PHYSICAL REVIEW C VOLUME 54, NUMBER 6 DECEMBER 1996

No-core shell-model calculations with starting-energy-independent
multivalued effective interactions
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Large-space no-core shell-model calculations have been performédi fdHe, °He, °Li, and ®He, using
a starting-energy-independent two-body effective interaction derived by application of the Lee-Suzuki similar-
ity transformation. This transformation can be performed by direct calculation or by different iteration proce-
dures, which are described. A possible way of reducing the auxiliary potential influence on the two-body
effective interaction has also been introduced. The many-body effects have been partially taken into account by
employing the recently introduced multivalued effective interaction approach. Dependence®blietiemergy
levels on the harmonic-oscillator frequency as well as on the size of the model space has been studied. The
Reid 93 nucleon-nucleon potential has been used in the study, but results have also been obtained using the
Nijmegen Il potential for comparisofS0556-28186)03612-9

PACS numbsdis): 21.60.Cs, 21.10.Dr, 21.10.Ky, 27.3h

I. INTRODUCTION the Lee-Suzuki vertex renormalization iteration, which
makes use of th&-matrix derivatives. Unlike most of the
Large-basis no-core shell-model calculations have reprevious applications of this approach, we calculate these
cently been performefdl—8]. In these calculations all nucle- derivatives exactly employing the referer@ematrix deriva-
ons are active, which simplifies the effective interaction agives. The other iterative procedure, usually referred to as the
no-hole states are present. In the approach taken, the efferenciglowa-Kuo technique, is carried out by diagonalizing
tive interaction is determined for a system of two nucleonshe non-Hermitian effective Hamiltonian in subsequent itera-
only and subsequently used in many-particle calculations. T§Ons [12]. This method has so far been applied only to
take into account a part of the many-body effects a multival/nodel calculations. We also discuss its recent generalization

ued effective interaction approach was introduced and arI—l_sr]]' Fmallly, lvve_ d'ri‘gy con_strtl:ct theleff_ectn;]e |nt?rgctlon
plied in the no-core shell-model calculatioh8] and also without calculating t matrix by employing the solutions

festd n & model calcuigo] of e obocy prosen. When crens necessan for or
In these shell-model calculations different approaches 9 A . . np ’
sulting effective interactions obtained in all three methods

haye been taken in deriving the two-nucleon effe_ctlve Inter'are identical. The last method, however, has two advantages:
action. All the methods employed, however, relied on th

. ) . . Sirst, its simplicity and, second, the fact that it utilizes an
referenceG-matrix method, introduced in Ref10], which gy icit construction of the transformation operator. This
leads to two-body matrix elements of a starting-energyyransformation operator may then be used for the calculation
dependenG matrix. To get rid of this unwanted dependence of gther effective operators.
either a suitable parametrization was cho4dn-6,8 or To take partially into account the many-body effects ne-
folded diagram effects were taken into account by calculatylected when using only a two-body effective interaction, we
ing the derivatives of th& matrix in an approximate way employ the recently introduced multivalued effective inter-
[4,7]. action approacks].

In the present paper we apply the Lee-Suzuki similarity- |t was observed earlief7] that the two-body effective
transformation approacfil] to derive the two-body effec- interaction derived by the vertex renormalization method is
tive interaction. We try to avoid unnecessary approximationsoo attractive and leads to overbinding of the many-body
in performing the calculations. The harmonic-oscillator in-system. We discuss this problem and believe that it is largely
sertions are kept; consequently, the effective interaction iglue to the uncompensate@-space part of the auxilliary
A dependent. Also the Hermitization of the effective interac-harmonic-oscillator potential. We discuss possible treatment
tion, which is, in general, non-Hermitian, is done without of this problem by modification of that part of the auxilliary
approximations by a similarity transformation. potential.

We consider three possible ways of deriving the effective In Sec. Il we discuss the shell-model Hamiltonian with a
interaction. The first two are the standard iterative procepound center of mass as well as the two-particle Hamiltonian
dures, starting with th&-matrix calculation/10]. We study and the methods used to derive the starting-energy-

independent effective interaction. Results of the calculations
for °H, “He, °He, 5Li, and ®He are presented in Sec. lll. In
*On the leave of absence from the Institute of Nuclear Physicsparticular, we discuss the harmonic-oscillator frequency and
Academy of Sciences of the Czech Republic, 250 &% Rear  the model-space-size dependences of’tHe states. Conclu-
Prague, Czech Repubilic. sions are given in Sec. IV.
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ENERGY-INDEPENDENT EFFECTIVE INTERACTION effect on the intrinsic spectrum of states with the lowest

In most shell-model studies the one- and two-body Hamil-Ce€nter-of-mass configuration. _
tonian for theA-nucleon system, i.e., The effective interaction should be determined fretfi

