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Energy dependent potentials determined by inversion: The+ a potential up to 65 MeV
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The iterative perturbative inversion method is extended to determine explicitly energy and parity dependent
potentials fromS matrices specified at a series of discrete energies. The energy dependence is inserted only in
the potential magnitude, although enhanced “energy bite” techniques allow this approximation to be tested.
With a linear energy dependence in both real and imaginary comporg&matrix data forp+ « scattering is
fitted with a single potential for a wide range of energies above the inelastic threshold. The imaginary potential
is shown to be parity dependent. The real potential is consistent, in both the potential shape and the parity and
energy dependence, with potentials established for subthreshold energies. The method is also applied to
resonating group mod¢éRGM) phase shifts fon+ %0 andp+ « scattering to give energy and parity depen-
dent potentials in both cases. Fpr-a, a close correspondence is obtained between the RGM and the
empirical potentials in both the energy and parity dependence up to about 65 Mel+E®#D, potentials are
determined for positive and negative energ[&0556-28136)03312-3

PACS numbdps): 25.40.Cm, 25.18s, 24.10.Ht, 03.65.Nk

I. INTRODUCTION empirical models. Not only are such potentials required for
many applications, but inversion may sometimes be impos-
Fixed energyS-matrix to potential inversion has now sible without energy dependence. For example, mixed case
been used to establish local potentials for a wide range dhversion for energies just above the inelastic threshold is
scattering cases. However, most of the available methodgnly possible when energy dependence is explicitly included
(see Refs[1-5]), will not handle spin-1/2 cases and are in the imaginary components. Empiric8l matrices which
inappropriate to few-nucleon systems at low energies wherbave been established fpr+ o scattering in several phase
very few partial waves contribute. Inversion is possible forshift analyses above the inelastic thresHdl@-14 are inac-
such cases with the iterative perturbatid®) inversion cessible both to energy independent inversion and to the en-
method. This can handle channel spin 1/2 and, by means @fgy bite techniques previously used to establish energy de-
the “mixed case” extensiof6,7] of fixed energy inversioh, pendence.
can give meaningful results in cases where there is informa- Our first aim in this paper is to present and test a substan-
tion from only a few partial waves. IP inversion also makestial new extension of the IP method to energy dependent
possible(i) the determination of parity dependent potentials,inversion. For anys-matrix elements given at discrete ener-
essential for few-nucleon cases, afid the fitting of bound  giesE; or parametrized over a range of energies, inversion is
and resonant state energies. Pdint allows the determina- applied to determine the energy dependent potential that re-
tion of potentials which are valid over a range of both negaproduces the give® matrix. Symbolically,
tive and positive energid$8]. Using these techniques, poten-
tials have been determined from empirical phase shifts for Sj(Ei) or S;(E)—V(E,r)+1-oV{E,r).
p+ea [6] and ®He + « [8] scattering and from resonating
group model(RGM) phase shifts for several low energy Bound state and resonance energies can be fitted at the same
nucleon-nucleus casel9,10]. In most cases, parity depen- time, leading to a consistent representation of bound and
dent potentials are required to reproduce the phase shiftscattering states. The energy dependence of each potential
These potentials have been applied in reaction studies, fmomponent(i.e., real, imaginary, parity dependent or parity
example, the three-body model f6He [11] or (a,y) cap- independent, central or spin orbis treated separately. The
ture reactiong12]. major restriction at present is that the radial geometry of all
One problem, not properly addressed up to now, is thatomponents of the potential is held fixed; previous mixed
many local potentials are energy dependent. The nucleorcase studies fop+ a suggested that this approximation is
nucleus potential is an obvious examp®10. Energy de- reasonable. It is straightforward to avoid ambiguities arising
pendence has been established by applying inversion atfeom supersymmetry17].
sequence of energi¢$]. However, it is useful to have en- The first application is to theoreticRGM) phase shifts
ergy dependent potentials that can be evaluated at any réer p+ « andn+ %0 scattering, for energies up to 50 MeV
quired energy, and having energy dependence parametesiad 30 MeV(c.m), respectivelyf18,19. The smooth energy
that can be directly compared with those of theoretical odependence of the RGM phase shifts permits very precise
inversions and should provide an ideal test. Previous “en-
ergy bite” analyses revealed that both the parity dependent
L“Mixed case” inversion is intermediate between fixed energy and parity independent components of the potential were
inversion and fixed partial wave inversion; i.e., one determines strongly energy dependent, but the bound states energies for
potential fromsS;;(E;) for a limited set oflj and energie; . n+ %0 were not reproduced. Applying energy dependent in-
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version over energy bites allows us to assess the energy dspin 1/2[23]. The method has been further extended to
pendence of the potential geometry. mixed-case inversiofi7], which also permits the application
The second major objective here is to present potentialef “energy bite” techniques for inversion of phase shifts
obtained by inversion o6 matrices at energies above the parametrized as a function of enerffj. An additional ad-
inelastic threshold. Three sets of empirical data are considaptation allows inversion from both bound and resonant state
ered[13-15 extending to 70 MeV. Allowing for parity de- energies[8]. Although the iterative-perturbative inversion
pendence, corresponding degrees of freedom are necessagyathod has been described in many previous publications,
However, only four extra parameters are req.wred,.addltlona,lOr example[24], the essentials of the method, together with
to those necessary for energy independent inversion, so thahme of these extensions, are repeated here to define certain
energy erendent Inversion yields an extremely economicgl,mg frequently referred to later. The considerable versatil-
description of considerable data. ity of the procedure allows further extensions to be incorpo-

In order to study'the continuitfor otherwisg of the real rated, such as the determination of parity dependent poten-
parts at the inelastic threshold and to compare the energy

dependent empirical potentials with the RGM potentials, en- als in a single inversion and the inclusion stwave
ergy dependent inversion is also applied to the subthreshofRFattering length as Input data. Prewous_ly, parity dependent
phase shifts previously studidé]. A more complete com- potennal_s were establlshec_i by separate inversions on even or
parison than previously made is now possii€el0] between odd partial waves, but it is more convenient to determine
the real empirical and RGM-derived potentials over a wideP0th the parity independent and parity dependent compo-
energy range, establishing the contributions of antisymmetrineénts simultaneously when energy dependence is also in-
zation to the radial shape, depth, and energy dependence @fided. All the features of the IP procedure described below
the empirical potential. are embodied in the codeaco [25] which we can make
Parity dependence in the imaginary components of th@vailable.
empirical potential can now be studied. Some contribution is In general, the input or “target” data for the inversion
expected due to the effect of the underlying nonlocalityconsists of real or complex elastic scattering phase shifts for
which couples the imaginary potential with the strong parityone or more energies. They may also include a set of known
dependence in the real components. Evidence for this effeifound and resonant state energies andsthwave scattering
is found in the empiricaB matrices, for whichS| is mark-  |ength. The procedure outlined below applies for both spin-0
edly <1 for |=2. Fixed energy inversion at 65 MeV also and spin-1/2 scattering. The resulting potential may be either
gives smoother potentials if the parity dependence is permitrea| or complex and, where appropriate, have spin-orbit and
ted in both real and imaginary componeft§)]. _ parity dependent components.
_ Energy dependence has been included in conventional 0p- |y the following discussion, the partial wave indexde-
tical model fits to subthresholg+ « scattering data; see, arnes both the quantum number§ and the energy, cor-

e.g.,[20]. Energy dependence was introduced into the reaj,q,,ning to the wave numbeunless stated otherwise all
potential either as a linear energy dependence of the depth Q ergies quoted are laboratory energies\ complex

in the Woods-Saxon radius parameter. However, with th% i el f . in th i d q
limitations of the optical potential geometry, the imperfect matrix element for givenc In the target set is denote
! 2" and N, represents the total number of complex phase

reproduction of the data and absence of parity dependenéﬁ_f The ind q i bound
imply that such fits provide no conclusive evidence concernSNs: e Indexn | .enotes a speciiic our@r resonant
ing the p+ a energy dependence. state which, in addition to thkej and state energk,, also

The structure of the paper is as follows. The IP procedur efines the number of radial nodes in the state wave function.
is reviewed in the first part of Sec. Il. A method for deter- | "eN Nn denotes the total number of bound or resonant

mining energy dependent potentials is then presented in t ates . . . .

second part of Sec. Il. In Sec. Ill, energy dependent poten- The poten_tlal _resultlng from the ;rnversmn shou_Id_be a
tials are determined from RGM phase shifts for bpth « close approximation to the_potentl‘df (r), which satisfies
andn+1%0. In Sec. IV the procedure is applied to empirical (€ radial Schrdinger equation

phase shifts forp+ « scattering, first below and second
above the inelastic threshold. In Sec. V the results of the
various inversions fop+ a are compared to ascertain the o
general features of thep+ a potential which have been es-

tablished for the complete energy range up-~t65 MeV. : .
The comparison with the results of the inversions from the]cor all values of k. Ve(r) is a standard Coulomb potential

RGM phase shifts is used to establish which features in thagl(ljy:[rt]ﬁecrc:ir:jsi;ﬁlr\]/}/zv%S?ur?(?tri](\)/sn(tlr(;nsglmds%zzmons' Asymptoti-
resultant potential can be reliably ascribed as due to the af- a

fects of antisymmetrisation. Finally conclusions are pre-
sented. In the following text we refer at several points to Ref.
[21], in which fuller details and further discussion can be
found.

dz 1(1+1) 2pu . )
—d—rz"‘_rr'f'?[vc(r)—’—v (r)]_k uK(r):O!

U(1)=1,(r)=SFO,(r), (2

where |, and O, are the ingoing and outgoing Coulomb
wave functions, respectively, for givérandE. If the target
Il. GENERALIZING THE IP INVERSION PROCEDURE data include bound or resonant staté$!(r) must also sat-
isfy the bound state radial Sclimger equation for each.
The resultant real wave functiaf™(r) then behaves asymp-

The iterative-perturbativélP) procedure was first devel- totically as ¢"(r)~O, (r) or ¢"(r)~G(r) for bound or
oped for fixed energy spin-0 scatterif@@] and extended to resonant states, respectively.

