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Interplay between one-body and collisional damping of collective motion in nuclei
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Damping of giant collective vibrations in nuclei is studied within the framework of the Landau-Vlasov
kinetic equation. A phenomenological method of independent sources of dissipation is proposed for taking into
account the contributions of one-body dissipation, the relaxation due to the two-body collisions and the particle
emission. An expression for the intrinsic width of slow damped collective vibrations is obtained. In the general
case, this expression cannot be represented as a sum of the widths associated with the different independent
sources of the damping. This is a peculiarity of the collisional Landau-Vlasov equation where the Fermi-
surface distortion effect influences both the self-consistent mean field and the memory effect at the relaxation
processes. The interplay between the one-body, the two-body, and the particle emission channels which
contribute to the formation of the total intrinsic width of the isoscalar 21 and 32 and isovector 12 giant
multipole resonances in cold and hot nuclei is discussed. We have shown that the criterion for the transition
temperatureTtr between the zero-sound and first-sound regimes in hot nuclei is different from the case of
infinite nuclear matter due to the contribution from the one-body relaxation and the particle emission. In the
case of the isovector GDR the corresponding transition can be reached at temperatureTtr54–5 MeV.
@S0556-2813~96!05112-6#
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I. INTRODUCTION

The interplay between different relaxation mechanisms
collective motion and their dependence on the temperatur
many-body systems is a subject of wide investigation@1–6#.
In the present paper we consider the damping of the nuc
multipole vibrations within the semiclassical Landau-Vlas
kinetic theory. Semiclassical methods seem to be quite
structive for an investigation of the averaged properties
the multiparticle systems. In many cases, they allow us
obtain analytical results and represent them in a transpa
way.

In what follows we concentrate on the investigation of t
contributions of different relaxation mechanisms to the
trinsic width of the giant multipole resonance~GMR!. We
determine the intrinsic width as formed by three ma
sources:~i! The relaxation due to the coupling of both pa
ticle and hole to more complicated states lying at the sa
excitation energy. This is the so-called two-body collision
damping. In the kinetic theory, this type of relaxation
simulated by the collision integral and leads to the collisio
component of the intrinsic width.~ii ! The fragmentation
width caused by the interaction of particles with the tim
dependent self-consistent mean field. In the quantum ran
phase approximation~RPA! calculations this contribution to
the width does not reflect a motion of system towards
thermal equilibrium but indicates rather a redistribution
the particle-hole excitations in a vicinity of the collectiv
state. In our kinetic approach, we will imitate the fragme
tation width by the one-body~‘‘wall’’ ! relaxation. In agree-
ment with the above-mentioned peculiarity of the fragme
tation width, the one-body relaxation is conceived as
dissipative phenomenon only if the observation time
shorter than the Poincare time. Note also that it was show
Refs. @7–9#, in the classical limit for the random phase a
540556-2813/96/54~6!/3014~11!/$10.00
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proximation, the fragmentation width coincides with th
width obtained from the one-body relaxation mechanis
~iii ! The emission of the particles into the free space.

To account for these three relaxation mechanisms in
evaluation of the GMR width we propose in Sec. II a ph
nomenological approach. We take into account the two-b
~collisional! damping exactly, incorporating into the collisio
integral the memory effects associated with the mean-fi
vibrations. The one-body relaxation and the coupling to
continuum states~particle’s emission! are taken into consid-
eration approximately by adding to the Landau-Vlasov eq
tion some source terms. These source terms are assum
be independent of each other. They characterize relaxatio
a given channel only in the absence of all other damp
mechanisms. All source terms are included in the form of
relaxation time approximation. The total change rate in
distribution function is taken as a sum of the change rate
various damping channels~independent dissipation rates a
proximation!.

In Sec. III the relaxation times in one-body and two-bo
damping channels are analyzed and the intrinsic width of
GMR in cold and hot nuclei is calculated. We also discu
the interplay between different damping channels which c
tribute to the formation of the total intrinsic widths of th
GMR. The numerical results and general discussion of
mass number and temperature dependences of the diffe
relaxation mechanisms are presented in Sec. IV. The con
sion and summary are given in Sec. V.

II. WIDTHS OF GMR WITHIN THE INDEPENDENT
DISSIPATION RATES APPROXIMATION

We will start from the Landau-Vlasov equation for th
phase space distribution functionf (r ,p,t), completed by a
source termJ($ f %) for relaxation processes. The two
3014 © 1996 The American Physical Society
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54 3015INTERPLAY BETWEEN ONE-BODY AND COLLISIONAL . . .
component nuclear Fermi system has both the isoscalar
isovector excitations. In quantum calculations these exc
tions are distinguished by the isospin quantum number
macroscopic approaches~see, for example, Refs.@10–13#!
the isoscalar and isovector modes correspond to the in-p
and out-of-phase motions of neutrons and protons, res
tively. That means that both modes can be described in te
of the distortions of the distribution function in the form
d f (6)5d f p6d f n with d f p56d f n , where the subindicesp
or n label protons or neutrons and the plus or minus s
denotes the isoscalar or isovector modes, respectively.
glecting a small difference in the chemical potentials for p
tons and neutrons and assumingf 0,p5 f 0,n5 f 0, where
f 0[ f 0(r ,p) is the equilibrium distribution function, we write
down the linearized two-component Landau-Vlasov equa
in the form

]d f ~6 !

]t
1
p

m

]d f ~6 !

]r
2

]V0

]r

]d f ~6 !

]p
2

]dV~6 !

