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No-core shell-model calculations with starting-energy-independent
multivalued effective interactions

P. Navrátil * and B. R. Barrett
Department of Physics, University of Arizona, Tucson, Arizona 85721

~Received 10 July 1996!

Large-space no-core shell-model calculations have been performed for3H, 4He, 5He, 6Li, and 6He, using
a starting-energy-independent two-body effective interaction derived by application of the Lee-Suzuki similar-
ity transformation. This transformation can be performed by direct calculation or by different iteration proce-
dures, which are described. A possible way of reducing the auxiliary potential influence on the two-body
effective interaction has also been introduced. The many-body effects have been partially taken into account by
employing the recently introduced multivalued effective interaction approach. Dependence of the5He energy
levels on the harmonic-oscillator frequency as well as on the size of the model space has been studied. The
Reid 93 nucleon-nucleon potential has been used in the study, but results have also been obtained using the
Nijmegen II potential for comparison.@S0556-2813~96!03612-6#

PACS number~s!: 21.60.Cs, 21.10.Dr, 21.10.Ky, 27.10.1h
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I. INTRODUCTION

Large-basis no-core shell-model calculations have
cently been performed@1–8#. In these calculations all nucle
ons are active, which simplifies the effective interaction
no-hole states are present. In the approach taken, the e
tive interaction is determined for a system of two nucleo
only and subsequently used in many-particle calculations
take into account a part of the many-body effects a multiv
ued effective interaction approach was introduced and
plied in the no-core shell-model calculations@8# and also
tested in a model calculation@9#.

In these shell-model calculations different approac
have been taken in deriving the two-nucleon effective int
action. All the methods employed, however, relied on
referenceG-matrix method, introduced in Ref.@10#, which
leads to two-body matrix elements of a starting-ener
dependentG matrix. To get rid of this unwanted dependen
either a suitable parametrization was chosen@4–6,8# or
folded diagram effects were taken into account by calcu
ing the derivatives of theG matrix in an approximate way
@4,7#.

In the present paper we apply the Lee-Suzuki similar
transformation approach@11# to derive the two-body effec
tive interaction. We try to avoid unnecessary approximatio
in performing the calculations. The harmonic-oscillator
sertions are kept; consequently, the effective interaction
A dependent. Also the Hermitization of the effective intera
tion, which is, in general, non-Hermitian, is done witho
approximations by a similarity transformation.

We consider three possible ways of deriving the effect
interaction. The first two are the standard iterative pro
dures, starting with theG-matrix calculation@10#. We study
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the Lee-Suzuki vertex renormalization iteration, whi
makes use of theG-matrix derivatives. Unlike most of the
previous applications of this approach, we calculate th
derivatives exactly employing the referenceG-matrix deriva-
tives. The other iterative procedure, usually referred to as
Krenciglowa-Kuo technique, is carried out by diagonalizi
the non-Hermitian effective Hamiltonian in subsequent ite
tions @12#. This method has so far been applied only
model calculations. We also discuss its recent generaliza
@13#. Finally, we directly construct the effective interactio
without calculating theG matrix by employing the solutions
of the two-body problem. When criteria necessary for co
vergence are the same for both iteration procedures, the
sulting effective interactions obtained in all three metho
are identical. The last method, however, has two advanta
first, its simplicity and, second, the fact that it utilizes a
explicit construction of the transformation operator. Th
transformation operator may then be used for the calcula
of other effective operators.

To take partially into account the many-body effects n
glected when using only a two-body effective interaction,
employ the recently introduced multivalued effective inte
action approach@8#.

It was observed earlier@7# that the two-body effective
interaction derived by the vertex renormalization method
too attractive and leads to overbinding of the many-bo
system. We discuss this problem and believe that it is larg
due to the uncompensatedQ-space part of the auxilliary
harmonic-oscillator potential. We discuss possible treatm
of this problem by modification of that part of the auxilliar
potential.