A. IP procedure and parity dependence
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In practice the potential calculated by inversiaf?V(r), N2
. : ; N . _
will not pe |_dent|cal toV*(r), for_ example, becaus_e of ir-- Vgew(r)zvlcnv(r)JrE Neivai(r), (4)
regularities in the target data which should not be fitted. It is i=1

convenient to define a quantity? which measures how
closely the target data set is reproduced \B§'(r). This
measure contains separate contributions from Skraatrix
elements and from the bound or resonant states. Replaci
V@(r) and S in Egs. (1) and (2) with VI™(r) and S/,
respectively, defines th& matrix S™, which in general
# S For the bound or resonant states, two solutigfsnd
¢35, corresponding to the regions inside and outside th
matching radius =R,,, respectively, are calculated using
the Schrdinger equation with the potenti®™(r) and tar- iNeiuCo\ [

get energ)yE,,. The functiong] is calculated by integrating 55K:( T )fo vei(r[u(r)]3dr, (5
the Schrdinger equation outwards from the origin and must N

connfcain the correct number of radial nodes. The function,perey (r) is the radial wave function obtained from the
¢, is determined by integrating inwards from the CorreCtSchr'i]jinger equation for the index using the potential

asymptotic form at large radii. A valid solution is obtained Vi"(r). The coefficientC, is a constant specific to the po-
only if thenlogr]]arlthmm r?errl]vatlves ofp] and ¢, respec-  tential component. For the real and imaginary tern@ is
tively, r¢'y/¢; andr’;/ ¢, are equal at =Rp. In gen-  set equal to 1 and, respectively. For the spin-orbit terms
eral this is not true and there are two alternative procedure@C is further multiplied by 2I-s) and for the parity depen-
which may now be used. An ener@)" may be inserted into  dent termsV,, C. is additionally multiplied by ¢1)'. A

the Schrdinger equation, in place &, , and varied until the term corresponding to the imaginary spin-orbit parity depen-
wave functions obtained for the two regions match correctlydent potential then haS.=2i(l-s)(—1)'.

atr =Ry,. However, it is more convenient here to work with  |n the case of bound or resonant states, the perturbation is
the logarithmic derivatives. Finally, the phase shift distanceadded toV'"'(r) to correct the difference between the loga-
o is defined as rithmic derivatives of¢] and ¢5 atr=R;,. As above, the
Born approximation can be applied to a small change in the
real potential \.v.i(r), to obtain a simple expression for

where the\;; are expansion coefficients to be optimized by

the inversion. Typically Gaussian or zeroth order Bessel

4 nctions are used for the.(r), although the functions
ould be linearly independent.

For a small potential perturbationvi(r), the Born ap-
proximation can be applied to obtain an approximate expres-
sion for the related change in th&matrix element
&S =Se"—gm e,

) n d)/n 2 Ao ie
0.2:2 W2|Star_ San|2+W22 ’ _r12_ _nl e ci» I.€,
~ Kkl >~k K n ¢2 d)l r=Rp, 1 R
7\ciCc| [¢>2(—R)]2fo vei(N[¢i(r)1%dr

The termw, represents a weighting factor, which by default 1 Rm
is unity for all x, but may be varied either to give more +WJ vei(r)[5(r)]2dr
emphasis on the highéror to incorporate the estimated er- 2 R
rors in the empiricalS matrix (see Ref[24] for further de- mn n
tails). The second weighting factW establishes the relative = _nz - —1n) ) (6)
accuracy to which/™(r) determines the bound state ener- b2 $h r=R,

gies compared to the accuracy to whi¢l'(r) determines
Star, Equations(5) and (6) define a set of first derivatives of
At the start of the procedure an initial choice\df¥(r) is  eitherS™™ or ¢’/ ¢7— ¢'5/ $5 which are linearly dependent
required, i.e., the “starting reference potential,” denotedon \.;. These equations can now be inserted into the least
VSH(r). Up to eight components may be required forsquares minimization af2. A set of linear equations is then
V™(r). Above the inelastic threshod™(r) must be com- obtained which are overdetermined E{(N2)<N,+2N,.
plex. For spin-1/2 scattering both centraV.{r)+  The solutions for the\.; are obtained by applying singular
iWee(r) and spin-orbit terms 29V (r)+iWg{r)] are value decompositiofSVD) to solve the matrix equations.
required, and where parity dependence is necessary, eachTiis process permits the introduction of a tolerance limit to
Vee 1), Weedr), V), or Wg{r) can have the form eliminate the smallest singular values, so that for any reason-
V1(r)+ (—1)'V,(r). Each of the possible eight components able basis and starting reference potential an optimized set of
is treated independently in the inversion. The subsaript expansion coefficients; can be calculated. These,; de-
refers to a particular component. Some or all of the eightermine a new potentiad"**(r), for which the correspond-
possible components may be zero in the starting referendag value ofo? should be smaller than that f&fS™(r).
potential. _ The above process can be repeated on an iterative basis,
To minimize o2, perturbations must be added \"(r) until satisfactory convergence is achieved. While the intro-
or, initially, VS®(r). These perturbations are added sepaduction of parity dependence introduces some ambiguities
rately to each potential component and are obtained from aimto the inversion, notably near the origin, the problem is
expansion oveNE basis functions;(r). The resulting po- ameliorated by imposing a restriction to smooth potentials by
tential is obtained: use of a truncated basis and a high SVD tolerance.



3136 S. G. COOPER AND R. S. MACKINTOSH 54

Using expressions closely analogous to those above, the
IP procedure can also be extended to fit the scattering length Ve E) =
at zero energy21]. ¢

NG
Ficnv(E) + Zl gcifci(E_ Eref)

b
N
B. Determining energy dependent potentials - 3
g eneray dep P x| P+ 2 Newa(r)
“

: (©)

The IP procedure is easily extended to determine energy
dependent potentials, under the assumption that the potential
geometry is independent of energy. The method is suffiwith an equivalent form for the imaginary components. To
ciently versatile to permit the introduction of further modifi- first order, the cross termf;(E—E)v.i(r) can be ne-
cations to overcome the restriction if necessary. In subseglected, leaving the perturbation
guent sections an extension of the energy bite techriifle
is introduced which permits a more detailed investigation of NE NP
the energy dependence of the potential shape. The complete inv _ inv
procedure has been implemented in the coteso [25]. Uc (r)Z«l &eif ci( E-Erep) +Fe (E)Zl Aeivei(r),

If the geometry is independent of energy, any potential (10
component can be expressed in the form

which is linear in bothf ; anduv(r). For a small perturba-
tion F{V(E)\¢v¢i(r), the Born approximation yields a cor-

with F.(E) defined separately for each component. CompoX€ction for6S,= S~ S which is identical to Eq(5) ex-

nents can then be kept energy independent in the inversion, §€Pt that the right hand side oirfwthe equation must be

appropriate. Separate functions are required for the real arf@ultiplied by the additional factoF ;"(E.). The correction

imaginary potentials. to S, arising from a small pe_rturpajuon in t.he energy depen-
For the real components, the most general form of thelenceUg"(r)écifci(E—Er), is similar, giving

energy dependencE.(E) is obtained from an expansion

Vo(E,r)=F(E)Ug(r),

over a set of NS energy dependent basis functions [ TEnCG(EcEred)) [ iy 5
f(E—E,y) analogous to the radial basis functiows(r) 0Sc=| ~ 2k, o U (Du(r)]=dr,
[now added only tdJ.(r)], i.e., (11)
E
Ne where all other coefficients are as defined previously.
Fc(E)=1+2 &cifci(E—Erep), (7)  Equivalent terms can be obtained for the imaginary pertur-

bations.

whereE, . is a fixed reference energy and the are energy In the case of the bound or resonant states, the correction

expansion coefficients determined in the inversion. The functo the Iogantmnlcmc\i/envatlves follow frqm Eq6). Thg cqr-
tion U.(r) then specifies the potential componemtat 'ections forFc (E")Ncvci(r) are obtained by multiplying
E=E,. The simplest form of energy dependence is the lin-he left hand side of E¢(6) by F¢™(E"). For the perturba-
ear formF.(E) = 1+ &.E, sufficient in many practical cases. tion UZ"(r)&:ifci(Eq”—Ere) the correction becomes
The applications of the procedure in Secs. Il and IV addi-
tionally use the function$.(E)=E' andf(E)=E". _ 1 R

For the imaginary components, a slightly different expres-  &cifci(En" — Eref)cc‘ WJ U [ #h(r)]%dr
sion for the energy dependence is required to ensure that the ! 0

potentials vanish at the inelastic thresholekEj. In the 1 Rm .
following formulation it is implicitly assumed that the imagi- +Wf U'c”"(r)[¢2(r)]2er
nary components are zero below the inelastic threshold, i.e., 2 R
for E<Ey, F (E)=0. A further reference energy, n in
_Er’ef> E,, is required. The most general form considered here :(F - ?) . 12
is 2 1/r=R,
—Ep \P Ne Equations(11) and (12) define changes in th&-matrix
F(B)=| = _E, +2i &cici(E—Erer). (8)  elements or the logarithmic derivatives ¢f and ¢ which
re

are approximately linear in botfy; and\ ;. A least squares
. . . . 2 . .
Herep is chosen to optimize the inversion and the functiongMinimization of o, following the procedure in Sec. Il A,
9.:(E) must satisfyg,(E)—0 asE—E,. Theg.(E) con- then produ_ces a set of Imear equations fgr and \ ; and
sequently differ from the functiont,(E) used in Eq.(7). SvD techmque's' can be applled,_ as before_, to determmg the
For a linear energy dependenpe=1 and no further expan- unknown coefficients. The equations remain overdetermined
sion coefficient is required because the energy gradient igroviding that
jointly determined byE,. and the magnitude ad(r).
The energy dependent potential V{V(E,r)=

. . NP+ NEY<N,+2N. .
FIV(E)UM™(r) is expanded: 2 (Ne+Ne)<Ny “
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The relative importance of the two sets of functions can be
introduced by varying the magnitude of one set of basis ]
functions. i

m
§

i
N
)

