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Superasymmetric two-center shell model for spontaneous heavy-ion emission
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The single particle levels for the heavy-ion emission process are computed. This decay mode is treated like
a superasymmetric fission process. The nuclear shape parametrization is characterized by three degrees of
freedom. The difficulties encountered in the microscopic determination of the energy scheme at these very
large mass asymmetries are presented. Thereby, a new version of the two-center model, especially designed for
very large mass asymmetries, is described. Ti@zheavy-ion spontaneous emission from the parent nucleus
22%Ra is treated in the frame of this model. The principal trends of the variations obtained for the energetic
levels during this superasymmetric nuclear decay are discussed. Mainly, for this kind of decay mode, the levels
with lower values of the angular momentum projectidnshow more pronounced variations than those with
higherQ). Also, a qualitative explanation for the favoring of the first excited states in the fine structure in this
radioactive process is give[50556-28136)01906-1

PACS numbg(s): 23.70:+j, 21.60.Cs, 21.60.Gx

[. INTRODUCTION in determining truly microscopically the spectroscopic am-
plitude leading to a schematization of the model. Neverthe-
In 1980, four theoretical models were published in orderess, the theoretical considerations succeed only partially
to predict, as a new nuclear phenomenon, heavy-ion emisuccessfully in explaining the experimental result. Therefore
sion: the fragmentation theory, some penetrability calcula@a description of this phenomenon with new assumptions, a
tions like the traditional theory ofr decay, the analytical new version of the asymmetric two-center shell model, espe-
superasymmetric fission modé&dSAFM), and the numerical cially designed to account for cluster emission, is attempted.
superasymmetric fission mod@ISAFM). Many new decay The basic idea is to follow the variations of the levels begin-
modes have been predictedi: ‘Li, '~ °Be, 107128, 12714C  ning with the states of the initial parent nucleus up to those
1-16y, 15-18g 1923 20-25\e 28\ig, 32345 46Ar, and  of the two final fragments. The nuclear shape parametriza-
485(Ca. Some of these predictions are made by consideringion chosen for this purpose is presented in Sec. Il. In Sec.
that the heavy-ion emission is a very asymmetric fission proHl, a detailed description of the superasymmetric two-center
cess. An overview and the main features of these theorieshell model(STCSM is offered. Results obtained in the

can be found in Ref.1]. framework of this model are shown in Sec. IV.
In 1984, the experimental detection of thé&C emission
from ?*Ra [2] proved the existence of spontaneous heavy- Il. THE NUCLEAR SHAPE PARAMETRIZATION
ion emission and opened a new field of interest. A very small
value of the branching ratio relative t@ decay is found: The nuclear parametrization is defined by smoothly join-

b=(8.5+2.5)x 107 % Up to now, information about the ex- ing two intersecting spheres of radiRg andR; with a neck

istence and the lifetime of the next decay modes is availablesurface generated by the rotation of a circle of radiss
14C from 22y, 22172242243 and?25Ac; 2%0 from 228Th;  around the symmetry axis, as presented in Fig. 1. The dis-

23 from 2Pa; #Ne from 23Pa, 239Th, and 232234y, tance between the center of this circle and the axis of sym-

2\g from 234U and 23023py; 3%Sj from 2%Pu; and34si  metry is given byps. By imposing the condition of volume

from 242Cm. conservation, the surface is perfectly determined by the val-
A fine structure in the!C radioactivity of 22%Ra was Uues of the parametef (distance between the centers of the

discovered with the magnetic spectrometer SOLEf8D ~ Spherel R (the radius of the negkor C=S/R;3 (where

The possible existence of this phenomenon was suggest& +1 whenp;—R;=0 andS= —1 whenp;—R3<0), and
earlier, after the first experiment accomplished in order tdR2 (the radius of the emitted fragmenThese three param-
confirm this cluster decay modd], which used a mass spec- €ters characterize the elongation, the necking, and the mass
trometer. Moreover, the experimental result shows that th@symmetry, respectively. Due to the axial symmetry of this
transitions to the first excited states of the daugRt&Pb are  system, the surface equation is given in cylindrical coordi-
favored. This phenomenon can be explained only from d&ates:

microscopical point of view while most models used in the

analysis of heavy-cluster decay are based essentially on [RI—(z—2y)%]"% z<zy

Gamow’s theory with macroscopic potentials. In this sense, a _ _ 2_ (552712

first attempt was made in calculating the overlap between the ps(2)=) Ps=SIRe= (2721 Za<2<2; (1a
reflection-asymmetric ground state ©fRa and the spherical [RE—(z-2)%]Y2  z=2,.

shell model orbitals of?°Pb [5]. Also, consistent data are

obtained with the enlarged superfluid mo@&). Some esti- For extremely large values oR;, which means for
mations of the hindrance factors f&fC cluster decays inthe C=S/R;=0 fm~1, the parametrization is described in the
translead region have been reported. Major difficulties arisénterval z.;<z<z., by the relation
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FIG. 2. The nuclear shape parametrization of a sphere intersect-
ing with a spheroid. This parametrization allows analytical solu-
tions for the two-center harmonic potential. The sphere which char-
acterizes the nuclear shape of the light fragment is included in the
spheroid.