In Sec. II we discuss the shell-model Hamiltonian with
bound center of mass as well as the two-particle Hamilton
and the methods used to derive the starting-ener
independent effective interaction. Results of the calculati
for 3H, 4He, 5He, 6Li, and 6He are presented in Sec. III. I
particular, we discuss the harmonic-oscillator frequency a
the model-space-size dependences of the5He states. Conclu-
sions are given in Sec. IV.

s,
2986 © 1996 The American Physical Society
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II. SHELL-MODEL HAMILTONIAN AND STARTING-
ENERGY-INDEPENDENT EFFECTIVE INTERACTION

In most shell-model studies the one- and two-body Ham
tonian for theA-nucleon system, i.e.,

H5(
i51

A pW i
2

2m
1(

i, j

A

Vi j , ~1!

wherem is the nucleon mass andVi j the nucleon-nucleon
interaction, is modified by adding the center-of-mass h
monic oscillator potential12AmV2RW 2, RW 5(1/A)( i51

A rW i . This
potential does not influence intrinsic properties of the ma
body system. It provides, however, a mean field ‘‘felt’’ b
each nucleon and allows us to work with a conveni
harmonic-oscillator basis. For an alternative manipulation
the center-of-mass terms, see, e.g., Ref.@1#. The modified
Hamiltonian, depending on the harmonic-oscillator fr
quencyV, can be written as

HV5(
i51

A F pW i2
2m

1
1

2
mV2rW i

2G1(
i, j

A FVi j2
mV2

2A
~rW i2rW j !

2G ,
~2!

which is the same as Eq.~4! in Ref. @1#. Shell-model calcu-
lations are carried out in a model space defined by a pro
tor P. In the present work we will always use a comple
N\V model space. The complementary space to the mo
space is defined by the projectorQ512P. Consequently,
for theP-space part of the shell-model Hamiltonian we g

HP
V5(

i51

A

PF pW i2
2m

1
1

2
mV2rW i

2GP
1(

i, j

A

PFVi j2
mV2

2A
~rW i2rW j !

2G
eff

P. ~3!

The effective interaction appearing in Eq.~3! is, in general,
an A-body interaction, and, if it is determined without an
approximations, the model-space Hamiltonian provides
identical description of a subset of states as the full-sp
Hamiltonian ~2!. The intrinsic properties of the many-bod
system still do not depend onV. From among the eigenstate
of the Hamiltonian~3!, it is necessary to choose only tho
corresponding to the same center-of-mass energy. This
be achieved by projecting the center-of-mass eigenst
with energies greater than32\V upwards in the energy spec
trum. The shell-model Hamiltonian, which does this, tak
the form

HPb
V 5 (

i, j51

A

PF ~pW i2pW j !
2

2Am
1
mV2

2A
~rW i2rW j !

2GP1(
i, j

A

PFVi j

2
mV2

2A
~rW i2rW j !

2G
eff

P1bP~Hc.m.
V 2 3

2\V!P, ~4!

where b is a sufficiently large positive parameter an
Hc.m.

V 5PW c.m.
2 /2Am1 1

2AmV2RW 2, PW c.m.5( i51
A pW i . In a com-

pleteN\V model space the removal of the spurious cen
of-mass motion is exact. When going from Eq.~3! to ~4!, we
l-

r-

-

t
f

-

c-

el

n
e
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es

s

r-

added (b21)PHc.m.
V P and subtractedb 3

2\VP, which has no
effect on the intrinsic spectrum of states with the lowe
center-of-mass configuration.

The effective interaction should be determined fromHV

~2!. Calculation of the exactA-body effective interaction is,
however, as difficult as finding the full-space solution. Us
ally, the effective interaction is approximated by a two-bo
effective interaction determined from a two-nucleon pro
lem. The relevant two-nucleon Hamiltonian obtained fro
Eq. ~2! is then

H2
V[H02

V 1V2
V5

pW 1
21pW 2

2

2m
1
1

2
mV2~rW1

21rW2
2!1V~rW12rW2!

2
mV2

2A
~rW12rW2!

2. ~5!

