
d like
ees of
very
ed for
s
etic
evels

his

PHYSICAL REVIEW C JULY 1996VOLUME 54, NUMBER 1

0556-2813
Superasymmetric two-center shell model for spontaneous heavy-ion emission
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The single particle levels for the heavy-ion emission process are computed. This decay mode is treate
a superasymmetric fission process. The nuclear shape parametrization is characterized by three degr
freedom. The difficulties encountered in the microscopic determination of the energy scheme at these
large mass asymmetries are presented. Thereby, a new version of the two-center model, especially design
very large mass asymmetries, is described. The14C heavy-ion spontaneous emission from the parent nucleu
223Ra is treated in the frame of this model. The principal trends of the variations obtained for the energ
levels during this superasymmetric nuclear decay are discussed. Mainly, for this kind of decay mode, the l
with lower values of the angular momentum projectionV show more pronounced variations than those with
higherV. Also, a qualitative explanation for the favoring of the first excited states in the fine structure in t
radioactive process is given.@S0556-2813~96!01906-1#

PACS number~s!: 23.70.1j, 21.60.Cs, 21.60.Gx
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I. INTRODUCTION

In 1980, four theoretical models were published in ord
to predict, as a new nuclear phenomenon, heavy-ion em
sion: the fragmentation theory, some penetrability calcu
tions like the traditional theory ofa decay, the analytical
superasymmetric fission model~ASAFM!, and the numerical
superasymmetric fission model~NSAFM!. Many new decay
modes have been predicted:527Li, 729Be, 10212B, 12214C,
14216N, 15218O, 19,22F, 20225Ne, 28Mg, 32,34Si, 46Ar, and
48,50Ca. Some of these predictions are made by consider
that the heavy-ion emission is a very asymmetric fission p
cess. An overview and the main features of these theo
can be found in Ref.@1#.

In 1984, the experimental detection of the14C emission
from 223Ra @2# proved the existence of spontaneous heav
ion emission and opened a new field of interest. A very sm
value of the branching ratio relative toa decay is found:
b5(8.562.5)310210. Up to now, information about the ex-
istence and the lifetime of the next decay modes is availab
14C from 221Fr, 2212224,226Ra, and225Ac; 20O from 228Th;
23F from 231Pa; 24Ne from 231Pa, 230Th, and 2322234U;
28Mg from 234U and 236,238Pu; 32Si from 238Pu; and 34Si
from 242Cm.

A fine structure in the14C radioactivity of 223Ra was
discovered with the magnetic spectrometer SOLENO@3#.
The possible existence of this phenomenon was sugge
earlier, after the first experiment accomplished in order
confirm this cluster decay mode@4#, which used a mass spec
trometer. Moreover, the experimental result shows that
transitions to the first excited states of the daughter209Pb are
favored. This phenomenon can be explained only from
microscopical point of view while most models used in th
analysis of heavy-cluster decay are based essentially
Gamow’s theory with macroscopic potentials. In this sense
first attempt was made in calculating the overlap between
reflection-asymmetric ground state of223Ra and the spherical
shell model orbitals of209Pb @5#. Also, consistent data are
obtained with the enlarged superfluid model@6#. Some esti-
mations of the hindrance factors for14C cluster decays in the
translead region have been reported. Major difficulties ar
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in determining truly microscopically the spectroscopic am
plitude leading to a schematization of the model. Neverth
less, the theoretical considerations succeed only partia
successfully in explaining the experimental result. Therefo
a description of this phenomenon with new assumptions,
new version of the asymmetric two-center shell model, esp
cially designed to account for cluster emission, is attempte
The basic idea is to follow the variations of the levels begin
ning with the states of the initial parent nucleus up to thos
of the two final fragments. The nuclear shape parametriz
tion chosen for this purpose is presented in Sec. II. In Se
III, a detailed description of the superasymmetric two-cente
shell model ~STCSM! is offered. Results obtained in the
framework of this model are shown in Sec. IV.

II. THE NUCLEAR SHAPE PARAMETRIZATION

The nuclear parametrization is defined by smoothly join
ing two intersecting spheres of radiusR1 andR2 with a neck
surface generated by the rotation of a circle of radiusR3
around the symmetry axis, as presented in Fig. 1. The d
tance between the center of this circle and the axis of sym
metry is given byr3 . By imposing the condition of volume
conservation, the surface is perfectly determined by the va
ues of the parametersR ~distance between the centers of the
spheres!, R3 ~the radius of the neck! or C5S/R3 ~where
S511 whenr32R3>0 andS521 whenr32R3,0), and
R2 ~the radius of the emitted fragment!. These three param-
eters characterize the elongation, the necking, and the m
asymmetry, respectively. Due to the axial symmetry of th
system, the surface equation is given in cylindrical coord
nates:

rs~z!5H @R1
22~z2z1!

2#1/2, z<zc1

r32S@R3
22~z2z3!

2#1/2, zc1,z,zc2

@R2
22~z2z2!

2#1/2, z>zc2 .

~1a!

For extremely large values ofR3 , which means for
C5S/R350 fm21, the parametrization is described in the
interval zc1,z,zc2 by the relation
302 © 1996 The American Physical Society
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54 303SUPERASYMMETRIC TWO-CENTER SHELL MODEL FOR . . .
rs~z!5@a~z2zc1!1b#1/2 ~1b!

with

a5$@R2
22~zc22z2!

2#1/22@R1
22~zc12z1!

2#1/2%/~zc22zc1!,

b5@R1
22~zc12z1!

2#1/2.

The significance of all the geometrical symbols can be u
derstood from the Fig. 1. The subscripts 0, 1, and 2 indica
the parent, daughter, and the emitted nuclei, respective
The initial radius of the parent isR05r 0A0

1/3, the final radii
of the two fragments areRi f5r 0Ai

1/3, with i51,2, and the
constant radiusr 051.16 fm. In Eq.~1!, rs denotes the value
of the coordinater on the nuclear surface. Diamondlike
shapes are obtained forS521 and necked-in shapes for
S511. WhenS521, the volume of the emitted fragment
V2 , is always computed in the interval@zc2 ,z21R2#. In the
case S511 we compute this volume in the interva
@zc2 ,z21R2# when zc2<z3 and in @z3 ,z21R2# when
zc2>z3 . Throughout the deformation process, the conditio
of volume conservationV11V25V0 is preserved. When
R350 fm, the simple parametrization of two intersectin
spheres is obtained. This nuclear shape parametrization
been widely used in nuclear dynamic calculations@7# in a
large range of mass asymmetries because it takes into
count the most important degrees of freedom encountered
fission processes.