single particle energies obtained from the level scheme of

FIG. 1. The nuclear shape parametrization. The ¢ageresents  any smooth potential reaches an infinite value. These diffi-

the necked shapes characterized®sy1 and the casé) the dia-  culties are overcome by considering that the mean field is
mondlike shapes characterized 8y — 1. generated by the nucleons belonging to two nuclear frag-
ments. This dinuclear system can be treated with the two-
p(2)=[a(z—241) +b]*? (1b) center shell mode[_8,9]. This_appears to _be_ the simplest
method to generalize the Nilsson prescriptions. The two-
with center shell model is based on the assumption that nucleons
can be described in molecular states during the nuclear reac-
a={[R3— (22— 25)*1"°— [R2— (ze,— 21) 213 /(zep—2,1),  tion. This means that the relative motion between the two
centers of the potential is slower than the rearrangement of
b=[R?—(z¢;—2,)?]Y2 the nucleons in the mean field. This model found a large
gamut of uses in various fields like fission or heavy-ion col-
The significance of all the geometrical symbols can be unfision processe$10-12 and can be applied to all systems
derstood from the Fig. 1. The subscripts 0, 1, and 2 indicatbehaving like nuclear molecul§3]. Unfortunately, analyti-
the parent, daughter, and the emitted nuclei, respectivelycal solutions for the two-center potential are obtained only
The initial radius of the parent iRy=roA%", the final radii  for semisymmetric shapes as specified in R&#]. This is
of the two fragments arRif=r0Ai1’3, with i=1,2, and the the principal reason for the failure of the asymmetric two-
constant radius,=1.16 fm. In Eq.(1), ps denotes the value center shell model in the case of very large mass asymme-
of the coordinatep on the nuclear surface. Diamondlike tries without some improvements. In this work, a new ver-
Shapes are obtained f@=—1 and necked-in Shapes for Sion Of the m0de_| |S pl’esen_’[ed Wh|Ch iS partiCU|al’y Suitable
S=+1. WhenS=—1, the volume of the emitted fragment, for heavy-ion emission studies. o
V,, is always computed in the intervit.,,z,+R,]. In the For the nuclear shape parametrization presented above,
case S=+1 we compute this volume in the interval the microscopic potentidin cylindrical coordinatekis split,
[Zer,Z,+R,] When ze,<z; and in [z3,z,+R,] when @s in Ref.[15], into several parts which are treated sepa-
2.,>17;. Throughout the deformation process, the conditionfately:
of volume conservatiorV,+V,=V, is preserved. When
R;=0 fm, the simple palramétrizr:tion Fc))f two intersecting ¥ (PZ®)=Vo(p.2)+Vadp,2) +Vn(p.2) +Vis(p.Z,0)
spheres_ is obtained. This nuclear sh_ape parametriz_ation has +V 2(p,z,¢) =V, 2)
been widely used in nuclear dynamic calculati¢i$ in a
large range of mass asymmetries because it takes into ashereVy(p,z) represents the two-center harmonic potential
count the most important degrees of freedom encountered Whose eigenvectors can be analytically obtained by solving
fission processes. the Schrdinger equation. It is given by the relation

lll. THE SUPERASYMMETRIC TWO-CENTER 3 Mow3y(z+24)+ § mowsp?,  2<0

SHELL MODEL Vo(p,2)= 3
3 Mow2y(2—2,)%+ 5 Mow’p?,  2=0,

The theoretical study of fission processes at very large
mass asymmetries is limited by the difficulties encounteredvherem is the nucleon mass, arm andz, (real, positive
in the calculations of single particle levels for very deformedrepresent the distances between the centers of the spheroids
one-center potentials. Indeed, on one hand, central potentiadéd their intersection plane. From now on, in the following
are not able to describe in a correct manner the shapes for tfiermulas, as a conventioz; means its absolute value. The
passage of one nucleus to two separate nuclei and, on tlalculations are merely simplified by choosing
other hand, for very large prolate deformations the sum ofv,;=w,= w; andw,,= w,. With this choice, the shape pa-
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R (fm) is the Hermite function expressed in term of the hypergeo-

metric degenerate function,
FIG. 3. The variations of the numbersg (a) and v, (b) with

respect to the elongatidR in the frame of the two-center potential Mow;
for the emission of a fragment with mags =14 from a parent ;= P i=1,2,

nucleus with mas#,=223. The dashed line is used to characterize
the solutions up to the valuR=ro(A5°~A;®) which represents g 4 length parameter ar@, (i=1,2) represent the normal-
|

the starting configuration of the decay process. A thin lineisused to . .
show the touching spheres configuration at the IDC)imlzatlon constants. The value of the oscillator frequency for

_ U3, AL the initial parent nucleus is obtained with the well known
Ri=ro(AT™+AZ"). 7 i - .
formula[17] Awy=41A, ~~. During the disintegration pro-
rametrization of the potential is reduced to that of a com-cess, the oscillator stiffness is modified using the relation
pound system formed by a sphere intersecting with a sphei; =(Ry/R;) wg (i=1,2). The numerical values of the quan-
oid. This parametrization is presented in Fig. 2. The origintum numbers v,,v, and the normalization constants
on thez axis is chosen in the geometrical plane of intersecC, ,C,  are obtained from the continuity conditions of the

tion of the sphere with the spheroid. _ eigenfunctions and their derivatives zt0, together with
The role played by the other terms in the relati®  the normalization and the stationarity conditions:
(which means/, V,, Vs, Vi 2, andV,, which are related

to the mass asymmetry, to the necking, to the spin orbit Z,(2)] =Z,(2)| , (10
coupling, to thel ? correction, and to the depth of the poten- 20 20

(€)

tial, respectively will be better explained after the presenta- =0 0
tion of the analytical solutions of the Schiinger equation 9Z (2) 9Z,(2)
. 2U3), = , 11
with the potential(3) o o (11)
z—0 z—0
A. Analytical solutions of the Schradinger equation z<0 z>0

The orthogonal system of eigenfunctions used to diago- w
nalize the total Hamiltonian is obtained by solving the Sehro j |Z,(2)|?dz=1, (12
dinger equation in cylindrical coordinates: ’°°

h? 1
—Z—mOA—i-VO(p,Z) V=EV. (4) hwq| v+ E)=ﬁw2 V2+§ . (13
The ansat2lV (p,z,¢) =Z(2)R(p) P (¢) leads to the next so- To go further, it is necessary to locate the levels with a

lutions for the eigenvectofd 4] expressed with the aid of the given quantum number asymptotically in the first or in the
Hermite function[16]: second potential well. This problem can be reduced to the
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knowledge of the variations of the valuesandv, when the  The first step is to compute the two sequenals=i/2 and
elongation tends to infinity. Asymptotically, one of these two n§i1=(w1/wz)(i +3)—1fori=0,1,2,...,n,. After that, the
values becomes an integer, and the other remains real. Ifyo sequences are rearranged together in ascending order.
deed, if “mzl—»w”lzr‘Z_lz integer, then lim,_..v>  The n,th value of this mixed sequence is the limit of
=(wzl0)(Nuyt3)—3 lim, .C, =(2"an,!7%a1)",  whenz, tends to infinity. If this value is an integer, that
and lim, .C, =0. Also, if lim,, .v,=n,= integer, means the level will be located in the first potential well.
then Iimzﬁocvl=(w1/w2)(nzg+%)—%, lim,,...C,,, Otherwise,. it will be Iocqted in the segond potential well.
=(2"2n,,! 72a,) 2 and lim, _..C, =0. For low mass T.he behavior of the solutions,; gnd vy Wlth re;pect to the

