential with energy for b
V1 andV2 terms. The spin-orbit potential is again more a
curately determined at higher energies, as found in the
ume integrals. The rms radius of the spin-orbitV1 compo-
nent is considerably smaller than the radius of both r
central potentials for all solutions except~2!.

The radial componentsUc(r ) of the imaginary potentials
for the four solutions, for whichEref8 530 MeV, are shown in
Fig. 12. The magnitudes of the central components are
sonably well established, with potential depths of at le
;1.0 and;0.5 MeV for theV1 andV2 components, respec
tively. The rms radius is slightly smaller forV2 than forV1
and the volume integrals are much smaller for theV2 terms.
The difference between the potentials increases with ene
so that, at 50 MeV, the volume integrals are;120 and
;40 MeV fm3 for V1 andV2, respectively. The decrease
the magnitude of both components towards the nuclear c
ter is necessary to reproduceuSk

taru for thes wave. This partial
wave is the most sensitive to the potential near the nuc
center and is much less absorbed than thed waves. However,
the imaginary components have an ambiguity near
nuclear center, similar to that noted for the real compone

FIG. 10. As in Fig. 9 foruSl j u.
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The imaginary spin-orbit components are not very w
determined by inversion, although omitting them from t
inversion results in a distinctly highers. The large magni-
tude at small radii, i.e.,r,2 fm ~see Fig. 12!, is not reflected
in the volume integrals. The rms radii cannot be direc
calculated for these potentials due to the potential osc
tions. These potentials are effectively established by
large differences betweenuSku for d3/2 and d5/2, together
with the imposed requirement thatuSku is equal for the two
p waves and are probably not realistic.

Direct inversion of the empiricalp1/2 uSku shows that only
small differences in the potentials result from the substitut
for uSku, only the imaginary central components at small
dii, i.e., r,2 fm, being noticeably modified. At larger rad
the corrections are always less than the differences betw
the original solutions. No significant changes are introdu
in the real components, the energy dependent paramete
the imaginary spin-orbit components.

2. Inversion from the S matrix of Burzynski et al.

The S-matrix set of Burzynskiet al. covers a wider en-
ergy range than those of Plattneret al.or Houdayeret al.and
is less influenced by thed3/2 resonance. It should therefor
provide a more reliable determination of the energy dep
dent potential. The values ofs and the correspondingjc 1 for
three solutions~labeled 5, 6, and 7!, each with a different

FIG. 11. Forp1a above the inelastic threshold, the real pote
tials evaluated atE50 @i.e.,Uc(r )# for the four solutions resulting
from inversion on theS matrix of Houdayeret al., ~1! solid lines,
~2! dashed lines,~3! dotted lines, and~4! dash-dotted lines.
l
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form of energy dependence in the imaginary components,
listed in Table V, as well as the parameters of a solut
obtained using the solution~4! of Sec. IV B 1 as the starting
reference potential. For one solution,~7!, the imaginary po-
tential is independent of energy. The volume integrals a
rms radii of U(r ) for all four new solutions are listed in
Table VI. Thes values are generally higher than for th
otherS-matrix sets mainly because of the greater fluctuatio
in the energy dependence of the phase shifts of Burzyn
et al.

The potentialsUc(r ) for the real components of the solu
tions ~4!–~7! are shown in Fig. 13. These solutions are ge
erally consistent in all components. The difference betwe
solution~4!, consistent with the solutions of Sec. IV B 1, an
the other solutions for the central components is of an os
lating radial form, typical of the oscillations due to overfi
ting. The volume integrals at zero energy for the four so
tions reflect the consistency in the radial potentia
particularly in the rms radius of the centralV2 component
and the volume integral of the spin-orbitV1 component. The
volume integrals of the centralV1 term are significantly
greater in magnitude than the values for theS matrix of
Houdayeret al., while the volume integrals forV2 are less in
magnitude. However, the rms radii obtained using theSma-
trix of Burzynski et al. have very similar values to thos
obtained for the otherS-matrix sets. At a laboratory energ
of 30 MeV the spread of volume integrals of both potent
components almost overlaps with that for theS matrix of

- FIG. 12. As in Fig. 11 for the imaginary potentials, evaluated
Eref8 530 MeV.
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3148 54S. G. COOPER AND R. S. MACKINTOSH
Houdayeret al. The similarities in the radial form betwee
the solutions~4!–~7! are also reflected in thejc 1 for the
V2 component listed in Table V. Excluding solution~4!,
there is an excellent agreement between all the solutions
the V1 term, jc 1 is significantly greater in magnitude tha
that for theS matrix of Houdayeret al., while for theV2
term, jc 1 is significantly less in magnitude than that prev
ously calculated. The spin-orbit potentials show a grea
consistency in energy dependence than those for o
S-matrix sets. The radial dependence of the spin-orbit po
tials agrees reasonably with the inversions from theSmatrix
of Houdayeret al.