This can be transformed into two-nucleon relative a
center-of-mass parts by introducing the coordinatesqW

5 1
2(pW 12pW 2), PW 2c.m.5pW 11pW 2, RW 2c.m.5

1
2(rW11rW2), and

rW5rW12rW2, yielding

H2
V5

PW 2c.m.
2

2M
1
1

2
MV2RW 2c.m.

2 1
qW 2

2m
1
A22

2A
mV2rW21V~rW !,

~6!

with M52m andm5 1
2m. While the center-of-mass part ha

the solution ENL5(2N1L1 3
2)\V and the eigenvectors

uNL&, the relative-coordinate part can be solved as a diff
ential equation or, alternatively, can be diagonalized in
sufficiently large harmonic-oscillator basis. The latter pos
bility is, obviously, not applicable for hard-core potentials

The starting-energy-dependent effective interaction orG
matrix corresponding to a two-nucleon model space defi
by the projectorP2 can be written as

G~«!5V2
V1V2

VQ2

1

«2Q2H2
VQ2

Q2V2
V , ~7!

whereQ2512P2 andV2
V is the interaction given by the las

two terms on the right-hand side~RHS! of Eq. ~5!. TheG
matrix ~7! can be constructed from the solutions of t
Schrödinger equation with the Hamiltonian~5!, by using the
reference matrix method@10#. The G matrix can be ex-
pressed as

G~«!5A~«!21GR~«!, ~8a!

GR~«!5~H02
V 2«!1~H02

V 2«!(
k

uk&^ku
«2Ek

~H02
V 2«!, ~8b!

A~«!511GR~«!P2

1

«2H02
V , ~8c!

whereH02
V is given by the first two terms on the RHS of E

~5! andEk and uk& are the eigenvalues and eigenvectors
H2

V , Eq. ~5!, respectively.
To obtain a starting-energy-independent effective inter

tion, one has to take into account the folded diagrams
equivalently, to construct a similarity transformation th
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guarantees decoupling between the model spaceP and the
Q space. We employ the Lee-Suzuki@11# similarity transfor-
mation method, which gives the effective interaction in t
form

P2V2effP25P2V2
VP21P2V2

VQ2vP2 , ~9!

with v satisfying the equationsv5Q2vP2 and

v5Q2

1

«2Q2H2
VQ2

Q2V2
VP2

2Q2

1

«2Q2H2
VQ2

Q2vP2~H2
V1H2

VQ2v2«!P2 .

~10!

In this degenerate-model-space formulation two iterative
lutions of Eq.~10! exist and lead to different expressions f
the effective interaction. The first one, the Krenciglowa-K
~KK ! iteration procedure@12#, gives for thenth iteration for-
mula

V2eff,n5(
l
P2G~«1El ,n21!P2u l n21&^ l̃ n21uP2 . ~11!

In Eq. ~11! the statesu l n21& are the right eigenvectors o
H02

V 1V2eff,n212« belonging to the eigenvalueEl ,n21. The
e
-

x

e
r
ti-
tw
-

tilde states are the biorthogonal eigenvectors. When this
cedure converges, it does so to the states which have
largest overlap with the model-space states. The resul
V2eff Eq. ~9!, is independent of the starting energy«. This
method was recently generalized to a nondegenerate m
space@13#. The difference is in the starting iteration. Whe
using Eq.~11!, the starting iteration isG(«), while the non-
degenerate model-space version@13# starts with

(
a

G~«a1D!P2a . ~12!

Here the«a are the unperturbed energies, in our case
two-nucleon harmonic-oscillator energies, andP2a is the
projector on the two-nucleon stateua&. Unlike in the original
paper@13#, we introduce a shiftD, as theG matrix cannot be
evaluated for the energy«a , using the reference matrix
method~8!. Note that Eq.~12! is the interaction used in the
previous no-core shell-model studies@4–6,8# with D treated
as a free parameter.

One can also use the alternative procedure, usually ca
the vertex-renormalization approach, which can be obtai
from Eq. ~10! @11#. The resulting iteration sequence for th
effective interaction can be written as
H02
V 1V2eff,n2«5FP22P2G

~1!~«!P22 (
m52

n21
1

m!
P2G

~m!~«!P2~H02
V 1V2eff,n2m112«!P2~H02

V 1V2eff,n2m122«!