(2). Calculation of the exach-body effective interaction is,
A p? A however, as difficult as finding the full-space solution. Usu-
H=2 —+> V), (1) ally, the effective interaction is approximated by a two-body
=12m s effective interaction determined from a two-nucleon prob-

wherem is the nucleon mass and; the nucleon-nucleon Ez(r]n.(z'l)'r;se t;}e;lﬁvant two-nucleon Hamiltonian obtained from

interaction, is modified by adding the center-of-mass har-
monic oscillator potentiadAmQ2R?, R=(1/A)SA ;r;. This p2Hp2 1 o o
potential does not influence intrinsic properties of the many- HY=H{+Vy= + Emﬂz(r§+r§)+V(rl—r2)

body system. It provides, however, a mean field “felt” by 2m
each nucleon and allows us to work with a convenient mo? . .
harmonic-oscillator basis. For an alternative manipulation of - ﬁ(rl—rz)z. (5)

the center-of-mass terms, see, e.g., R&f. The modified
Hamiltonian, depending on the harmonic-oscillator fre-This can be transformed into two-nucleon relative and
quency{), can be written as center-of-mass parts by introducing the coordinaﬁas

AT 2 A 2 =3(P1—P2), Pacm=P1tP2 Rocm=3(r1+r2), and
oF 1 . mQOc . . ~2\F1m M2/, 2c.m.~ M1 21 2cm— 2\ 1712/,
HQ=; ﬁﬁjmﬂsz +i2<j Vij_ﬁ(ri_rj)z}u r=r;—ry, yielding
2 3 >
HY = gC'”“JrEMQzliz +q—2+E Q2r2+V(r)
which is the same as E¢) in Ref.[1]. Shell-model calcu- 27 oM 2 2em= 2 2A M '

lations are carried out in a model space defined by a projec- (6)
tor P. In the present work we will always use a complete .

N7 Q model space. The complementary space to the moda¥ith M =2m and = 3m. While the center-of-mass part has
space is defined by the projectr=1—P. Consequently, the solution E\;=(2N+L+3)AQ and the eigenvectors

for the P-space part of the shell-model Hamiltonian we get |NV'C), the relative-coordinate part can be solved as a differ-
ential equation or, alternatively, can be diagonalized in a

5|2 sufficiently large harmonic-oscillator basis. The latter possi-
P bility is, obviously, not applicable for hard-core potentials.
The starting-energy-dependent effective interactioror

A 02 matrix corresponding to a two-nucleon model space defined
+; P|V;; ﬁ(rl_rj)21| P. €) by the projectoP, can be written as
i f
1
QO 9) QO
The effective interaction appearing in E@) is, in general, G(e)=V; +V; szszz ; (7

an A-body interaction, and, if it is determined without any

approximations, the model-space Hamiltonian provides agyhereQ,=1- P, andV3 is the interaction given by the last
|dent]cal ldescr|pt|on _of a s_ubset of _states as the full-spacgyo terms on the right-hand sid®HS) of Eq. (5). The G
Hamiltonian (2). The intrinsic properties of the many-body matrix (7) can be constructed from the solutions of the
system still do not depend di. From among the eigenstates Schralinger equation with the Hamiltonia@®), by using the

of the Hamiltonian(3), it is necessary to choose only those eference matrix metho@10]. The G matrix can be ex-
corresponding to the same center-of-mass energy. This C3ftessed as

be achieved by projecting the center-of-mass eigenstates

with energies greater thaj ) upwards in the energy spec- G(e)=A(g) Gg(e), (83
trum. The shell-model Hamiltonian, which does this, takes
the form [k)(K|
Gr(e)=(HL—6)+(HL—6)> _—E(ng—s), (8h)
A [(pi-pp?  mo? a c o
o _ | r—r)2 o
Hpg i<j2:1 PlSam* 2a (1) P+i2<j PV

A(S):1+GR(8)P2 (8C)

S_HOZ,

m ? F_r\2 0 3

oA (i) eﬁp+’8P(H°'m' P, @ whereHY, is given by the first two terms on the RHS of Eq.
(5) andE, and|k) are the eigenvalues and eigenvectors of
where B is a sufficiently large positive parameter and HY Eq. (5), respectively.
HE =P2 2Am+AmO%R?, P, =32, p;. In a com- To obtain a starting-energy-independent effective interac-
plete NAQ model space the removal of the spurious centertion, one has to take into account the folded diagrams or,

of-mass motion is exact. When going from E8) to (4), we  equivalently, to construct a similarity transformation that



2988 P. NAVRATIL AND B. R. BARRETT 54
guarantees decoupling between the model spa@nd the tilde states are the biorthogonal eigenvectors. When this pro-
Q space. We employ the Lee-Suz(ikil] similarity transfor-  cedure converges, it does so to the states which have the
mation method, which gives the effective interaction in thelargest overlap with the model-space states. The resulting
form Ve EQ. (9), is independent of the starting energy This
method was recently generalized to a nondegenerate model
space[13]. The difference is in the starting iteration. When
using Eq.(11), the starting iteration i§(s), while the non-
degenerate model-space versjdB] starts with

P,VaoertP2=PaVa Pot PoVEQuPsy, 9

with w satisfying the equatione=Q,wP, and

0=Q; Q,VEP,

1
e—Q,HZQ,
> Gle,+A)Py,. (12)

QZWQZ‘UP J(HF+HPQo0—¢)P,.

(10 Here theeg, are the unperturbed energies, in our case the

In this degenerate-model-space formulation two iterative sotwo- nucleon harmonic-oscillator energies, aRd, is the
lutions of Eq.(10) exist and lead to different expressions for projector on the two-nucleon stgte). Unlike in the original

the effective interaction. The first one, the Krenciglowa-Kuopaper{13], we introduce a shiff\, as theG matrix cannot be
(KK) iteration procedurgl2], gives for thenth iteration for- ~ evaluated for the energy,, using the reference matrix
mula method(8). Note that Eq(12) is the interaction used in the
previous no-core shell-model studigs-6,8 with A treated

as a free parameter.