]r

] f 0
]p

5J~6 !~$d f p ,d f n%!, ~1!

wheredV(6)[dV(6)(r ,p,t) is the Wigner transform of the
variation of the self-consistent potential with respect to
equilibrium valueV0. In the nuclear interior the mean fiel
variation dV(6) can be expressed in terms of the Land
interaction amplitudeF (6)(p,p8) as

dV~6 !5
g

NF
E dp8

~2p\!3
F ~6 !~p,p8!d f ~6 !~r ,p8;t !, ~2!

where NF52pFm* /(gp2\3),pF is the Fermi momentum
m* is the effective mass of nucleon, andg is the spin degen-
eracy factor. The quantityF (6)(p,p8) is usually parameter
ized in terms of the Landau constantsF0

(6) andF1
(6) as

F ~6 !~p,p8!5F0
~6 !1F1

~6 !~ p̂• p̂8!. ~3!

In the isoscalar case, the Landau constants are related t
incompressibility modulusK.220 MeV @14# of matter and
the effective massm*.0.8m @15# by

K56m~11F0
~1 !!, m*5m~11F1

~1 !/3!. ~4!

Herem is the mass of free nucleon andm is the chemical
potential. We have thatm'eF5pF

2/2m* for T!eF , where
eF is the Fermi energy andT is the temperature. In the is
ovector case, the Landau parameterF0

(2) is related to the
nuclear symmetry energybsymm.30 MeV @10#. Namely
@16#,

bsymm5
1

3
m~11F0

~2 !!. ~5!

To simplify the presentation, we will omit in the following
the superscripts (6) and include them only when it is nec
essary to avoid confusion.

The right-hand side of Eq.~1! represents the change of th
distribution function due to relaxation. In this work we u
the approximation of independent dissipation rates. Nam
we assume
nd
a-
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se
c-
s

n
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-

n

e
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y,

J~$d f %!5Jc~$d f %!1Js~$d f %!1J↑~$d f %!, ~6!

where Jc($d f %) is the collision integral for the two-body
collisions,Js($d f %) determines the change in the distributio
function resulting from one-body relaxation, andJ↑($d f %)
takes into account the possibility of particle emissio
Strictly speaking, the relation~6! is valid only approximately
since it suggests that any relaxation mechanism, in the
sence of the other ones, drives toward the same final di
bution function.

We now comment on the one-body relaxation and
possibility of treatment of this one as a source term in
kinetic equation. In a system like a nucleus, where the s
consistent mean field decreases sharply in a small regio
the coordinate space in comparison with the bulk dimensi
of the system, one can define a surface. In this case,
problem of solving the kinetic equation in coordinate spa
is equivalent to a boundary value problem with some bou
ary conditions on the surface@17,18#. Considering this sur-
face ~more precisely the parameters describing it! as a col-
lective variable, the process of energy exchange between
inner ~particles! and collective~surface! degrees of freedom
can be described as a relaxation of the collective motion
this sense we can talk about the presence of relaxation e
in the collisionless Landau-Vlasov equation. The origin
this relaxation is the collision of the particles with a movin
surface and this type of relaxation is related to the fragm
tation width of the collective states in quantum calculatio
like the RPA~see corresponding discussion in previous s
tion!. In fact, this type of relaxation in a transport theory
governed by the boundary conditions imposed on the sur
of the system@19#. For instance, the wall formula@20# for
dissipation energy in a semi-infinite Fermi liquid resu
from the boundary conditions of the specular reflection
particles from the moving surface@17,18,21–23#. Below we
will consider only this variety of the one-body relaxation a
call it one-body wall dissipation. It was shown in Ref
@24,25# that the problem of finding a solution of the kinet
equation with the boundary conditions of the specular
diffuse reflections is identical to the problem of finding
solution of the kinetic equation with source terms. Thus,
least for the boundary conditions of the specular and diff
reflections one can simulate the one-body wall dissipation
a source term as it was assumed in Eqs.~1! and ~6!.

We will consider the termsJs($d f %) andJ↑($d f %) in Eq.
~6! within the relaxation time approximation of the form

Js~$d f %!52
d f ~r ,p,t !

ts
, J↑~$d f %!52

d f ~r ,p,t !

te
. ~7!

Here, ts is the relaxation time corresponding to the equ
bration of the system due to the one-body wall dissipati
The particle emission relaxation timete is determined by the
life time of the collective excitation with respect to an em
sion of particles into the continuum. The choice of both
laxation times will be discussed later.

We point out that the one-body source termJs($d f %) does
not contain the components with multipolaritiesl 50 and
l 51 for the distorted distribution functiond f in momentum
space because of the conservation of the number of part
and the total momentum. In the case of the particle emiss
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3016 54V. M. KOLOMIETZ, V. A. PLUJKO, AND S. SHLOMO
term J↑ , we neglect the components withl 50 and 1 ex-
pecting that, at not too high temperatures, the emission
particles does not change essentially the mean particle
sity and the current density in the nuclear interior. Note a
that the collision integral in the relaxation time approxim
tion for one-body dissipation was used earlier in Re
@26,27#.

For small amplitude eigenvibrations and small deviatio
of the momentum distribution from the Fermi sphere, t
collision integralJc($d f %) in Eq. ~6! can be linearized in
d f and represented in the form of the generalizedt approxi-
mation @6,11,28–31#

Jc~$d f %!52
d f ~r ,p,t !

tc~v0 ,T!
, ~8!

wheretc(v0 ,T) is the relaxation time due to the interpartic
collisions andv0 is the eigenfrequency of the collectiv
eigenvibrations. Thev dependence in Eq.~8! takes into ac-
count the retardation effects in the two-body collision in
gral Jc($d f %). We point out also that the relaxation tim
tc(v0 ,T) is different for the isovector and isoscalar excit
tions. The components of the distorted distribution funct
d f in momentum space with multipolaritiesl 50 and
l 51 do not contribute to the collision integralJc($d f %) for
isoscalar excitation because of the above-mentioned con
vation of the number of particles and the total momentu
However, in the case of the isovector mode there is the
tion of protons against neutrons in phase space without
violation of the conservation of the total momentum and
dipole l 51 distortion of the distribution functiond f (2) also
gives nonzero contribution to the collision integr
J(2)($d f p ,d f n%).