Ecen
Ill. ENERGY DEPENDENT POTENTIALS

FROM RGM PHASE SHIFTS A~

!
a1
o

|

centrdl

Phase shifts from theoretical models such as the single-
channel RGM provide an ideal test case for the new inver-
sion techniques since the phase shifts, having no experimen- )
tal “noise,” should be very precisely reproduced. Energy
dependent real potentials are here determined by inversion of .
RGM phase shifts fop+ a andn+ %0 scattering. The data >

. . (<]
for the latter case include two bound state energies. = 0
>

centrdl

In a previous studyf9] of p+« at energies below the
inelastic threshold, inversion of the RGM phase shifts
yielded parity dependent potentials very similar to those de-
termined from empirical data. The restriction to the single-
channel RGM did not greatly effect the energy dependence
of these potentials. The parity dependent potentials for both
p+ « andn+ %0 scattering have also been investigated over
a much wider energy range, as part of an extensive study of
the nucleont+ nucleus potential in which fixed energy inver-
sion using narrow energy bites was applied to single channel
RGM phase shift§10]. For both target nuclei, the central
parity independent\(;) components varied approximately
linearly with energy and the potential geometry had no
clearly discernible dependence on energy. The central parity
dependentV,) components were found to be very different
for the two cases, but, in both cases, the magnitude decreased

with energy. For th@+ a case, the geometry of thé, term . ;
gy Pra g y e, ﬁ)[r the central and spin-orbl,; and V, components obtained by

depended weakly on energy, although this dependence mig : .

have arisen due to the restriction to a small inversion basig. < >°" of RGM phé?se Si'ﬂs over the energy bEQg‘f:l MeV

For n+ 0 scattering, th&/, term was much smaller but the Centered at the energi€se,=10 MeV (solid lineg, Eqey=30 MeV
L9 2 - . (dashed lings andE ;=50 MeV (dotted lines.

geometry had a significant variation with energy, so that the

new techniqgues may be less appropriate. The two bound , . , ,

states predicted by the RGM theory for the 10 case can- &€ given in terms of laboratory energies to allow a direct

not be reproduced by energy independent potentials obtaindgMParison in later sections with calculations from empirical
by inversion from narrow energy bites phase shift3.Comparing the new potentials with the previ-
' ously determined energy independent potent{arsown in

Fig. 2 of Ref.[10]) reveals that much of the energy depen-
dence has been incorporated into the coefficiégts The
1. Energy dependence of the potential geometry differences between the varioUuk(r) are remarkably small,

. . . ticularly for th traV t. In effect, poten-
The phase shifts of Reichstein and Tar@] are here particufarly for Te centraliy component. 'n eniSth, poten

: tials are determined for energies of 29-31 MeV and 49-51
reanalyzed to assess how well simple forms of energy deperMeV which, when extrapolated back to zero energy, are in

dence can fit the_phas_e shifts for a wide range O_f energie?emarkable agreement in both magnitude and radial shape.
However, before inverting the tabulated phase shifts for th ome of the residual differences may be due to the increas-

entire energy range 0-50 Me¥.m), the energy depen- . . . . .
dence of the radial geometry is studied as follows: An effec—Ing numbers of partial waves which contribute B in

tive range parametrization of the tabulated RGM phase shifts
is evaluated over wide energy bité&g,=1 MeV (c.m).

Energy dependent potentials with parity dependent, centr
and spin-orbit components, of the form
U.(r)(1+¢;4E) for each component, are then determined
by inversion of these 2 MeV “wide” sequences of phase

|
N

|
| -
L (@]
TR AR BTSN (SR FEUEE REWEY FRNEE R T
<
N

V, spin—orbit

V, spin—orbit

r (fm)

FIG. 1. Forp+ a, the real zero energy radial potentids(r)

A. p+ a potential

TABLE |. The coefficientsé.; in MeV ™! for the four real
Potential components calculated from RGM phase shifts for the five
ar, .
€nergy biteE =1 MeV.

Ec.n CentralV, CentralV, Spin orbitV, Spin orbitV,

shifts for alll values. In this way, potentials are calculated10.0 —0.0049 —0.0180 0.0122 —0.00051
for E¢en= 10, 20, 30, 40, and 50 Me¥t.m,), with E,=0 in 20.0 —0.0033 —0.0131 0.0128 —0.00040
all cases. 30.0 —0.0036 —0.0130 0.0075 0.00002

In Fig. 1 potentials are presented t6¢.,~=10, 30, and 50 40.0 -0.0036 —0.0117 0.0060 —0.000061
MeV evaluated aE=0 [i.e., U,(r)] and the expansion co- 500 —0.0037 —0.0096 0.0151 —0.00269

efficients&; are tabulated in Table | for all case3he &;
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gest energy dependence. The energy dependence is not com-

50_5 =y pletely linear since th€,; decrease in magnitude fairly sys-
: Si/2 d .
:\ tematically withE_,, for the centralV, component. For the

E spin-orbit potential, th&;; do not represent a consistent en-
-50€\\J ergy dependence, but the valueségffor theV, component
3 are much smaller than for the other components. Nonlinear
RS~ ans SV terms may be necessary in the inversion over a wider energy
409/ el U range.
s Pi/2 ey

2. Energy dependent potentials fitting 0 to 50 MeV (c.m.)

502 Ps/2 /'h TR e TS Potentials are presented below determined froeal)
3 / RGM phase shifts for the entire energy range from 0 to 50

MeV (c.m). The following forms of the energy dependence
F.(E) are considered.
(1) Energy independencé (r)=U.(r), F.(E)=1.

(2) Linear energy dependence

Ve(E,r)=Uq(r)(1+&:4E).

(3) Expansion in powers dE, i.e.,
V(E,)=U(r)(1+ & B+ & E2+--4).

(4) Energy expansion of the form

V(E,r)=U(r)(1+ & 2 VE+ & 4E).

] / The inversion for these four cases gave= 2.07, 0.39, 0.30,
o R et — and 0.20, respectively. The phase shifts cannot be repro-

0 10 20 30 40 50 60 duced precisely, since the potential geometry is fixed over
E (MeV) this energy range, as discussed above. These are shown in
Fig. 2 for caseq1), (2), and (4) together with the RGM
FIG. 2. Forp+a, RGM phase shiftgsolid dot3 for the partial ~ phase shiftfshown as solid circlgsfor selected,j values.
wavessj,, Pia, Paz, dan, s, andgy, compared with the re-  In the corresponding comparisons for tHg,, 7, Jgp,
sults of inversion using an energy independent potential, ¢Bse andh partial waves, the RGM phase shifts are reproduced to
(solid lineg, and two energy dependent potentials, soluti®s an accuracy at least that of thg, andg-,, phase shifts. The
(dashed lingsand (4) (dotted ling, as described in the text. energy independent potentid) clearly gives an inadequate
description of the RGM phase shifts and the introduction of
creases. AtE =10 MeV, the two lowest partial waves just a linear energy dependence provides a significant im-
dominate the inversion more effectively than at the higheprovement. Further relatively small improvements follow
energies. Differences between the spin orbit components &tom the addition of higher order terms in the energy depen-
Ec=50 MeV and at other energies are due to the influencélent expansion. The most successful expansion is @Bse
of the h-wave phase shifts. containing the term- \E. Used alone, an energy expansion
The volume integral ofJ(r) for the centralVV, compo- = E leads to a greater energy dependence at lower energies
nent increases from 532.8 to 578.2 MeV ¥mas E, in-  as is consistent with the coefficients; in Table I.
creases from 10 to 50 MeYbut corresponding to an overall The radial functionsU.(r) (potentials evaluated at
decrease with energy in volume integral of the complete enE=0) are displayed in Fig. 3. There are significant differ-
ergy dependent potentjalThe corresponding rms radius of ences between the energy independent and the energy depen-
U.(r) increases from 2.32 to 2.55 fm. For the cent¥gl  dent solutions for the centr&l; and the spin-orbiv, com-
component, the magnitude of the volume integral and theonents. The different shape for cadd) probably
rms radius ofU.(r) both decrease more dramatically with compensates for the lack of energy dependence. The three
Ecen, from 218.9 to 106.1 MeV fri for the volume integral energy dependent solutions agree more closely, particularly
and from 2.83 to 1.32 for the rms radius for the same energfor the centralV, term and, for this term, the potentials
range. Overall, the energy dependence of the potential geonv,,(E,r) are closest aE~25 MeV, i.e., near the center of
etry is relatively small for the centraf, term but is larger the energy range included in the inversion. However, the

for the V, component. This energy dependenceVin will centralV, and spin-orbit/, components are more consistent
limit the accuracy to which the phase shifts from 0 to 50towards 50 MeV(c.m,), presumably because of the larger
MeV can be fitted with a fixed geometry potential. influence of the highet values. This overall behavior is

The coefficientst,; for both theV,; andV, components confirmed by examining the volume integr®l]. The spin-
reflect the expected decrease in the potential magnitude witbrbit volume integrals show a considerable consistency
increasing energy, with the centid) term having the stron- which suggests that the apparent radial differences between
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potential geometry and this is confirmed by inversions con-
fined to a more restricted energy rarf@d].