3P2•••~H02
V 1V2eff,n212«!P2G21

P2@H02
V 1G~«!2«#P2 , ~13!
ned

ot
e

e
e
m
nic-
whereV2eff,15P2G(«)P2. This method, which relies on th
G matrix derivativesG(m), was applied in shell-model cal
culations for the first time by Poppelier and Brussard@14#. In
that and most other applications different numerical appro
mations were used to evaluate the derivatives@4,7,14#. In
fact, these derivatives can be calculated exactly, becaus
reference matrixGR(«), Eq. ~8b!, as well as the operato
A(«), Eq. ~8c!, can be differentiated to any order analy
cally, as can be seen when they are expressed in the
nucleon harmonic-oscillator basis. For example, thenth de-
rivative, n.0, of GR is

GRag
~n! ~«!5~21!nn! F(

k

^auk&^kug&
~«2Ek!

n21 2~2«2«a2«g!

3(
k

^auk&^kug&
~«2Ek!

n 1~«2«a!

3(
k

^auk&^kug&
~«2Ek!

n11 ~«2«g!G , ~14!

and similarly forA(«). Then thenthG-matrix derivative can
be expressed as
i-

the

o-

G~n!5 (
m50

n
n!

~n2m!!m!
~A21!~n2m!GR

~m! , ~15!

where the derivatives of the inverse matrix can be obtai
from

~A21!~n!52 (
m50

n21
n!

~n2m!!m!
A21A~n2m!~A21!~m!. ~16!

An alternative way of calculatingG-matrix derivatives ana-
lytically was proposed in Ref.@15#. When the convergence
of Eq. ~13! is achieved, the effective interaction does n
depend on the starting energy«. The states reproduced in th
model space are those lying closest to«.

As our calculations start with exact solutions of th
Hamiltonian~5!, we are, in fact, in a position to construct th
operatorv and, hence, the effective interaction directly fro
these solutions. Let us denote the two-nucleon harmo
oscillator states, which form the model space, asuaP&, and
those which belong to theQ space, asuaQ&. Then the
Q-space components of the eigenvectoruk& of the Hamil-
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tonian ~5! can be expressed as a combination of
P-space components with the help of the operatorv:

^aQuk&5(
aP

^aQuvuaP&^aPuk&. ~17!

If the dimension of the model space isdP , we may choose a
setK of dP eigenevectors, for which the relation~17! will be
satisfied. Under the condition that thedP3dP matrix
^aPuk& for uk&PK is invertible, the operatorv can be deter-
mined from Eq.~17!. Note that in the present application th
eigenvectorsuk& are direct products of the center-of-ma
and the relative-coordinate eigenvectors. The condition
invertibility is not satisfied for an arbitrary choice of th
eigenvector setK. Once the operatorv is determined the
effective Hamiltonian can be constructed as follows from E
~9!:

^gPuH2effuaP&5 (
kPK

F ^gPuk&Ek^kuaP&

1(
aQ

^gPuk&Ek^kuaQ&^aQuvuaP&G . ~18!

It should be noted thatP2uk&5(aP
uaP&^aPuk& for uk&PK is

a right eigenvector of Eq.~18! with the eigenvalueEk .
In the case when the iteration conditions are the same

both methods~11! and ~13!, and the setK, for which Eq.
~17! is fulfilled, is chosen accordingly, all three methods le
to the identical effective Hamiltonian. This Hamiltonia
when diagonalized in a model-space basis, reproduces
actly the setK of dP eigenvaluesEk . Note that the effective
Hamiltonian is, in general, non-Hermitian or, more acc
rately, quasi-Hermitian. It can be Hermitized by a similar
transformation. When the direct method, Eqs.~17! and~18!,
is used, the similarity transformation is determined from
metric operatorP2(11v†v)P2. The Hermitian Hamiltonian
is then given by@16#

H̄2eff5@P2~11v†v!P2#
1/2H2eff@P2~11v†v!P2#

21/2.
~19!

