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Interplay between one-body and collisional damping of collective motion in nuclei
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Damping of giant collective vibrations in nuclei is studied within the framework of the Landau-Vlasov
kinetic equation. A phenomenological method of independent sources of dissipation is proposed for taking into
account the contributions of one-body dissipation, the relaxation due to the two-body collisions and the particle
emission. An expression for the intrinsic width of slow damped collective vibrations is obtained. In the general
case, this expression cannot be represented as a sum of the widths associated with the different independent
sources of the damping. This is a peculiarity of the collisional Landau-Vlasov equation where the Fermi-
surface distortion effect influences both the self-consistent mean field and the memory effect at the relaxation
processes. The interplay between the one-body, the two-body, and the particle emission channels which
contribute to the formation of the total intrinsic width of the isoscaldr @nd 3~ and isovector 1 giant
multipole resonances in cold and hot nuclei is discussed. We have shown that the criterion for the transition
temperatureT,, between the zero-sound and first-sound regimes in hot nuclei is different from the case of
infinite nuclear matter due to the contribution from the one-body relaxation and the particle emission. In the
case of the isovector GDR the corresponding transition can be reached at temp@&atute5 MeV.
[S0556-281®6)05112-9

PACS numbes): 21.60.Ev, 24.30.Cz

I. INTRODUCTION proximation, the fragmentation width coincides with the
width obtained from the one-body relaxation mechanism.
The interplay between different relaxation mechanisms ofiii) The emission of the particles into the free space.
collective motion and their dependence on the temperature in To account for these three relaxation mechanisms in the
many-body systems is a subject of wide investigafibré]. evaluation of the GMR width we propose in Sec. Il a phe-
In the present paper we consider the damping of the nucledlomenological approach. We take into account the two-body
multipole vibrations within the semiclassical Landau-Vlasov(collisiona) damping exactly, incorporating into the collision
kinetic theory. Semiclassical methods seem to be quite inintegral the memory effects associated with the mean-field
structive for an investigation of the averaged properties o¥ibrations. The one-body relaxation and the coupling to the
the multiparticle systems. In many cases, they allow us t¢ontinuum stategparticle’s emissiohare taken into consid-
obtain analytical results and represent them in a transpareftation approximately by adding to the Landau-Vlasov equa-
way. tion some source terms. These source terms are assumed to
In what follows we concentrate on the investigation of thebe independent of each other. They characterize relaxation in
contributions of different relaxation mechanisms to the in-a given channel only in the absence of all other damping
trinsic width of the giant multipole resonan¢&MR). We  mechanisms. All source terms are included in the form of the
determine the intrinsic width as formed by three mainrelaxation time approximation. The total change rate in the
sources{(i) The relaxation due to the coupling of both par- distribution function is taken as a sum of the change rates in
ticle and hole to more complicated states lying at the sam#arious damping channe{;dependent dissipation rates ap-
excitation energy. This is the so-called two-body collisionalProximation).
damping. In the kinetic theory, this type of relaxation is In Sec. lll the relaxation times in one-body and two-body
simulated by the collision integral and leads to the collisionaldamping channels are analyzed and the intrinsic width of the
component of the intrinsic width(ii) The fragmentation GMR in cold and hot nuclei is calculated. We also discuss
width caused by the interaction of particles with the time-the interplay between different damping channels which con-
dependent self-consistent mean field. In the quantum randoffibute to the formation of the total intrinsic widths of the
phase approximatiofRPA) calculations this contribution to GMR. The numerical results and general discussion of the
the width does not reflect a motion of system towards thénass number and temperature dependences of the different
thermal equilibrium but indicates rather a redistribution ofrelaxation mechanisms are presented in Sec. IV. The conclu-
the particle-hole excitations in a vicinity of the collective Sion and summary are given in Sec. V.
state. In our kinetic approach, we will imitate the fragmen-
tation vv_idth by the one-boqy‘wall” ) re_Ia>_<ati0n. In agree- Il. WIDTHS OF GMR WITHIN THE INDEPENDENT
ment Wlt.h the above-mentioned pequhanty of the_ fragmen- DISSIPATION RATES APPROXIMATION
tation width, the one-body relaxation is conceived as a
dissipative phenomenon only if the observation time is We will start from the Landau-Vlasov equation for the
shorter than the Poincare time. Note also that it was shown iphase space distribution functidir,p,t), completed by a
Refs.[7-9], in the classical limit for the random phase ap-source termJ({f}) for relaxation processes. The two-
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component nuclear Fermi system has both the isoscalar and J({ ot} =3.({of}) +Is({8FH) + I, ({5F}), (6)
isovector excitations. In quantum calculations these excita-

tions are distinguished by the isospin quantum number. Ihere J ({5f}) is the collision integral for the two-body
macroscopic approachésee, for example, Ref$10-13)  collisions,J¢({5f}) determines the change in the distribution
the isoscalar and isovector modes correspond to the in-phasgnction resulting from one-body relaxation, add({sf})

and out-of-phase motions of neutrons and protons, respegakes into account the possibility of particle emission.
tively. That means that both modes can be described in termstrictly speaking, the relatiof) is valid only approximately

of the distortions of the distribution function in the form sjnce it suggests that any relaxation mechanism, in the ab-
8t(5)=sf , = 5, with &f ;= = 5f,,, where the subindices  sence of the other ones, drives toward the same final distri-
or n label protons or neutrons and the plus or minus sigrbution function.