3. Effects of channel coupling

The sensitivity of the potentials to the details of the RGM
calculations has been investigated by using two alternative
sets of RGM phase shift®], which, respectively, include
and exclude coupling to thé+3He channel. Potentials lin-
early dependent on energy, as in solutighin the preceding
section, have also been determined for both the single-
channel(SC) and coupled channdICC) cases. The phase
shifts are calculated only for energies below the inelastic
threshold at 23 Me\(lab), but the resulting potentials repro-
duce the phase shifts accurately up to the threshold energy.
The potentials determined in the SC calculation now differ
slightly from the previously established soluti¢?) in that
the centralV, component is slightly deeper and the central

_8_5\‘\-/ , Spin—orbit V, V, component is reduced in magnitude. These differences
1N _ 7 reflect the differentN-N interactions and other details of the
RGM calculations. The coefficients.; are —0.0061 and
Spin—orbit V, —0.0168 MeV'! for the centralV, and V, components,

respectively. The corresponding potentials obtained from the
CC phase shifts have very similak,(r), although the coef-
ficients £., for the centralV; and V, coefficients are

— —0.0066 and—0.0196 MeV !, respectively.
L B L B B We conclude that general features of the energy depen-
0 L 2 3 4 5 dent potential are not very dependent on the particular
r (fm) nucleon-nucleon potential used in the RGM calculation. The

coupling to thed+3He channel does not significantly affect
FIG. 3. Forp+«a, the real zero energy potentidli(r) deter-  the potential except to increase the energy dependence of the
mined by inversion from RGM phase shifts for the energy range ugparity dependent term.
to 62.5 MeV (lab) corresponding to the four forms of energy de-
pendence described in the teit) solid lines,(2) dashed line(3)
dotted lines, and4) dash-dotted lines. B. n+'°0 potential

Energy dependent potentials for+ 10 are obtained by
inversion of the single-channel RGM phase sHift8] stud-
solutions(1) and(2) and solutiong3) and(4) simply reflect ied previously with fixed energy inversidid0]. The phase
the limitations of inversion with energy independent radialshifts are tabulated up t&=30 MeV (c.m, and two bound
forms. states are predicted by the RGM, fer0 at —3.26 MeV and
The expansion coefficientg,; for the energy dependent 1=2 at—1.50 MeV. The RGM calculations treat+ %0 as
potentials are tabulated in Table Il. For solutidBsand(4)  spin-0 scattering and only central but parity dependent po-
the coefficients are only listed to second order but, where gentials are determined.
third term has been included, for all potential components Inversion of phase shifts for the complete energy range is
é.3is very small. The coefficients for solutidB) represent not satisfactory, leading to a highly irregular radial shape for
only a small modification to the coefficients for the linear the V, component. This is probably due to the strongly en-
solution (2). ergy dependent radial shape revealed by fixed energy studies.
The small fall ino due to the terms beyond second orderHowever, potentials which depend linearly on energy, and
suggests that a good representatior=ofE) has been ob- having a reasonable radial geometry, can be obtained by in-
tained. Further reductions in require an energy dependent version over smaller energy ranges, up to 10 MeV wide.

TABLE Il. The coefficientsé; in MeV ™1, up toi=2, for the four componentglabeled c=1-4)
determined by inversion using three energy dependent exparjsiensases2)—(4) described in the tekt
from RGM phase shifts foE=0 to 50 MeV(c.m).

CentralV, CentralV, Spin orbitV, Spin orbitV,
Case §11 €12 € &2 € 13 €n Ear
2 —0.0038 —0.0137 0.0024 —0.0086
(©)] —0.0038 —0.000007 —0.0138 -—0.0002 0.0077 —0.00003 -0.0113 -—0.0002

4 —0.0030 —0.0034 0.0013 -0.1151 -0.0069 0.1276 —0.0102  0.0053
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IV. ENERGY DEPENDENT POTENTIALS
FROM EMPIRICAL PHASE SHIFTS

A. Below the inelastic threshold

In a previous analysig5], using techniques based on nar-
row energy bites, real parity dependent potentials were de-
termined by fixed energy inversion of subthreshold empirical
phase shifts fon+ « andp+ « scattering. The analysis was
applied to two parametrizations @+ « phase shifts: the
R-matrix parametrization, of Stammbach and Walf26]
and the effective range parametrization of Schwaetdal.

[27]. Separate inversions were made for even andloghl-
ues for each set of phase shifts fe3 in order to establish
parity dependent potentials at selected energies from 12 to 20
MeV (lab). Potentials were later determined at much lower
energies by increasing the weighting given to higher partial
waves[28]. This procedure forces a reasonable fit for the
d- and f-wave phase shifts as well as for the more strongly
energy dependerd- and p-wave phase shifts. The central
potentials for bothp+ a andn+ a depend significantly on
energy and this energy dependence is also evident when the
potentials are expressed in the parity dependent form
e ———— et Vi(r)+(—1)'V,(r). In this section, except where stated
0 1 2 3 4 5 6 7 8 otherwise, energy and parity dependent potentials are estab-
r (fm) lished from phase shift parametrizations evaluated at inter-
vals of 0.5 MeV over the energy range from 0.5 to 20 MeV,

FIG. 4. Forp+10, the real zero energy potentials(r) deter-  for I<3. The present analysis compares potentials deter-
mined by inversion of RGM phase shifts and bound state energiegnined for both of the phase shift parametrizations.

The inversions are made for three energy intervalS~5 MeV and
including bound state energigsolid lineg, 5-15 MeV (dashed
lines), and 15-25 MeMdotted line$, all as c.m. energies.

vV (MeV)

1. Inversion of phase shift parametrizations

Inversion over a wide energy range does not yield an
Three potentials have been determined from RGM phasénergy independent potential which accurately fits the
shifts for the energy range&t) —5-5 MeV, (2) 5-15 MeV, p+a parametrized phase shifts. If all partial waves are
and (3) 15-25 MeV (c.m). The three functiondJ (r) are  weighted equally, a reasonaklemooth potentialfit is ob-
displayed in Fig. 4. The first energy range includes the twdained only for thes- and p-wave phase shifts. Fitting all
bound states for which the first solution gives energies otlosely induces pronounced radial oscillations in potentials.
—3.26 and—1.511 MeV forl=0 andl=2, respectively. A typical set of values fo" obtained from a smooth en-
The energy dependence of the phase shifts is accurately rergy independent potential determined by inverting
produced by the potentials for the respective energy ranges-matrix phase shifts is shown in Fig. 5, together with the
up tol =5. From Fig. 4 it is evident that the radial geometry yyo sets of empirical phase shifts and the phase shifts ob-
of t_heVl component has little energy dependence_, w_h_lle th&ained from an energy dependent potentidéscribed be-
radial geometry for th&/, comporjent has a more significant low). The energy independent potential corresponds to a
dependence on energy. The differences between the SOl e for - which is about 2.5 times that for the energy

tions fqr Vz'are proportionally very large between 2 and 5dependent potential. Th&" for the energy independent po-
fm, which is why the inversion for the complete energytential clearly fail to reproduce the phase shifts for higher

range was unsuccessful. The energy dependences &f;the d high . £ ind dent potentials. det
component is not exactly linear as is clear from the variatiorf ¢ NIgNEr energies. Energy independent potentials deter-

in ¢, which is —0.0076, —0.0058, and—0.0053 MeV* mined from the effective-range phase shifts yield slightly
for the three solutions, respectively. The energy dependendB!Proved fits to thes- and p-wave phase shifts, but not to
thus decreases with increasing energy, as forpther case ~ Otherl values. The fit to thel- andf-wave phase shifts can
in Sec. Il A 1. The values of; ; for theV, component are, e improved with a judicious choice of the, [defined in

in order, —0.041,—0.043, and-0.026 MeV . The energy  EQ. (3)], but this change leads to worse fits for low

dependence fov, is therefore greater than in tiper « case, The inclusion of just a linear energy dependence in each
but for n+1€0, theV, potential is much smaller in magni- potential component produces an improved fit to shend
tude and the coefficient, ; are less consistent. p-wave phase shifts for both sets of phase shifts. To obtain a

The above results represent a uniform picture of the poreasonable fit for all<3 simultaneously, the highéwalues
tential above and below zero energy, even though no energyust be given an increased weighting. In fact, inverting with
independent form can be obtained for the potential shape. w,(I=0,1)=1 andw,(1=2,3)=5 gives a fit to thes and
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0 FIG. 6. Real zero energy potentidlk.(r) deduced from sub-

threshold empirical phase shifts fgr+ « scattering. Two inver-
sions are fronR-matrix fits[RM(1), solid line, and RM2), dashed

FIG. 5. Forp+a, R-matrix (solid lineg, and effective-range line] and two from effective range fittER(1), dotted line, ER2),
(dashed linesphase shifts for the partial waves,, P12, Paz. dot-dashed ling

dap, dspp, andfs,. The dotted line is an energy independent fit and

the dash-dotted line is the energy dependent fit(BMo the  the corresponding; , are listed in the top part of Table IV.
R-matrix phase shifts. Although there are clear differences between the solutions in

Fig. 6, certain features appear in all solutions and others are
p phase shifts equivalent to that obtained witf1)=1 (all  dependent on the particular set of target shifts. The largest
1), while significantly improving the fit to thd andf waves. component, the centrdl; term, is defined to within about 5
This effect probably arises because the energy dependent pteV for most of the radial range, but between about 1 and 3
tentials which reproduce allsimultaneously are also a sub- fm the effective-range solutions are significantly shallower.
set of the wider family of solutions which reproduce only the Nearr =0 the ambiguity betweeX; andV, can be observed
s- and p-wave phase shifts accurately. In Fig. 5, the fourthand so the sign o¥,(r) is not determined at small radii. A
line (dash-dotted linerepresents thed;” corresponding to negative region for the centr®l, term at the nuclear center
the potential linearly dependent on energy obtained withis consistent with both the previous fixed energy inversions
w,(I=2,3)=5 from the R-matrix phase shifts. The differ- [6,10] and with the energy dependent potentials determined
ence between the latter phase shifts andRhmatrix param-  from the RGM phase shifts in Sec. Ill A. The volume inte-
etrization is visible in Fig. 5 only for=3 and is less than the grals and rms radii also illustrate the dependence of the so-
difference between the two empirical parametrizations fodutions on the particular set of phase shifts.

mostl andE. The increase inv,(I) for the larger signifi- The spin-orbit components are less well established. The
cantly affects the parameteis ;, particularly for theV, rms radii are consistently smaller than for the central poten-
component. tials, but the componen¥; is still not well determined be-

Two energy dependent solutions, labeled @Mand tween 1 and 2 fm. These differences do not appear to be
RM(2), have been determined by inverting tiiematrix  related to the particular set of target phase shifts. Vhe
phase shifts and two solutions, labeled(BFand EK2), by  component is clearly much smaller and consequently very
inverting effective range phase shifts. In all casespoorly defined. However, inversions which omitva spin-
w,(I=2,3)=5 and comparable values of are obtained. orbit term give higher values af.