One can also use the alternative procedure, usually called
the vertex-renormalization approach, which can be obtained
In Eqg. (11) the statedl,_,) are the right eigenvectors of from Eq.(10) [11]. The resulting iteration sequence for the
H82+ Vaefin—1—¢ belonging to the eigenvalug, ,_;. The effective interaction can be written as

Voeftn= 2| P,G(e+E| n_1)Polln_1)(In-1|P2. (1)

n-1
1
Hoot Vaern—e=| P2— Pze(l)(S)Pz—mEZZ WPZG(m)(S)PZ(ng'i'V29ff,n—m+1_S)PZ(H(())2+VZeff,n—m+2_8)

-1

X P - (Hopt Vaertn-1—8)P2|  PalHoy+ G(s)—¢]P, (13
|
whereV e 1= P,G(g) P,. This method, which relies on the n _
G matrix derivativesG(™, was applied in shell-model cal- cM="> ————(A"H""mGE (15)
culations for the first time by Poppelier and Brussfrd. In m=o0 (N—m)!m!

that and most other applications different numerical approxi-

mations were used to evaluate the derivati{4¢g,14. In where the derivatives of the inverse matrix can be obtained
fact, these derivatives can be calculated exactly, because tfi@m

reference matrixGg(e), Eq. (8b), as well as the operator

A(e), Eq. (8¢), can be differentiated to any order analyti- n-1 I

cally, as can be seen when they are expressed in the two- (A™HM=— E (n—m)im!
nucleon harmonic-oscillator basis. For example, ritie de- m=0 o
rivative,n>0, of G is

A TAMM AL (16

An alternative way of calculatin@-matrix derivatives ana-

G . (a|k){K|y) lytically was proposed in Ref.15]. When the convergence
GRroy(e g)=(-1)"n! E ﬁ_(z —EaTE,) of Eqg. (139 is achieved, the effective interaction does not
depend on the starting energy The states reproduced in the
(alk)(K|y) model space are those lying closestto
zk: (e—E)" (e—ea) As our calculations start with exact solutions of the

Hamiltonian(5), we are, in fact, in a position to construct the
(alk)(k|y) operatorew and, hence, the effective interaction directly from
sz 8—)n+1(8_ 7)}- (14 these solutions. Let us denote the two-nucleon harmonic-
oscillator states, which form the model space]as), and
and similarly forA(e). Then thenth G-matrix derivative can those which belong to th& space, agag). Then the
be expressed as Q-space components of the eigenvedtioy of the Hamil-
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tonian (5) can be expressed as a combination of thethe obtained interactions, we perform no-core shell-model

P-space components with the help of the operator calculations for nuclei withA=3-6. We use a complete
N% Q) model space with, e.gN=8 for the positive-parity
4 . . . .

K) = K. 1 states of *“He. This means that nine major harmonic-

{alk) Z’ (aglofap){arlk) (a7 oscillator shells may be occupied in this case. The two-

) ) nucleon model space is defined in our calculations by
If the dimension of the model spaceds , we may choosea N__  e.g., for an &Q calculation for “He N,,,=8. The
setK of dp eigenevectors, for which the relatioh?) willbe  restriction of the harmonic-oscillator shell occupation is
satisfied. Under the condition that thépXdp matrix  given by N;<Npa No<Nma. (Ni+Ny)<Np.. The
(eplk) for [k) e K is invertible, the operatan can be deter-  same conditions hold for the relativen2 |, center-of-mass
mined from Eq(17). Note that in the present application the 2\/+ £, and 2+ + 2N+ £=N;+ N, quantum numbers.
eigenvectorsk) are direct products of the center-of-mass |n the present calculations we use the Reid 93 nucleon-
and the relative-coordinate eigenvectors. The condition ofycleon potential18]. For “He we make a comparison with
|nVert|b|I|ty is not satisfied for an arbitrary choice of the the Nijmegen 1] potentleﬂls] with Correctedlpl Wave[lg]'
eigenvector sefC. Once the operatow is determined the \we work in the isospin formalism and do not include the
effective Hamiltonian can be constructed as follows from Eq.coulomb interaction. Thap channel interactions of Reid 93

(9): and Nijmegen Il are used.
First, let us compare the different methods for calculating
(velHoedapy= 20 | (yplK)Ex(K| p) the starting-energy-independent effective interaction. The
kek KK method (11) works well for N,,.,=<4. Then the conver-

gence is achieved usually after less than 15 iterations and the

+>) (vplK)E(Klag)(aglow|apy|.  (18) model space eigenvalues differ from the full-space eigenval-

agq ues, Whli:h are of the order of 4010° MeV, by not more
. than 10 MeV. Note that the referenc& matrix (8b) be-
It should be noted tha,|k) =2 |ap)(aplk) for [K) e Kis ;e singular foe =E, . Consequently, exact eigenvalues
a right eigenvector of E¢(18) with the eigenvalu€g, . cannot be reproduced when the referefeenatrix method