III. THE SUPERASYMMETRIC TWO-CENTER
SHELL MODEL

The theoretical study of fission processes at very lar
mass asymmetries is limited by the difficulties encounter
in the calculations of single particle levels for very deforme
one-center potentials. Indeed, on one hand, central potent
are not able to describe in a correct manner the shapes for
passage of one nucleus to two separate nuclei and, on
other hand, for very large prolate deformations the sum

FIG. 1. The nuclear shape parametrization. The case~a! presents
the necked shapes characterized byS51 and the case~b! the dia-
mondlike shapes characterized byS521.
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single particle energies obtained from the level scheme
any smooth potential reaches an infinite value. These dif
culties are overcome by considering that the mean field
generated by the nucleons belonging to two nuclear fra
ments. This dinuclear system can be treated with the tw
center shell model@8,9#. This appears to be the simples
method to generalize the Nilsson prescriptions. The tw
center shell model is based on the assumption that nucle
can be described in molecular states during the nuclear re
tion. This means that the relative motion between the tw
centers of the potential is slower than the rearrangement
the nucleons in the mean field. This model found a larg
gamut of uses in various fields like fission or heavy-ion co
lision processes@10–12# and can be applied to all systems
behaving like nuclear molecules@13#. Unfortunately, analyti-
cal solutions for the two-center potential are obtained on
for semisymmetric shapes as specified in Ref.@14#. This is
the principal reason for the failure of the asymmetric two
center shell model in the case of very large mass asymm
tries without some improvements. In this work, a new ve
sion of the model is presented which is particulary suitab
for heavy-ion emission studies.

For the nuclear shape parametrization presented abo
the microscopic potential~in cylindrical coordinates! is split,
as in Ref.@15#, into several parts which are treated sepa
rately:

V~r,z,w!5V0~r,z!1Vas~r,z!1Vn~r,z!1VLs~r,z,w!

1VL2~r,z,w!2Vc ~2!

whereV0(r,z) represents the two-center harmonic potenti
whose eigenvectors can be analytically obtained by solvi
the Schro¨dinger equation. It is given by the relation

V0~r,z!5H 1
2 m0vz1

2 ~z1z1!
21 1

2 m0vr
2r2, z,0

1
2 m0vz2

2 ~z2z2!
21 1

2 m0vr
2r2, z>0,

~3!

wherem0 is the nucleon mass, andz1 andz2 ~real, positive!
represent the distances between the centers of the spher
and their intersection plane. From now on, in the followin
formulas, as a convention,z1 means its absolute value. The
calculations are merely simplified by choosing
vz15vr5v1 andvz25v2 . With this choice, the shape pa-

FIG. 2. The nuclear shape parametrization of a sphere interse
ing with a spheroid. This parametrization allows analytical solu
tions for the two-center harmonic potential. The sphere which cha
acterizes the nuclear shape of the light fragment is included in t
spheroid.
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304 54M. MIREA
rametrization of the potential is reduced to that of a co
pound system formed by a sphere intersecting with a sp
oid. This parametrization is presented in Fig. 2. The orig
on thez axis is chosen in the geometrical plane of interse
tion of the sphere with the spheroid.

The role played by the other terms in the relation~2!
~which meansVas, Vn , VLs , VL2, andVc , which are related
to the mass asymmetry, to the necking, to the spin o
coupling, to theL 2 correction, and to the depth of the pote
tial, respectively! will be better explained after the present
tion of the analytical solutions of the Schro¨dinger equation
with the potential~3!.

A. Analytical solutions of the Schrödinger equation

The orthogonal system of eigenfunctions used to dia
nalize the total Hamiltonian is obtained by solving the Sch¨-
dinger equation in cylindrical coordinates:

F2
\2

2m0
n1V0~r,z!GC5EC. ~4!

The ansatzC(r,z,w)5Z(z)R(r)F(w) leads to the next so-
lutions for the eigenvectors@14# expressed with the aid of the
Hermite function@16#:

FIG. 3. The variations of the numbersn1 ~a! and n2 ~b! with
respect to the elongationR in the frame of the two-center potentia
for the emission of a fragment with massA2514 from a parent
nucleus with massA05223. The dashed line is used to character
the solutions up to the valueRi5r 0(A0

1/32A2
1/3) which represents

the starting configuration of the decay process. A thin line is use
show the touching spheres configuration at the po
Rf5r 0(A1

1/31A2
1/3).
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F~w!5
1

A2p
exp~ imw!, ~5!

Rnm~r!5A 2

n! ~n1umu!!
a1expS 2

a1
2r2

2 D
3~a1r! umuLn

umu~a1
2r2!, ~6!

Zn~z!

55 Cn1
expS 2

a1
2~z1z1!

2

2 DHn1
„2a1~z1z1!…, z,0

Cn2
expS 2

a2
2~z2z2!

2

2 DHn2
„a2~z2z2!…, z>0,

~7!

whereLn
m(x) is the Laguerre polynomial,

Hn~j!5

2nGS 12D
G@~12n!/2#

FS 2
n

2
,
1

2
;j2D

1
2nG~21/2!

G~2n/2!
jFS 12n

2
,
3

2
;j2D ~8!

is the Hermite function expressed in term of the hypergeo
metric degenerate function,

a i5Am0v i

\
, i51,2, ~9!

is a length parameter andCn i
( i51,2) represent the normal-

ization constants. The value of the oscillator frequency fo
the initial parent nucleus is obtained with the well known
formula @17# \v0541A0

21/3. During the disintegration pro-
cess, the oscillator stiffness is modified using the relatio
v i5(R0 /Ri)v0 ( i51,2). The numerical values of the quan-
tum numbers n1 ,n2 and the normalization constants
Cn1

,Cn2
are obtained from the continuity conditions of the

eigenfunctions and their derivatives atz50, together with
the normalization and the stationarity conditions:

Zn~z!u
z→0

z,0

5Zn~z!u
z→0

z.0

, ~10!

]Zn~z!