To begin with, we will consider in Eq.~1! the Fermi-
surface distortion with multipolaritiesl <2, assuming the
following expression ford f (r ,p,t):

d f ~r ,p,t !5 (
l 50

2

d f l ~r ,p,t ![ (
l 50

2

d f̃ l ~r ,p,t !Yl 0~ p̂!.

~9!

Here, Yl m( p̂) is the spherical harmonic function an
p̂5p/p. In accordance with the result of our earlier work@6#,
the widths of slow damped collective vibrations are det
mined by the relaxation tensorQab given by

Qab5
g

mE dp

~2p\!3
~pa2mua!~pb2mub!J~$d f %!.

~10!

We introduce the dynamical component of the pressure
sorPab8 associated with dissipative processes and given

Pab8 5
g

mE dp

~2p\!3
~pa2mua!~pb2mub!d f . ~11!

The quantityua is the Cartesian component of the veloc
field u andr is the particle density.

Substituting Eqs.~6!–~8! into Eq. ~10! and evaluating the
contribution fromJc using the method discussed in Ref.@6#,
one obtains
of
n-
o
-
.

s
e

-

n

er-
.
o-
e
e

-

n-
y

Qab52Pab8 /t2~v0 ,T!2Pab8 /ts2Pab8 /t↑ . ~12!

Thus,

Qab52Pab8 /teff , ~13!

whereteff is the effective relaxation time

1/teff51/t2~v0 ,T!11/ts11/t↑ . ~14!

Here,t2(v0 ,T) is the two-body collision relaxation time fo
the collective vibration with eigenfrequencyv0 and at tem-
peratureT in the case of quadrupole distortion of the Fer
surface. It has the following form@6,11,30–34#

1/t2~v0 ,T!5@11Cv~\v0/2pT!2#/ t̃2~T!, ~15!

which is valid atT,\v0!m'eF . The factorCv in Eq. ~15!
defines the value of the relaxation timet2 in the quantum
region\v0@T. The magnitude of this factor is discussed
@6# and it is equal to

Cv51, ~16!

if one follows Landau’s prescription@32#. The relaxation
time t2(v0 ,T) is frequency and temperature dependent. T
frequency dependence oft2(v0 ,T) is due to the memory
effect in the collision integral~8!. The temperature depen
dence in Eq.~15! arises from the smeared out behavior of t
equilibrium distribution functionf 0, see Eq.~34!, near the
Fermi momentum. The quantityt̃2(T) in Eq. ~15! is the
thermal relaxation time that will be discussed later~see Sec.
III !.

Equations~1!, ~9!, and ~10! coincide with the analogous
Eqs. ~1!, ~2!, and ~21! of Ref. @6#, replacingJ($d f %) by
St(t). Therefore, the expression for the intrinsic GMR wid
G has to have the form given by Eq.~38! of Ref. @6# by
replacingt2 with teff . Thus,

G52 c̃B~Sr !\v0

v0teff
11 c̃~v0teff!

2 , c̃[B~Sf !/B~Sr !.

~17!

Here the functionB(S) is given by

B~S!21[15S2/25B~Sr !
21

1@B~Sf !
212B~Sr !

21#/@11~v0teff!
2#.

~18!

The quantityS[v0 /vFk is the dimensionless velocity o
sound wave in the Fermi liquid andvF5pF /m* is the Fermi
velocity. In the case of the quadrupole distortion of the Fer
surface, see Eq.~9!, one has@6,35#

S25Sr
21@Sf

22Sr
2#/@11~v0teff!

2#, ~19!

with

Sf[AK/9mvF2, Sr[A@K18 ~ekin /r!eq#/9mvF
2. ~20!

HereK is the adiabatic incompressibility modulus given b
Eq. ~4!, the subscript eq means that the corresponding va
are taken at equilibrium, andekin is the kinetic energy den
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54 3017INTERPLAY BETWEEN ONE-BODY AND COLLISIONAL . . .
sity in the case of a spherical Fermi surface. The quanti
Sf andSr are the velocities of the first and the zero soun
~in units ofvF and under the condition of quadrupole disto
tion of the Fermi surface!, respectively. It is necessary t
emphasize that, as it follows from Eqs.~19! and~20!, a con-
dition for propagation of the zero and the first sounds in
finite system is determined by the magnitude of the para
eterv0teff . The effective relaxation timeteff , see Eq.~14!,
includes the contributions from the two-body collisions, t
one-body wall dissipation, and the particle emission. In c
trast, in an infinite Fermi liquid the analogous condition f
the propagation of sound waves is governed by the two-b
collision only @36,37#. We point out also that expression~17!
for the intrinsic width of GMR is obtained within the many
particle model where the infinite-matter solutions to t
Landau-Vlasov equation are completed with some bound
conditions at a sharp edge@6,30,31#.

As mentioned above@see Eq.~9!#, Eq. ~17! is valid in the
case of the quadrupole distortion of the Fermi surface. In
same manner as in Ref.@6#, the approximate formula~17! for
the width can be deduced by taking into account other m
tipolarities of the dynamical distortion of the Fermi surfac
Using Eqs.~45!, ~51!, and~52! from Ref. @6# one can write

G52 qE
Et/\

11q~Et/\!2
, E[\v0 , ~21!

whereE is the energy of the GMR. The cutoff factorq and
the relaxation timet are given by

q'1/6Sf
2'1/2~11F0!~11F1/3!, ~22!