In the case when the iteration conditions are the same fog applied for calculating th& matrix. However, this singu-
both methodg(11) and (13), and the sefC, for which EQ.  |arity causes no problem when the iteration is stopped after
(17) is fulfilled, is chosen accordingly, all three methods leadachieving the above-mentioned precision. When the starting
to the identical effective Hamiltonian. This Hamiltonian, jteration(12) is used instead dB(e), usually a few iteration
when diagonalized in a model-space basis, reproduces €X%teps are saved. As to the starting eneegy0 is a possible
actly the setC of dp eigenvalues, . Note that the effective  choice. In most calculations we used negative values: for
Hamiltonian is, in general, non-Hermitian or, more acCu-For A a nonzero value must be chosen, and we used typically
rately, quasi-Hermitian. It can be Hermitized by a similarity apoyt —5 MeV. The resulting effective interaction is not
transformation. When the direct method, E@)) and(18),  gependent on these choices, and they also do not affect the
is used, the similarity transformation is determined from the,ymper of iterations significantly. Fdi,,,,,>4 divergence in
metric operatoP,(1+ w'w)P,. The Hermitian Hamiltonian  some channels can be encountered and, moreover, the calcu-

is then given by 16] lation becomes time consuming.
— _ The application of the vertex-renormalization methb8)
_ T 1/2 T 1/2
Hae=[P2(1+ @' @) P2] P Hoe Po(1+ 0 w)Py] (19 requires thes-matrix derivatives. The matrix elements of the

G-matrix derivatives decrease rapidly, but, on the other

When the iteration methotlL1) or (13) is employed, thaw hand, they are multiplied by effective-interaction matrices of.
operator is not determined. In previous applicatiphg,14,  increasing powers. Consequently, the overall convergence is
the Hermitization was usually done by averaging the conjufather slow for larger model spaces. Also the rate of conver-
gate matrix elements. However, also in this case a similaritgence differs for different states. When the starting energy is
transformation can be constructed, which Hermitizes the efchosen below the ground state energy, the fastest conver-
fective Hamiltonian. As shown in Ref17], if Sis a matrix, 9ence is achieved for the lowest states, which have the larg-
which diagonalize$i e, SHoerS =D, then the metric op- €St overlap with the model space. This is the same observa-
erator can be expressed 8IS, Consequently, it follows that tion @s found in the model calculatioi0]. The rate of
the HermitizedH . is obtained from convergence is very sensitive to the choice of the starting
energye. The closer to the ground state, the faster the con-
H_Zeﬁ:[STS]l/ZH 2ol STS] Y2 (200  vergence. On the other hand, serious numerical problems oc-
cur when a higher number of iterations is required. These
Finally, the two-body effective interaction used in the problems are related to the above-mentioned fact that we
shell-model calculation is determined from the two-nucleonmultiply very small numbers by very large numbers when
effective Hamiltonian a¥/,e4=H Zeﬁ_ng‘ calculating higher iterations. To achieve the same accuracy
as with the previous method, often more than 30 iterations
are needed, and to curb the numerical difficulties real*16
precision is neccessary. These facts make this method rather
In this section we apply the methods for calculating theimpractical. It is also difficult to apply this method for model
two-body effective interaction outlined in Sec. Il and, with spaces witiN,,,>4.

IIl. APPLICATION TO LIGHT NUCLEI
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Let us point out that new iteration methods were sug-problem is not in the calculational method but rather in the
gested recently, which combine some features of both metHact that the original two-nucleon Hamiltonigh) is flawed
ods studied herg21]. These techniques are more involved if P,# 1. The difficulty is that while the relative-coordinate
from the computational point of view, and we did not try to harmonic-oscillator auxiliary potential is exactly canceled in
use them. They may, however, remedy some of the difficulEqg. (2), it is not fully canceled when the effective interaction
ties found in our applications. is derived from the two-nucleon Hamiltonidh). This can

The simplest and the most straightforward way to calcu-be seen, for example, when the nucleon-nucleon interaction
late the two-body effective interaction is accomplished byis switched off. Then from Eq(5) we obtain an effective
solving Eqg.(17) and constructing the effective Hamiltonian interaction derived from the relative-coordinate harmonic-
according to Eq(18). The easiest way to perform the calcu- oscillator potential, which will be different from the model-
lations is in the center-of-mass and relative-coordinate basispace part of the harmonic-oscillator potential, appearing in
and afterwards to do the transformation to the two-nucleoriq. (4). Clearly, theQ,-space part of the relative-coordinate
harmonic-oscillator basis. Note thai is diagonal in the harmonic-oscillator potential is responsible for this effect. In
center-of-mass quantum number§;£ as well as in order to reduce this spurious effect of the auxiliary potential
S,j,J,T. Consequently, the sum in E¢L7) goes only over on the effective interaction, we introduce ad hocmodifi-
ne,lp for the basis states classified hylSj,N£,JT). An  cation of the relative-coordinate two-nucleQaspace part of
important point is the right choice of the eigenstates in thehe auxiliary potential as follows:
setK. For eachS,j,N,£,J, T we must choose as many rela-
tive coordinate eigenstates as the allowed numbergf, az A-2 -~ A-2 -
combinations. These are determined from the condition H3rei= 24 5, TPa5a rQT Pt PoKo— - nT7°Q;
2N+ L+ 2np+1p<Npa Since the harmonic-oscillator ba-
sis is infinite, we make a truncation in tigz space by keep- A-2 ., A-2 .,
ing only the states witmy<150. Note that=j =1 for the +QoKo 54— HQT P+ Qokg— 1~ nOT7Q;
coupled channels arid=j for the uncoupled channels. This
method can be easily applied to calculate the effective inter- 1 A-2 -
action up toN,,,.= 8, as required in the present shell-model +(1=kQ)5hQ \ 3 —(Nmaxt 2)Qa+ V(r).
calculations.