denotes the isoscalar or isovector modes, respectively. Ne- We now comment on the one-body relaxation and the
glecting a small difference in the chemical potentials for pro-possibility of treatment of this one as a source term in the
tons and neutrons and assumirfg,=f,,=f, where kinetic equation. In a system like a nucleus, where the self-
fo=fo(r,p) is the equilibrium distribution function, we write consistent mean field decreases sharply in a small region of
down the linearized two-component Landau-Vlasov equationhe coordinate space in comparison with the bulk dimensions

in the form of the system, one can define a surface. In this case, the
problem of solving the kinetic equation in coordinate space
g5f =) WP 98f=) Vg a5t gsvt®) oty is equivalent to a boundary value problem with some bound-
gt m  ar E a  ap ary conditions on the surfadd7,18. Considering this sur-

face (more precisely the parameters describingai a col-
=J=)({sf,, 8.}, (1)  lective variable, the process of energy exchange between the
inner (particles and collective(surface degrees of freedom
where sV(*)=sV(=)(r p,t) is the Wigner transform of the can be described as a relaxation of the collective motion. In
variation of the self-consistent potential with respect to thethis sense we can talk about the presence of relaxation even
equilibrium valueV,. In the nuclear interior the mean field in the collisionless Landau-Vlasov equation. The origin of
variation 8V(*) can be expressed in terms of the Landauthis relaxation is the collision of the particles with a moving
interaction amplitudd=(*)(p,pr) as surface and this type of relaxation is related to the fragmen-
tation width of the collective states in quantum calculations
W(i)_ij dp’ E(5) N 5f() - 2 like the RPA(see corresponding discussion in previous sec-
“Ne) (27h)3 (P.p") (P30, (@ tion). In fact, this type of relaxation in a transport theory is
governed by the boundary conditions imposed on the surface
where Ng=2pem*/(g7?43),pe is the Fermi momentum, of the systen[19]. For instance, the wall formulg20] for
m* is the effective mass of nucleon, agds the spin degen- dissipation energy in a semi-infinite Fermi liquid results
eracy factor. The quantity(i)(p,p’) is usually parameter- from the boundary conditions of the specular reflection of

ized in terms of the Landau constam§~) andF{*) as particles from the moving surfa¢é7,18,21-23 Below we
will consider only this variety of the one-body relaxation and
|:<i>(p,p')=|:gi>+|:(li>(f,.@f). 3 call it one-body wall dissipation. It was shown in Refs.

[24,25 that the problem of finding a solution of the kinetic
In the isoscalar case, the Landau constants are related to tequation with the boundary conditions of the specular or
incompressibility moduluk =220 MeV [14] of matter and diffuse reflections is identical to the problem of finding a

the effective mass* =0.8m [15] by solution of the kinetic equation with source terms. Thus, at
least for the boundary conditions of the specular and diffuse
K=6u(l+ Fg“), m* =m(1+ F(1+)/3). (4) reflections one can simulate the one-body wall dissipation by
a source term as it was assumed in E4s.and (6).
Here m is the mass of free nucleon andis the chemical We will consider the termdg({5f}) andJ;({5f}) in Eq.

potential. We have thagi~ e =pz/2m* for T<ep, where  (6) within the relaxation time approximation of the form
e is the Fermi energy and is the temperature. In the is-

ovector case, the Landau paramefdy ) is related to the 3({6t}) = — sf(r,p,t) 3,({8) = - of(r,p,t)
nuclear symmetry energpgym,~30MeV [10]. Namely s s 1 Te
[16],

)

Here, 75 is the relaxation time corresponding to the equili-
. (=) bration of the system due to the one-body wall dissipation.
bsymm_§'“(1+ Fo ). (5 The particle emission relaxation timg is determined by the
life time of the collective excitation with respect to an emis-
To simplify the presentation, we will omit in the following sion of particles into the continuum. The choice of both re-
the superscripts%) and include them only when it is nec- laxation times will be discussed later.
essary to avoid confusion. We point out that the one-body source telg{ 5f}) does
The right-hand side of Eq1) represents the change of the not contain the components with multipolarities=0 and
distribution function due to relaxation. In this work we use /=1 for the distorted distribution functio8f in momentum
the approximation of independent dissipation rates. Namelyspace because of the conservation of the number of particles
we assume and the total momentum. In the case of the particle emission
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term J;, we neglect the components with=0 and 1 ex- Qup=—Pupl m2(wo, T) =P gl 7= P gl . (12
pecting that, at not too high temperatures, the emission of
particles does not change essentially the mean particle dedhus,
sity and the current density in the nuclear interior. Note also

that the collision integral in the relaxation time approxima- Qap= _P“ﬁ/Teﬁ’ (13
F;g 2fﬂor one-body dissipation was used earlier in Refswherereﬁ is the effective relaxation time
For small amplitude eigenvibrations and small deviations 1/ 7en=1I7o(wq,T) + 175+ 1Ty . (19

of the momentum distribution from the Fermi sphere, the
collision integralJ,({6f}) in Eq. (6) can be linearized in Here,7,(wq,T) is the two-body collision relaxation time for
Sf and represented in the form of the generalizeabproxi- the collective vibration with eigenfrequeney, and at tem-
mation[6,11,28—3] peratureT in the case of quadrupole distortion of the Fermi
surface. It has the following forrf6,11,30—-34
of(r,p,t)

Je({of})=~ oo )’