1/t51/tc11/ts11/t↑ , ~23!

with @see also Eq.~15!#

tc[d2t2~v0 ,T!5d2t̃2~T!/@11Cv~E/2pT!2#

[t̃c~T!/@11Cv~E/2pT!2#. ~24!

Here t̃c(T)[d2t̃2(T) and the quantityd2 is

d25^wF2&/^w&, ~25!

wherew is the probability for scattering of two indistinguish
able particles near the Fermi surface@36#. The function

F2~u,w!53sin4
u

2
sin2w ~26!

defines the angular constraints for nucleon scattering wi
the distorted layer of the Fermi surface withl 52 and the
brackets denote the averaging of the form

^C&[
1

2pE0
p

duE
0

p

dw
sinu

cos~u/2!
C~u,w! ~27!

over anglesu andw which are determined by the momentu
pj ( j51–4! of the colliding particles. Namely,
s
s

a
-

-

y

ry

e

l-
.

in

cosu5~ p̂1• p̂2!,

cosw5@ p̂13 p̂2#•@ p̂33 p̂4#/u@ p̂13 p̂2#uu@ p̂33 p̂4#u.
~28!

As can be found from Eqs.~25!–~27!, if the probabilityw of
the two-particle scattering is isotropic in space, then
magnitude ofd2 is

d254/5,

and everywhere below we will use this value.
It follows from Eqs.~21! and ~23! that in the long relax-

ation time regime, i.e., atEt/\@1, the expression for intrin-
sic widthG has the additive form

G[G052\/t5Gc1Gs1G↑ , ~29!

where

Gc[2\/tc , Gs[2\/ts , G↑[2\/t↑ . ~30!

The expressions~29! and ~30! for the width correspond to
those in the relaxation rate approximation when the inte
lationship between different dissipation channels is ignor

As can be seen from Eqs.~21! and~23!, in a general case
the total intrinsic width is not represented as a sum of
partial widths of separate channels in spite of the fact t
relation ~6! was used. This is a peculiarity of the collision
Landau-Vlasov equation where the Fermi-surface distort
effect influences both the self-consistent mean field and
memory effect in the relaxation processes.

III. DAMPING PROPERTIES
OF THE GIANT MULTIPOLE RESONANCES

The values of the GMR energyE, the relaxation times in
different damping channelstc , ts, and t↑ and the cutoff
factor q are required for calculations of the intrinsic widt
G. As the GMR energyE in Eqs.~21! and ~24!, we use the
phenomenologicalA dependence ofE obtained from a fit to
the experimental data@38–41#. The value ofq is determined
by the Landau parametersF0 andF1 of the nucleon-nucleon
interaction, see Eq.~22!. As mentioned earlier, to apply Eq
~21! for a description of both the isoscalar and the isovec
GMR one has to use two sets of the Landau paramet
Namely,F0

(1) andF1
(1) for the isoscalar GMR andF0

(2) and
F1
(2) for the isovector GMR, see Eq.~3!. We will use for

F0
(6) and F1

(6) the values determined for nuclear matt
@42,43#.

~i! Collisional relaxation time.The collisional relaxation
time tc , Eq. ~24!, depends on the thermal relaxation tim
t̃2(T). In a homogeneous Fermi system the relaxation ti
t̃2(T) is given by@30,31,44,45#

1

t̃2~T!
[E dpJc

UUN~$d f %!Y20~ p̂!Y E dpd fY20~ p̂!.

~31!

Here, Jc
UUN($d f %) is the linearized Uehling-Uhlenbeck

Nordheim collision integral in the absence of the retardat
effects@37#:
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Jc
UUN~$d f %![ lim

T@\v0

Jc~$d f %!. ~32!

The dynamical componentd f of the distribution function has
the form

d f ~p,r ,t !52~] f 0 /]e!c~ p̂,r !exp~ ivt !. ~33!

Here the functionc depends only on the direction of th
momentum, and the equilibrium componentf 0 of the Wigner
distribution function is taken as the Fermi distribution

f 051/~11exp$~e2m!/T%!, ~34!

depending on the quasiparticle energye5p2/(2m* ).
The magnitude oft̃2(T) of Eq. ~31! can be represented i

the following general form at low temperaturesT!m @6#:

t̃2~T!/\5aT22 ~T,a in MeV!, ~35!

where the quantitya in the case of the isoscalar mode
given by

a~1 !55eF
2/4p2\rvFsav. ~36!

It is determined by the in-media spin-isospin averag
nucleon-nucleon cross sectionsav

sav5~spp1snn12 spn!/4.

Here,spp,snn, andspn are the in-media cross sections f
nucleon pairs with relative kinetic energy close to the Fe
energy. In Eq.~36! r is the nuclear matter density. In th
case of the isovector mode, there is an additional contr
tion from the dipole distortion of the Fermi surface and t
quantitya is given by

a~2 !55 eF
2/4p2\rvF~sav15 s~2 !/3!, ~37!

wheres (2)5spn/2. Thus, in the case of the dipole isovect
mode there is an enhancement of the collisional width du
nonconservation of the isovector current in the neutr
proton collisions@34#.

The assessments of the relaxation timet̃2(T), and thereby
a, using the free space nucleon-nucleon cross sect
@11,45–48# spp5snn52.5–2.7 fm2 and spn5snp54.8–
5.0 fm2 and the nuclear matter densityr50.17 fm23 give

a~1 !54.624.9 MeV and a~2 !52.222.3 MeV.
~38!