: L L distance between the centers is shown in Fig. 3 for a very
asymmetry, ifn, denotes the initial value aof; andv,, then asymmetric case

N;=n;2 for evenn, values andn22=(nz—_1)/2 for odd The normalization constants are computed using the for-
n, values. In the general case, for all possible values of the las

mass asymmtry, the procedure is a bit more complicate({nu

C = 1(va,v2,0525) exq—agzg)Hfz(—azzz) j(vy,vy,012y) o (14)
"2 a; exp— aizi)Hil( —a12;) ay
exp — a52512)H,,,( — ay2,)

Co1=Co o = EZI2H, (—arzy)’ (19

where a short notation is used for the integral
J(v’,v,§o)=L e CH, (O, (8)dE. (16)

0
Numerically, the values of this function can be computed using the relation
[ e %
B V[VIHV’—l(_ E)H (=€) —VvH, (=) H,—1(—€0)], V' #v
2 ©
e % I[(m—=v)/2]¢{(m—v)/2]
oo PR a(—E) 2 [ (D) (—2&)"

. Al (—v) Mm=0 m!

j(v', v, &)=t @ (17)
I'[(m—v+2)/2]¢[(m—v+1)/2] )

+H,(—éo) 2 [ (=D)" (—2&)™|(, v'=v#integer
m=0 m!
2nfl n!
ke-@’oE [meHan(—go)Hnm(—go) +2" nlm[1+erf(&)], v =v=n=integer,
m=0 —4):

where erfg) is the error functionH,(¢) is the Hermite mass asymmetry. A relation for a potential relative to this

polynomial, andy(v)=T"(»)/T'(v) is the psi function. term which obviously reproduces the correct single particle
The eigenvalues of the potentid}, are levels of two distinct nuclei with spherical shapes, separated
at infinity and with very different mass numbers, consists in
3 a compound of two oscillators:
E) m=fiwil 2n+|m ity P

. I mowi(z+21)%+ $ mow?p?,  2<z,

1 Vadp,2)= 1 2 2,1 2 2 /

=fw,| vot > +hw(2n+|m[+1). (18 L mow3(z—2,)%+ L mowdp?, =1},

(19

From now on, all the matrix elements of any term of the total

Hamiltonian are computed using the system of eigenvectors , ' . . .
given by the relation$5)—(7). where z, defines the intersection plane of the two distinct

potentials characterized hy; = w,; and w,= w,,. This po-
tential is constant on the nuclear surface defined by the pa-
rametrization of two intersecting spheres, being always equal
In the total Hamiltoniar(2) V, represents the term which t0 mywiRI=3Myw3R5. Let pspnercbz) be the shape equa-
produces a correction of the energy level according to théion for this simple dinuclear system with the symbols de-

B. The total Hamiltonian
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picted in Fig. 1. Some rapid calculations show that in the
(p,zp) plane of intersection of the two spheres, a discontinu-
ity which depends o is presentexceptingp = psphere):

N

O — —
N ¥

N

chtzzmo( a)%— w%)[Pz_pgpheregZ())] =

0

=Vi(p.2)|  —Vi(p.2)| (20)
Z V4

<z >Z

o~
o~

Z—2Z Z—Z

o~
o~

The interpretation of the formula is easier taking into consid- FIG. 4. The nuclear shape parametrization of the system of in-
eration the equa"tlbsphereézé) = p5 available for this special tersecting sphere and ;pheroid at thg initial moment of the fission
configuration. However, even in the case of a potential wittProcess. The nascent light fragment is completely overlapping on
a finite number of discontinuities the Séhiinger equation the parent nucleus.
could be solved. The problem resides in the fact that, if the
difference Vgs(p,z)—vo(p,z) together with the reference relation(3) thatz; denotes its absolute valli&€onsequently,
potential Vy(p,z) are diagonalized directly, the asymptotic the superasymmetric two-center potential fails to reproduce
levels are not correctly obtained. This difficulty could be the level scheme of the spherical oscillator without a supple-
overcome resorting separately to two special cases that chanentary  approximation. Denoting by AEg(2)
acterize the inital point of the fission process and the scissiosV,(p,z) —Vy(p,z) the gquantity obtained on subtracting
point. First, a sphere of radiuR, emerges from the initial V,(p,z) [the reference potential given by the relati8)]
spherical parent nucleus of radil®=R;, as depicted in from V,(p,2), it is easy to verify that in the-axis region
Fig. 4. This configuration treats exactly the starting point of(—o,0] the differenceAEy(z)=0, while in the regions
the disintegration process. The initial value of the eIongatior‘(o,zé) and[zg,) the difference is given by the expression
is denotedR;=Ry;—R; gnd corresponds to two overlapping AEi(2) = imow?(z+2,)%— imow3(z—2,)%. On the other
tangenF spheres. At tf)ls moment, a dramatic change IS P§fand, if the subtraction AEaso(p=O,z)=V24p=0,z)
duced in the |r_1tervaﬂzo,<?o)_ _from the value of the potential —Vo(p=0y2) is computed for thez-dependent part of the
that characterizes the initial parent nucleus to that deter'otential, another result is found in the regifm),),
mlned by the compqund system of overlappmg_spheres. T amely,AE s p=0,2) is zero. So the termAE; defined in
illustrate this behavior, leV4(p,z) be the potential of the he interval[z,,) has significance only at the beginning of
initial spherical parent nucleus anth(p,z) be that defined the in 0 Signit onty g g
by the system at the beginning of the fission prodess the the procesifor (_elongatlons in the V'C'n.'ty OR‘)’ ar_ld after
that it must vanish. That could be realized, in a simple way,

light fragment starts to emerge by imposing a geometrical dependence of the value of this