]z
U
z→0

z,0

5
]Zn~z!

]z
U
z→0

z.0

, ~11!

E
2`

`

uZn~z!u2dz51, ~12!

\v1S n11
1

2D5\v2S n21
1

2D . ~13!

To go further, it is necessary to locate the levels with a
given quantum number asymptotically in the first or in the
second potential well. This problem can be reduced to th

l
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knowledge of the variations of the valuesn1 andn2 when the
elongation tends to infinity. Asymptotically, one of these tw
values becomes an integer, and the other remains real
deed, if limz1→`n15nz15 integer, then limz2→`n2
5(v2 /v1)(nz11

1
2)2

1
2, limz1→`Cn1

5(2nz1nz1!p
1/2a1)

1/2,

and limz2→`Cn2
50. Also, if limz2→`n25nz25 integer,

then limz1→`n15(v1 /v2)(nz21
1
2)2

1
2, limz2→`Cn2

5(2nz2nz2!p
1/2a2)

1/2, and limz1→`Cn1
50. For low mass

asymmetry, ifnz denotes the initial value ofn1 andn2 , then
nz15nz/2 for evennz values andnz25(nz21)/2 for odd
nz values. In the general case, for all possible values of
mass asymmtry, the procedure is a bit more complica
o
. In-

the
ted.

The first step is to compute the two sequencesnz1
1i 5 i /2 and

nz1
2i 5(v1 /v2)( i1

1
2)2

1
2 for i50,1,2,. . . ,nz . After that, the

two sequences are rearranged together in ascending or
The nzth value of this mixed sequence is the limit ofn1
when z1 tends to infinity. If this value is an integer, tha
means the level will be located in the first potential we
Otherwise, it will be located in the second potential we
The behavior of the solutionsn1 andn2 with respect to the
distance between the centers is shown in Fig. 3 for a ve
asymmetric case.

The normalization constants are computed using the f
mulas
Cn2
5F j ~n2 ,n2 ,a2z2!

a2
1
exp~2a2

2z2
2!Hn2

2 ~2a2z2!

exp~2a1
2z1

2!Hn1

2 ~2a1z1!

j ~n1 ,n1 ,a1z1!

a1
G21/2

~14!

Cn15Cn2

exp~2a2
2z2

2/2!Hn2
~2a2z2!

exp~2a1
2z1

2/2!Hn1
~2a1z1!

, ~15!

where a short notation is used for the integral

j ~n8,n,j0!5E
j0

`

e2j2Hn8~j!Hn~j!dj. ~16!

Numerically, the values of this function can be computed using the relation

j ~n8,n,j0!5

{
e2j0

2

n82n
@n8Hn821~2j0!Hn~2j0!2nHn8~2j0!Hn21~2j0!#, n8Þn

e2j0
2

4G~2n! H nHn21~2j0! (
m50

` F ~21!m
G@~m2n!/2#c@~m2n!/2#

m!
~22j0!

mG
1Hn~2j0! (

m50

` F ~21!m
G@~m2n11!/2#c@~m2n11!/2#

m!
~22j0!

mG J , n85nÞ integer

e2j0
2

(
m50

n21 F2m n!

~n21!!
Hn2m11~2j0!Hn2m~2j0!G12n21n!Ap@11erf~j0!#, n85n5n5 integer,

~17!
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where erf(j) is the error function,Hn(j) is the Hermite
polynomial, andc(n)5G8(n)/G(n) is the psi function.

The eigenvalues of the potentialV0 are

En,n,m
0 5\v1S 2n1UmU1n11

3

2D
5\v2S n21

1

2D1\v1~2n1umu11!. ~18!

From now on, all the matrix elements of any term of the to
Hamiltonian are computed using the system of eigenvec
given by the relations~5!–~7!.

B. The total Hamiltonian

In the total Hamiltonian~2! Vas represents the term which
produces a correction of the energy level according to
al
ors

the

mass asymmetry. A relation for a potential relative to th
term which obviously reproduces the correct single partic
levels of two distinct nuclei with spherical shapes, separat
at infinity and with very different mass numbers, consists
a compound of two oscillators:

Vas
0 ~r,z!5H 1

2 m0v1
2~z1z1!

21 1
2 m0v1

2r2, z,z08

1
2 m0v2

2~z2z2!
21 1

2 m0v2
2r2, z>z08 ,

~19!

where z08 defines the intersection plane of the two distinc
potentials characterized byv15vz1 andv25vz2 . This po-
tential is constant on the nuclear surface defined by the p
rametrization of two intersecting spheres, being always equ
to 1

2m0v1
2R1

25 1
2m0v2

2R2
2 . Let rspheres(z) be the shape equa-

tion for this simple dinuclear system with the symbols de
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picted in Fig. 1. Some rapid calculations show that in th
(r,z08) plane of intersection of the two spheres, a discontin
ity which depends onr is present~exceptingr5rspheres):

Vcut5
1

2
m0~v1

22v2
2!@r22rspheres

2 ~z08!#

5Vas
0 ~r,z!u

z,z
08

z→z
08

2Vas
0 ~r,z!u

z.z
08

z→z
08

~20!

The interpretation of the formula is easier taking into consi
eration the equalityrspheres(z08)5r3 available for this special
configuration. However, even in the case of a potential w
a finite number of discontinuities the Schro¨dinger equation
could be solved. The problem resides in the fact that, if t
difference Vas

0 (r,z)2V0(r,z) together with the reference
potentialV0(r,z) are diagonalized directly, the asymptoti
levels are not correctly obtained. This difficulty could b
overcome resorting separately to two special cases that c
acterize the inital point of the fission process and the sciss
point. First, a sphere of radiusR2 emerges from the initial
spherical parent nucleus of radiusR05R1, as depicted in
Fig. 4. This configuration treats exactly the starting point
the disintegration process. The initial value of the elongati
is denotedRi5R02R2 and corresponds to two overlapping
tangent spheres. At this moment, a dramatic change is p
duced in the interval@z08,`) from the value of the potential
that characterizes the initial parent nucleus to that det
mined by the compound system of overlapping spheres.
illustrate this behavior, letV1(r,z) be the potential of the
initial spherical parent nucleus andV2(r,z) be that defined
by the system at the beginning of the fission process~i.e., the
light fragment starts to emerge!:

V1~r,z!5 1
2m0v1

2~z1z1!
21 1

2m0v1
2r2, ~21a!