The full potentials at zero energy.(r), are shown for all The values of, , tabulated in Table IV illustrate the ex-
four solutions in Fig. 6. The volume integrals and root mearnpected decrease in the magnitude of the central potentials
square(rms) radii are listed in the top part of Table Ill and with energy, always much more rapid fof, than for V.
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TABLE lIl. The volume integralsl,, in MeV fm3, and rms radii, in fm, for the four potential components
determined by inversion from effective rang®;matrix phase shift parametrizations, or various sets of
empirical phase shifts.

CentralV, CentralV, Spin orbitV, Spin orhitV,

Star JO <r2>1/2 ‘]0 <r2>1/2 ‘]O <I’2>1/2 JO

R matrix (1) 603.7 2.22 -153.1 3.22 58.4 1.34 -3.1

R matrix (2) 609.6 2.21 -147.2 3.27 52.0 1.43 -7.0
Effective range(1) 592.7 2.28 -161.5 3.06 49.4 1.80 -12.3
Effective range(2) 591.7 2.28 —165.0 3.05 54.5 1.62 -6.4
Stammbach 599.7 222 -165.0 3.10 54.9 1.62 -2.6
and Walter

Schwandtet al. 595.3 2.28 -157.2 3.04 47.1 1.70 —13.6
Arndt et al. 532.2 2.05 —225.7 3.25 41.1 1.47 —-21.3

The values ok, ; for the centralV, term depend strongly on set of solutions, determined by inversion of tRematrix

the set of phase shifts, being of larger magnitude for thghase shifts using the solution RM as V*'(r), and the

R-matrix solutions. A similar dependence is seen to a lesserentralV, component ofJ.(r) is remarkably independent of

degree for the centraf, component. The values @f , for E.en- However, the radial geometry of both, components

the spin-orbit components have a much greater spread. is strongly dependent o, For theR-matrix parametri-
The inversion introduces a bias in favor of energies whereation, these results are stable against change#®r).

the phase shifts have the largest energy dependence, so thary different results are found for effective range phase

the potential may be defined more accurately for certain enshifts. In this case solutions can be obtained which, when

ergy regions than others. A way of measuring how the undisplayed on a graph similar to Fig. 7, show no discernible

certainty in the potentials depends on energy is to study theependence oE..,in any component except the small spin-

volume integrals. The centr&l; potentials are then found to orbit V, term.

be most accurately defined at 10 MeV, in the center of the The coefficients:, ; obtained for the fouE.,are differ-

energy range. Strikingly, the variation in the volume inte-ent for R-matrix and effective-range phase shifts. A clear

grals forV,(r)—V,(r), i.e., the odd parity potential, is only pattern emerges only for the central potentials. For the

3 MeV fm? at zero energy whereas at 20 MeV the volumeR-matrix phase shift$, ;| increases significantly Witk e,

integral for the the sum of the two components, i.e., the eveffor both vV, andV,. For the effective-range phase shifts the

parity potential, is defined to a similar accuracy. Possibly thelependence 0B, is less clear, but overdlk, ;| appears to

two p-wave resonances ensure that the odd parity potential igecrease in magnitude with increasiBg.,,.

well determined at lower energies; the even parity potential

is then determined more accurately at higher energies where 3. Inversion directly from empirical phase shifts

the d-wave phase shits are larger. Mixed case inversion can be applied to phase shifts deter-

mined separately at each ener@s., not involving param-
etrizations) Parity dependent potentials, depending linearly
Fine details of the energy dependence are likely to dependn energy, have been determined from the discrete phase
strongly on the particular set of phase shifts, as shown by thehifts of Stammbach and Waltg26], Schwandtet al. [27],
following calculations. Potentials, linearly dependent on en-and Arndt et al. [29]. Since the phase shifts depend less
ergy, were determined by inversion over energy bitessmoothly on energy than parametrized phase shifts, the re-
Ecent 1 for both sets of phase shifts and ©¢,=5, 10, 15, sulting potentials are less well defined, but these potentials
and 20 MeV. Figure 7 shows the componeudigr) for one  broadly verify the results of Sec. IV A 1. The volume inte-

2. Precise form of energy dependence

TABLE IV. The coefficientsé, ; in MeV 1 for the four potential components determined by inversion
from effective rangeR-matrix phase shift parametrizations, and various sets of empirical phase shifts.

CentralV, CentralV, Spin orbitV, Spin orbitV,
S{ar Ell ‘521 §31 §41
R matrix (1) —0.0065 —0.0142 0.0055 —0.00014
R matrix (2) —0.0064 —0.0119 0.0097 —0.0057
Effective range(1) —0.0043 —0.0119 0.0032 0.0344
Effective range(2) —0.0045 —0.0123 0.0089 —0.00039
Stammbach —0.0066 —0.0155 0.0153 0.0097
and Walter
Schwandtet al. —0.0047 —0.0111 —0.0006 0.0345

Arndt et al. —0.0012 —0.0317 —0.0123 0.0323
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FIG. 7. Zero energy potentiald (r) determined from sub-
threshold empirical phase shifts fpr « scattering. The four solu-
tions are all determined from thR-matrix phase shifts by energy
dependent invers_ior_l over the energy inter_\Eggnrl MeV, with FIG. 8. The wave functions,(r) determined fop+ « for the
Ecen= 5 MeV (solid lines, 10 MeV (dashed lines 15 MeV (dotted  partial wavess,,, pij, andpay, at 1 MeV (lower three panejsand
lines), and 20 MeV(dot-dashed lings 5 MeV (upper three panelsThe solid lines represent,(r) calcu-

lated from potentials found from fixed energy inversion at the “cor-

grals and rms radii o) (r) and the values of. ; are listed rect” energy, e.g., 5 MeV in the upper three panels. The dashed
in the lower parts of Tables Ill and IV which confirm the lines representi (r) for potentials at the “wrong” energy, e.g., at

consistency of our procedure. Further details are given iff MeV in the lower three panels. The dotted line represenp(s)
Ref. [21]. calculated from an energy dependent potential and is evaluated at

the respective correct energy.

4. Wave functions from fixed energy

and energy dependent analyses panels at 5 MeV. In each panel, one of the wave functions is

calculated with a potential determined to reproduce the phase
Analysis of nuclear reactions often exploits potentialshifts at that energy correctly and one wave function is cal-
models to calculate wave functions for use in the reactiortulated using the potential obtained for the other energy. The
model. These wave functions will be inaccurate for smallenergy dependent potential is evaluated at the appropriate
radii due to nonlocality, but can also sometimes have largenergy in each case. Clearly, energy dependence in the po-
errors in the asymptotic radial region. This is most likely totentials is most important for th@-wave functions. The
occur where the potential is determined for a single energyave functions calculated at 1 MeV from the 5 MeV poten-
but used at a different energy, the underlying potential beingials, or vice versa, have significant errors for1 fm. By
strongly energy dependent. These effects aris@ for scat-  contrast, wave functions for trewaves and alsé=2 (not
tering at low energies where there gravave resonances.  shown, where there are no resonant effects, are calculated
Wave functionsu,(r) corresponding to three parity de- accurately using potentials for the “wrong” energy.
pendent potentials fop+a are presented for the,,,
P12, andps, partial waves in Fig. 8. Two of the potentials
are energy independent, determined from effective-range pa-
rametrized phase shifts of Schwamdtal. for narrow energy Various phase shift analyses have been madepfor
bites atE=1 and 5 MeV. The third is the energy dependentscattering for energies above the inelastic threshold. For en-
potential EF1). The wave functions in the top three panelsergies up to 50 MeV beyond the threshold energy at 23
of Fig. 8 are calculated at 1 MeV and in the lower threeMeV, the most comprehensive analyses are those of Plattner

B. Empirical S matrices above the inelastic threshold



3144 S. G. COOPER AND R. S. MACKINTOSH 54

TABLE V. The coefficientsp, o, and&.,, in MeV ~1, for four potentials determined by inversion from
the various sets of empirical phase shifts. Except for the solutions nu@ber each case, the values of
&. 1 are for a linear energy dependence in the real potentials. For sol@iposefficients are given for both
the real potential expansion and for a termBfiin the imaginary components.

Inversion p T CentralV, CentralV, Spin orbitV, Spin orhitV,
Inversion fromS, of Houdayeret al.
Q) 1 0.522 —0.0023 —0.0159 —0.0055 —0.0048
2 1 0.423 —0.0030 —0.0135 0.1346 —0.0095
3) 0.5 0.468 —0.0019 —0.0153 —0.0072 —0.0087
(4) Real 0.410 —0.0021 —0.0159 —0.0060 —0.0098
(4) Imag 1 —0.0021 —0.0034 —0.0020 —0.0020
Inversion fromS, of Plattneret al.
2 1 0.340 —0.0010 —0.0170 —0.0093 —0.0007
2 1 0.279 —0.0025 —0.0147 0.0499 —0.0090
3 0.5 0.332 —0.0003 —0.0166 —0.0093 —0.0119
(4) Real 0.292 —0.0006 —0.0163 —0.0093 —0.0078
(4) Imag 1 —0.0021 —0.0035 —0.0019 —0.0020
Inversion fromS,, of Burzynskiet al.
(5) 1 0.810 —0.0054 —0.0109 0.0002 —0.0028
(6) 0.5 0.730 —0.0053 —0.0109 0.0004 —0.0028
7) 0.0 0.788 —0.0053 —0.0108 0.0005 —0.0028
(4) Real 0.748 —0.0054 —0.0133 —0.0032 —0.0070
(4) Imag 1 —0.0015 —0.0027 —0.0028 —0.0029
et al. [13], Houdayeret al. [14], Burzynskiet al. [15], and Above the inelastic threshold thet « potential has eight