Vi(p,2)=smow3(z+2;)%+ smyw?p?, (219  term W_ith respect to some shape parameters. In the follow-
ing, a linear dependence & (elongation is used. Without
Imowi(z+21)%+ tmpw?p?, Z<Ri—2z doubt, this is not the unique way; other kinds of approxima-
Vo(p,z)= tions could be used. Therefore, in order to avoid a sharp
%mowg(z—zz)ZJr%mow%pz, =Ry —z;. variation of the single particle energies for this system of

(21b  overlapping touching spheres, we must use the following
partial correction available only at the beginning of the fis-

For this configuration the next equality is achleved:sion process:

z,=R;—z;=R,+z, [with the convention mentioned for the

1 2 2 1 2 2 ’
§m0w1(2+zl) —Emowz(z—zz) , 0<z<z,
E, 1 1 R-R , (22)
¢ Emowf(ﬂ— z,)%— Emowg(z— 2,)?||1- R-R| z=7},R<R;
0, R>R;.

Here, Ry=R;1+ Ry denotes the elongation for the com- [0,z)) (because the equalig)=0 is reachegand[z},»)
pound system of two external tangent spheFeg, and Ry (due to the geometrical dependence

being, as defined before, the final radius of the daughter and Secondly, let us see the behavior of the limiting case ofthe
that of the emitted nucleus, respectively. It must be pointedystem formed by two spheres separated at infinity. Obvi-
out that for R>R; the termE,. vanishes in both regions ously, the expected level scheme of such a system must be
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the overlap of both the oscillator levels. Moreover, theber. The diagonal termn{=n or N'=N) leads to good
eigenvalues of the asymmetric two-center shell potentiaValues of the energies for the two-level schemes belonging to
must give for the well of the light fragment the following the two final fragments separated at infinity. The two nuclei,
values: in this asymptotic configuration, have the final radii; and
R,; which define the two frequencies; and w,. This
E,nm=fwa(vo+2n+|m|+ 2). (23) means that the term given by the relati@9) fulfils the
condition of adiabatic volume conservati@re., the volume
But, in the case of a potential obtained by the intersection og¢nclosed in an equipotential surface remains constat
a sphere with a spheroid, according to the relatib®, the  the beginning of the fission process, the introduction of the
asymmetric two-center potential gives the val&ds,,. The  term(24) has no physical meaning. Therefore a geometrical
unique way which allows the modification of the levels with correction is introduced as in the former case in order to have
exactly the valu€, »—EY,, after a proper diagonalization @ progressive vanishing towards the beginning of the decay

in the eigenvector basis of thg, potential is to define a term process. Finally, the term of th'e Hamiltor)ian_due to the mass
of the form asymmetry shows the following behavipusing relations

(22) and (29)]:
Eac(p)=Mowi(wy— w1)p?, 2=7p, (24

R-R
Eic(2)+ mEzc(P). R<Ry

in order to obtain in the final stage of the process Vadp,2)= (25

(ny,n’,m’|Exc(p)|nzz,n,m) E1c(2) +Exc(p), R>R;.

In Fig. 5 the intersection of the potential energy surface
=fi(wy— w){(2n+|m|+1)8,, 9 P 9y

V=Vt V zsalong thez axis is drawn for different values of

—~[(n+1)(n+|m|+1)1¥28 141 the distar?ce between centers. _
" The third term in the relatio2) is V,(p,2z). It takes into
—[n(n+[m)]"8n-1}8nr n,, Omm- account the variation of the potential in the presence of a

neck. It is derived using the condition of an equipotential
The off-diagonal parts of this expression with=n=1 or  value on the nuclear surface defined geometrically. So the
N'=N=2 (becauseN=2n+|m|+n,) will not affect the two-center potential for shapes with a neck is written in the
asymptotic results becaubebecomes a good quantum num- form

(1 1
Emowi(z+z1)2+ Emowipz, ZSZp
1 —Zq
EmoRiwi+ 5Mo w%’L(w%_w%)ﬁ {p*—{pa— SRS~ (2-29)°1"3%, z1<2<7
Va(p.2)= ) - (26)
c2
3 MoRgwa+ 5 Mo Wit (@i w3)o———|(p*~{pa~ SIRE— (221", zp=2<2g
C C
1 1
\ Emowg(z_22)2+ Emowgpzy Z=Zcp.
|
This potential satisfies several conditions. First, on the Vo(p,2)|=V2(p,2)|
nuclear surface, the potential is constant and its value equals 72y-2-0  z-2[—0

Imyw3R5=imyw3R?. This behavior is provided by the fact
that the second term of the right side of E6) in the
regionsze; <2<z andzo_$z< Ze vanishes whep ree_lches The behavior of this potential is depicted as contour lines in
the valuep, (corresponding to the surfacesecondly, in the Fig. 6.

planes of separation defined by the valugs and z;,, a
continuity of the potential is reached, which means

!

< ’
ZZ0

>
ZZO

For the limit case, wherC=0 fm~?

interval another formula is deduced:

, in the (2¢1,2c)

VO(p,z =V9p,z for i=1,2.
n(P )|Zc|* —0 n(P )|zfzci—>0 0 _ 1 2 o 1 2 2 2 L7 21
2<z, >z, Vi(p,2)= §m0R1w1+ Emo wit(w;— wl)zcz_zc1
Thirdly, in the neck region, a linear variation of the value x{p?—[a(z—z¢)+b]?}, (27

is realized fromwi to w§ leading to the disappearance of the
cut in the potential defined by the relati¢20), which means where the parameteessandb are defined in relatioflb).
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2 (fm)

FIG. 6. Contour level values for the potentisf . The two
centers are marked with crosses. The normalized elongation is
R,=1 and the neck parameterf®s=4 fm. The mass asymmetry is
the same as for the spontaneous emissiof*@ffrom ?>°Ra. The
values of the equipotentials are from 5 to 250 MeV with steps of 5
MeV.