V2~r,z!5H 1
2m0v1

2~z1z1!
21 1

2m0v1
2r2, z,R12z1

1
2m0v2

2~z2z2!
21 1

2m0v2
2r2, z>R12z1.

~21b!

For this configuration the next equality is achieved
z085R12z15R21z2 @with the convention mentioned for the
e
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relation~3! thatz1 denotes its absolute value#. Consequently,
the superasymmetric two-center potential fails to reprodu
the level scheme of the spherical oscillator without a supp
mentary approximation. Denoting by DE01(z)
5V1(r,z)2V0(r,z) the quantity obtained on subtracting
V0(r,z) @the reference potential given by the relation~3!#
from V1(r,z), it is easy to verify that in thez-axis region
(2`,0# the differenceDE01(z)50, while in the regions
(0,z08) and @z08 ,`) the difference is given by the expressio
DE01(z)5

1
2m0v1

2(z1z1)
22 1

2m0v2
2(z2z2)

2. On the other
hand, if the subtraction DEas0(r50,z)5Vas

0 (r50,z)
2V0(r50,z) is computed for thez-dependent part of the
potential, another result is found in the region@z08 ,`),
namely,DEas0(r50,z) is zero. So the termDE01 defined in
the interval@z08 ,`) has significance only at the beginning o
the process~for elongations in the vicinity ofRi), and after
that it must vanish. That could be realized, in a simple wa
by imposing a geometrical dependence of the value of t
term with respect to some shape parameters. In the follo
ing, a linear dependence onR ~elongation! is used. Without
doubt, this is not the unique way; other kinds of approxim
tions could be used. Therefore, in order to avoid a sha
variation of the single particle energies for this system
overlapping touching spheres, we must use the followi
partial correction available only at the beginning of the fi
sion process:

FIG. 4. The nuclear shape parametrization of the system of
tersecting sphere and spheroid at the initial moment of the fiss
process. The nascent light fragment is completely overlapping
the parent nucleus.
e
i-
be
E1c55
1

2
m0v1

2~z1z1!
22

1

2
m0v2

2~z2z2!
2, 0,z,z08

F12m0v1
2~z1z1!

22
1

2
m0v2

2~z2z2!
2GF12

R2Ri

Rf2Ri
G , z>z08 ,R<Rf

0, R.Rf .

~22!

Here, Rf5R1 f1R2 f denotes the elongation for the com-
pound system of two external tangent spheres,R1 f andR2 f

being, as defined before, the final radius of the daughter and
that of the emitted nucleus, respectively. It must be pointed
out that forR.Rf the termE1c vanishes in both regions

@0,z08) ~because the equalityz0850 is reached! and @z08 ,`)
~due to the geometrical dependence!.

Secondly, let us see the behavior of the limiting case ofth
system formed by two spheres separated at infinity. Obv
ously, the expected level scheme of such a system must
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the overlap of both the oscillator levels. Moreover, t
eigenvalues of the asymmetric two-center shell poten
must give for the well of the light fragment the followin
values:

En2nm
5\v2~n212n1umu1 3

2 !. ~23!

But, in the case of a potential obtained by the intersection
a sphere with a spheroid, according to the relation~19!, the
asymmetric two-center potential gives the valuesEnnm

0 . The
unique way which allows the modification of the levels wi
exactly the valueEn2nm

2Ennm
0 after a proper diagonalization

in the eigenvector basis of theV0 potential is to define a term
of the form

E2c~r!5m0v1~v22v1!r
2, z>z08 , ~24!

in order to obtain in the final stage of the process

^nz28 ,n8,m8uE2c~r!unz2 ,n,m&

5\~v22v1!$~2n1umu11!dn8n

2@~n11!~n1umu11!#1/2dn8n11

2@n~n1umu!#1/2dn8n21%dn
z28 nz2

dm8m .

The off-diagonal parts of this expression withn85n61 or
N85N62 ~becauseN52n1umu1nz) will not affect the
asymptotic results becauseN becomes a good quantum num
he
tial
g

of

th

-

ber. The diagonal term (n85n or N85N) leads to good
values of the energies for the two-level schemes belongin
the two final fragments separated at infinity. The two nucl
in this asymptotic configuration, have the final radiiR1 f and
R2 f which define the two frequenciesv1 and v2 . This
means that the term given by the relation~24! fulfils the
condition of adiabatic volume conservation~i.e., the volume
enclosed in an equipotential surface remains constant!. At
the beginning of the fission process, the introduction of t
term ~24! has no physical meaning. Therefore a geometri
correction is introduced as in the former case in order to h
a progressive vanishing towards the beginning of the de
process. Finally, the term of the Hamiltonian due to the m
asymmetry shows the following behavior@using relations
~22! and ~24!#:

Vas~r,z!5H E1c~z!1
R2Ri

Rf2Ri
E2c~r!, R<Rf

E1c~z!1E2c~r!, R.Rf .

~25!

In Fig. 5 the intersection of the potential energy surfa
Vs5V01V asalong thez axis is drawn for different values o
the distance between centers.

The third term in the relation~2! is Vn(r,z). It takes into
account the variation of the potential in the presence o
neck. It is derived using the condition of an equipotent
value on the nuclear surface defined geometrically. So
two-center potential for shapes with a neck is written in t
form
Vn
0~r,z!55

1

2
m0v1

2~z1z1!
21

1

2
m0v1

2r2, z<zc1

1

2
m0R1

2v1
21

1

2
m0Fv1

21~v2
22v1

2!
z2zc1
zc22zc1

G$r22$r32S@R3
22~z2z3!

2#1/2%2%, zc1,z,z08

1

2
m0R2

2v2
21

1

2
m0Fv2

21~v1
22v2

2!
zc22z

zc22zc1
G„r22$r32S@R3

22~z2z3!
2#1/2%2…, z08<z,zc2

1

2
m0v2

2~z2z2!
21

1

2
m0v2

2r2, z>zc2 .