Due to the Pauli blocking effect it is expected that the co
sion probabilityw in nuclear matter should be lower than th
one in free space. We will follow Refs.@47–51# and use the
value of the nucleon-nucleon cross section in-medium to
smaller than the cross section in free space by a facto
about of 2. Thus, we will use

a~1 !59.2 MeV and a~2 !54.6 MeV ~39!

as the more realistic values ofa.
An independent assessment of the thermal relaxation

t̃2(T) can be obtained by using the lifetimetp(e,T) of the
single particle excited state with energye in a Fermi system
having temperatureT @37,52,53#. Within the framework of
d

i

u-

to
-

ns

-

e
of

e

the Fermi-liquid transport theory@37,52,53#, the lifetime
tp(e,T) is related to the linearized Uehling-Uhlenbec
Nordheim collision integral~32! as

1

tp~e,T!
[Jc

UUN~$d f %!/d f . ~40!

Using Eqs.~31!–~34! and ~40! and employing a standar
transformation of the Fermi-liquid theory@36# for the calcu-
lation of the integrals over momenta in Eq.~31!, we obtain

1/t̃2~T!52d2E
0

`

de~] f 0 /]e!@1/tp~e,T!#, ~41!

or

1/t̃c~T!52E
0

`

de~] f 0 /]e!@1/tp~e,T!#. ~42!

Notice, as it follows from the definition oftp(e,T), Eq.~40!,
the relaxation timetp(e,T) in the low temperature regime
T!m is given by~see, for example, Refs.@37,54#!

1

tp~e,T!
5b$~e2m!21pT2%, ~43!

where the parameterb does not depend onT ande. Substi-
tuting Eqs.~43! and ~34! into Eq. ~41! and comparing the
result of the integration with the expression~35!, we find the
following relationship between the parametersa andb

a53/4p2\d2b'15/16p2\b. ~44!

We will now obtain an assessment of the parameterb using
the exciton model of nuclear reactions@55#. Following Refs.
@56,57#, the lifetimetp(e,T50) at zero temperature can b
identified with the lifetimet (1)(U) of the one-exciton state
having one particle and no hole at the excitation ene
U5e2eF ,

tp~e,T50!5t~1!~U ![1/l1
~1!~U5e2eF!. ~45!

Here,

l1
~n!~U ![l1~npp,nhh;U !

5
2p

\
uM u2Dr f@~np11!p,~nh11!h;U# ~46!

is the rate for the particle-hole pair creation due to the tw
body collisions starting from the initial configuration con
taining np particles andnh holes, i.e.,n5np1nh excitons.
The quantityuM u2 in Eq. ~46! is the mean square matri
element for the residual two-body interactions a
Dr f@(np11)p,(nh11)h;U# is the density of the available
final states for a transitionn→n12. In the equidistant-
spacing model for the single particle level densitygs.p. one
has@56–58#

Dr f@~np11!p,~nh11!h;U#5
gs.p.
2

~gs.p.U !2

np1nh11
. ~47!

A comparison of Eq.~43! and Eqs.~45!–~47! leads to
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TABLE I. Theoretical assessments for parametersjL for isoscalarLp501, 21, and 32 and isovector
Lp512 GMR at given multipolarityL and parityp.

Lp 01 12 21 32 Theory of one-body dissipation

j (1)
L 1.00 0.50 0.33 wall, Refs.@60–62#

j (2)
L 6.00 1.00 modified wall;A5125, Refs.@60,63#

j (3)
L 1.85 1.24 rescaling of wall, Refs.@64,65#

j (4)
L 5.00 3.33 RPA wall, Refs.@7–9#

j (5)
L 5.60 1.81 2.43 1.00 fit; a59.2 MeV,q(1)50.282, q(2)50.192

j (6)
L ,0 3.20 4.02 2.09 fit; a54.6 MeV,q(1)50.282, q(2)50.192
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2\
uM u2gs.p.

3 . ~48!

Inserting this expression into Eq.~44!, we find the relation-
ship between the parametera and the mean square matr
elementuM u2

a53/2p3d2gs.p.
3 uM u2'15/~2pgs.p.!

3uM u2. ~49!

Substitutinggs.p.5(6/p2)(A/7.5) MeV21 and uM u25(15.2/
A3) MeV2 ~see Refs.@56,57,59#! in Eq. ~49!, we find

a'7.5 MeV, ~50!

which is in a good agreement with that given by Eq.~39!.
~ii ! One-body relaxation time.We will now discuss a

choice of the relaxation timets[ts
L which determines the

contribution of the one-body wall dissipation to the dampi
of the GMR with multipolarityL. The relaxation timets

L is
related to the partial widthGs

L of the GMR arising from the
one-body dissipation by

ts
L52 \/Gs

L . ~51!

A number of authors estimated earlier the one-body GM
width Gs

L or the associated friction coefficientgs
L within both

the classical and the quantum approaches@7–9,20,60–67#. It
was shown thatGs

L is proportional to the relative weight o
the surface region in the system. We will represent below
one-body relaxation timets

L in the form

ts
L5jLtd , td[2R/ v̄, ~52!

whereR05r 0A
1/3 is the nuclear radius,td is the time of

flight of the free nucleon through the nuclear diameter. T
factor jL in Eq. ~52! specifies the difference betweentd and
ts
L and depends on the model of the one-body dissipat
The quantityv̄ is the average velocity of the nucleon inco
porating also the temperature effects. It is given by@9#

v̄5~3vF/4!@11~p2/6!~T/eF!2#. ~53!

In Table I we show a list of the parametersjL which were
derived through Eqs.~51! and ~52! using different estimates
for Gs

L .
The coefficientsj (1)

L were estimated by means of the e
pression for the one-body width from Refs.@60,61# where
the widthGs

L was calculated employing the classical Swia
e

e

n.