TS s YisTie s o s
z (fm) z (fm)

Ls=3(LTs +L s")+L,s, (30

with L taking a special form adapted for the very asymmetric

FIG. 5. Intersections of the potential energy Surfaceprocess:

Vs=Vy+ V4 along thez axis for different values of the distance
between centers. The normalized coordinate of elongation L=VVOx p. (32)
R,=(R—R))/(R{—R;) takes the values 0, 0.25, 0.5, 0.75, 1, and
1.25 for the casea), (b), (), (d), (e), and (f), respectively. The

L4 emission from?2Ra is treated. In this context, the definitions &f” and wg; must reproduce

the energetic values of the asymptotic levels for both poten-

The meaning of the geometrical notations involved int'al wells. So these quantities are constructed as follows:

these equations is easy to understand by inspecting Fig. 1. w2+ Yhoge?, 7<)

Now a relation for the term in the Hamiltonian which char- VO(p,2) = (32)
acterizes the variation due to the existence of a neck can be Thool?+ S hoge?, 7217,
written:
_\/0 _\/0 having az-dependent oscillator frequency
Via(p,2)=Vn(p,2) =Vadp,2). (28)

. . w1, z<< 26
In this way, a term due to the presence of the neck is intro- wo = (33
duced in the potential. (w02 z=2],

Both spin-orbit and_? operators were constructed to re-
prOduce the Single partiCIe levels which are known for ain terms of the stretched coordinates
single sphere and for two spheres separated at an infinite

distance. The next formula is deduced for the spin-orbit cou- a,(z+zy), z<g 24
pling: {= axz-2p), 727, (34)
iy / —
- ,Ls¢, Z<Zo @ = apip,
Mowo1
VLS(pYZ!(P): % (2 ) . , . .
LY L 7= and withw,= w,R(R1s— R1)/R1(R1s— Rp) having a varia-
Mowgy' |’ 0 tion from wq up to w,, in the overlap region of the frag-

ments.
where {A,B} denotes the anticommutator required for the In a similar manner, by imposing the condition to repro-
matrix element symmetrization. The prodls gives duce the asymptotic levels, the? term is found to be



54 SUPERASYMMETRIC TWO-CENTER SHELL MODEL FR. .. 309

V|_2(p,Z,<,D)
1 hKlILLl N1+3
— L2} 45 Ny ——, z<2z
B { ZmSwélwl’ K103 Ny 2 0
1 ﬁsz,LZ , N2+3 ,
[—Em,l_z "rﬁKz/.szzNzT, 2=17,,
(35)
with
2 1 +1 - -1 + 2
L2=Z(LFL +L7L)+LE, (36)

According to the existing shell mod€]8,9,12,14 the varia-
tion of the interaction constants for the spin couplings isy (j=1,2)=

considered as follows:

w1— Wy
a(im1)= FUETRIIT O T gy
Ki, 0= W,
w1~ Wo
a(i=1.2= Mo"'(Mi—Mo)—wlf_wO, ®;< W1 39
Mi W1=W1f,

wherewq:=w1R;/R4¢. So a gradual variation from the ini-
tial to the final state is accounted for by these constants. Th
procedure to obtaimMN; with respect to the elongation is a

little more complicated. This value corresponds to the majo

Heren, is an integer representing the quantum number along
the z axis for the spherical parent nucleus whitg;
(i=1,2) characterize this quantum number for the same level
after the asymptotic separation into two fragments.

The last termV, is a constant which compensates the
disadvantage that the harmonic potential gives the single par-
ticle levels only up to a constant. In the most general case,
we must use three constants for the parent, daughter, and
emitted nuclei, respectively. These constants are denoted in
the text asVyy, V¢, andV,, respectively. During the de-
formation, a variation of these constants in a similar way as
described in Eqs(37) and (38) is followed:

V +(V _V )— wi<w
i ’ 1 1f
cO Cl c0 ¢ ( 1 l)

Vei, 01= 05 .

It is necessary to point out that;; is added with respect to

i =1,2 taking care to identify every level in association with
its localization in only one of the two potential wells ob-
tained in the final stage of the process.

The final level scheme is obtained by the diagonalization
of the potential(2) with Vg, Vas, Vi, Vis, Vi2, and V.
given by the formulag3), (25), (28), (29), (35), and (41),
respectively, in the eigenvector basis shown by the relations
%5), (6), and (7).

All the interaction constants, w, andV. are determined

l1from the relation available for spherical nuclei:

guantum number for each of two nascent fragments. For the

asymmetric two-center shell modé\, is no longer a good
element
(v',n",m’,s’IN;|v,n,m,s) is computed, different values for
N; and N/ must be taken into account. Because these two
values do not coincide the following approximation is used:

guantum number. So when the matrix

N;=(N;N/)*2 (39
in which

Wif— Wy R<R
N_nz+nzi+(nz_nzi) — ) f
Wi~ Wo

N_nz+nzi, RZRf

(v',n",m’,s'|V.dp,2)|v,n,m,s)

Cc,C
mo ]
= 0s/sOm'm 2 (

+ wi(zz‘*‘ ;)

where

T| wl(wz_wl)ln’nm(Pz)j(VévVvaz_f(,))G(R)"' Snn T

2
a—2[| V1.6, | vé,l,vz,(fz—g(’))G(R)]+(22+ 2)[j(vy,v2,&) = j(v;,v2,E— £5)G(R)]

3 o 3
E=tow N+§ —khw J(J+1)_I(I+1)_Z
N(N+3)
—kuho |(|-1—1)——2 )—VC, (42

where well known notations are used.