To take partially into account the many-body effects ne- (23
glected when using only a two-body effective interaction, we
employ the recently introduced multivalued effective inter get the original Hamiltonian appearing in B6). Moreover,

action approachi8]. In this approach different effective in- = . : .
teractions are used for differeAt() excitations. The effec- for A=2 the harmomc-osclnlator dependence vgnlshes and
for P—1 the relative-coordinate part of the Hamiltonig)

tive interactions then carry an additional index, indicating the,

fth il for th f is recovered. In Eq(23) the Q-space harmonic-oscillator
E;m of the oscillator quanta for the spectatdig,s, defined potential is made more shallow and is shifted. The shift is

such that theP-space and th€-space potentials are equal
Neps= Neum— No=NZi= N, (21  forr?=3((r?)y__+(r?y__,1), with this mean value deter-

mined for the eigenstates of the relative-coordinate
where Ng,m, and N, are the total oscillator quanta in the harmonic-oscillator Hamiltonian appearing in E6). In this
initial and final many-body states, respectively, aigdand  modified Hamiltonian(23), a quasiparticle scattered into the
N, are the total oscillator quanta in the initial and final two- Q space “feels” a weaker auxiliary potential. Note that an
nucleon statekr) and|y), respectively. Different sets of the alternative method by Krenciglowet al. [28] for deriving
effective interaction are determined for different modelthe G matrix, as opposed to that we employ hgté], uses
spaces characterized Wys,s and defined by the projection plane-wave-type intermedia@-space states, that is, no aux-

Here we have introduced a const&gy<1; for k=1, we

operators iliary potential at all. For a recent review of this approach,
see Ref[29]. Our present modification, in fact, brings those
0 if Ny+No<Npa— Ngps, two methods closer together. We solve the Sdhrger
Q2(Nspd = 1 otherwise, (223 equation with the Hamiltonia23) by diagonalization in a
harmonic-oscillator basis characterized by A/ Q) with
P2(Ngpd = 1— Qu(Ngpg- (22p  the radial quantum number=0, .. .,150. The error caused

by this truncation of the harmonic-oscillator basis can be
This multivalued effective interaction approach is superior toestimated forko=1, when the system can be solved as a
the traditional single-valued effective interaction, as con-differential equation. We found that the low-lying eigenval-
firmed also in a model calculatid®]. ues obtained in the two calculations do not differ by more
The shell-model diagonalization is performed by usingthan 10°* MeV and in most cases by much less. The lowest
the many-fermion-dynamics shell-model codi@2]. We eigenvalues are typically of the order of‘1MeV. The di-
present the results fok=3-6 nuclei in Tables I-V. It has agonalization cannot be used for hard-core nucleon-nucleon
been observed earli¢i] and it is apparent in the present potentials, but for the soft-core Reid 93 and Nijmegen II
calculations as well that, when the effective interaction ispotentials the interaction matrix elements can be evaluated
derived using the Lee-Suzuki method, the interaction bestraightforwardly. Note that the Hamiltoniga3) depends on
comes too strong and leads to overbinding of nuclei. ThéN,,, and the projection operators. When the multivalued ef-
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TABLE I. Experimental and calculated binding energy in MeV, point proton radius in fm, and magnetic
moment inuy, for H. The ground state hak’= 1% The 81Q calculation results are presented. Different
kq choices correspond to different two-nucleon Hamiltonians, from which the multivalued effective interac-
tion is calculated, as explained in the text. The Reid 93 nucleon-nucleon potential is used, and the harmonic-
oscillator parameter is taken to bh€)=19.2 MeV. The exact, calculated binding energy for this potential is
7.63 MeV. The free nucleog factors were used. The experimental values are taken from| &a&f.

*H ko=1 ko=0.6 Expt.

Es 8.739 7.674 8.482
V(ra) 1.540 1.600 1.41-1.62
© 2.638 2.634 2.979

fective interaction is calculated, solutions are found only forWe observe that the calculation, using the effective interac-
projectors andN,,, corresponding toNg,s=0. The value tion derived from the Hamiltonian(5) or, equivalently,
Nmax=8 is used in most calculations. Using these solutionsk,=1 in Eq.(23), overbinds the system in comparison with
all required sets of effective interactions are constructed. poth the experimental valu@.482 Me\) and the exact re-
The question arises if the modification we introduced insylt for the Reid 93 calculatiofi7.63 Me\) [31]. Our aim
Eq. (23) may not cause center-of-mass spurious contaminashould be to reproduce the result of the exact calculation. To
tion of the physical states. We note that the modification is;chieve that we varied the parametey in Eq. (23). The
done only in theQ-space part of the auxiliary potential and, \a1ye k,=0.6 gives reasonable agreement. We keep this
most importantly, with regard to the two-nucleon refative, 51y for all other calculations, so that a meaningful com-
coordinate. In conjuction with this, our choice of the two- parison of binding energies can be obtained

nucleon model space as well as the complfel) model In Table Il the calculated results fdtHe are presented,

space for the_ mf_;my-nucleon_ states prevents the Center'0\}‘\7here we have usedi8) for the positive-parity states and 7
mass contamination of physical states. We have tested ny-

merically for possible spurious center-of-mass contamina- 0 f_o rthe negative-parity states. The vakB =18.4 Mev,
tions by varying the parametgs, introduced in Eq(4), in obtained from Eq(24) is employed. The results for calcula-

calculations for several systems and found that the physicdlons Withko=1 andky=0.6, using the Reid 93 potential,

states remain unchanged for different choicegocluding &€ shown, as well as calculations wkg=0.6, using the
B=0, even ifkg#1. Nijmegen Il potential. We observe that both potentials give