~26!
in
This potential satisfies several conditions. First, on t
nuclear surface, the potential is constant and its value equ
1
2m0v2

2R2
25 1

2m0v1
2R1

2 . This behavior is provided by the fac
that the second term of the right side of Eq.~26! in the
regionszc1,z,z08 andz08<z,zc2 vanishes whenr reaches
the valuers ~corresponding to the surface!. Secondly, in the
planes of separation defined by the valueszc1 and zc2 , a
continuity of the potential is reached, which means

Vn
0~r,z!u

zci2z→0

z,zci

5Vn
0~r,z!u

z2zci→0

z.zci

for i51,2.

Thirdly, in the neck region, a linear variation of thev2 value
is realized fromv1

2 to v2
2 leading to the disappearance of th

cut in the potential defined by the relation~20!, which means
he
als
t

e

Vn
0~r,z!u

z
082z→0

z,z
08

5Vn
0~r,z!u

z2z
08→0

z.z
08

.

The behavior of this potential is depicted as contour lines
Fig. 6.

For the limit case, whenC50 fm21, in the (zc1 ,zc2)
interval another formula is deduced:

Vn
0~r,z!5

1

2
m0R1

2v1
21

1

2
m0Fv1

21~v2
22v1

2!
z2zc1
zc22zc1

G
3$r22@a~z2zc1!1b#2%, ~27!

where the parametersa andb are defined in relation~1b!.
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The meaning of the geometrical notations involved
these equations is easy to understand by inspecting Fig
Now a relation for the term in the Hamiltonian which cha
acterizes the variation due to the existence of a neck can
written:

Vn~r,z!5Vn
0~r,z!2Vas

0 ~r,z!. ~28!

In this way, a term due to the presence of the neck is int
duced in the potential.

Both spin-orbit andL2 operators were constructed to re
produce the single particle levels which are known for
single sphere and for two spheres separated at an infi
distance. The next formula is deduced for the spin-orbit co
pling:

VLs~r,z,w!5H H 2
\k1

m0v01
,LsJ , z,z08

H 2
\k2

m0v02
,LsJ , z>z08 ,

~29!

where $A,B% denotes the anticommutator required for th
matrix element symmetrization. The productLs gives

FIG. 5. Intersections of the potential energy surfac
Vs5V01Vas along thez axis for different values of the distance
between centers. The normalized coordinate of elongat
Rn5(R2Ri)/(Rf2Ri) takes the values 0, 0.25, 0.5, 0.75, 1, an
1.25 for the cases~a!, ~b!, ~c!, ~d!, ~e!, and ~f!, respectively. The
14C emission from223Ra is treated.
in
. 1.
r-
be

ro-

-
a
nite
u-

e

Ls5 1
2 ~L1s21L2s1!1Lzsz ~30!

with L taking a special form adapted for the very asymmetr
process:

L5¹V03p. ~31!

In this context, the definitions ofV0 andv0i must reproduce
the energetic values of the asymptotic levels for both pote
tial wells. So these quantities are constructed as follows:

V0~r,z!5H 1
2 \v1z

21 1
2 \v01%

2, z,z08

1
2 \v2z

21 1
2 \v02%

2, z>z08 ,
~32!

having az-dependent oscillator frequency

v0i5H v1 , z,z08

~v1v28!1/2, z>z08 ,
~33!

in terms of the stretched coordinates

z5H a1~z1z1!, z,z08

a2~z2z2!, z>z08 ,
~34!

%5a0ir,

and withv285v2R0(R1 f2R1)/R1(R1 f2R0) having a varia-
tion from v0 up to v2 , in the overlap region of the frag-
ments.

In a similar manner, by imposing the condition to repro
duce the asymptotic levels, theL 2 term is found to be

e

ion
d

FIG. 6. Contour level values for the potentialVn
0 . The two

centers are marked with crosses. The normalized elongation
Rn51 and the neck parameter isR354 fm. The mass asymmetry is
the same as for the spontaneous emission of14C from 223Ra. The
values of the equipotentials are from 5 to 250 MeV with steps of
MeV.
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VL2~r,z,w!

55 H 2
1

2

\k1m1

m0
2v01

2 v1
,L2J 1\k1m1v1N1

N113

2
, z,z08

H 2
1

2

\k2m2

m0
2v02

2 v28
,L2J 1\k2m2v28N2

N213

2
, z>z08 ,

~35!

with

L25
1

2
~L1L21L2L1!1Lz

2 . ~36!

According to the existing shell models@8,9,12,14# the varia-
tion of the interaction constants for the spin couplings
considered as follows:

k i~ i51,2!5H k01~k i2k0!
v12v0

v1 f2v0
, v1,v1 f

k i , v1>v1 f ,

~37!

m i~ i51,2!5H m01~m i2m0!
v12v0

v1 f2v0
, v1,v1 f

m i , v1>v1 f ,

~38!

wherev1 f5v1R1 /R1 f . So a gradual variation from the ini
tial to the final state is accounted for by these constants.
procedure to obtainNi with respect to the elongation is
little more complicated. This value corresponds to the ma
quantum number for each of two nascent fragments. For
asymmetric two-center shell model,N is no longer a good
quantum number. So when the matrix eleme
^n8,n8,m8,s8uNi un,n,m,s& is computed, different values fo
Ni andNi8 must be taken into account. Because these
values do not coincide the following approximation is use

Ni5~NiNi8!1/2, ~39!

in which

Ni5H N2nz1nzi1~nz2nzi!
v1 f2v1

v1 f2v0
, R,Rf

N2nz1nzi , R>Rf .

~40!
is

he

jor
the

nt

wo
d:

Herenz is an integer representing the quantum number alo
the z axis for the spherical parent nucleus whilenzi
( i51,2) characterize this quantum number for the same le
after the asymptotic separation into two fragments.

The last termVc is a constant which compensates th
disadvantage that the harmonic potential gives the single
ticle levels only up to a constant. In the most general ca
we must use three constants for the parent, daughter,
emitted nuclei, respectively. These constants are denote
the text asVc0 , Vc1 , andVc2 , respectively. During the de-
formation, a variation of these constants in a similar way
described in Eqs.~37! and ~38! is followed:

Vc~ i51,2!5H Vc01~Vci2Vc0!
v12v0

v1 f2v0
, v1,v1 f

Vci , v1>v1 f .

~41!

It is necessary to point out thatVci is added with respect to
i51,2 taking care to identify every level in association wi
its localization in only one of the two potential wells ob
tained in the final stage of the process.