(8) Ury(we,T)=[1+C, (hw/27T)2][7,(T), (15)

which is valid atT,fA wg<u= ez . The factorC,, in Eq. (15
defines the value of the relaxation timeg in the quantum
regionfiwg>T. The magnitude of this factor is discussed in
[6] and it is equal to

wherer(wq, T) is the relaxation time due to the interparticle
collisions andwg is the eigenfrequency of the collective
eigenvibrations. Thes dependence in Ed8) takes into ac-
count the retardation effects in the two-body collision inte-
gral J.({6f}). We point out also that the relaxation time C. =1, (16)
7.(wq,T) is different for the isovector and isoscalar excita-
tions. The components of the distorted distribution functionif one follows Landau’s prescriptiofi32]. The relaxation

of in momentum space with multipolariteg’=0 and time 7,(w,T) is frequency and temperature dependent. The
/=1 do not contribute to the collision integrdl({5f}) for  frequency dependence af(wy,T) is due to the memory
isoscalar excitation because of the above-mentioned consesffect in the collision integra(8). The temperature depen-
vation of the number of particles and the total momentumdence in Eq(15) arises from the smeared out behavior of the
However, in the case of the isovector mode there is the moequilibrium distribution functionf,, see Eq.(34), near the
tion of protons against neutrons in phase space without thBermi momentum. The quantify,(T) in Eq. (15) is the
violation of the conservation of the total momentum and thethermal relaxation time that will be discussed lafsze Sec.

dipole /=1 distortion of the distribution functioaf(~) also  II1).
gives nonzero contribution to the collision integral Equations(1), (9), and(10) coincide with the analogous
IOV 8f,, 8}, Egs. (1), (2), and (21) of Ref. [6], replacingJ({5f}) by

To begin with, we will consider in Eq(1l) the Fermi-  St(t). Therefore, the expression for the intrinsic GMR width
surface distortion with multipolarities’<2, assuming the TI' has to have the form given by E¢38) of Ref. [6] by

following expression fof(r,p,t): replacingr, with 7o. Thus,
2 2
—_~ " —_ W Teff —_
sf(rp,t)= 2 Sf (r,p)=2 8 (r,p,)Y,o(P). F=2cB<a>ﬁwo—l+aZi 2. C=B(SV/B(S).
/=0 /=0 0 /eff
© an

Here, Y,m(P) is the spherical harmonic function and Here the functiorB(S) is given by
p=p/p. In accordance with the result of our earlier wHes, 11 Ec2in_ 1
the widths of slow damped collective vibrations are deter- B(S)"'=15572=B(S)

mined by the relaxation tens@,; given by +[B(S) " =B(S) /[ 1+ (wgTen)?].

g dp (18
Qui | (P~ MU (P~ MU A((51)).

(10 The quantityS=wg/vgk is the dimensionless velocity of

sound wave in the Fermi liquid ang:-= pg /m* is the Fermi

We introduce the dvnamical component of the pressure ten\felocity. In the case of the quadrupole distortion of the Fermi
! u y ! P P u surface, see Eq9), one hag6,35

sor P,z associated with dissipative processes and given by

. =S+ [SI— SE[ 1+ (woTen)?], (19

dp
Prs=as| o (Pa- MUy S 4D

The quantityu,, is the Cartesian component of the velocity st‘/K/gmv?F, SrE\/[K+8(Ekin/P)eq]/9mU|2:- (20)
field u andp is the particle density.

Substituting Eqs(6)—(8) into Eq.(10) and evaluating the HereK is the adiabatic incompressibility modulus given by
contribution fromJ. using the method discussed in Rg§], Eq. (4), the subscript eq means that the corresponding values
one obtains are taken at equilibrium, and, is the kinetic energy den-
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sity in the case of a spherical Fermi surface. The quantities cos9= (P Pa),
S; and S, are the velocities of the first and the zero sounds
(in units ofvr and under the condition of quadrupole distor-  cosp=[P;X P,]-[P3X Pal/|[P1X P21I|[P3X Pall-

tion of the Fermi surfade respectively. It is necessary to

emphasize that, as it follows from Eq49) and(20), a con- . -

dition for propagation of the zero and the first sounds in a?S can be found from Eq$25)—(27), if the probabilityw of
finite system is determined by the magnitude of the paramthe two-particle scattering is isotropic in space, then the
eter wyre. The effective relaxation timegy, see Eq(14),  Magnitude ofd, is
includes the contributions from the two-body collisions, the

one-body wall dissipation, and the particle emission. In con-

trast, in an infinite Fermi liquid the analogous condition for and everywhere below we will use this value.

the propagation of sound waves is governed by the two-body It follows from Egs.(21) and (23) that in the long relax-

collision only[36,37]. We point out also that expressi¢hi) ation time regime, i.e., &7/A>1, the expression for intrin-
for the intrinsic width of GMR is obtained within the many- . \isth " has th'e ac;ditive forrr,1

particle model where the infinite-matter solutions to the
Land_a_u-VIasov equation are completed with some boundary I=T=2flr=T+T¢+T, (29)
conditions at a sharp ed(6,30,31.
As mentioned abovEsee Eq(9)], Eq.(17) is valid in the  where
case of the quadrupole distortion of the Fermi surface. In the
same manner as in Ré6], the approximate formuléL?) for U'e=2hl7., T'=2hlrs, I'1=2hI7;. (30
the width can be deduced by taking into account other mul- . ]
tipolarities of the dynamical distortion of the Fermi surface. The expression$29) and (30) for the width correspond to

Using Eqgs.(45), (51), and(52) from Ref.[6] one can write  those in the relaxation rate approximation when the interre-
lationship between different dissipation channels is ignored.