In Fig. 14,Uc(r ) is presented for the imaginary comp
nents of the four solutions, evaluated at 30 MeV. The ene
dependence of the imaginary potential is expected to
crease at energies significantly above the inelastic thres
and our results may reflect this behavior. The solution~6!
with p50.5 has the lowest value ofs, while s for the en-
ergy independent solution~7! is lower than for the solution
~5!, linearly dependent on energy. The spread in the cen
potential solutions arises partly because the potentials
evaluated at the lower end of the energy range of the in
sion. At 50 MeV, in the center of the energy range of t
inversion, the volume integrals for the centralV1 component
agree more closely than at 30 MeV. The volume integrals
the other potential components show no obvious consiste
at 50 MeV. Apart from solution~4!, the imaginary spin-orbit

FIG. 13. Forp1a above the inelastic threshold, real potentia
evaluated atE50 @i.e.,Uc(r )# for the four solutions resulting from
inversion on theS matrix of Burzynskiet al., ~4! solid lines, ~5!
dashed lines,~6! dotted lines, and~7! dash-dotted lines.
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components are much smaller than those obtained from
Smatrices of Houdayeret al. or Plattneret al.

V. OVERALL p1 ALPHA POTENTIAL

A. Real components

In the preceding sections a good representation of the
pirical phase shifts, above and below the inelastic thresh
has been obtained with a local potential for which the m
nitude of each component is energy dependent. A linear
pendence on energy,Vc(E,r )5Uc(r )(11jc 1E), generally
appears adequate for the real components. Only the p
shift parametrizations for the subthreshold energy range
sufficiently accurate to determine details of the higher or
terms in the energy dependence. However, the two s
thresholdp1a parametrizations give inconsistent predi
tions for any energy dependence in the potential shape
energies above the inelastic threshold theSmatrices are not
sufficiently smooth in energy to establish any second or
terms.

Parity dependent potentials are found necessary for
cases in Secs. III and IV and the real componentsUc(r ) are
illustrated in Figs. 6, 11, and 13. Overall, the central pote
tials have a well-established radial geometry for energ
both above and below the inelastic threshold. The cen
V1 component is approximately Gaussian in shape with
depth of about 60 MeV at zero energy and the centralV2
components all contain a maximum atr;222.5 fm, which

FIG. 14. As in Fig. 13 for the imaginary potentials, evaluated
Eref8 530 MeV.
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54 3149ENERGY DEPENDENT POTENTIALS DETERMINED BY . . .
generally results in a change in sign aroundr;121.5 fm.
For both central components the magnitude ofVc(E,r ) de-
creases with energy and the energy dependence is m
larger for theV2 component. The sign ofV2 is such that the
odd parity term has a much longer range than the even p
term, as previously found in Ref.@6#.

Quantitative details of the real potential compone
Vc(E50,r ) are listed in Tables III–VI. Below the inelasti
threshold, the central components are well defined in te
of the volume integrals, rms radii, and energy depende
parametersjc 1 . Above the inelastic threshold there are s
nificant variations in the parameters determined from diff
entS-matrix sets. The potentials determined from theSma-
trix of Burzynski et al. are closest to the subthresho
potentials in terms ofjc 1 and the volume integrals. Thi
agreement is most obvious for the centralV1 component,
although the rms radii deduced at the higher energies
greater than the corresponding values obtained below
inelastic threshold. The magnitude of the volume integrals
the centralV2 component for theSmatrix of Burzynskiet al.
are less than the values for theS-matrix sets of Houdayeret
al. and Plattneret al., but are still greater than for the sub
threshold solutions. The centralV2 rms radius is found to be
smaller for the potentials above the threshold energy. Th
results are partially verified by the systematics obtained
the inversion from the RGM phase shifts in Sec. III A
However, the RGM solutions give a considerably grea
variation withEcen for the rms radii of the RGM potential
than that found for empirical potentials. The energy dep
dence of the parity independent real potential is very sim
to that of the best global empirical nucleon-nucleus poten
the ‘‘CH89’’ potential of Ref. @30#. Expressing the energ
dependence of the CH89 real central volume integral in
form J(E)5J0(11j11E) givesj11520.005 37 MeV21 for
p14He. This value agrees well with that calculated bo
from the S matrix of Burzynskiet al. and from the sub-
threshold phase shifts.