-

cki formula @62# under the assumption of incompressib
irrotational nuclear flow. As a result, the factorj (1)

L has the
following closed form

j~1!
L 51/L, L>1. ~54!

The valuesj (2)
L have been found by using the expressi

for Gs
L from Ref.@60#. The isoscalar resonance widthGs

L was
here evaluated as pointed to above but with the modi
expression~from Ref. @63#! for the friction coefficients
gs
L5Gs

LBL /\, where BL is the mass parameter for sma
shape oscillations in the liquid drop model@68#. The modi-
fied friction coefficientgs

L takes into account a consiste
description of the nuclear surface motion and the inter
motion of particles. The corresponding coefficientj (2)

L is
given by

j~2!
L 5j~1!

L ~R/l!2/~L21!25SRl D 2 1

L~L21!2
, L>2,

~55!

wherel51.760.3 fm @60# is the effective distance specify
ing the magnitude of the dissipation.

The coefficientsj (3)
L are extracted through the use of th

expressions for the one-body widths from Ref.@64#. These
values ofGs

L are less than those for wall dissipation of E
~54! by the factorks50.27. The magnitude ofks was found
from a fit to the experimental data for the widths of th
isoscalar giant quadrupole and octupole resonances. Th

j~3!
L 5j~1!

L /ks'3.7/L. ~56!

The valuesj (4)
L were estimated by means ofGs

L from Ref.
@7# where the one-body width of the GMR was identifie
with its fragmentation width in the random phase appro
mation. The quantal calculation ofGs

L in a simplified version
of the RPA @7–9# shows a significant enhancement of t
jL ~or the corresponding reduction of the widthGs

L) in com-
parison with the ‘‘wall’’ value given by Eq.~54!. The fol-
lowing extension of the one-body widthGs

L can be derived
within the RPA~see Refs.@7–9#!:

Gs
L5

L

R
G~E/eF ,B/eF!v̄, ~57!

where B is the nucleon binding energy. The func
tion G(E/eF ,B/eF) has a threshold behavio
@G(E/eF ,B/eF)50 atE,B# and depends on the reflectio
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FIG. 1. The dependence of th
factors jL, see Eq.~52!, for the
one-body relaxation time on the
parametera of the two-body ther-
mal relaxation time, Eq.~36!. The
correspondence between the fi
ures and giant resonances is th
following: 1a201, 1b212, 1c
221, and 1d232. The following
values of the Landau amplitude
were used: F0

(2)51.6 and
F1
(2)50 @42#, i.e., q(2)

50.192(Sf
(2)50.931) for the is-

ovector GDR (12) and
F0
(1)50.77 andF1

(1)50 @43#, i.e.,
q(1)50.283(Sf

(1)50.768) for the
isoscalar GMR (01,21,32) were
used.
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conditions of particles on the potential wall. Only in the ca
of the fully-reflecting potential wall and in the adiabatic lim
E/eF→0 and atB/eF→0, one hasG(E/eF ,B/eF)51 and
the quantal RPA expression~57! coincides with the classica
wall formula @20#. Numerical calculation shows@7# that the
one-body widthsGs

L are about 10 times smaller than tho
obtained within the wall model, Eq.~54!. Thus, we will use
for j (4)

L the following estimate

j~4!
L '10/L. ~58!

The valuesj (5)
L andj (6)

L in Table I were obtained by a fi
to experimental data, as described in the next section.

~iii ! Relaxation time due to particle emission.We will
estimate the particle emission relaxation timet↑ taking into
account the thermal particle evaporation only. The part
emission relaxation timet↑ is connected to the correspon
ing width G↑ by the usual relationshipt↑52 \/G↑ . We use
for G↑ the evaporation formula for neutrons@4#

G↑'Gn5
2mR2

p\2 T2exp~2Bn /T!, ~59!

whereBn is the neutron binding energy.

IV. NUMERICAL RESULTS AND DISCUSSION

In heavy and medium nuclei the contribution of partic
emission from the GMR to the width is small enough at lo
temperature@4# and can be neglected. We will therefore ta
into account only the one- and two-body channels of dam
ing in Eqs.~21! and ~29! at T50.

Figure 1 shows the dependence of the factorsjL for the
one-body relaxation timests

L of Eq. ~52! on the paramete
e

e

-

a in the collisional relaxation timetc , see Eqs.~24! and
~35!. This dependence was obtained from a fit of Eq.~21! to
the experimental data@38–41# for the GMR widths in cold
nuclei with mass numbers 50<A<260. As can be seen from
these figures, for all GMR~excluding the monopole! the
quantitiesjL are almost independent ofa when the condition
a> 6.5 MeV is fulfilled. We point out that we do not dis
tinguish here between the isoscalar and isovector modes
cause the quantitya is the adjusted parameter, i.e., the re
tions ~36! and ~37! are not used for the evaluation ofa.

In Fig. 2 we show the intrinsic GMR widths and the on
and the two-body contributions to them atT50 as functions
of mass number. The total intrinsic widths are found
means of Eq.~21! with 1/t51/tc11/ts . The different par-
tial contributions to the GMR widths are also evaluated
Eq. ~21!, but with the relaxation times corresponding to t
selected partial damping channel. We used fora the values
of 9.2 and 4.6 MeV and the corresponding values ofj (5)

L and
j (6)
L were taken from Table I. These values ofj (5)

L and j (6)
L

were deduced from Fig. 1. As can be seen from Fig. 2,
contribution of collisional damping~curves 2 and 28) to the
GMR widths does not exceed;60% of the experimenta
values fora>4.6 MeV, irrespective of the type of the GMR
and the mass numberA. This contribution decreases wit
increasinga.