The final level scheme is obtained by the diagonalizat
of the potential~2! with V0 , Vas, Vn , VLs , VL2, and Vc
given by the formulas~3!, ~25!, ~28!, ~29!, ~35!, and ~41!,
respectively, in the eigenvector basis shown by the relati
~5!, ~6!, and~7!.

All the interaction constantsk, m, andVc are determined
from the relation available for spherical nuclei:

E5\vSN1
3

2D2k\vF j ~ j11!2 l ~ l11!2
3

4G
2km\vS l ~ l11!2

N~N13!

2 D2Vc , ~42!

where well known notations are used.

C. The matrix elements

The matrix elements for the term which characterizes
asymmetry are
^n8,n8,m8,s8uVas~r,z!un,n,m,s&

5ds8sdm8m
m0

2 S Cn
28
Cn2

2 H v1~v22v1!I n8nm~r2! j ~n28 ,n2 ,j22j08!G~R!1dn8nFv1
22v2

2

a2
2 @ I n

28,2,n2 ,j2
2I n

28,2,n2 ,~j22j
08!G~R!#

1v1
2~z21z1!S 2

a2
@ I n

2821,n2 ,j2
2I n

28,1,n2 ,~j22j
08!G~R!#1~z21z1!@ j ~n28 ,n2 ,j2!2 j ~n28 ,n2 ,j22j08!G~R!# D G J D ~43!

where
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j25a2z2 , ~44!

j085a2z08 , ~45!

G~R!5H 1, R.Rf

R2Ri

Rf2Ri
, R<Rf ,

~46!

I n8,l ,n,j05E
j0

`

ej2Hn8~j!j lHn~j!dj

52
j0
2
exp~2j0

2!Hn8~2j0!j0
l21Hn~2j0!1n8I n821,l21,n,j0

1nI n8,l21,n21,j0
1
l21

2
I n8,l22,n,j0

, ~47!

I n8nm~r2!5E
0

`

Rn8m~r!r2Rnm~r!rdr

5
1

a1
2 $~2n1umu11!dn8n2@~n11!~n1umu11!#1/2dn8n112@n~n1umu!#1/2dn8n21%. ~48!

Performing the calculations it is useful to remember thatn andm are good quantum numbers. The matrix elements of t
spin-orbit term are

K n8,n8,m8,s8UH 2
\k

m0v0i
,LzszJ Un,n,m,sL 522\smds8sdm8mdn8nHm0v1

2 \k1

m0v01
FCn

18
Cn1

j ~n18 ,n1 ,j1!

a1

1Cn
28
Cn2

j ~n28 ,n2 ,j2!2 j ~n28 ,n2 ,j22j08!

a2
G

1m0v2
2 \k2

m0v28
Cn

28
Cn2

j ~n28 ,n2 ,j22j08!

a2
J ~49!

and

K n8,n8,m8,s8UH 2
\k

m0v0i
,L1s2J Un,n,m,sL

52\2ds8,s21dm8,m11H F2m0v1
2 \k1

m0v01
S Cn

18
Cn1

a1
@ 1
2 j ~n18 ,n111,j1!2n1 j ~n18 ,n121,j1!2T~j1!#

1
Cn

28
Cn2

a1
$2 1

2 @ j ~n28 ,n211,j2!2 j ~n28 ,n211,j08!#1n2@ j ~n28 ,n221,j2!2 j ~n28 ,n221,j08!#1T~j2!2T~j08!% D
2m0v2

2
\k2Cn

28
Cn2

m0v28a2
@2 1

2 j ~n28 ,n211,j0!1n2 j ~n28 ,n221,j08!1T~j08!#G @~n1umu11!1/2dn8,n2n1/2dn8,n21#

1F2m0v1
2 \k1

m0v01
S 2

Cn
18
Cn1

a1
@ 1
2 j ~n18 ,n111,j1!1n1 j ~n18 ,n121,j1!#

1
Cn

28
Cn2

a1

a2
2 $ 1

2 @ j ~n28 ,n211,j2!2 j ~n28 ,n211,j08!#1n2@ j ~n28 ,n221,j2!2 j ~n28 ,n221,j08!#

1a2~ uz1u1z2!@ j ~n28 ,n2 ,j2!2 j ~n28 ,n2 ,j08!#% D 2m0v2
2 \k2

m0v28

Cn
28
Cn2

a2
F12 j ~n28 ,n211,j08!1n2 j ~n28 ,n221,j08!G G

3@~n1umu11!1/2dn8,n1n1/2dn8,n21#J ~50!
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where

T~j!5
exp~2j2!

2
Hn

18
~2j!Hn1

~2j!. ~51!

The anticomutator needed for the symmetrization of t
spin-orbit coupling involves the existence of a Heavisid
function. The application of the]/]z operator on this step
function produces finally the termsT(j).

To deduce the above formulas the following integrals a
also used:

I n8nm~r!5E
0

`

Rn8m11~r!rRnm~r!rdr

5
1

a1
@dn8n~n1umu11!1/22dn8n21n

1/2#

5I n8nm8~r!, ~52!

I n8nm~d/dr!5E
0

`

Rn8m11~r!
d

dr
Rnm~r!dr

52a1
2I n8nm~r!1mIn8nm~r21!

22a1n
1/2dn8n21

5I n8nm8~d/dr!, ~53!

I n8nm~r21!5E
0

`

Rn8m11~r!r21Rnm~r!rdr5I n8nm8~r21!.

~54!

The integrals for negative values of the magnetic number
available using the substitutionm852umu21 in relations
~52!–~54!. The factor\2 from theLs expression is contained
in k.

If the matrix elements ofL1 and L2 are known, it is
straighforward to obtain the matrix elements of theL2 inter-
action using the general relation

^k8ucO1O2uk&5(
k9

^k8uc1/2O1uk9&^k9uc1/2O2uk& ~55!

whereO1 andO2 are two operators andc is a scalar. A
generalization of this last relation is used becausec can be
either negative or positive:

^n8,n8,m8,s8ucL1L2un,n,m,s&

5
dss8
2 (

n9,n9,m9
$^n8,n8,m8zucu1/2L1zn9,n9,m9&

3^n9,n9,m9zsgucu1/2L2zn,n,m&

1^n8,n8,m8zsgucu1/2L1zn9,n9,m9&

3^n9,n9,m9zucu1/2L2zn,n,m&% ~56!

wheresg5sgn(c).
LetNoc be the principal quantum number which labels th

first occupied level below the Fermi energy. Having in min
that states withN85N62 intervene in the calculations of
the matrix elements, that means the cutoff approximati
he
e

re

are

e
d

on

must be done for at leastNmax5Noc12. The truncation ef-
fects imply some minor variations at the beginning of t
fission process around the true values expected from an
equate spherical potential of the parent nucleus. These
removed with an additional linear fit defined only for th
spherical initial shape and which is introduced in the nume
cal program. Finally, it must be mentioned that the condit
of volume conservation is taken into account during t
whole process.