The spin-orbit potentials are less well determined fro
the empirical phase shift analyses, but the term forV1 is
clearly negative and has a minimum of;26 to 210 MeV
at 1 fm for almost all solutions. Below the inelastic thresho
the spin-orbitV1 component increases in magnitude with e
ergy for most solutions, as predicted by the RGM plus inv
sion calculations. The calculations for energies above
inelastic threshold give spin-obit components which eit
decrease with energy or are nearly energy independent.

Energy dependent potentials obtained from empiri
S-matrix sets can only be considered reliable when evalua
at energies inside the energy range of the empirical data.
threshold energy of 23 MeV is the most suitable energy
which to compare the solutions for energies above and be
the inelastic threshold. In Fig. 15, real components
Vc(E523,r ) are shown for selected solutions from Sec. I
The centralV1 component is the most consistently dete
mined, for which the potential determined from theSmatrix
of Arndt et al. differs most from the other solutions. For th
centralV2 component, the solutions all have the same ba
shape, but differ widely in magnitude. The extreme cases
now those obtained from the phase shifts of Arndtet al.and
from theSmatrix of Houdayeret al., which are very similar
to the solutions obtained from theSmatrix of Plattneret al.
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For the spin-orbit potentials, including the smallV2 compo-
nent, the widest discrepancies are found for the solut
RM~1!. Overall, the two solutions closest in agreement
all four components are the potential obtained from the d
of Burzynskiet al. and the solution EF~1!.

Evaluated at 65 MeV, the energy dependent solution
tained from the data of Burzynskiet al. is very similar to a
solution previously obtained by fixed energy inversion@10#,
particularly for theV1 central and spin-orbit terms. At thi
higher energy the solutions based on the data of Houda
et al.and Plattneret al.are not valid due to the large energ
dependence of the centralV2 term.

B. Imaginary components

The uSku for the three sets ofS matrices determined fo
energies above the inelastic threshold fluctuate consider
with energy and, consequently, the imaginary part of
p1a potential is not well determined. Further uncertainti
arise in the treatment of thed3/2 and thep1/2 S-matrix ele-
ments. TheuSu for these partial waves are difficult to repro
duce by inversion, while thed3/2 partial wave is crucial in the
determination of the imaginary components. Both comp
nents of the central imaginary potential are small,;122
MeV maximum in magnitude for a scattering energy of
MeV. The spin-orbit components have a clearly smaller r

FIG. 15. Forp1a, real energy dependent potentials evalua
at E523 MeV. The potentials, selected from Secs. IV A and IV
are solution~1! of Sec. IV B 1 ~solid line!, solution ~5! of Sec.
IV B 2 ~long-dashed line!, EF~1! ~dotted line!, RM~1! ~dot-dashed
line!, and the solution obtained from the phase shifts of Arndtet al.
~short dashed line!.
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3150 54S. G. COOPER AND R. S. MACKINTOSH
radius but otherwise are poorly determined. It is difficult
make a direct comparison between the potentials determ
from the various empiricalS-matrix sets due to the differen
forms of energy dependence used in the solutions. One
sistent feature seen inUc(r ) for both imaginary central com
ponents is a reduction in the potential magnitude towards
nuclear center. For theV1 term this creates a generative r
gion for small radii. This feature does not break unitarity a
arises predominantly because the absorption is much gre
for the d-wave phase shifts than for the lowerl values. Its
origin probably lies in the underlying nonlocality of the re
potential.

For the imaginary centralV1 component, the energy de
pendent potentials evaluated at 65 MeV,Vc(E565,r ), agree
well with the corresponding component obtained from fix
energy inversion at 65 MeV, with allowance for the unce
tainty of the solutions in Fig. 12. At 65 MeV, this compone
has a minimum of;26 MeV close to 2 fm for most solu
tions. The centralV2 component at this energy has a grea
spread but most of solutions agree around 2 fm.