In Fig. 3 we show the intrinsic width of the giant dipol
resonance~GDR! in the nucleus112Sn. The experimenta
data were taken from Ref.@3#. Considering the experimenta
data we assumed that the energyE of the GDR is indepen-
dent of temperature and equals 15.6 MeV. We used the
lationU5aT2 between the temperatureT and the excitation
energyU, deduced in the Fermi system, wherea is the level
density parameter. We adopted the valuea5A/8 MeV21.
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FIG. 2. The intrinsic GMR
widths and the corresponding one
and the two-body contributions a
T50 as functions of mass num
ber. The correspondence betwee
figures and giant resonances is th
same as in Fig. 1. Curves 1 an
18 correspond to the total width
Curves 2, 28 and 3, 38 correspond
to the two- and the one-body con
tributions, respectively. The value
a59.2 MeV is used for curves
1, 2, and 3 anda54.6 MeV for
curves 18, 28, and 38. The values
of jL corresponding to given val-
ues ofa are given in Table I as
j (5)
L and j (6)

L . The experimental
data were taken from Refs.@38–
41#.
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We have also taken into account the contribution to the t
intrinsic widths from particle emission, see Eq.~59!, with
Bn510.8 MeV for 112Sn nucleus. As is seen from Fig. 3, th
expression~21! ~curves 1 and 5) leads to a smoother beh
ior of the total intrinsic width with increasing excitation en
ergy as compared with the prediction of the zero sou
model given by Eqs.~29! and~30! ~curve 6!. Our calculation
of the intrinsic widthG for the isovector GDR in hot nucleu
112Sn confirms a saturation effect in the energy depende
of G. However, we observe a systematic deviation of
evaluated width with respect to the experimental data. T

FIG. 3. The intrinsic width of the giant dipole resonance in t
nucleus Sn as a function of excitation energy. The experime
data were taken from Ref.@3#. Curve 1 corresponds to the tota
width. Curves 2, 3, and 4 correspond to the two- , one-body,
particle emission (G↑'Gneutron) contributions, respectively. Curve
is the width without the contribution of particle emission. Curve 6
the width in the zero sound approximation of Eq.~29!. The values
of a54.6MeV andj153.2 were used. This value ofj1 is the result
of a fit to experimental data atT50.
al
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deviation can be reduced by varying the Landau param
F1
(2) , and thereby the cutoff factorq in Eq. ~21!. We recall

that in Ref.@6# we only considered the contribution of th
collisional damping toG(U) and showed that an increase
the cutoff parameterq(2) improves the agreement with ex
periment~see Fig. 3 of Ref.@6#!.

In Fig. 4 the parameterv0t is plotted as a function of
excitation energy for the giant dipole resonance in112Sn
nucleus. We notice that the parameterv0t governed the
transition from the zero sound regime to the first sound
gime. Due to the presence of the one-body damping and
particle emission in a finite system, the value ofv0t is dif-
ferent from its valuev0tc in an infinite nuclear matter. This
can be seen by comparing curves 1 and 2 with 3 in Fig. 4
principle, the situation may occur when in an infinite nucle
matterv0t[v0tc'1 but in a finite nucleus the short relax
ation time regime is realized withv0t!1. In the short re-

al

d
FIG. 4. The excitation energy dependence of (v0t) for the giant

dipole resonance in112Sn nucleus. Curve 1 corresponds to the to
effective relaxation time. Curve 2 is obtained without taking in
account particle emission. Curve 3 corresponds to (v0t) with two-
body relaxation time ast.
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laxation time regime~the first sound regime!, the expression
for the width has the form

G[G f52qE2t/\, ~60!

as it follows from Eq.~21!. This expression is not repre
sented as a sum of the partial widths connected with diffe
damping channels as it is in the long relaxation time regim
see Eq.~29!. Notice that allowing for the particle emissio
leads to a reduction of the total intrinsic width with increa
ing temperature. In particular, the behavior of curve 1 in F
3 for excitation energiesU>300 MeV is connected to the
fact thatv0t'1 in this energy range, see Fig. 4. In this ca
the regime of the collective motion is more similar to t
short relaxation time regime with the width given by E
~60!. Since the conditiont't↑52\/G↑ is fulfilled at
U>300 MeV and the magnitude ofG↑ increases withU, the
values of the relaxation timet and the widthG will decrease
because of Eq.~60!.

We will now discuss the intrinsic widthGdouble of the
double isovector giant dipole resonance~DGDR! which fol-
lows from our model. In Fig. 5 we show the mass numb
dependence of the ratiodD5Gdouble/G. Both values of
Gdouble andG were obtained from Eq.~21! with E52 \v12

andE5\v12, respectively, where\v12 is the energy of the
isovector GDR. As can be seen from Fig. 5, the magnitud
dD is rather sensitive to the value ofa which characterizes
the contribution from the two-body collisions to the intrins
width. One hasdD'4 when the two-body damping dom
nates anddD'1 if only the one-body channel is taken in
account.

Finally, we want to note that the total intrinsic widt
given by Eq.~21! has a bell-shaped form as a function
x[Et/\. The widthG is peaked atx[x05q21/2 and the
maximum value ofG is Gmax5Eq1/2. It is easy to see tha
x0 represents the crossing point of both curvesG0(x) and
G f(x) given by Eqs.~29! and~60!. Due to this fact the con-
dition

v0t[x05~v0t!05q21/2 ~61!