When the iteration method~11! or ~13! is employed, thev
operator is not determined. In previous applications@4,7,14#,
the Hermitization was usually done by averaging the con
gate matrix elements. However, also in this case a simila
transformation can be constructed, which Hermitizes the
fective Hamiltonian. As shown in Ref.@17#, if S is a matrix,
which diagonalizesH2eff , SH2effS

215D, then the metric op-
erator can be expressed asS†S. Consequently, it follows tha
the HermitizedH̄2eff is obtained from

H̄2eff5@S†S#1/2H2eff@S
†S#21/2. ~20!

Finally, the two-body effective interaction used in th
shell-model calculation is determined from the two-nucle
effective Hamiltonian asV2eff5H̄2eff2H02

V .

III. APPLICATION TO LIGHT NUCLEI

In this section we apply the methods for calculating t
two-body effective interaction outlined in Sec. II and, wi
e

f

.

or

x-

-

e

-
ty
f-

n

the obtained interactions, we perform no-core shell-mo
calculations for nuclei withA53–6. We use a complete
N\V model space with, e.g.,N58 for the positive-parity
states of 4He. This means that nine major harmoni
oscillator shells may be occupied in this case. The tw
nucleon model space is defined in our calculations
Nmax, e.g., for an 8\V calculation for 4He Nmax58. The
restriction of the harmonic-oscillator shell occupation
given by N1<Nmax, N2<Nmax, (N11N2)<Nmax. The
same conditions hold for the relative 2n1 l , center-of-mass
2N1L, and 2n1 l12N1L5N11N2 quantum numbers.

In the present calculations we use the Reid 93 nucle
nucleon potential@18#. For 4He we make a comparison wit
the Nijmegen II potential@18# with corrected1P1 wave@19#.
We work in the isospin formalism and do not include t
Coulomb interaction. Thenp channel interactions of Reid 9
and Nijmegen II are used.

First, let us compare the different methods for calculat
the starting-energy-independent effective interaction. T
KK method ~11! works well forNmax<4. Then the conver-
gence is achieved usually after less than 15 iterations and
model space eigenvalues differ from the full-space eigen
ues, which are of the order of 101–102 MeV, by not more
than 1024 MeV. Note that the referenceG matrix ~8b! be-
comes singular for«5Ek . Consequently, exact eigenvalue
cannot be reproduced when the referenceG-matrix method
is applied for calculating theG matrix. However, this singu-
larity causes no problem when the iteration is stopped a
achieving the above-mentioned precision. When the star
iteration~12! is used instead ofG(«), usually a few iteration
steps are saved. As to the starting energy,«50 is a possible
choice. In most calculations we used negative values fo«.
ForD a nonzero value must be chosen, and we used typic
about25 MeV. The resulting effective interaction is no
dependent on these choices, and they also do not affec
number of iterations significantly. ForNmax.4 divergence in
some channels can be encountered and, moreover, the c
lation becomes time consuming.

The application of the vertex-renormalization method~13!
requires theG-matrix derivatives. The matrix elements of th
G-matrix derivatives decrease rapidly, but, on the oth
hand, they are multiplied by effective-interaction matrices
increasing powers. Consequently, the overall convergenc
rather slow for larger model spaces. Also the rate of conv
gence differs for different states. When the starting energ
chosen below the ground state energy, the fastest con
gence is achieved for the lowest states, which have the l
est overlap with the model space. This is the same obse
tion as found in the model calculations@20#. The rate of
convergence is very sensitive to the choice of the star
energy«. The closer to the ground state, the faster the c
vergence. On the other hand, serious numerical problems
cur when a higher number of iterations is required. The
problems are related to the above-mentioned fact that
multiply very small numbers by very large numbers wh
calculating higher iterations. To achieve the same accur
as with the previous method, often more than 30 iteratio
are needed, and to curb the numerical difficulties real*
precision is neccessary. These facts make this method ra
impractical. It is also difficult to apply this method for mod
spaces withNmax.4.
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Let us point out that new iteration methods were su
gested recently, which combine some features of both m
ods studied here@21#. These techniques are more involve
from the computational point of view, and we did not try
use them. They may, however, remedy some of the diffic
ties found in our applications.