= As can be seen from Eq&1) and(23), in a general case,
=3, E=fiog, (21)  the total intrinsic width is not represented as a sum of the
1+a(Er/h) partial widths of separate channels in spite of the fact that
) relation (6) was used. This is a peculiarity of the collisional
whereE is the energy of the GMR. The cutoff factgrand | andau-Vlasov equation where the Fermi-surface distortion
the relaxation timer are given by effect influences both the self-consistent mean field and the
memory effect in the relaxation processes.

d2: 4/5,

I'=2qE

q~1/6S7~1/2(1+Fq)(1+F,/3), (22)

Ill. DAMPING PROPERTIES
Ur=1l7+ 115+ 1), (23 OF THE GIANT MULTIPOLE RESONANCES

The values of the GMR enerdy, the relaxation times in
different damping channels;, 75, and 7, and the cutoff
factor q are required for calculations of the intrinsic width

with [see also Eq(15)]

— —Ad = 2
Te=Up7a(wo, T)=a7o(T)/[1+C,(E/2aT)"] I'. As the GMR energ in Egs.(21) and(24), we use the
=7.(T)/[1+C(El27T)?]. (24)  phenomenologicah dependence dE obtained from a fit to
the experimental daf&88—41. The value ofg is determined
Here7.(T)=d,7,(T) and the quantitd, is by the Landau parametefFg, andF 4 of the nucleon-nucleon
¢ 2’2 2 interaction, see Eq22). As mentioned earlier, to apply Eq.
dp= (W) (W), (25) (21) for a description of both the isoscalar and the isovector

GMR one has to use two sets of the Landau parameters.

Namely,F§{") andF{") for the isoscalar GMR anB{ ) and

F(l_) for the isovector GMR, see Ed3). We will use for

F{*) and F{*) the values determined for nuclear matter

P [42,43.

<I>2(6,<p)=3sin4§sin2<p (26) (i) Collisional relaxation timeThe collisional relaxation
time 7., Eq. (24), depends on the thermal relaxation time

] ) ) ~T5(T). In a homogeneous Fermi system the relaxation time
defines the angular constraints for nucleon scattering withinz (1) is given by[30,31,44,4%

the distorted layer of the Fermi surface with=2 and the
brackets denote the averaging of the form 1

wherew is the probability for scattering of two indistinguish-
able particles near the Fermi surfd@6|. The function

—= f dpd¢ N({8FH) Yoo D) / f dpaf Yoy p).
B 1 (= ™ sing 72(T)
W):ﬂjo defo dcpmqf(a,@) (27) (31)

Here, JJUN({sf}) is the linearized Uehling-Uhlenbeck-
over angle® and¢ which are determined by the momentum Nordheim collision integral in the absence of the retardation
p; (j=1-4 of the colliding particles. Namely, effects[37]:
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JUNU s = lim J({5)). (320  the Fermi-liquid transport theory37,52,53, the lifetime
T>hwg 7,(€,T) is related to the linearized Uehling-Uhlenbeck-

. o ) Nordheim collision integra(32) as
The dynamical componed of the distribution function has

the form

Sf(p,r,t)y=—(afg/de) p(p,r)exyi wt). (33

_ 7UUN
e =JUUN({ 5F})1 5F. (40)

Using Egs.(31)—(34) and (40) and employing a standard
transformation of the Fermi-liquid theof6] for the calcu-
lation of the integrals over momenta in E&1), we obtain

Here the functionys depends only on the direction of the
momentum, and the equilibrium componégif the Wigner
distribution function is taken as the Fermi distribution

fo=1(1+exp(e—wp)/T}), (34 1/?2(T)=—dzrde(ofo/ae)[l/rp(e,T)], (41)
0

depending on the quasiparticle energy p?/(2m*).
The magnitude oF,(T) of Eqg.(31) can be represented in ©Of
the following general form at low temperaturés< u [6]:

2 (Tih=aT—? (T in MeV), 39 1/?C(T):—f0 de(dfoloe)[Ury(eT)]. (42

vv_here the quantityr in the case of the isoscalar mode is Notice, as it follows from the definition of,(e,T), Eq.(40),
given by the relaxation timery(e,T) in the low temperature regime
T<u is given by(see, for example, Ref37,54)

a<+)=56,2:/4772ﬁpv,:0'a\,. (36)
1
It is determined by the in-media spin-isospin averaged —_I_:,B{(e—,u)2+ wT?}, (43
nucleon-nucleon cross section, Tp(€,T)

where the parametg® does not depend oh and e. Substi-
tuting Egs.(43) and (34) into Eq. (41) and comparing the
Here, Tppr Tnn» and Tpn are the in-media cross sections for reSUlt.Of the |n.tegra.t|0n with the expreSSICBS), we find the
nucleon pairs with relative kinetic energy close to the Fermifollowing relationship between the parametersnd 8
energy. In Eq.(36) p is the nuclear matter density. In the B 5 _ 2
case of the isovector mode, there is an additional contribu- a=3/4md,B~15/16m"% 5. (44
tion frpm t_he (_d|pole distortion of the Fermi surface and theyya will now obtain an assessment of the paramgtessing
quantity « is given by the exciton model of nuclear reactiof&5]. Following Refs.
[56,57, the lifetime 7,(¢,T=0) at zero temperature can be
identified with the lifetimer*)(U) of the one-exciton state
whereo(")=0,/2. Thus, in the case of the dipole isovector having one particle and no hole at the excitation energy
mode there is an enhancement of the collisional width due t&/ =€~ €F,
nonconservation of the isovector current in the neutron-
. =0)= 1 =1N\ D)= e—

proton collisionsg34]. 7p(€,T=0) (U=INT(U=e—€p). (49

The assessments of the relaxation tir€T), and thereby
a, using the free space nucleon-nucleon cross sections
[11,45-48 opp=04,=2.5-2.7 fnf and o= onp=4.8— AP (U)=n, (npp,nph;U)
5.0 fn? and the nuclear matter densijiy=0.17 fm 2 give