C. The matrix elements

The matrix elements for the term which characterizes the
asymmetry are

w1 w%
[ 20,6, Vit 20y (6, £ G(R)]

)

2
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&r=ay2,, (44)
§o=azp, (45
1, R>Rs
GRI={ RR o o 49
Ri—R;
ey = L e H, ()81, ()¢
0
$o 2 -1 , -1
== S e &)H,(—&)éo Hu(—E)+ v g1t Vhi-to-1gt S oi- 204, (47)
In’nm(l)z):f0 Rn’m(P)PZan(P)PdP
1
= ?{(zn"i'|m|+1)5n’n_[(n+1)(n+|m|+1)]1/25n’n+1_[n(n+|m|)]1/25n’n71}- (48)
1

Performing the calculations it is useful to remember thand m are good quantum numbers. The matrix elements of the
spin-orbit term are

! At ! ! hk ﬁKl j(Vilyllgl)
<v ,n’,m’.s [_mowOi'LZSZ} v,n,m,s>=—2ﬁsm55,35m,m5n,n{mowim Co
i (v5,v2,€2) —[(v5,v0,E,— &
‘c,c, J(v2,v2,86) —j(vy,v2,6; fo)}
2 2 ay
ﬁK .(V,1V 15 _gl)
+m0w%—2, v V]“# (49)
m0w2 2 2 a’z
and
ik
v',n’,m’,s’|{ — ,LTs™(|v,n,m,s
Mowo;
A c,C,
2 2 K1 1"y, .,
=—10s' s 10m m+1 _mow1mowo1 a [3] (v, vt L&) —vaj(vy,v1—1.61) —T(é)]
C,.C,,

+ a — 3 [i(vh, vt L&) — (v, va+ LEY T+ wol j (w5, v2— 1,E2) = [ (v5,v2— LED 1+ T (&) — T(&p)}
thzc”écv2 1i01 . , , 12 12
_mowzm—,[_5J(V27V2+1,§o)+VzJ(Vz.V2_1,§O)+T(§o)] [(n+]m[+1)"8y n—n"28, n_4]

wo &2
fiky C”ic"l I .y
+ _mowlmow()]_ - @ [7i(vy, v+ L&) +vij(vy,v1—1.61)]
Cvécvzal

+ T{ 2Li(vp,vat 1,E2) = j(vp,vat LEQ) 1+ vl (v, v2— 1,E5) = (5,72~ 1,6p)]

hKZ Cvécvz

1 o :
_mowz a—z E](Vz,V2+ 11§O)+ VZJ(VZ’VZ_l’go):|:|

+012(|Zl|+22)[j(VéaV2-§2)_j(Vé,Vz-gé)]}> _mowg

X[(n+|m|+1)1/25n/,n+n1/25n',n—1]] (50)
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where must be done for at leadl,,,,= No.+ 2. The truncation ef-

> fects imply some minor variations at the beginning of the

T(&)= exp—¢ )H (—&H, (—&). (51) fission process around t_he true values expected from an ad-

2 1 1 equate spherical potential of the parent nucleus. These are
removed with an additional linear fit defined only for the
The anticomutator needed for the symmetrization of thespherical initial shape and which is introduced in the numeri-
spin-orbit coupling involves the existence of a Heavisidecal program. Finally, it must be mentioned that the condition
function. The application of the/dz operator on this step of volume conservation is taken into account during the

function produces finally the term&(€). whole process.
To deduce the above formulas the following integrals are
also used: IV. RESULTS AND CONCLUSIONS

- The STCSM is used to obtain the energy level diagram of
In’nm(p):f Ro'm+1(P)pRam(p) pdp the hea;/Zy-ion sponta.neous emissionlé’ﬂ:.from t.he parent
0 nuclide ?*Ra. According to the rule mentioned in Sec. Il A
which defines the asymptotic quantum numbers with respect

1 -

= [ Syn(n+|m|+1)Y2=5,,,_1nY?] to the initial ones, for the cutoff procedure the value
ay Nma=9 is chosen.

— (p) (52) The values of the spin-orbit and? coupling constants
n’nm’ )

together with those for the depths of the wells are
" d k=4.837X10 2, k;=4.979< 10 ?, k,=0.217, x=0.4709,
In,nm(d/dp)=f Rom+1(p) =—Rnm(p)dp n1=0.3959, andu,=—0.437, slightly different from those
0 dp used in the literature[10,17,18, V.=56.67 MeV,
V.1=55.12 MeV, andV.,=54.86 MeV. The parameters of

:_ailn’nm(P)+m|n’nm(P_1) : ; ; .
this two-center potential can be determined by fitting the

—2a,nY28,,,_1 experimental single particle levels near the Fermi energy for
the spherical shapes of the parent, the daughter, and the emit-
=lnnm (d/dp), (53  ted nuclei(and not for the compound system at an infinite
distance as is usually done
I, -1 ZJ R. -1R do=1. (p~1). A first look at the results reveals some general behaviors
o) wm+1(P)P Ram(p)pdp =l nm (P~ ) represented in Fig. 7. Here the energetic levels during heavy-

(54 ion emission are displayed. A normalized coordinate of the
elongation is used®,=(R—R)/(R;—R;). In this example,

The integrals for negative values of the magnetic number arge nclear shape parametrization is obtained by the intersec-

available using the szubstituti0|rm’=—|m|—.1 in relations  ion of two spheres, i.eR;=0 fm. When the normalized
(52—(54). The factori” from theLs expression is contained  g|gngation takes a zero value, only the single particle states
In k.

of the spherical parent nucled$Ra are present. Otherwise,
for the asymptotic value of the elongation, the superposition
of the single particle states for the daught8fPb and the
emitted *“C is recognized. The single particle levels are la-
beled by their spectroscopic notations on both sides of the
(k'|cO;0,]k)=2, (k'|cY20,|K")(K"|c*20,|k) (55  picture, adding the superscrigt for the heavy fragment and

K the superscript. for the light one. In Table | the identified
final levels are presented together with the corresponding
initial values.