IV. RESULTS AND CONCLUSIONS

The STCSM is used to obtain the energy level diagram
the heavy-ion spontaneous emission of14C from the parent
nuclide 223Ra. According to the rule mentioned in Sec. III
which defines the asymptotic quantum numbers with resp
to the initial ones, for the cutoff procedure the valu
Nmax59 is chosen.

The values of the spin-orbit andL 2 coupling constants
together with those for the depths of the wells a
k54.83731022, k154.97931022, k250.217,m50.4709,
m150.3959, andm2520.437, slightly different from those
used in the literature @10,17,18#, Vc556.67 MeV,
Vc1555.12 MeV, andVc2554.86 MeV. The parameters o
this two-center potential can be determined by fitting t
experimental single particle levels near the Fermi energy
the spherical shapes of the parent, the daughter, and the
ted nuclei~and not for the compound system at an infin
distance as is usually done!.

A first look at the results reveals some general behav
represented in Fig. 7. Here the energetic levels during hea
ion emission are displayed. A normalized coordinate of
elongation is used,Rn5(R2Ri)/(Rf2Ri). In this example,
the nuclear shape parametrization is obtained by the inter
tion of two spheres, i.e.,R350 fm. When the normalized
elongation takes a zero value, only the single particle sta
of the spherical parent nucleus223Ra are present. Otherwise
for the asymptotic value of the elongation, the superposit
of the single particle states for the daughter209Pb and the
emitted 14C is recognized. The single particle levels are
beled by their spectroscopic notations on both sides of
picture, adding the superscriptH for the heavy fragment and
the superscriptL for the light one. In Table I the identified
final levels are presented together with the correspond
initial values.

In a simple minded interpretation, the heavy-ion emiss
is somewhat equivalent to forcing some correlated nucle
having small values of the total spin to emerge from t
initial nucleus. In the case of14C emission, the spins in
volved are up toV53/2, the occupied shells in their fina
ground states being 1s1/2

L , 1p1/2
L , and 1p3/2

L . Moreover, it is
expected that these removed nucleons have final ene
close to the initial values. In Table I, these expectations
accomplished. As an example, 1s1/2

L comes from 1f 7/2 and
not from 2p3/2 as the usual asymmetric two-center mod
model predicts.

At the beginning of the fission process an increase
almost all the energy level values is observed. This tre
manifests itself up to a given value of the normalized elo
gation, which in this case is about 0.3–0.4. Up to this val
it could be considered that the system advances having
properties. Afterwards, enlarging the distance between
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FIG. 7. Level scheme for the
14C spontaneous emission from
223Ra with respect to a normalized
elongation (R2Ri)/(Rf2Ri),
whereR is the distance between
the centers of the nuclei,
Ri51.16(A1/32A2

1/3) fm is the ini-
tial value of the elongation at the
beginning of the process, and
Rf51.16(A1

1/31A2
1/3) fm is the

elongation at the scission point.
The value ofR3 is 0 fm.
is used.
TABLE I. The levels in the final stage of the disintegration process with respect to their initial values. The spectroscopic notation
The levels belonging to209Pb have the superscriptH ~heavy! and those belonging to14C have the superscriptL ~light!.

Initial Final level with respect toV
level 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2

1s1/2 1s1/2H

1p3/2 1p3/2H 1p3/2H

1p1/2 1p1/2H

1d5/2 1d5/2H 1d5/2H 1d5/2H

1d3/2 1d3/2H 1d3/2H

1f7/2 1s1/2L 1f7/2H 1f7/2H 1f7/2H

2p3/2 2f7/2H 2p3/2H

1f5/2 2p3/2H 1f5/2H 1f5/2H

2p1/2 1f5/2H

1g9/2 2p1/2H 1g9/2H 1g9/2H 1g9/2H 1g9/2H

2d5/2 1g9/2H 2d5/2H 2d5/2H

1g7/2 2d5/2H 1p3/2L 1g7/2H 1g7/2H

3s1/2 1p3/2L

2d3/2 1g7/2H 1g7/2H

1h11/2 3s1/2H 2d3/2H 1h11/2H 1h11/2H 1h11/2H 1h11/2H

2f7/2 2d3/2H 1h11/2H 2f7/2H 2f7/2H

1h9/2 1h11/2H 2f7/2H 1h9/2H 1h9/2H 1h9/2H

3p3/2 2f7/2H 1h9/2H

2f5/2 1h9/2H 3p3/2H 2f5/2H

1i13/2 3p3/2H 2f5/2H 1i13/2H 1i13/2H 1i13/2H 1i13/2H 1i13/2H

3p1/2 2f5/2H

2g9/2 1i13/2H 1i13/2H 2g9/2H 2g9/2H 2g9/2H

1i11/2 3p1/2H 2g9/2H 1i11/2H 1i11/2H 1i11/2H 1i11/2H

1j15/2 1p1/2L 1i11/2H 1j15/2H 1j15/2H 1j15/2H 1j15/2H 1j15/2H 1j15/2H

3d5/2 2g9/2H 1j15/2H 3d5/2H

2g7/2 1i11/2H 3d5/2H 2g7/2H 2g7/2H

4s1/2 2s1/2L

3d3/2 1j15/2H 2g7/2H
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two centers, the energetic values of some levels reach i
continuous way the asymptotic final values while the othe
start to diminish sharply. The decrease in energy of the
levels near the scission point leads them below the asym
totic value. This behavior indicates that very asymmet
prolate deformations are very improbable at the beginning
the fission process. Indeed, the deformation energy, regar
as a sum of single particle levels, increases strongly.