Tav=(OppT onnt 2 o) /4.

a'7)=5 /4 pv (ot 5 ol 13), (37)

2
a'*)=4.6-4.9 MeV anda")=2.2-2.3 MeV. == IM2Ap([(ny+ Dp.(ny+ ;U] (46)
(38)

is the rate for the particle-hole pair creation due to the two-

Due to the Pauli blocking effect it is expected that the colli- - : L ) X
body collisions starting from the initial configuration con-

sion probabilityw in nuclear matter should be lower than the =™ : _ - )
one in free space. We will follow Ref§47-51 and use the @NING Np partlcltzas. andhy, holes, i.e..n=ny+n, excitons.
value of the nucleon-nucleon cross section in-medium to ba "€ duantity|M|* in Eq. (46) is the mean square matrix

smaller than the cross section in free space by a factor dfement for the residual two-body interactions and
about of 2. Thus, we will use Api[(np+1)p,(np+1)h;U] is the density of the available

final states for a transitiom—n+2. In the equidistant-
at)'=9.2 MeV and a'7’=4.6 MeV (39  spacing model for the single particle level dendity, one

has[56-5§

as the more realistic values af ,

An independent assessment of the thermal relaxation time . Osp. (9spY)

7,(T) can be obtained by using the lifetimg(e, T) of the Api(np+1)p.(np+ DU ]= == ot Nt 1 (47)

single particle excited state with energyn a Fermi system

having temperaturd [37,52,53. Within the framework of A comparison of Eq(43) and Eqs(45)—(47) leads to
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TABLE |. Theoretical assessments for parametérgor isoscala."=0", 2%, and 3~ and isovector
L™=1" GMR at given multipolarityL and parity.

L™ 0+ 1 2" 3~ Theory of one-body dissipation

£y 1.00 0.50 0.33 wall, Ref$60—62

g(Lz) 6.00 1.00 modified wallA= 125, Refs[60,63
.g(L3) 1.85 1.24 rescaling of wall, Ref§64,65

& 5.00 3.33 RPA wall, Refd.7—9]

&) 5.60 1.81 2.43 1.00 fit; «=9.2 MeV,q(")=0.282, q(7)=0.192
&) <0 3.20 4.02 209  fit; a=4.6 MeV,q(")=0.282, q(7)=0.192

T 5 cki formula [62] under the assumption of incompressible,
B=57IM 292 p: (48 irrotational nuclear flow. As a result, the factgf, has the
following closed form
Inserting this expression into E¢44), we find the relation-
ship between the parameterand the mean square matrix
element/M|?

&y=1L, L=1. (54)

The valueg(Lz) have been found by using the expression
01:3/2773(1292_,9] M |2%15/(27Tgs.p)3| M|2. (49  for I'L from Ref.[60]. The isoscalar resonance widtlh was

here evaluated as pointed to above but with the modified
Substitutinggs , = (6/7%) (A/7.5) MeV~ ! and|M|?=(15.2/  expression(from Ref. [63]) for the friction coefficients

A%) MeV? (see Refs[56,57,59) in Eq. (49), we find ys=T':B_ /%, where B_ is the mass parameter for small
shape oscillations in the liquid drop modé&8]. The modi-
a=T7.5 MeV, (500 fied friction coefficientys takes into account a consistent
o . ) description of the nuclear surface motion and the internal
which is in a good agreement with that given by E20). motion of particles. The corresponding coefficiesft, is

(i) One-body relaxation timeWe will now discuss a given by
choice of the relaxation time,= 75 which determines the
contribution of the one-body wall dissipation to the damping L L ; 5 2 1
of the GMR with multipolarityL. The relaxation timer: is §2)= Ey(RIM(L—1) :(X) LL=1?’ L=2,
related to the partial widtﬂfé of the GMR arising from the (55)
one-body dissipation by
where\=1.7+0.3 fm [60] is the effective distance specify-
Te=2hITL. (51)  ing the magnitude of the dissipation.

The coefficienti'(g) are extracted through the use of the
A number of authors estimated earlier the one-body GMRexpressions for the one-body widths from Rjg4]. These
width Tt or the associated friction coefficiepf within both  values of 't are less than those for wall dissipation of Eq.
the classical and the quantum approadi7es9,20,60—6¥. It  (54) by the factorks=0.27. The magnitude d€, was found
was shown thafé is proportional to the relative weight of from a fit to the experimental data for the widths of the
the surface region in the system. We will represent below thésoscalar giant quadrupole and octupole resonances. Thus,
one-body relaxation time in the form L
&)= €(1)/ks~3.7IL. (56)
rs=¢&14, 74=2RM, (52) ) _
The valuest,, were estimated by means Bf from Ref.
where RozroA1/3 is the nuclear radiusry is the time of [7] where the one-body width of the GMR was identified
flight of the free nucleon through the nuclear diameter. Thewith its fragmentation width in the random phase approxi-
factor &- in Eq. (52) specifies the difference betweepand  mation. The quantal calculation 6‘[’5‘ in a simplified version
75 and depends on the model of the one-body dissipatioref the RPA[7-9] shows a significant enhancement of the
The quantityv is the average velocity of the nucleon incor- &- (or the corresponding reduction of the widtl) in com-

porating also the temperature effects. It is given 8y parison with the “wall” value given by Eq(54). The fol-
o lowing extension of the one-body widih can be derived
v=(3ve/d)[1+(7216)(T/ep)?]. (53)  within the RPA(see Refs[7-9)):
In Table | we show a list of the parametetswhich were L L _
derived through Eqg51) and (52) using different estimates I's=g G(E/er ,Ble)v, (57)

for I'S.