Saito[16]. All these empirical phase shifts have significantcomponents if the complex, central, and spin-orbit terms are
fluctuations in the energy dependence of each partial waveill parity dependent. However, energy dependent inversion
which is particularly evident in the absorption CoefﬁCientS.requires only four more free parameters, assuming a linear
The first threeS-matrix sets have the more regular energyenergy dependence in the real components, because the
dependence so that these, and notSheatrix of Saito[16],  jmaginary components vanish at the threshold energy. Al-
are considered. There are, howeyer, distinct differences b‘%hough the radial basis for each component is kept small, not
tween these three data s¢i5], which may be due to sys- g of these free parameters are well determined from the
tematic errors in the phase shift analyses. _ empirical data. The large component of “noise” in the

The phase shift sets cover different energy ranges, i.eg mayix data severely limits the accuracy to which this data
~19 t0 ~40 MeV for the analysis of Platinat al, which -, ho reproduced by inversion and the lack of known un-
includes phase shifts determined for subthreshold ENerYIeR¢ertainties in the targed-matrix prohibits proper error esti-
~23 10 ~50 MeV for the analysis of Houdayast al. and mation. Uncertainties are assessed by applying alternative
~30 to ~70 MeV for the analysis of Burzynslgt al. The . S . .
S matrix of Houdayeret al. covers the energy range above inversion parameters and choices for the starting reference
the inelastic threshold most comprehensively. potential. : :

In Secs. IVB 1 and IV B 2 we briefly compare potentials

Close to the inelastic threshold, thig,, resonance is a )
dramatic feature affecting the behavior of bot§ and for the Houdayer and Burzynsl8-matrix sets. For an ac-

arg(S) and the very strong effect di$| persists to energies count of similar studies involvi.ng th&-matrix of Plattner.
well above the resonance enefdyg]. This resonance is not et al, see Ref[21]; the numerical results are mclude_d in
single particle in character, and so we do not attempt to fit @0les V and VI. An overall comparison of all the solutions,
the resonance phase shifts with a local potential. In the cafhcluding a comparison with the subthreshold solutions, is
culations based on th® matrix of Houdayeret al. the em- ~ Made in Sec. V.

pirical ds/, phase shift fofS| up to 35 MeV is replaced with
the background term in the-matrix fit of Plattneret al. The
inversion of theS matrix of Plattneret al. uses this substitu- A considerable improvement in the fit over that obtained
tion for both|S| and argg). No substitution is made in the from energy independent potentials follows from the intro-
calculations based on th& matrix of Burzynskiet al duction of a linear energy dependence into both the real and
Anomalous behavior is also found ifS| for the p;, imaginary components. However, some trends in the energy
S-matrix elements of Houdayaest al., which may be due to dependence ofS| are not well reproduced with a linear
broad py/, states. Except where otherwise stated, fhg  energy dependence in the imaginary component. Nonlinear
|S| of Houdayeret al. is replaced with the corresponding energy dependence of the imaginary potentials is therefore
empirical ps, | S| to avoid the possibility of spurious effects considered. There is no empirical parametrization of these
in the inversion calculations due to this anomaly. phase shifts so direct inversion is used as in Sec. IV A 3.

1. Inversion from the S matrix of Houdayer et al.
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TABLE VI. The volume integralsly, in MeV fm?, and rms radii, in fm, for the central and spin-orhit
V; andV, components of the four solutions determined by inversion from the various emgSrivaltrix
sets. The volume integrals are given for the real potentialE-aD and for imaginary components at
E=30. Where the rms radii could not be calculated due to long range radial oscillations\gbp«t0, the
value is marked with a hyphen.

CentralV, CentralV, Spin orbitV, Spin orbitV,
The real components, &=0
Solution Jo (r2)12 Jo (r2)i2 Jo (r3y12 Jo
Inversion ofS, of Houdayeret al.
(1) 550.3 2.38 —231.2 2.90 67.3 1.89 —25.8
2 542.2 2.38 —218.4 2.47 4.85 2.52 —60.3
(3 543.3 2.33 —230.3 2.63 81.0 1.71 —245
(4) 545.1 2.33 —240.9 2.66 72.4 1.76 —30.6
Inversion ofS, of Plattneret al.
1) 548.9 244 —242.9 2.63 72.0 1.74 -21.3
(2 555.9 244 —239.2 231 9.52 2.69 -61.6
3) 540.5 2.42 —254.7 2.52 84.6 1.58 -20.3
(4) 544.1 241 —253.9 251 77.8 1.69 —25.9
Inversion ofS, of Burzynskiet al.
(4) 607.8 2.28 —205.2 2.07 76.8 1.82 -10.9
(5) 591.1 2.33 —-176.0 2.87 59.2 1.84 -10.0
(6) 591.9 2.34 —170.8 2.81 59.1 1.83 —9.60
(7) 594.3 2.36 —159.2 2.69 59.6 1.82 -8.73
The imaginary components, Bt=30 MeV
JO <r2>l/2 JO <r2>l/2 JO <r2>1I2 ‘]0
Inversion ofS, of Houdayeret al.
(1) 34.4 3.04 13.0 2.86 13.7 — 12.9
(2 35.5 2.66 15.8 2.48 5.09 — 45
3) 55.1 2.93 17.1 2.71 16.3 — 18.1
(4) 43.4 2.89 21.8 2.73 19.2 — 18.2
Inversion ofS, of Plattneret al.
1) 43.2 3.27 235 3.19 12.9 — 10.8
2 43.2 3.06 25.33 3.10 4.86 — 3.09
3) 48.1 3.05 20.0 3.10 17.8 — 19.0
(4) 46.3 3.40 27.8 3.62 19.3 — 16.8
Inversion ofS, of Burzynskiet al.
(4) 35.6 2.86 17.0 1.45 17.3 — 16.0
(5) 26.7 3.19 6.4 1.87 0.95 — 0.34
(6) 56.6 3.17 112.2 — 2.1 — 0.6
(7) 95.2 3.00 13.8 — 4.3 — 15

Four distinct solutions have been determined, all with reals™ js very consistent for the four solutions for most partial
components linearly dependent on energy. The energy devaves. The empirical ar§(), particularly thes and p
pendence of the imaginary components for the solutions ar@aves, are generally well reproduced by inversion, but the
(1) linear energy dependence for both real and imaginaryS'| are less well reproduced. The energy dependence of
components(2) as in (1) but with the SVD tolerance de- |g| for the s, ps,, ds,, and f waves is reasonably well
creased to yield a significantly lower value @fand corre-  predicted using the simple linear energy dependence, al-
spondingly a more oscillatory potentia3) energy depen- though solution(4), with the additional term irE2, provides
dence of the imaginary components wiph=0.5, and(4)  a better description at the highest energies. However, a non-
energy dependence of the imaginary components with botfinear energy dependence with=0.5, case(3), leads to a
the linear term and the second order tefmE”. The same  marginally better description of the very strong absorption in
radial basis has been used for all four cases and the values gfe ds;, phase shifts. No conclusive evidence is therefore
o obtained for each case are listed in Table V. A markedlyfound for a nonlinear energy dependence in the imaginary
less accurate fit, i.eq~0.7, was found wittp=2 in a fur-  potential.
ther calculation similar to cas@). The real parts of the four solutions Bt=0, U(r), are

In Figs. 9 and 10 th&"" resulting from the four cases are shown in Fig. 11. The centrsl; potential is the best defined,
compared with the empiric&-matrix elements of Houdayer with solution (2) differing most from the other solutions.
et al. for the lowestl values. The energy dependence ofHowever, solution(2) has a rather irregular radial depen-
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FIG. 9. Forp+a above the inelastic threshold, agy) for FIG. 10. As in Fig. 9 forlS;|.
<3 andg,,. The empirical values of Houdayet al. (solid dots
are compared with ar§;) for the four solutions described in the potentials appear to be an order of magnitude greater than
text, (1) solid lines,(2) dashed lines(3) dotted lines, and4) dash-  the subthreshold solutions, but this component is not well
dotted lines. determined. However, the parametégs , listed in Table V,

now show a decrease in the potential with energy for both

dence which is probably due to over-fitting and can be disV1 andV, terms. The spin-orbit potential is again more ac-
counted. Solution$l), (3), and (4) closely agree for>1.5  curately determined at higher energies, as found in the vol-
fm andr<4 fm and are greater in magnitude than the subume integrals. The rms radius of the spin-ofit compo-
threshold solutions shown in Fig. 6. The parametgrsin nent is considerably smaller than the radius of both real
Table V for solutiong(1), (3), and(4) are reasonably consis- central potentials for all solutions exce(@.
tent for the central potentials and a linear energy dependence The radial components(r) of the imaginary potentials
in the real potentials can be considered fairly well estabfor the four solutions, for whicl/=30 MeV, are shown in
lished for theS matrix of Houdayeeet al. The rms radii and Fig. 12. The magnitudes of the central components are rea-
volume integrals aE=0 are listed in Table VI and are rea- sonably well established, with potential depths of at least
sonably well defined for the centrsl, component. An even ~1.0 and~0.5 MeV for theV; andV, components, respec-
closer agreement is found for the volume integrals at 3@ively. The rms radius is slightly smaller faf, than forV,
MeV. For the real central/, component both the volume and the volume integrals are much smaller for ¥heterms.
integrals and rms radii, even without soluti¢®), have a The difference between the potentials increases with energy
slightly larger spread in values. The rms radius for the censo that, at 50 MeV, the volume integrals arel20 and
tral V, component is still significantly larger than that of the ~40 MeV fm? for VV; andV,, respectively. The decrease in
V; component. the magnitude of both components towards the nuclear cen-

A similar degree of consistency is found for the real spin-ter is necessary to reprodu®| for thes wave. This partial
orbit potentials to that found for the real central potentialswave is the most sensitive to the potential near the nuclear
Discounting the overdetermined and anomalous solu@n center and is much less absorbed thandtheaves. However,
the solutions ol (r) agree with the potentials calculated at the imaginary components have an ambiguity near the
subthreshold energies. The parity depend&h) (spin-orbit  nuclear center, similar to that noted for the real components.
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FIG. 11. Forp+ a above the inelastic threshold, the real poten-  FIG. 12. As in Fig. 11 for the imaginary potentials, evaluated at
tials evaluated aE=0 [i.e., U(r)] for the four solutions resulting E,=30 MeV.
from inversion on theS matrix of Houdayeret al,, (1) solid lines,

2) dashed li 3) dotted lines, 4) dash-dotted lines. . . .
(2) dashed lines(3) dotted lines, and4) dash-dotted lines form of energy dependence in the imaginary components, are

listed in Table V, as well as the parameters of a solution
obtained using the solutiof#) of Sec. IV B 1 as the starting
reference potential. For one solutigiT), the imaginary po-
i . ) tential is independent of energy. The volume integrals and
tude at small radi, i.er, <2 fm (see Fig. 12 is not reflected rms radii of U(r) for all four new solutions are listed in

in the volume integrals. The rms radii cannot be directly .