Not surprisingly, the spin-orbit potentials determin
from the S matrix of Houdayeret al. and Plattneret al.
evaluated at 65 MeV show almost no agreement with th
obtained from theS-matrix of Burzynskiet al.

TheS-matrix sets just above the inelastic threshold can
fitted quite well with imaginary components which depe
linearly on energy and become zero at the threshold ene
However, theS-matrix set of Burzynskiet al. covers a
higher energy range and appears to be more accuratel
produced either with a reduced energy dependence,}E1/2, or
with energy independent imaginary components. The fits
uSku just above threshold are also unsatisfactory for so
partial waves, the smalld3/2 uSu presenting a problem to th
inversion. Either an improved energy expansionFc(E) must
be found or the potential geometry must be permitted
depend on energy. Unfortunately, the erratic energy dep
dence ofuSu prohibits use of energy bite techniques whi
otherwise offer the best way to investigate this problem.

C. Evaluation of the resonating group model

Energy dependent inversion of phase shifts derived fr
RGM yields a systematic pattern of potential compone
with distinctive features which are present over a wide
ergy range. Both the radial shape and the energy depend
of these potentials can now be compared with empirical
lutions, providing an improvement upon previous compa
sons@9,10#. This comparison is arguably more meaning
than direct fits of RGM to experiment since the RGM calc
lations necessarily employ somewhat schematic effec
N-N interactions.

The sign and general radial properties of the central
spin-orbit V1 components determined from RGM pha
shifts in Sec III A 2, and in particular the centralV2 term,
agree well with the empirical potentials. A similar pattern
found when comparingUc(r ) for the central potentials
evaluated at zero energy. Furthermore, the volume inte
of the centralV1 term for the RGM potential,;550 MeV
fm3, is very close to the values in Table III, while the rm
radius, 2.44 fm, is a little larger than the values in Table
These results hold in spite of the schematic nature of
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N-N interaction. However, for the centralV2 term, the vol-
ume integral is about 50% larger in magnitude than the e
pirical value.

Qualitatively, the RGM and empirical energy depe
dences agree, since in both cases the centralV1 andV2 com-
ponents fall with energy and theV2 component falls in mag-
nitude some 2 or 3 times faster than theV1 component. The
jc 1 agree quantitatively in the linear energy dependent fi
Comparing Tables II and IV, the RGM value ofjc 1 for the
centralV1 term is only slightly less in magnitude than th
empirical value and, for the centralV2 term, jc 1 falls well
within the range of empirical values. The RGM results a
predict a small departure from the linear energy depende
wherebyujc1u decreases with energy for both central comp
nents, as shown in Table I, but second order effects can
be unambiguously established in inversions from empiri
phase shifts. The comparison of the RGM and empirical
lutions over the wider energy range is limited by the dif
culties in determining potentials accurately at higher en
gies. The potential shape of the centralV1 part of both the
empirical and RGM potentials is fairly constant with energ
However, the centralV2 component obtained from the RGM
has significant changes in the radial geometry, as meas
in terms of the volume integral and rms radius ofUc(r ). In
moving from subthreshold energies to energies above
threshold, a decrease is seen in the empirical potentials
both uJ0u and rms radius, but the overall shape dependenc
small.

The energy dependence in the single-channel RGM ar
from exchange, theN-N interactions being energy indepen
dent. The energy dependence is of particular interest s
that of the parity independent term of Secs. III A 1 a
III A 1 is due to knockon~Fock term! exchange, a proces
responsible for a large part of the energy dependence of
nucleon-nucleus optical potential. The parity dependent co
ponent of the potential arises from different exchange p
cesses, largely ‘‘heavy particle stripping,’’ and is expected
fall quite rapidly with energy. The energy dependence of t
term for p-a, especially if compared with that for heavie
target nuclei, gives a measure of the error involved wh
processes leading to parity dependence are omitted from
culations of the optical potential.