The coefficienti(Ll) were estimated by means of the ex- where B is the nucleon binding energy. The func-
pression for the one-body width from Ref€0,61] where tion G(E/ez,B/eg) has a threshold behavior
the widthl“'s' was calculated employing the classical Swiate-| G(E/eg ,B/eg) =0 atE<B] and depends on the reflection



3020 V. M. KOLOMIETZ, V. A. PLUJKO, AND S. SHLOMO 54

25— ‘ ; . ; 25
(a) (c)
20 . 20
I15¢ : I15h 1 FIG. 1. The dependence of the

factors &, see Eq.(52), for the
one-body relaxation time on the
parameter of the two-body ther-
i mal relaxation time, Eq(36). The
%%m%% correspondence between the fig-
ures and giant resonances is the

£O
o
— o
— o
—o
1
2
o
—o—i
1O

%6 8 10 12 1@ & 46 8 a(!\?ev) 2 14 16 following: la—0%, 1b—1", 1c
a (MeV) —2%, and Id—3". The following
12— ‘ . ‘ ‘ . 5 1 . , , . values of the Landau amplitudes
o) were used: F{’)=16 and
IO% : 20l @ Fi)=0 [42, ie, q©
=0.1926=0.931) for the is-
8r 7 sl | ovector GDR (1) and
ol | F{M=0.77 andF{"'=01[43], i.e.,
R q")=0.283{")=0.768) for the
2, 10f] ] : f
al % | d isoscalar GMR (0,2%,37) were
%Q used.
. H 4
2r %’“’@@@@@@@@@@@@@@@@@@@a&& ° %
L%’@@@@@
a6 8 10 12 14 & 236 8 10 12 14 6
a(MeV) a(MeV)

conditions of particles on the potential wall. Only in the casea in the collisional relaxation timer., see Eqgs{(24) and
of the fully-reflecting potential wall and in the adiabatic limit (35). This dependence was obtained from a fit of E2{) to
E/eg—0 and atB/ec—0, one hasG(E/er ,B/eg)=1 and  the experimental dati88—41] for the GMR widths in cold
the quantal RPA expressidh7) coincides with the classical nuclei with mass numbers 50A<260. As can be seen from
wall formula[20]. Numerical calculation ShOV\[g] that the these figures, for all GMF{exduding the monopo}ethe
one-body widths'; are about 10 times smaller than those quantitiese* are almost independent afwhen the condition
obtained within the wall model, Eq54). Thus, we will use 4= 6.5 MeV is fulfilled. We point out that we do not dis-
for £, the following estimate tinguish here between the isoscalar and isovector modes be-
cause the quantity is the adjusted parameter, i.e., the rela-
tions (36) and (37) are not used for the evaluation af
In Fig. 2 we show the intrinsic GMR widths and the one-

and the two-body contributions to themT®&t 0 as functions
of mass number. The total intrinsic widths are found by
means of Eq(21) with 1/7=1/7.+ 1/75. The different par-
tial contributions to the GMR widths are also evaluated by

g. (21), but with the relaxation times corresponding to the
selected partial damping channel. We useddahe values

£y~ 101 (58)

The valuesé(s) and &g, in Table | were obtained by a fit
to experimental data, as described in the next section.

(iii) Relaxation time due to particle emissioe will
estimate the particle emission relaxation timetaking into
account the thermal particle evaporation only. The particl
emission relaxation time; is connected to the correspond-
ing width I'; by the usual relationship, =2 4/I'; . We use

for T'; the evaporation formula for neutrof] o{ 9.2 and 4.6 MeV and the corresponding vaIuegfkg{ aLnd
&(6) Were taken from Table I. These valuesgégg) and &g,
2mR? were deduced from Fig. 1. As can be seen from Fig. 2, the

FT“Fn:WTzexﬁ_ Bn/T), (59 contribution of collisional dampingcurves 2 and 2) to the

GMR widths does not exceed 60% of the experimental

where Bn is the neutron b|nd|ng energy. values fora=4.6 MeV, irrespective of the type of the GMR

and the mass numbeX. This contribution decreases with

IV. NUMERICAL RESULTS AND DISCUSSION Increasinga.

In Fig. 3 we show the intrinsic width of the giant dipole

In heavy and medium nuclei the contribution of particle resonance(GDR) in the nucleus!?Sn. The experimental
emission from the GMR to the width is small enough at lowdata were taken from Reff3]. Considering the experimental
temperaturg¢4] and can be neglected. We will therefore takedata we assumed that the enekg\f the GDR is indepen-
into account only the one- and two-body channels of dampeent of temperature and equals 15.6 MeV. We used the re-
ing in Egs.(21) and(29) at T=0. lation U =aT? between the temperatufleand the excitation