. . - Table VI. The o values are generally higher than for the
calculated for these potentials due to the potential oscilla- : ; .
. . . ) otherS-matrix sets mainly because of the greater fluctuations
tions. These potentials are effectively established by the

large differences betweel,| for daj, and dejy, together in the energy dependence of the phase shifts of Burzynski

) . . : et al.
with the imposed requirement thB’." IS equal for the two The potentialdJ.(r) for the real components of the solu-
p waves and are probably not realistic.

. . . . tions (4)—(7) are shown in Fig. 13. These solutions are gen-
Direct inversion of the empl_rlcail,z |S.| shows that o'nly. erally consistent in all components. The difference between
for |S,, only the imaginary central components at small ra[1solution(4), corjsistent with the solutions of Sec._ IVB1, and_

A ; : o .. the other solutions for the central components is of an oscil-
dii, i.e., r<_2 fm, being noticeably mod|f|ed_. At larger radil lating radial form, typical of the oscillations due to overfit-
the corrections are always less than the differences betwe f}ug. The volume integrals at zero energy for the four solu-
Fhe original solutions. No significant changes are introduce ions reflect the consistency in the radial potentials,
in the real components, the energy dependent parameters, [%rticularly in the rms radius of the centrd, component

the imaginary spin-orbit components. and the volume integral of the spin-orMt component. The
volume integrals of the central/; term are significantly
greater in magnitude than the values for tBematrix of
The S-matrix set of Burzynskit al. covers a wider en- Houdayeret al, while the volume integrals fov, are less in
ergy range than those of Plattredral. or Houdayeret al.and  magnitude. However, the rms radii obtained using$hea-
is less influenced by thd,, resonance. It should therefore trix of Burzynski et al. have very similar values to those
provide a more reliable determination of the energy depenebtained for the otheB-matrix sets. At a laboratory energy
dent potential. The values of and the corresponding ; for ~ of 30 MeV the spread of volume integrals of both potential
three solutionglabeled 5, 6, and )7 each with a different components almost overlaps with that for tBematrix of

The imaginary spin-orbit components are not very well
determined by inversion, although omitting them from the
inversion results in a distinctly higher. The large magni-

2. Inversion from the S matrix of Burzynski et al.
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FIG. 13. Forp+ « above the inelastic threshold, real potentials ~ FIG. 14. As in Fig. 13 for the imaginary potentials, evaluated at
evaluated aE=0 [i.e., U,(r)] for the four solutions resulting from E/,=30 MeV.
inversion on theS matrix of Burzynskiet al, (4) solid lines, (5)
dashed lines(6) dotted lines, and7) dash-dotted lines. components are much smaller than those obtained from the

P . S matrices of Houdayeet al. or Plattneret al.
Houdayeret al. The similarities in the radial form between 4

the solutions(4)—(7) are also reflected in thé., for the
V, component listed in Table V. Excluding solutiqd), V. OVERALL p+ ALPHA POTENTIAL
there is an excellent agreement between all the solutions. For
the V, term, &, is significantly greater in magnitude than
that for theS matrix of Houdayeret al, while for theV, In the preceding sections a good representation of the em-
term, £ 1 is significantly less in magnitude than that previ- pirical phase shifts, above and below the inelastic threshold,
ously calculated. The spin-orbit potentials show a greatehas been obtained with a local potential for which the mag-
consistency in energy dependence than those for othditude of each component is energy dependent. A linear de-
S-matrix sets. The radial dependence of the spin-orbit potenpendence on energy/ (E,r)=U.(r)(1+ & 1E), generally
tials agrees reasonably with the inversions from$heatrix ~ appears adequate for the real components. Only the phase
of Houdayeret al. shift parametrizations for the subthreshold energy range are
In Fig. 14,U(r) is presented for the imaginary compo- sufficiently accurate to determine details of the higher order
nents of the four solutions, evaluated at 30 MeV. The energyerms in the energy dependence. However, the two sub-
dependence of the imaginary potential is expected to dethreshold p+ « parametrizations give inconsistent predic-
crease at energies significantly above the inelastic thresholibns for any energy dependence in the potential shape. At
and our results may reflect this behavior. The solutin energies above the inelastic threshold $mnatrices are not
with p=0.5 has the lowest value @f, while o for the en-  sufficiently smooth in energy to establish any second order
ergy independent solutiof¥) is lower than for the solution terms.
(5), linearly dependent on energy. The spread in the central Parity dependent potentials are found necessary for all
potential solutions arises partly because the potentials amgases in Secs. lll and IV and the real compon&hi§) are
evaluated at the lower end of the energy range of the inveilustrated in Figs. 6, 11, and 13. Overall, the central poten-
sion. At 50 MeV, in the center of the energy range of thetials have a well-established radial geometry for energies
inversion, the volume integrals for the centval component both above and below the inelastic threshold. The central
agree more closely than at 30 MeV. The volume integrals fol; component is approximately Gaussian in shape with a
the other potential components show no obvious consistenayepth of about 60 MeV at zero energy and the cerifal
at 50 MeV. Apart from solutiori4), the imaginary spin-orbit components all contain a maximumrat 2—2.5 fm, which

A. Real components
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generally results in a change in sign around1—1.5 fm. 0

For both central components the magnitudevgfE,r) de- ]
creases with energy and the energy dependence is much -20]
larger for theV, component. The sign of, is such that the 1
odd parity term has a much longer range than the even parity 404

term, as previously found in Reff6].

Quantitative details of the real potential components
V.(E=0,) are listed in Tables IlI-VI. Below the inelastic
threshold, the central components are well defined in terms
of the volume integrals, rms radii, and energy dependence
parameters; ;. Above the inelastic threshold there are sig-
nificant variations in the parameters determined from differ-
ent S-matrix sets. The potentials determined from ea-
trix of Burzynski et al. are closest to the subthreshold
potentials in terms of;; and the volume integrals. This
agreement is most obvious for the centk4l component,
although the rms radii deduced at the higher energies are 1N
greater than the corresponding values obtained below the 104 o Spin—orbit V,
inelastic threshold. The magnitude of the volume integrals of ]
the centraV, component for th& matrix of Burzynskiet al.
are less than the values for tBematrix sets of Houdayest
al. and Plattnert al,, but are still greater than for the sub-
threshold solutions. The centrd) rms radius is found to be
smaller for the potentials above the threshold energy. These
results are partially verified by the systematics obtained in
the inversion from the RGM phase shifts in Sec. Ill A 1.
However, the RGM solutions give a considerably greater
variation with E,, for the rms radii of the RGM potentials
than that found for empirical potentials. The energy depen-
dence of the parity independent real potential is very similar FIG. 15. Forp+a, real energy dependent potentials evaluated
to that of the best global empirical nucleon-nucleus potentialat E=23 MeV. The potentials, selected from Secs. IVA and IV B
the “CH89” potential of Ref.[30]. Expressing the energy are solution(1) of Se_c. IV B 1 (solid Iing), solution (5) of Sec.
dependence of the CH89 real central volume integral in théV B 2 (long-dashed ling ER1) (dotted ling, RM(1) (dot-dashed
form J(E) = Jo(1+ &14E) givesé,;= —0.005 37 MeV ! for line), and the sqlutlon obtained from the phase shifts of Agtdil.
p+%He. This value agrees well with that calculated both(Short dashed line
from the S matrix of Burzynskiet al. and from the sub-
threshold phase shifts.

The spin-orbit potentials are less well determined from
the empirical phase shift analyses, but the term \eris
clearly negative and has a minimum of—6 to —10 MeV
at 1 fm for almost all solutions. Below the inelastic threshold ™ . -\" oo 4t 65 MeV, the energy dependent solution ob-

the spin-orbity, component increases in magnitude with €n-;04 trom the data of Burzynskit al. is very similar to a

ergy for most solutions, as predicted by the RGM plus inver-SoIution previously obtained by fixed energy inversjag]
sion calculations. The calculations for energies above th \

) ) . : ) ; ; articularly for theV, central and spin-orbit terms. At this
inelastic thr_eshold give spin-obit components which eithe higher energy the solutions based on the data of Houdayer
decrease with energy or are nearly energy independent.

. X .. et al.and Plattneet al. are not valid due to the large ener
Energy dependent potentials obtained from empmcaF valld au 9 9y

S-matrix sets can only be considered reliable when evaluategepenOlence of the centrd), term.
at energies inside the energy range of the empirical data. The
threshold energy of 23 MeV is the most suitable energy at
which to compare the solutions for energies above and below The |S,| for the three sets o8 matrices determined for
the inelastic threshold. In Fig. 15, real components ofenergies above the inelastic threshold fluctuate considerably
V.(E=23r) are shown for selected solutions from Sec. IV.with energy and, consequently, the imaginary part of the
The centralV, component is the most consistently deter-p+ « potential is not well determined. Further uncertainties
mined, for which the potential determined from tBenatrix ~ arise in the treatment of the,, and thep,,, S-matrix ele-

of Arndt et al. differs most from the other solutions. For the ments. TheS| for these partial waves are difficult to repro-
centralV, component, the solutions all have the same basiduce by inversion, while thds, partial wave is crucial in the
shape, but differ widely in magnitude. The extreme cases ardetermination of the imaginary components. Both compo-
now those obtained from the phase shifts of Aretlal.and  nents of the central imaginary potential are smalll —2

from the S matrix of Houdayeeet al,, which are very similar MeV maximum in magnitude for a scattering energy of 30
to the solutions obtained from tf&matrix of Plattneret al.  MeV. The spin-orbit components have a clearly smaller rms

For the spin-orbit potentials, including the smelj compo-
nent, the widest discrepancies are found for the solution
RM(1). Overall, the two solutions closest in agreement for
all four components are the potential obtained from the data
of Burzynskiet al. and the solution EQ).