The simplest and the most straightforward way to cal
late the two-body effective interaction is accomplished
solving Eq.~17! and constructing the effective Hamiltonia
according to Eq.~18!. The easiest way to perform the calc
lations is in the center-of-mass and relative-coordinate b
and afterwards to do the transformation to the two-nucle
harmonic-oscillator basis. Note thatv is diagonal in the
center-of-mass quantum numbersN,L as well as in
S, j ,J,T. Consequently, the sum in Eq.~17! goes only over
nP ,l P for the basis states classified byunlS j,NL,JT&. An
important point is the right choice of the eigenstates in
setK. For eachS, j ,N,L,J,T we must choose as many rel
tive coordinate eigenstates as the allowed number ofnP ,l P
combinations. These are determined from the condit
2N1L12nP1 l P<Nmax. Since the harmonic-oscillator ba
sis is infinite, we make a truncation in theQ space by keep-
ing only the states withnQ<150. Note thatl5 j61 for the
coupled channels andl5 j for the uncoupled channels. Th
method can be easily applied to calculate the effective in
action up toNmax58, as required in the present shell-mod
calculations.

To take partially into account the many-body effects n
glected when using only a two-body effective interaction,
employ the recently introduced multivalued effective inte
action approach@8#. In this approach different effective in
teractions are used for different\V excitations. The effec-
tive interactions then carry an additional index, indicating
sum of the oscillator quanta for the spectators,Nsps, defined
by

Nsps5Nsum2Na5Nsum8 2Ng , ~21!

whereNsum andNsum8 are the total oscillator quanta in th
initial and final many-body states, respectively, andNa and
Ng are the total oscillator quanta in the initial and final tw
nucleon statesua& andug&, respectively. Different sets of th
effective interaction are determined for different mod
spaces characterized byNsps and defined by the projectio
operators

Q2~Nsps!5H 0 if N11N2<Nmax2Nsps,

1 otherwise,
~22a!

P2~Nsps!512Q2~Nsps!. ~22b!

This multivalued effective interaction approach is superior
the traditional single-valued effective interaction, as co
firmed also in a model calculation@9#.

The shell-model diagonalization is performed by usi
the many-fermion-dynamics shell-model code@22#. We
present the results forA53–6 nuclei in Tables I–V. It has
been observed earlier@7# and it is apparent in the prese
calculations as well that, when the effective interaction
derived using the Lee-Suzuki method, the interaction
comes too strong and leads to overbinding of nuclei. T
-
h-

l-

-
y

is
n

e

n

r-
l

-
e
-

e

l

o
-

s
-
e

problem is not in the calculational method but rather in t
fact that the original two-nucleon Hamiltonian~5! is flawed
if P2Þ1. The difficulty is that while the relative-coordinat
harmonic-oscillator auxiliary potential is exactly canceled
Eq. ~2!, it is not fully canceled when the effective interactio
is derived from the two-nucleon Hamiltonian~5!. This can
be seen, for example, when the nucleon-nucleon interac
is switched off. Then from Eq.~5! we obtain an effective
interaction derived from the relative-coordinate harmon
oscillator potential, which will be different from the mode
space part of the harmonic-oscillator potential, appearing
Eq. ~4!. Clearly, theQ2-space part of the relative-coordina
harmonic-oscillator potential is responsible for this effect.
order to reduce this spurious effect of the auxiliary poten
on the effective interaction, we introduce anad hocmodifi-
cation of the relative-coordinate two-nucleonQ-space part of
the auxiliary potential as follows:

H2rel
V 5

qW 2

2m
1P2

A22

2A
mV2rW2P21P2kQ

A22

2A
mV2rW2Q2

1Q2kQ
A22

2A
mV2rW2P21Q2kQ

A22

2A
mV2rW2Q2

1~12kQ!
1

2
\VAA22

A
~Nmax12!Q21V~rW !.

~23!