Figure 1 shows the dependence of the factgrdor the  energyU, deduced in the Fermi system, wherés the level
one-body relaxation times§ of Eq. (52) on the parameter density parameter. We adopted the vahue A/8 MeV 1.
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(a} (c)

FIG. 2. The intrinsic GMR
widths and the corresponding one-
and the two-body contributions at
T=0 as functions of mass num-
ber. The correspondence between
figures and giant resonances is the
same as in Fig. 1. Curves 1 and
1’ correspond to the total width.
Curves 2, 2 and 3, 3 correspond
to the two- and the one-body con-
tributions, respectively. The value
] (b) I LB @ a=9.2 MeV is used for curves
8r L=l ] 1,2, and 3 andv=4.6 MeV for
curves 1, 2', and 3. The values
of ¢ corresponding to given val-

% ues ofa are given in Table | as
= &) and &g . The experimental
~ data were taken from Ref$38—
41].
50 150 ' 250 50 ‘ 50 ‘ 250
A A

We have also taken into account the contribution to the totatleviation can be reduced by varying the Landau parameter
intrinsic widths ff?fl‘ﬂ particle emission, see E@9), with  F{7), and thereby the cutoff factay in Eq. (21). We recall
B,=10.8 MeV for ’Sn nucleus. As is seen from Fig. 3, the that in Ref.[6] we only considered the contribution of the
expressior(21) (curves 1 and 5) leads to a smoother behavrg|lisional damping td"(U) and showed that an increase in
ior of the total intrinsic width with increasing excitation en- ne cutoff parameteq(~) improves the agreement with ex-
ergy as compared with the prediction of the zero Souncberiment(see Fig. 3 of Ref[6]).

model given by Eqsi29) and(30) (curve §. Our calculation In Fig. 4 the parameten,r is plotted as a function of

of the intrinsic widthl" for the isovector GDR in hot nucleus excitation energy for the giant dipole resonance#iSn

11 . . .
%Sn confirms a saturation effect in the energy dependencre]:ucleus' We notice that the parametegr governed the

of I'. However, we observe a systematic deviation of theransition from the zero sound regime to the first sound re-
evaluated width with respect to the experimental data. Thié. 9 .
gime. Due to the presence of the one-body damping and the

particle emission in a finite system, the valueufr is dif-
ferent from its valuawy7; in an infinite nuclear matter. This
can be seen by comparing curves 1 and 2 with 3 in Fig. 4. In
principle, the situation may occur when in an infinite nuclear
matterwom=wy7.~1 but in a finite nucleus the short relax-
ation time regime is realized withy7<<1. In the short re-

20

T(MeV)
o234 9% R
8_
2 4
° 260 400 600 K ° \
U(MeV) 34 ,
FIG. 3. The intrinsic width of the giant dipole resonance in the 2] 1
nucleus Sn as a function of excitation energy. The experimental 0 "200 | ado 600
data were taken from Ref3]. Curve 1 corresponds to the total U(MeV)

width. Curves 2, 3, and 4 correspond to the two- , one-body, and

particle emissionI(;~I",¢r0n CONtributions, respectively. Curve 5 FIG. 4. The excitation energy dependence®ff) for the giant

is the width without the contribution of particle emission. Curve 6 is dipole resonance ih*?Sn nucleus. Curve 1 corresponds to the total
the width in the zero sound approximation of E89). The values effective relaxation time. Curve 2 is obtained without taking into
of a=4.6MeV and¢!= 3.2 were used. This value @t is the result  account particle emission. Curve 3 correspondseigr] with two-

of a fit to experimental data dt=0. body relaxation time as.
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can be used as the condition for the transition from the long-
3 to the short-relaxation time regimes. The magnitude of the
intrinsic widthT" decreases when the parametgt exceeds
(wg7)g- We have (q7)o=2.28 for the isovector GDR at the
realistic value ofq{™)=0.192. As it follows from Fig. 4,
1 such a value ofwgr can be reached at temperature
T=T,~4.5 MeV. If the relation61) with q=1 andr= 7. is

% used as the condition for the transition between different re-
i 1 7 gimes of propagation of sound wave, see R&7], then the
transition between both regimes occurs at higher temperature
Ty~10 MeV.

8D

50 ‘ 50 ' 250
A

) V. CONCLUSION AND SUMMARY
FIG. 5. Atomic mass number dependence of the ratio

8D =T gouie/T". Curves 1 and 2 correspond to the contributions of We have performed a phenomenological analysis of the
all processes to the relaxation time. Curves 3 and 4 correspond foterplay between different damping mechanisms of collec-
the calculations with the two- and the one-body relaxation timetive motion in hot nuclei. Three main channels of dissipation
respectively. The values af=9.2 MeV and¢'=1.81 were used have been taken into account: the two-body and one-body
for curves 1, 3, and 4 and=4.6 MeV andé'=3.2 were used for  collision channels and the particle emission. The two-body
curve 2. The experimental date were taken from R&g]. collision channel describes the relaxation on the deformed
Fermi surface due to the interparticle collisions. The origin
laxation time regiméthe first sound regimethe expression  of the one-body dissipation is the collision of the nucleons

for the width has the form with a moving nuclear surface. The nuclear surface is con-
sidered here as the collective degree of freedom. We pointed
I=T=2qE*7/#, (60)  out that the one-body dissipation gives a macroscopic de-