Certain energy levels are smoothly behaving where
other energy levels get more bound in the neighborhood
the touching configuration. This behavior is suggested by
variations of the numbersn2i with respect to the elongation
@see Fig. 3~b!#. The parametrization used in this context pr
serves the radius of the emitted fragment (R2) constant. That
implies a constant value ofv2 during the process. So the
energy of a given state is directly proportional ton2i accord-
ing to relation~18!. In the vicinity of the touching configu-
ration, some numbersn2i reach lower values than the sam
asymptotic ones. For example, this variation achieves a
crease of the energy of about 2 MeV for the levels chara
terized with the numbersn23 andn24. These trends are en
hanced after the diagonalization.

A more detailed description of this kind of disintegratio

FIG. 8. The levels of Fig. 4 are plotted separately with respect
the projection of the angular momentum. In the cases~a!, ~b!, ~c!,
and~d! levels with the values ofV 1/2, 3/2, 5/2, and 7/2 are drawn
respectively. In the case~e! the value ofV59/2 is plotted with a
full line and 11/2 with a dashed line. In the case~f! the value of
V513/2 is ploted with a full line and 15/2 with a dashed line.
n a
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is depicted in Fig. 8 where levels with a given projectio
uVu of the total angular momentum are displayed separate
for comparison. Note that a double degeneracy in the angu
momentum projection is always present. So, from now o
V will indicate its absolute value. The Nilsson model estab
lished as a general rule that on enhancing the prolate def
mation, the orbitals with a lower projection of the total spin
are displaced toward smaller values of the energy@17#. This
rule is no longer valid for the superasymmetric fission pro
cess involved here. The levels with the spin projectio
V51/2 show a more pronounced variation toward high e
ergy values at the beginning of the process. Moreover, for
given projection of the spin, two kinds of behaviors are ev
denced. In the lower part of the energetic scheme~which
means for levels from shells 1s1/2, 1p3/2, and 1p1/2) the
levels present a smooth variation between the initial and t
final states. This behavior is no longer seen for the leve
existing in the middle part of the energetic diagram, whe
the proximity of the 1s1/2

L level, which will be placed in the
second potential well in the final stage of the process, pe
turbs intensely the other orbitals with the same spin proje
tion. Theoretically, if the asymmetry termVas vanishes, the
level 1s1/2

L must originate from 1p3/2. But a rearrangement
of the levels shows that the origin of 1s1/2

L is 1f 7/2. The
Landau-Zener effect~or mutual rejection effect!, which
avoids the intersection of levels with the same projection
the spin~regarded as a good quantum number!, is respon-
sible for this behavior. Also, forV51/2 two levels become
almost tangent atRn'0.2 ~i.e., 1i 11/2 with 2g9/2 and 2d5/2
with 1g7/2) and another three very pronounced avoided lev
crossings can be observed atRn'0.8 ~2g7/2 with 4s1/2; 2
f 7/2 with 1h11/2; 2d3/2 with 3s1/2). For elongations beyond
the touching point, the crossings are not important. In Fi
8~b! the levels withV53/2 are plotted. AtRn,@0.6–0.8#
three very pronounced avoided level crossings are presen~1
i 11/2with 1j 15/2, 3p3/2 with 1h9/2, and 1j 15/2with 3d5/2). The
levels with energetic values below that of 1f 7/2 reach almost
monotonically their final values while a strong variation nea
the scision point region can be observed for higher levels.
Fig. 8~c! the levels withV55/2 are plotted. AtRn'0.3 we
find one very pronounced avoided crossing between 1i 11/2
and 1j 15/2. The perturbations, which are understood as ve
sharp variations in this context, around the scission poi
begin to be manifested for energies greater than that of t
2d5/2 level. In Fig. 8~d! the levels withV57/2 are plotted.
Here, the perturbations are observed beginning with the
j 15/2 level. The levels withV.7/2 are almost unperturbed
and reach their final values continuously.

A numerical analysis accomplished with the two-cente
potential, which means ignoring the termsVLs andVL2 in the
total Hamiltonian, indicates that the spin interactions are r
sponsible for a strong decrease in energy of the levels b
longing to the second potential well around the scision valu
of the elongation (Rn'1). This decrease in energy of the
emitted nucleus levels involves variations of the neighborin
levels with the same projection of the spin according to th
mutual rejection effect. Remembering that, forRn.0.5, at
least half of the light fragment volumeV2 is already outside
the parent nucleus and that the addition of theL2 term in the
Hamiltonian can be partially interpreted as a simulation of
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sudden rise of the potential on the surface, we can there
interpret the energetic variations around the scision poin
surface effects.

Transitions between levels with different spin are impro
able for a single nucleon. For an even-odd nucleus, if
system is not excited, the specialization effect@19# explains
the energy excess of the nucleus with respect to a given
of the unpaired nucleon and causes@20# the unfavored tran-
sitions which do not follow the Geiger-Nuttal law. The sp
cialization effect fails to describe the experimental transit
rates observed in the fine structure of the223Ra cluster decay
because it considers~adiabatically! the favored transition to
the ground state of209Pb.

It is possible to explain the experimental result by qu
tatively by appealing to the Landau-Zener promotion mec
nism, i.e., considering an enhancement of transitions in
region of the avoided level crossings. So, as shown in T
I, for V53/2, the level 1i 11/2 reaches 2g9/2

H asymptotically.
fore
t as

b-
the

spin

e-
ion

li-
ha-
the
ble

But the incoming 1j 15/2 has a first avoided crossing with
1i 11/2 atRn'0.5 and produces the first favored transition of
the last nucleon. Another very pronounced avoided crossin
is realized atRn'0.8, producing a great probability to have
a transition to 3d5/2. The final levels of the last nucleon
could be 2g9/2

H , as well as 1i 11/2
H or 1j 15/2

H . It is known that
223Ra has the spin 3/2 emerging from 1i 11/2. That represents
a qualitative explanation for the fine structure in the14C
radioactivity of 223Ra. Indeed, the experiment shows that the
intensities of the above mentioned transitions are 11% for th
Pb ground state 9/21, 81% for the first excited state 11/21

at 0.779 MeV, and 4% for the second excited state 15/22 at
1.423 MeV. Recently@20#, new experimental work partially
contradicts the previous results, claiming that transitions to
the 1j 15/2

H orbital are hindered. Nevertheless, this schemati
description provides some information in understanding th
heavy-cluster decay.
s.
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