We note that the fredor bar values of the nucleon almost identical results. The effective interaction derived us-

charges are used for calculating mean values of differeri'd_the unmodified relative-coordinate two-body Hamil-
operators. tonian overbinds the system. On the other hand, the calcula-

In Table | we present results of thé@ calculation for tion with the.modified quiltonian gives very reasonablg
3H with 40 =19.2 MeV as suggested by the form{&0] agreement with the expenmental results. Unlike the experi-
(in units of MeV) mental spectrum we still get thei®, 0" state above the 1

nQ 0~ ; however, the discrepancy is reduced considerably in
7 Q=45A"13—250728 (24)  comparison with previous calculatiofi§] and most of the

TABLE II. Experimental and calculated binding energy, point proton radius in fm and excitation energies
E.(J™,T) for *He. All energies are in MeV. The#®) (w=+) and 7Q (7= —) calculation results are
presented. Differerktg choices correspond to different two-nucleon Hamiltonians, from which the multival-
ued effective interaction was calculated, as explained in the text. Both the Reid 93 and Nijmegen Il nucleon-
nucleon potentials are used for comparison purposes. The harmonic-oscillator parameter is taken to be
#Q=18.4 MeV. The experimental values are taken from Rigf4,25.

Reid 93 Reid 93 Nijmegen I
“He ko=1 ko=0.6 ko=0.6 Expt.
Es 31.115 27.408 27.499 28.296
NG) 1.378 1.434 1.432 1.46
E«(07,0) 0 0 0 0
E«(03.0) 24.009 21.619 21.724 20.21
E«(07,0) 23.506 21.290 21.402 21.01
E«(21.0) 25.118 22.852 22.948 21.84
Ex(27.1) 26.544 24.056 24.125 23.33
Ex(11.1) 26.874 24.263 24.325 23.64
E«(17.0) 27.763 25.113 25.205 24.25
E«(07.1) 27.940 25.247 25.325 25.28

E,(1,,1) 28.154 25.419 25.487 25.95
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TABLE lll. Experimental and calculated binding energy, point proton radius in fm, magnetic moment in
un,» quadrupole moment ia fm?, and excitation energies,(J™,T) for He. All energies are in MeV. The
7hQ) (m=+) and &) (7= —) calculation results are presented. Differ&gt choices correspond to dif-
ferent two-nucleon Hamiltonians, from which the multivalued effective interaction was calculated, as ex-
plained in the text. The Reid 93 nucleon-nucleon potential is used, and the harmonic-oscillator parameter is
taken to beh(1=17.8 MeV. The calculate(’};r state is associated with the experimerﬁél state as it is
dominated by the (§)3(0p)? configuration. See also Figs. 1 and 2. The experimental values are taken from

Ref.[26].

°He ko=1 ko=0.6 Expt.
Eg 30.454 26.105 27.402
NG} 1.531 1.597 NA
M -1.845 -1.844 NA
Q -0.437 -0.489 NA
Ed31.9) 0 0 0
Ex(31 +2) 2.537 2.026 &1
Ex(31.9) 4.062 3.113 NA
Ex(31.2) 9.503 8.099 NA
E31 .3 9.520 8.172 NA
Ed(32.2) 11.200 10.413 NA
Ex(35,3) 15.049 14.025 NA
Ex(25 .3 20.931 18.652 NA
Ed(3:,2) 21.378 19.454 16.75

a\ot available.

states compare better with the experiment data than in théraw a definitive conclusion, these facts indicate that excited
recent calculation with a multivalued effective interaction states obtained in the calculation, but unobserved, may be
[8]. states, which do not correspond tble internal excitations.
The calculation forHe was performed for several values  The calculated results fotLi are presented in Table IV.
of Q) and different model spaces in order to study the deA 6#() calculation was performed for the positive-parity
pendence of different states on these quantities. In Table ldtates usingiQ)=17.2 MeV obtained from Eq(24). Again
we show the #Q) (w=+) and GiQ) (w=—) results, re- the effective interaction, derived from the Hamiltoni@, is
spectively, usingi{}=17.8 MeV obtained from Eq(24). too strong and overbinds the system. The calculation with
The controversy regarding the shell-model calculations fothe modified Hamiltoniari23) gives very reasonable agree-
this nucleus has to do with the nature of the excited statement with experiment for all properties shown. In addition to
[32]. In the standard shell-model formulation, also employed
here, the center of mass of the nucleus is bound in a
harmonic-oscillator potential, and so all states are bound. o
However, they do not necessarily belong to the internal ex-
citations of the studied nucleus. They may as well corre- -5
spond to, e.g., a two-cluster configuration. One would expect
that such states are more sensitive to the variation of the -1of 2 =77
model space size and the harmonic-oscillator binding poten-
tial [33]. In Fig. 1 we present thé{) dependence of the
SHe states calculated in theA® (w=+) and 6Q
(7= —) model spaces, respectively, by using the effective -20
interaction obtained fok,=0.6 andN ;=8 in Eq. (23).
Note that only three experimental states are known in this -25
nucleus. Also the excitation energy of the state is deter-
mined with a large error. For comparison, in Fig. 2 results -0
for the 51Q) (w=+) and 4Q (7= —) model spaces, re- s 10 14 17.8 22
spectively, are presented. The effective interaction for this HO energy [Mev]
calculation has been derived from E@3) with the same