scription of the fragmentation width of the GMR appearing
as it follows from Eq.(21). This expression is not repre- in a microscopic approach like the RPA. The particle emis-
sented as a sum of the partial widths connected with differerdion channel accounts for the particle evaporation. Its contri-
damping channels as it is in the long relaxation time regimebution to the total GMR width grows very fast with the ex-
see Eq.(29). Notice that allowing for the particle emission citation energy, see Eq59), and becomes comparable to
leads to a reduction of the total intrinsic width with increas-both other channels at temperature about 6 MeV, see Fig. 3.
ing temperature. In particular, the behavior of curve 1 in Fig. We have used the approximation of independent dissipa-
3 for excitation energie®)=300 MeV is connected to the tion rates, Eq(6), for all mentioned dissipation channels. In
fact thatwy7~1 in this energy range, see Fig. 4. In this case spite of this fact, the intrinsic width' of GMR, Eqg.(21), can
the regime of the collective motion is more similar to the not be represented in an additive form with respect to each
short relaxation time regime with the width given by Eg. channel. This is due to the fact that the Fermi-surface distor-
(60). Since the conditionT~r,=2A4/I"; is fulfilled at tion effect influences both the self-consistent mean field and
U=300 MeV and the magnitude &, increases witiJ, the  the memory effect at the relaxation processes. The additive
values of the relaxation time and the widthl" will decrease  form of the intrinsic width, see Eq29), is achieved in the

because of Eq60). limit of the long relaxation timev7>1.
We will nhow discuss the intrinsic width" 4o, Of the The contribution of the two-body dissipation channel into
double isovector giant dipole resonan@GDR) which fol-  the intrinsic widthI" is determined by the parameterin the

lows from our model. In Fig. 5 we show the mass numbercollisional relaxation timér,, Eq. (35), and depends on the
dependence of the rati@D =TIy, /I". Both values of in-media nucleon-nucleon cross section, see E8@). and
I' gounle @ndT" were obtained from Eq21) with E=2% w4 - (37). The different assessments for the magnitudeaof
andE=%w,-, respectively, wheré w,- is the energy of the within the framework of the kinetic theory of nuclear Fermi
isovector GDR. As can be seen from Fig. 5, the magnitude ofiquid, give [11,45,46,70,712.4 MeV<«<19.2 MeV. Our
6D is rather sensitive to the value of which characterizes independent estimate foxr from the exciton model of
the contribution from the two-body collisions to the intrinsic nuclear reactions leads to=7.5 MeV. An important ingre-
width. One hassD~4 when the two-body damping domi- dient of our consideration is the collisional memory effect
nates andbD~1 if only the one-body channel is taken into which is manifested in the dependence of the collisional
account. width I'; on the frequency of collective vibrations. Due to
Finally, we want to note that the total intrinsic width this fact, our expressio(®21) for the intrinsic width is valid
given by Eq.(21) has a bell-shaped form as a function of not only in the regime of rare collisions but also in the tran-
x=E7/f. The widthT" is peaked ak=x,=q 2 and the sition region from the zero-sound to the first-soutgtdro-
maximum value ofl" is T'.,=Eq*2 It is easy to see that dynamid regime. The latest is important in heated nuclei
Xgo represents the crossing point of both cuntggx) and  where the fast collision regime can be achieved.
I'+(x) given by Eqs(29) and(60). Due to this fact the con- We derived the relative contribution of the one-body dis-
dition sipation channelparameteg" in Eq. (52)] from a fit of the
intrinsic widthT" to the experimental data in cold nuclei. Our
woT=Xo=(wT)g=0q 2 (61)  calculations show a weak sensitivity §f to the choice of
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the parameterr at «=6.5 MeV. In the case of the isoscalar
GMR the parametef(LS) obtained for a realistie=9.2 MeV
(see Table)l differs significantly from the predictions of the
wall formula as well as its modificatior]g—9,60—64.
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of the DGDR. However, considering only the one-body dis-
sipation channel we find thalD =T y4o,,/['~=1. The com-
petition between these dissipation channels leads to the ob-
servable value and theA behavior of the ratio 6D

The retardation effects in the collision integral play an=I"q4one/I" represented in Fig. 5.
essential role in the description of the temperature depen- The presence of both the one-body and particle emission

dence of the intrinsic widti". They lead to the saturated
behavior ofl'(T) as a function ofT in contrast to the tradi-

contributions to the relaxation of the collective motion in a

finite nucleus modifies the infinite nuclear matter condition

tional Fermi-liquid theory, where the retardation effects arefor the transition from the zero-sound regime to the first-
usually neglected; see Fig. 3 for the isovector GDR. Thesound regime. We have noted that the bell-shaped form of
theoretical value of (T) at high temperatures is consistently the intrinsic widthI" as a function ofwr provides a new
smaller than the experimental data. We pointed out that &fiterion in Eq. (61) for a determination of the transition
good agreement with experimental data can be obtained bgmperatureT,, between the zero-sound and first-sound re-

adjusting the value of the parametgin Eq. (21).

gimes in hot nuclei. This criterion is different from the case

Our phenomenological model gives a reasonable explana®f infinite nuclear matter. In the case of the isovector GDR
tion of the observed hindrance of the width of the isovectorthe corresponding transition temperatdig is significantly

double giant dipole resonand®GDR), see Fig. 5. The

lower than the corresponding transition temperature in the

width of the DGDR is sensitive to the relative contributions infinite nuclear matter.
of both the two-body and one-body dissipation mechanisms.

Considering only the two-body dissipation, it is seen from

Egs.(21) and(24) that in the long relaxation time limit, i.e.,

zero-sound limit in cold nuclei, the memory effects in the

collision integral lead td"~E?2. Therefore the width of the
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