A full consideration of all channel coupling effects is r
quired to establish rigorously the contributions of antisy
metrization to the imaginary components, and this presen
formidable calculation. However, an estimate of some of
effects on the imaginary components due to the nonloca
implicit in the RGM calculations can be obtained from
much simpler RGM calculation in which the channel co
pling is represented by a phenomenological imaginary te
@31#. The application of fixed energy inversion to these RG
phase shifts does not yield imaginary potentials which
actly equal the phenomenological potential, because of
nonlocal effects. The central imaginary terms obtained
inversion are close to the input terms@31# in the surface
region, but atr,1 fm, distinct generativefeatures appea
which are very similar to the features found for the cent
V1 term in Figs. 12 and 14. This supports our view that t
generative feature found empirically for the centralV1
imaginary terms is due to nonlocality effects.
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VI. CONCLUSIONS

Energy and parity dependent potentials can now be ca
lated by inversion fromSmatrices established as a functio
of energy. The new procedure is restricted only to ca
where the potential shape is energy independent. In the m
general formulation, the energy dependence in each pote
component is expressed as an expansion over an arbi
basis of energy dependent functions, appropriate to the
of the input data set, but for many practical application
linear dependence on energy is sufficient. A very accu
inversion is obtained from fitting a linear energy depende
to S-matrix values for a reduced energy range, or ‘‘ener
bite,’’ from which finer details of the energy dependence
the energy dependence of the potential geometry can be
ied. SVD techniques are an essential part of the whole p
cedure to establish well-behaved potentials using a restri
basis set.

With these new techniques, inversion has been applie
p1a S matrices at energies above the inelastic thresh
representing, in our view, the first time that physical info
mation, in a form suitable for comparison with theoretic
models, has been extracted from the experimental d
Complex, energy dependent potentials have been determ
which reproduce the empiricalSmatrices for a wide range o
energies up to 70 MeV. Both the real and imaginary com
nents are found to depend on energy and parity, but
imaginary components are small in magnitude and the ra
form and the energy dependence are not very well de
mined. The corresponding real potentials are very simila
the potentials determined at subthreshold energies in both
energy and the parity dependence. A consistent descrip
of the p1a real potential has therefore been establish
from 0 to;65 MeV.

The new technique has also been applied to determ
energy dependent potentials from RGM phase shifts
p1a andn116O scattering. For the RGM phase shifts,
well as for the empirical parametrized phase shifts
p1a at subthreshold energies, the smooth variation w
energy permits application of the energy bite techniques
ev
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significant nonlinear energy dependence arises in the ce
parity dependent component, but forp1a, the departures
from a linear energy dependence are small and the pote
geometry changes slowly with energy.

For n116O, the RGM bound state energies can be fitt
simultaneously with phase shifts for low energies using
linearly energy dependent potential. A consistent descrip
is thereby obtained for both positive and negative energ
However, no potential could be obtained over a wide ene
range forn116O, due to a significant energy dependence
the geometry of the small parity dependent term.

Many features in the empirical potential relate directly
the effects of antisymmetrisation. Forp1a scattering, the
real potentials determined from the RGM phase shifts h
all the qualitative features, i.e., the comparative strengths,
geometries, and energy dependences, of the potentials d
mined from empiricalSmatrices, at energies both above a
below the inelastic threshold. This close agreement, wh
applies to both the energy dependence of the parity indep
dent and parity dependent central components, represe
significant result of the energy dependent inversion, beca
of the close relationship of these terms to distinct types
exchange.

There are many empirical phase shift tabulations, ab
and below the inelastic threshold, which can now be a
lyzed with energy dependent inversion. The method also
lows a far more comprehensive study than has been pr
ously possible of the energy dependence underlying
RGM for a wide variety of cases, some of which are n
easily accessible to experiment. Similar applications perm
study of the energy dependence of channel coupling effe
and particularly reaction channel coupling effects, in t
nucleon-nucleus interaction so that these effects can be p
erly understood, at least in the case of light target nuclei
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@3# E.K. May, M. Munchöw, and W. Scheid, Phys. Lett.141B, 1
~1984!.

@4# H. Leeb, W.A. Schnizer, H. Fiedeldey, S.A. Sofianos, and
Lipperheide, Inverse Problems5, 817 ~1989!.

@5# Quantum Inversion Theory and Applications,Proceedings,
Bad Honnef, Germany, 1993, edited by H. V. von Geram
~Springer-Verlag, Berlin, 1994!.

@6# S.G. Cooper and R.S. Mackintosh, Phys. Rev. C43, 1001
~1991!.

@7# S.G. Cooper and R.S. Mackintosh, Nucl. Phys.A517, 285
~1990!.

@8# S.G. Cooper, Phys. Rev. C50, 359 ~1994!.
.

.

@9# S.G. Cooper, R.S. Mackintosh, A. Cso´tó, and R.G. Lovas,
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