B. Imaginary components
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radius but otherwise are poorly determined. It is difficult to N-N interaction. However, for the centrsl, term, the vol-
make a direct comparison between the potentials determinagme integral is about 50% larger in magnitude than the em-
from the various empiricab-matrix sets due to the different pirical value.
forms of energy dependence used in the solutions. One per- Qualitatively, the RGM and empirical energy depen-
sistent feature seen l.(r) for both imaginary central com- dences agree, since in both cases the cevraindV, com-
ponents is a reduction in the potential magnitude towards thponents fall with energy and thé, component falls in mag-
nuclear center. For th¥, term this creates a generative re- nitude some 2 or 3 times faster than ¥e component. The
gion for small radii. This feature does not break unitarity and¢.. ; agree quantitatively in the linear energy dependent fits.
arises predominantly because the absorption is much great€omparing Tables Il and IV, the RGM value éf ; for the
for the d-wave phase shifts than for the lowkewalues. Its  centralV, term is only slightly less in magnitude than the
origin probably lies in the underlying nonlocality of the real empirical value and, for the centrél, term, &, falls well
potential. within the range of empirical values. The RGM results also
For the imaginary centra¥/; component, the energy de- predict a small departure from the linear energy dependence
pendent potentials evaluated at 65 M&X,(E=65r), agree  whereby|&.,| decreases with energy for both central compo-
well with the corresponding component obtained from fixednents, as shown in Table I, but second order effects cannot
energy inversion at 65 MeV, with allowance for the uncer-pe unambiguously established in inversions from empirical
tainty of the solutions in F|g 12. At 65 MeV, this Component phase Shifts_ The Comparison Of the RGM and empirica' SO-
has a minimum of~—6 MeV close to 2 fm for most solu- |ytions over the wider energy range is limited by the diffi-
tions. The central/, component at this energy has a greatercyjties in determining potentials accurately at higher ener-
spread but most of solutions agree around 2 fm. _gies. The potential shape of the centvgl part of both the
Not S“fp”s'”g'% the spin-orbit potentials determined empirical and RGM potentials is fairly constant with energy.
from the S matrix of Houdayeret al. and Plattneret al. However, the centraV, component obtained from the RGM

evaluated at 65 MeV show almost no agreement with thosﬁas significant changes in the radial geometry, as measured

obtained from theS-matrix of Burzynskiet al. . . .
The S-matrix sets just above the inelastic threshold can be" terms of the volume integral and rms radiustgf(r). In

fitted quite well with imaginary components which dependmovmg from subthreshold energies to energies above the

linearly on energy and become zero at the threshold energt_reshold, a decreas_e is seen in the empirical potentials f(_)r
However, the S-matrix set of Burzynskiet al. covers a oth|J,| and rms radius, but the overall shape dependence is

higher energy range and appears to be more accurately rémal- . . .
9 gy rang PP 4 The energy dependence in the single-channel RGM arises

produced either with a reduced energy dependenge’?, or h h X . bei ind

with energy independent imaginary components. The fits tdf0M €xchange, thél-N interactions being energy indepen-

|S,| just above threshold are also unsatisfactory for som hent. -frhf] energy degendegce is of pa;ncular interest smdce
< : that of the parity independent term of Secs. A1 an
artial waves, the smatl, |S| presenting a problem to the )

partial waves smatly; |S| presenting a p Il A1 is due to knockon(Fock term exchange, a process

inversion. Either an improv ner Xpan E) m .
be efosu(r)]d ort tﬁeapoterﬁ)tigl egdegmit% ?nﬁgt i?opgrmi?tsetd tJesponsuble for a Iar_ge part of _the energy_dependence of the
depend on energy. Unfortunately, the erratic energy deper{lucleon-nucleus optlgal po_tentlal. The_parlty dependent com-
dence of|S| prohibits use of energy bite techniques which ponent of the RPtenual arises from Q|ffe”rent exchange pro-
otherwise offer the best way to investigate this problem. Cesses, Iarggly hgavy particle stripping,” and is expected to
fall quite rapidly with energy. The energy dependence of this
term for p-«, especially if compared with that for heavier
target nuclei, gives a measure of the error involved when
Energy dependent inversion of phase shifts derived fronprocesses leading to parity dependence are omitted from cal-
RGM vyields a systematic pattern of potential componentgulations of the optical potential.
with distinctive features which are present over a wide en- A full consideration of all channel coupling effects is re-
ergy range. Both the radial shape and the energy dependengeired to establish rigorously the contributions of antisym-
of these potentials can now be compared with empirical sometrization to the imaginary components, and this presents a
lutions, providing an improvement upon previous compari-formidable calculation. However, an estimate of some of the
sons[9,10]. This comparison is arguably more meaningful effects on the imaginary components due to the nonlocality
than direct fits of RGM to experiment since the RGM calcu-implicit in the RGM calculations can be obtained from a
lations necessarily employ somewhat schematic effectivenuch simpler RGM calculation in which the channel cou-
N-N interactions. pling is represented by a phenomenological imaginary term
The sign and general radial properties of the central anfi31]. The application of fixed energy inversion to these RGM
spin-orbit V; components determined from RGM phasephase shifts does not yield imaginary potentials which ex-
shifts in Sec Ill A 2, and in particular the centrdl, term, actly equal the phenomenological potential, because of the
agree well with the empirical potentials. A similar pattern isnonlocal effects. The central imaginary terms obtained by
found when comparingJ.(r) for the central potentials inversion are close to the input termi81] in the surface
evaluated at zero energy. Furthermore, the volume integrakgion, but atr<1 fm, distinct generativefeatures appear
of the centralV, term for the RGM potential~550 MeV  which are very similar to the features found for the central
fm?3, is very close to the values in Table Ill, while the rms V; term in Figs. 12 and 14. This supports our view that the
radius, 2.44 fm, is a little larger than the values in Table Ill.generative feature found empirically for the centing]
These results hold in spite of the schematic nature of thénaginary terms is due to nonlocality effects.

C. Evaluation of the resonating group model
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VI. CONCLUSIONS significant nonlinear energy dependence arises in the central

. . arity dependent component, but fpr-«, the departures
Energy and parity dependent potentials can now be calcu: . .
) ! i : . ~from a linear energy dependence are small and the potential
lated by inversion frons matrices established as a function .
: ) eometry changes slowly with energy.
of energy. The new procedure is restricted only to case 16 . .
. ; . For n+-°0, the RGM bound state energies can be fitted

where the potential shape is energy independent. In the most

; X SImultaneously with phase shifts for low energies using a

general formulation, the energy dependence in each potenti : . e
; : - __linearly energy dependent potential. A consistent description
component is expressed as an expansion over an arbitra

. . . ay thereby obtained for both positive and negative energies.
basis O.f energy dependent functions, appropriate to t_he S%8owever, no potential could be obtained over a wide energy
of the input data set, but for many practical applications &ange forn+ 10, due to a significant energy dependence in
linear dependence on energy is sufficient. A very accurat(t:he geometry of,the small parity dependent term
inversion is obtained from fitting a linear energy dependence Many features in the empirical potential relate.directly to
o S-”matnx val_ues_for a reo_luced energy range, or "energy,q effects of antisymmetrisation. Fpr+ « scattering, the
hite,” irom which finer details of the energy dependence Or{]eal potentials determined from the RGM phase shifts have
Fhe energy dep(_andence of the poten_tlal geometry can be Stuaﬂ the qualitative features, i.e., the comparative strengths, the
ied. SVD techniques are an essential part of the whole pro-

cedure to establish well-behaved potentials using a restricte%e.omemes' and.e.nergy de.pendences, O.f the potentials deter-
basis set. mined from empirica matrices, at energies both above and

With these new techniques, inversion has been applied tBelOW the inelastic threshold. This close agreement, which
p+a S matrices at energies above the inelastic thresholdapIOIIes to both the energy dependence of the parity indepen-

representing, in our view, the first time that physical infor- dent and parity dependent central components, represents a

. . . X X .~ significant result of the energy dependent inversion, because
mation, in a form suitable for comparison with theoretical of the close relationship of these terms to distinct types of
models, has been extracted from the experimental data. P yp
Complex, energy dependent potentials have been determingtz.tmhange' - . _

' There are many empirical phase shift tabulations, above

which reproduce the empiric8 matrices for a wide range of ; . . i
eneraies ub to 70 MeV. Both the real and imaginary com 0_and below the inelastic threshold, which can now be ana

9 P ' ginary POy 7ed with energy dependent inversion. The method also al-
nents are found to depend on energy and parity, but th

) : ) ; idpws a far more comprehensive study than has been previ-
imaginary components are small in magnitude and the radia | ible of th d d derlvi h

form and the energy dependence are not very well deteror>Y POSSIDIE O the energy dependence underlying the

mined. The corresponding real potentials are very similar toRGNI for a wide variety of cases, some of which are not

- ponding P =Ty easily accessible to experiment. Similar applications permit a

the potentials determined at subthreshold energies in both th(% .

. . - . study of the energy dependence of channel coupling effects,

energy and the parity dependence. A consistent description

) : nd particularly reaction channel coupling effects, in the

?rzrtr?% E)(;Lfe;geslles?tentlal has therefore been eStabl"Q’hedfrjllucleon-nucleus interacti(_)n so that these_ effects can be prop-
The new technique has also been applied to determin%rly understood, at least in the case of light target nuclei.
energy dependent potentials from RGM phase shifts for
p+a andn+ %0 scattering. For the RGM phase shifts, as
well as for the empirical parametrized phase shifts for We are most grateful to the Science and Engineering Re-
p+a at subthreshold energies, the smooth variation wittsearch Council of the UK, and its successor EPSRC, for
energy permits application of the energy bite techniques. AGrant No. GR/H00895 supporting S.G.C.
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