In a simple minded interpretation, the heavy-ion emission
is somewhat equivalent to forcing some correlated nucleons
(v',n",m’,s'|cL*L"|v,n,m,s) having small values of the total spin to emerge from the
initial nucleus. In the case of‘C emission, the spins in-
volved are up ta)=3/2, the occupied shells in their final
ground states beings},, 1pY,, and 1p5,. Moreover, it is
expected that these removed nucleons have final energies
X{v",n",m"|sg|c|¥2L " |v,n,m) close to the initial values. In Table I, these expectations are
accomplished. As an examples&:].2 comes from f,, and
not from 2p5, as the usual asymmetric two-center model

If the matrix elements oL.™ and L~ are known, it is
straighforward to obtain the matrix elements of theinter-
action using the general relation

where O; and O, are two operators and is a scalar. A
generalization of this last relation is used becacsmn be
either negative or positive:

:% 2 {(V',nl,m/”C|1/2L+|V”,n",m”
" n

v',n" m”

+<V/,n/'mrlsg|c|l/2l_+|vlr,nn’m//

X (v 0", m||c| Y2~ |v,n,m)} (56) model predicts.
At the beginning of the fission process an increase of
wheresg=sgn(c). almost all the energy level values is observed. This trend

Let N, be the principal quantum number which labels themanifests itself up to a given value of the normalized elon-
first occupied level below the Fermi energy. Having in mindgation, which in this case is about 0.3-0.4. Up to this value,
that states withN’'=N=2 intervene in the calculations of it could be considered that the system advances having bulk
the matrix elements, that means the cutoff approximatiorproperties. Afterwards, enlarging the distance between the



312 M. MIREA 54

E(MeV)
g;}; 0 B %1«5/2‘
iﬂgﬁ i g,‘ 1%' 201/2
ez _g = 1p1/2+
P . /2
- 215,
r FIG. 7. Level scheme for the
b7 = 1/2 e e
s / vl spontaneous emission from
e —— —— — wz > 22Ra with respect to a normalized
15 0 L == f\ % —~> 159/ elongation R—R)/(Ri—R),

199/2

e where R is the distance between
73 the centers of the nuclei,
sz R =1.16(AY*— A} fm is the ini-

?%

2p1/2

¥p —25

F 7
e F .2 lial value of the elongation at the
L OF #E " beginning of the process, and
i — NV Ri=1.16(A1*+A)% fm is the
-35 - elongation at the scission point.
L 1p1/2" .
w2 C 15372 The value ofR; is 0 fm.
/2 —40 |-
_45 C 151/2°
w2 = e N N N T U T

1.8 1.8 2

o
(=]
N
(=]
'S
o
(=2

"R=R)/(R=R)

TABLE I. The levels in the final stage of the disintegration process with respect to their initial values. The spectroscopic notation is used.
The levels belonging t3°*Pb have the superscript (heavy and those belonging t&'C have the superscript (light).

Initial Final level with respect td)

level 1/2 3/2 5/2 712 9/2 11/2 13/2 15/2
1s1/2 1s1/2"

1p3/2 1p3/24 1p3/2H

1p1/2 1p1/2H

1d5/2 1d5/2" 1d5/2" 1d5/2"

1d3/2 1d3/2" 1d3/2"

1f7/2 1s1/2- 1f7/24 1f7/2" 1f7/24

2p3/2 267/28 2p3/2H

1f5/2 2p3/2" 1f5/21 1f5/21

2p1/2 1f5/2H

1g9/2 2p1/24 1g9/2H 1g9/2 1g9/2 1g9/2"

2d5/2 1g9/2H 2d5/2" 2d5/2M

197/2 25/2H 1p3/2- 1g7/2" 1g7/2"

3s1/2 1p3/2-

2d3/2 1g7/2" 1g7/2"

1h11/2 F1/2M 2d3/2" 1h11/2" 1h11/2" 1h11/2" 1h11/2

2f7/2 203/2" 1h11/2" 2f7/24 2f7/24H

1h9/2 th11/2" 2f7/24 1h9/2" 1h9/2" 1h9/2"

3p3/2 27/21 1h9/2"

2f5/2 1h9/2" 3p3/2" 2f5/2H

1i13/2 J3/2H 2f5/2" 1i13/2" 1i13/2% 1i13/2% 1i13/2* 1i13/2"
3p1/2 25/2H

299/2 113721 1i13/2" 2g9/2H 2g9/2H 2g9/2"

1i11/2 P1/2" 2g9/2" 1i11/2H 1i11/2" li11/2" li11/2

1j15/2 1p1/2- 1i11/2" 1j15/24 1j15/24 1j15/24 1j15/2* 1j15/2% 1j15/2%
3d5/2 299/21 1j15/2" 3d5/2"

29712 li11/2" 3d5/2" 2g7/2" 2g7/21

4s1/2 x1/24

3d3/2 1j15/2% 2g7/2"
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is depicted in Fig. 8 where levels with a given projection