FIG. 5. Atomic mass number dependence of the ra
dD5Gdouble/G. Curves 1 and 2 correspond to the contributions
all processes to the relaxation time. Curves 3 and 4 correspon
the calculations with the two- and the one-body relaxation tim
respectively. The values ofa59.2 MeV andj151.81 were used
for curves 1, 3, and 4 anda54.6 MeV andj153.2 were used for
curve 2. The experimental date were taken from Ref.@69#.
nt
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can be used as the condition for the transition from the lo
to the short-relaxation time regimes. The magnitude of
intrinsic widthG decreases when the parameterv0t exceeds
(v0t)0. We have (v0t)052.28 for the isovector GDR at the
realistic value ofq(2)50.192. As it follows from Fig. 4,
such a value ofv0t can be reached at temperatu
T[Ttr'4.5 MeV. If the relation~61! with q51 andt5tc is
used as the condition for the transition between different
gimes of propagation of sound wave, see Ref.@37#, then the
transition between both regimes occurs at higher tempera
Ttr'10 MeV.

V. CONCLUSION AND SUMMARY

We have performed a phenomenological analysis of
interplay between different damping mechanisms of coll
tive motion in hot nuclei. Three main channels of dissipati
have been taken into account: the two-body and one-b
collision channels and the particle emission. The two-bo
collision channel describes the relaxation on the deform
Fermi surface due to the interparticle collisions. The orig
of the one-body dissipation is the collision of the nucleo
with a moving nuclear surface. The nuclear surface is c
sidered here as the collective degree of freedom. We poin
out that the one-body dissipation gives a macroscopic
scription of the fragmentation width of the GMR appeari
in a microscopic approach like the RPA. The particle em
sion channel accounts for the particle evaporation. Its con
bution to the total GMR width grows very fast with the e
citation energy, see Eq.~59!, and becomes comparable
both other channels at temperature about 6 MeV, see Fig

We have used the approximation of independent diss
tion rates, Eq.~6!, for all mentioned dissipation channels.
spite of this fact, the intrinsic widthG of GMR, Eq.~21!, can
not be represented in an additive form with respect to e
channel. This is due to the fact that the Fermi-surface dis
tion effect influences both the self-consistent mean field
the memory effect at the relaxation processes. The add
form of the intrinsic width, see Eq.~29!, is achieved in the
limit of the long relaxation timevt@1.

The contribution of the two-body dissipation channel in
the intrinsic widthG is determined by the parametera in the
collisional relaxation timet̃2, Eq. ~35!, and depends on the
in-media nucleon-nucleon cross section, see Eqs.~36! and
~37!. The different assessments for the magnitude ofa,
within the framework of the kinetic theory of nuclear Ferm
liquid, give @11,45,46,70,71# 2.4 MeV,a,19.2 MeV. Our
independent estimate fora from the exciton model of
nuclear reactions leads toa57.5 MeV. An important ingre-
dient of our consideration is the collisional memory effe
which is manifested in the dependence of the collisio
width Gc on the frequency of collective vibrations. Due
this fact, our expression~21! for the intrinsic width is valid
not only in the regime of rare collisions but also in the tra
sition region from the zero-sound to the first-sound~hydro-
dynamic! regime. The latest is important in heated nuc
where the fast collision regime can be achieved.

We derived the relative contribution of the one-body d
sipation channel@parameterjL in Eq. ~52!# from a fit of the
intrinsic widthG to the experimental data in cold nuclei. Ou
calculations show a weak sensitivity ofjL to the choice of

o
f
to
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the parametera at a>6.5 MeV. In the case of the isoscala
GMR the parameterj (5)

L obtained for a realistica59.2 MeV
~see Table I! differs significantly from the predictions of th
wall formula as well as its modifications@7–9,60–64#.

The retardation effects in the collision integral play
essential role in the description of the temperature dep
dence of the intrinsic widthG. They lead to the saturate
behavior ofG(T) as a function ofT in contrast to the tradi-
tional Fermi-liquid theory, where the retardation effects a
usually neglected; see Fig. 3 for the isovector GDR. T
theoretical value ofG(T) at high temperatures is consistent
smaller than the experimental data. We pointed out tha
good agreement with experimental data can be obtained
adjusting the value of the parameterq in Eq. ~21!.

Our phenomenological model gives a reasonable expla
tion of the observed hindrance of the width of the isovec
double giant dipole resonance~DGDR!, see Fig. 5. The
width of the DGDR is sensitive to the relative contributio
of both the two-body and one-body dissipation mechanis
Considering only the two-body dissipation, it is seen fro
Eqs.~21! and~24! that in the long relaxation time limit, i.e.
zero-sound limit in cold nuclei, the memory effects in t
collision integral lead toG;E2. Therefore the width of the
DGDR is larger by a factor of about 4 than the width of t
single GDR because of the double eigenenergyE52 \v12
n

C

T.

A

l.

z.
n-

e
e

a
by

a-
r

s.

of the DGDR. However, considering only the one-body d
sipation channel we find thatdD5Gdouble/G'1. The com-
petition between these dissipation channels leads to the
servable value and theA behavior of the ratio dD
5Gdouble/G represented in Fig. 5.

The presence of both the one-body and particle emiss
contributions to the relaxation of the collective motion in
finite nucleus modifies the infinite nuclear matter conditi
for the transition from the zero-sound regime to the fir
sound regime. We have noted that the bell-shaped form
the intrinsic widthG as a function ofvt provides a new
criterion in Eq. ~61! for a determination of the transition
temperatureTtr between the zero-sound and first-sound
gimes in hot nuclei. This criterion is different from the ca
of infinite nuclear matter. In the case of the isovector GD
the corresponding transition temperatureTtr is significantly
lower than the corresponding transition temperature in
infinite nuclear matter.
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