Calc Exp

7/2,9/2+
-15

E [MeV]

FIG. 1. Energy dependence for thkle states on the harmonic-

oscillator energyi(} in a full 62Q and 7 () calculation. Only the

ko= 0.6 but differentN,,.,=6. We observe a large sensitiv-
ity for the higher excited states on changesiff} with the three lowest negative-parity states are shown. The positive-parity
3+ 5+ + 9+

exception of3; . This state, dominated by the ((0p)? statess*,3* and%*,2* have very close energies. Therefore, only
configuration, is a good candidate for the experimeBtal  single lines for these pairs of states are presented. The sécond
state. Note also the significant shifts of the excited statesstate is dominated by the#p? configuration and should correspond
again with the exception of, and3; , downwards in en- to the experimentaj * state. For further description of the calcula-
ergy, when the model space is enlarged. Even if we canndion, see the text.
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In Table V we present théHe characteristics. As isospin
symmetry is not broken in the present calculations, the ener-
gies are the same as those fai with T=1. In addition, the
proton and neutron radii are evaluated. Reasonable agree-
ment with the experimantal values is found.

Contrary to the previous no-core shell-model calculations
[6,8], the effective interaction used in the present calcula-
tions does not contain a paramet&r adjusted for each
nucleus in order to get a reasonable binding energy. Besides
the model-space size, the present calculations depend only
on the harmonic-oscillator frequenéy) and on the param-
eter Ko, appearing in the relative-coordinate two-nucleon

-5

30k Hamiltonian (23), which distinguishes the structure of the
— v YT % P space from that of th@ space. For the results presented in
HO energy [Mev] Tables |-V, we chosé () according to formula24) and

kg was fixed to reproduce the result of the exakt calcu-

FIG. 2. Energy dependence for tAkle states on the harmonic- |ation. Consequently, our calculations contain no variable pa-
oscillator energyi{) in a full 44Q) and 5} calculation. See Fig. rameters and meaningful comparisons can be made between
1 for the details. our calculated binding energies and the quantities derived

from them and the experimental values as well as the results
the experimental states presented in the Table IV, anothef other calculations.
J7™=3" T=0 state with the excitation energy 15.8 MeV is  In this regard, we note the recent calculation of valence
known. The lowes8™=3",T=0 24 state obtained in our energies of®He and®Li and the neutron separation energy
ko=0.6 calculation has an energy of 13.840 MeV, with aof He, using the two-frequency shell-model appro§@4.
main configuration of (6)*(0p)(1p0f)*. Another candi- For example, our calculation witky=0.6 and the Reid 93
date for this experimental state may be the calculated stageotential gives for the neutron separation energy°ble,
with an excitation energy of 18.378 MeV, dominated by theEg,= Eg(°He)— Eg(*He)=—1.303 MeV to be compared
configurations  (8)*(1s0d)? and (G)3(0p)3(1s0d)®.  with the experimental value of 0.894 MeV. Similarly, the
Likely, the latter state may be more stable against modevalence energy of ®He is found to be E,,(°He)
space andi() variations. We also performed &8 calcu- = —[Eg(°He)+Eg(*He)— 2Eg(°He)]=—3.151 MeV, com-
lation for the negative-parity states 8ffi. The lowest calcu- pared with the experimentat-2.761 MeV. Furthermore,
lated state is)”=2",T=0 with an excitation energy 9.135 E,(5Li) = —[Eg(°Li) +Eg(*He) — Eg(*He) — Eg(°Li)]

MeV, followed by J7=1",T=0 (E,=9.335 Me\} and =-6.845 MeV, where we usedEg(°Li)=Eg(°He)
J7”=0",T=0 (E,=11.372 MeV}. Such states have not been =26.105 MeV from Table Ill, as the Coulomb contributions,
observed experimentaly. not taken into account in the calculations, more or less can-

TABLE IV. Experimental and calculated binding energy, point proton radius in fm, magnetic moment in
N, quadrupole moment ia fm?, and excitation energies,(J™, T) for 6Li. All energies are in MeV. The
64 () calculation results are presented. Differéwgt choices correspond to different two-nucleon Hamilto-
nians, from which the multivalued effective interaction was calculated, as explained in the text. The Reid 93
nucleon-nucleon potential is used, and the harmonic-oscillator parameter is choseh @b=7.2 MeV.
Only the states dominated by th& Q configuration are presented. See the text for the discussion of other
states. The experimental values are taken from R2f26.

oLi ko=1 ko=0.6 Expt.
Eg 37.532 31.647 31.995
() 1.995 2.097 2.42
m 0.839 0.839 0.822
Q 0.027 -0.052 -0.082
E.(17,0) 0 0 0
E,(37,0) 2.368 2.398 2.19
E,(07,1) 4.301 3.695 3.56
E,(27,0) 4.966 4.438 4.31
E.(2].1) 6.878 6.144 5.37
E,(15,0) 7.232 6.277 5.65
Ex(25.1) 10.641 9.333 NA
E (17.1) 11.442 10.019 NA
Ex(13,0) 11.847 10.467 NA

E, (05 ,1) 13.866 12.050 NA
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TABLE V. Experimental and calculated binding energy, point proton and neutron radius in fm, and
excitation energie&,(J™,T) for ®He. All energies are in MeV. The presented results are #dd &nd are
performed as described in Table IV. The experimental values are taken from R&7).