~ 0 ~ 0
g % ;Z; F |Q| of the total angular momentum are displayed separately
* S ¥ = for comparison. Note that a double degeneracy in the angular
R —— e R j; — momentum projection is always present. So, from now on,
ﬁ Q will indicate its absolute value. The Nilsson model estab-
- v T lished as a general rule that on enhancing the prolate defor-
w40 f —40 mation, the orbitals with a lower projection of the total spin
L (c)‘ O=1l/2 L (b)‘ o=3(2 are displaced toward smaller values of the engfigfj. This
0 oa 08 G2 16 2 0 04 08 12 05 2 rule is no longer valid for the superasymmetric fission pro-
o (R-R)/(R—R) o (R-R)/(R—R) cess involved here. The levels with the spin projection
3 : 3 : = Q=1/2 show a more pronounced variation toward high en-
= % P — ergy values at the beginning of the process. Moreover, for a
DY e— Y St — given projection of the spin, two kinds of behaviors are evi-
] r o — denced. In the lower part of the energetic schefhich
S — i means for levels from shellss],,, 1ps,, and 1p,,) the
-40 —40 levels present a smooth variation between the initial and the
I (c) 0=5/2 i (d) 0=7/2 final states. This behavior is no longer seen for the levels
PR S S S [ Y P P existing in the middle part of the energetic diagram, where
0 04 08 12 16 2 0 04 08 1.2 16 2 .. L . . .
(R=R)/(R—R) (R—R)/(R~R) the proximity of the %7, level, which will be placed in the
% s O] second potential well in the final stage of the process, per-
s g turbs intensely the other orbitals with the same spin projec-
o I tion. Theoretically, if the asymmetry terivi,s vanishes, the
- level 1s'i,2 must originate from p5,. But a rearrangement
i of the levels shows that the origin ofsy, is 1f;,. The
_s0 L _a0 [ Landau-Zener effector mutual rejection effegt which
(©) 0=9/2 c 0 —— =132 avoids the intersection of levels with the same projection of
[ e [ a=ie2 the spin(regarded as a good quantum numbés respon-
0 04 08 12 16 2 0 04 08 12 16 2 sible for this behavior. Also, fof)=1/2 two levels become
(R=R)/R=R) (RR)/(Ri=R) almost tangent aR,~0.2 (i.e., 1i;;, with 2gg, and s,

_ _ with 1g;,,) and another three very pronounced avoided level
FIG._8. The levels of Fig. 4 are plotted separately with respect ®rossings can be observed Rt~0.8 (29, with 4s,,; 2
the projection of the angular momentum. In the casgs(b), (), ¢ with 1hy,; 2ds, with 3sy,). For elongations beyond
and(d) I_evels with the values of) 1/2, 3/2, 5/2, a_nd 7/2 are o_Irawn, the touching point, the crossings are not important. In Fig.
1 i o e ot s o 8) he levels wih) =32 are ploted. AR,C[0.6-08
=13/ is ploted with a full line and 15/2 with a dashed line,  1"€€ VEry pronounced avoided level crossings are présent
" iqqpWith 1j 455, 3p3 With 1hg,,, and %15, with 3ds;,). The
levels with energetic values below that df;}% reach almost
two centers, the energetic values of some levels reach in Bonotonically their final values while a strong variation near
continuous way the asymptotic final values while the otherghe scision point region can be observed for higher levels. In
start to diminish sharply. The decrease in energy of thes&ig. 8(c) the levels with(Q)=5/2 are plotted. AR,~0.3 we
levels near the scission point leads them below the asymgind one very pronounced avoided crossing betweign,,1
totic value. This behavior indicates that very asymmetricand J5,,. The perturbations, which are understood as very
prolate deformations are very improbable at the beginning o$harp variations in this context, around the scission point
the fission process. Indeed, the deformation energy, regarddeegin to be manifested for energies greater than that of the
as a sum of single particle levels, increases strongly. 2ds, level. In Fig. &d) the levels withQ=7/2 are plotted.
Certain energy levels are smoothly behaving whereasiere, the perturbations are observed beginning with the 1
other energy levels get more bound in the neighborhood of 5/, level. The levels with(0>7/2 are almost unperturbed
the touching configuration. This behavior is suggested by thand reach their final values continuously.
variations of the numbers,; with respect to the elongation A numerical analysis accomplished with the two-center
[see Fig. 8)]. The parametrization used in this context pre-potential, which means ignoring the terivis; andV, 2 in the
serves the radius of the emitted fragmeR$) constant. That total Hamiltonian, indicates that the spin interactions are re-
implies a constant value ab, during the process. So the sponsible for a strong decrease in energy of the levels be-
energy of a given state is directly proportionalitg accord-  longing to the second potential well around the scision value
ing to relation(18). In the vicinity of the touching configu- of the elongation R,~1). This decrease in energy of the
ration, some numbers,; reach lower values than the same emitted nucleus levels involves variations of the neighboring
asymptotic ones. For example, this variation achieves a ddevels with the same projection of the spin according to the
crease of the energy of about 2 MeV for the levels characmutual rejection effect. Remembering that, f§>0.5, at
terized with the numbers,; and v,,. These trends are en- least half of the light fragment volumé, is already outside
hanced after the diagonalization. the parent nucleus and that the addition of itfeterm in the
A more detailed description of this kind of disintegration Hamiltonian can be partially interpreted as a simulation of a
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sudden rise of the potential on the surface, we can therefolBut the incoming 1,5, has a first avoided crossing with
interpret the energetic variations around the scision point asi,,;, at R,~0.5 and produces the first favored transition of
surface gffects. o _ _ the last nucleon. Another very pronounced avoided crossing

Transmon_s between levels with different spin are |mp_rob-is realized aR,~0.8, producing a great probability to have
able for a single nucleon. For an even-odd nucleus, if thgy transition to 8s,. The final levels of the last nucleon
system is not excited, the specialization effetd] explains o4 pe Yy, as well as Iy, or 1jisp,. It is known that
et o e g . N 1 spn 32 cmergng oM, That epresens

P a qualitative explanation for the fine structure in thC

sitions which do not follow the Geiger-Nuttal law. The spe- ~_ L 2 ;
cialization effect fails to describe the experimental transition.radloaCt'V'ty of **Ra. Indeed, the experiment shows that the

rates observed in the fine structure of #éRa cluster decay intensities of the above mentioned transitions are 11% for the
because it considergdiabatically the favored transition to 2 ground state 9/2, 81% for the first excited state 1172

the ground state of°%Pb. at 0.779 MeV, and 4% for the second excited state 1P

It is possible to explain the experimental result by quali-1-423 MeV. Recentl§20], new experimental work partially

tatively by appealing to the Landau-Zener promotion mechacontradicts the previous results, claiming that transitions to
nism, i.e., considering an enhancement of transitions in théhe 315, orbital are hindered. Nevertheless, this schematic
region of the avoided level crossings. So, as shown in Tabldescription provides some information in understanding the
I, for Q=3/2, the level 1,,,, reaches @i, asymptotically. heavy-cluster decay.
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