®He ko=1 ko=0.6 Expt.
Eg 33.230 27.953 29.269
V(r2) 1.629 1.707 1.72
Wr2) 2.196 2.317 2.59
E,(07,1) 0 0 0

E (27,1) 2.577 2.449 1.80
Ex(25,1) 6.339 5.638 NA

E (17.1) 7.140 6.324 NA
E.(05,1) 9.565 8.355 NA

cel. Here the experimental value is6.559 MeV. We ob- tions. We observe here, however, that for large model
serve good agreement of these quantities with the expergpaces, like those we employ, the non-Hermiticity could be
mental values, in fact, better than that obtained in R&f].  significant. It is certainly preferable to work with the exactly
Apparently, the reason for these improved results is the sizelermitized interaction.
of the model space, which is muc_h larger in our calcu!a}tions. Employing the derived effective interaction, we have per-
., In Ref. [32] concerns were raised about the stability offormed shell-model calculations, in which up to nine major
Li to the a+d threshold in previous no-core calculations harmonic-oscillator shells may be occupied. In order to take
[6]. From the present results we deduce thei is bound  jnto account part of the many-body effects, we utilized the
against this threshold by 1.314 MeV, compared with the eXnew multivalued effective interaction approadi. The re-
perimental value of 1.474 MeV. Note that the deuteron isgts for no-core, fulN4Q calculations are given for nuclei
treated exactly in our formalisnEg(d)=2.2246 MeV. To  \\jth A=3-6. The effective interaction was derived from the
arrive at the present number, we used the Coulomb energ¥eiq 93 nucleon-nucleon potential, but calculations were
contributions to binding enerdyc(Z=2)=—0.76 MeV and 3150 made with Nijmegen Il potential for comparison. As
Ec(Z=3)=—1.46 MeV. Another issue raised in R¢B2]  opserved earlief7], when the Lee-Suzuki method is applied
was the sign of the quadrupole moment 4fi. As in the  for a two-nucleon system with a harmonic-oscillator auxil-
previous no-core calculatior§,8], we also get the sign cor- jary potential, the resulting effective interaction is too strong
rectly in ourko,=0.6 calculation. Clearly, this is a conse- and leads to overbinding of the many-body system. This
quence of a reasonable effective interaction and a larggroblem is caused by incomplete cancellation of the relative
enough model space. coordinate part of the auxiliary potential. To mend this flaw,
we introduced a modification of th@-space part of the
relative-coordinate two-nucleon Hamiltonian, from which
the effective interaction is calculated. In effect this weakens
In the present paper we have presented different ways dhe auxiliary potential in th€ space.
constructing a starting-energy-independent two-body effec- In the present calculations, besides the model-space size,
tive interaction. In particular, we studied the Lee-Suzukithe only free parameters are the harmonic-oscillator fre-
similarity transformation method and compared two differentquency #{) and the parameter modifing the two-nucleon
iteration schemes for obtaining a solution, the vertex renorHamiltonian, as discussed above. The latter parameter was
malization method and the Krenciglowa-Kuo method. Wherfixed from the 3H binding energy calculatioffitted to the
applying the vertex renormalization method, we obtained theesult of an exactH calculation and% () was taken from
derivatives of theG matrix exactly by using the derivatives the phenomenological formul@4). Hence, unlike previous
of the referencé& matrix. A third approach involved a direct no-core calculations, we are able to compare, for nuclei other
calculation of the transformation operator When the con- than 3H, quantities derived from binding energies, such as
vergence conditions of the iteration methods are satisfied, allalence energies, with experiment.
three approaches lead to the same two-body effective inter- For most calculated characteristics we found good agree-
action. Our conclusion is that, for the large model spaces thanent with the experimental values. In agreement with the
we employ, the only viable option is the direct calculationprevious observatioi5], we found that the Reid 93 and
method. For large model spacebl (,>4), the iteration Nijmegen Il potentials give very similar results. The question
methods either fail to converge or the calculations are timef low-lying positive-parity states irrHe was also investi-
consuming or both. gated. We observed that the calculated low-lying positive-
Unlike in most previous applications, where the non-parity states have not converged, regarding changes in the
Hermitian effective interaction was Hermitized by averagingmodel-space size and variations fif). This may indicate
the conjugate matrix elements, we Hermitize the effectivethat they do not correspond to internal excitations®bfe.
interaction exactly using a similarity transformation. It was However, we are not in a position to make a conclusive
demonstrated in Ref35] that the averaging is a good ap- statement concerning this issue.
proximation for the Hermitiarsd and pf effective interac- Because we derive the transformation operaiaexplic-

IV. CONCLUSIONS
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