Here we have introduced a constantkQ<1; for kQ51, we
get the original Hamiltonian appearing in Eq.~6!. Moreover,
for A52 the harmonic-oscillator dependence vanishes
for P→1 the relative-coordinate part of the Hamiltonian~6!
is recovered. In Eq.~23! the Q-space harmonic-oscillato
potential is made more shallow and is shifted. The shift
such that theP-space and theQ-space potentials are equ
for rW25 1

2(^rW
2&Nmax1^rW2&Nmax11), with this mean value deter

mined for the eigenstates of the relative-coordin
harmonic-oscillator Hamiltonian appearing in Eq.~6!. In this
modified Hamiltonian~23!, a quasiparticle scattered into th
Q space ‘‘feels’’ a weaker auxiliary potential. Note that a
alternative method by Krenciglowaet al. @28# for deriving
theG matrix, as opposed to that we employ here@10#, uses
plane-wave-type intermediateQ-space states, that is, no au
iliary potential at all. For a recent review of this approac
see Ref.@29#. Our present modification, in fact, brings thos
two methods closer together. We solve the Schro¨dinger
equation with the Hamiltonian~23! by diagonalization in a
harmonic-oscillator basis characterized byb5A\/mV with
the radial quantum numbern50, . . .,150. The error caused
by this truncation of the harmonic-oscillator basis can
estimated forkQ51, when the system can be solved as
differential equation. We found that the low-lying eigenva
ues obtained in the two calculations do not differ by mo
than 1023 MeV and in most cases by much less. The low
eigenvalues are typically of the order of 101 MeV. The di-
agonalization cannot be used for hard-core nucleon-nuc
potentials, but for the soft-core Reid 93 and Nijmegen
potentials the interaction matrix elements can be evalua
straightforwardly. Note that the Hamiltonian~23! depends on
Nmax and the projection operators. When the multivalued
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TABLE I. Experimental and calculated binding energy in MeV, point proton radius in fm, and mag
moment inmN , for

3H. The ground state hasJp5
1
2

1. The 8\V calculation results are presented. Differe
kQ choices correspond to different two-nucleon Hamiltonians, from which the multivalued effective int
tion is calculated, as explained in the text. The Reid 93 nucleon-nucleon potential is used, and the ha
oscillator parameter is taken to be\V519.2 MeV. The exact, calculated binding energy for this potentia
7.63 MeV. The free nucleong factors were used. The experimental values are taken from Ref.@23#.

3H kQ51 kQ50.6 Expt.

EB 8.739 7.674 8.482
A^r p

2& 1.540 1.600 1.41–1.62

m 2.638 2.634 2.979
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in
fective interaction is calculated, solutions are found only
projectors andNmax corresponding toNsps50. The value
Nmax58 is used in most calculations. Using these solutio
all required sets of effective interactions are constructed

The question arises if the modification we introduced
Eq. ~23! may not cause center-of-mass spurious contam
tion of the physical states. We note that the modification
done only in theQ-space part of the auxiliary potential an
most importantly, with regard to the two-nucleon relati
coordinate. In conjuction with this, our choice of the tw
nucleon model space as well as the completeN\V model
space for the many-nucleon states prevents the cente
mass contamination of physical states. We have tested
merically for possible spurious center-of-mass contami
tions by varying the parameterb, introduced in Eq.~4!, in
calculations for several systems and found that the phys
states remain unchanged for different choices ofb, including
b50, even ifkQÞ1.

We note that the free~or bare! values of the nucleon
charges are used for calculating mean values of diffe
operators.

In Table I we present results of the 8\V calculation for
3H with \V519.2 MeV as suggested by the formula@30#
~in units of MeV!

\V545A21/3225A22/3. ~24!
r

,

a-
s

of-
u-
-
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nt

We observe that the calculation, using the effective inter
tion derived from the Hamiltonian~5! or, equivalently,
kQ51 in Eq. ~23!, overbinds the system in comparison wi
both the experimental value~8.482 MeV! and the exact re-
sult for the Reid 93 calculation~7.63 MeV! @31#. Our aim
should be to reproduce the result of the exact calculation.
achieve that we varied the parameterkQ in Eq. ~23!. The
value kQ50.6 gives reasonable agreement. We keep
value for all other calculations, so that a meaningful co
parison of binding energies can be obtained.

In Table II the calculated results for4He are presented
where we have used 8\V for the positive-parity states and
\V for the negative-parity states. The value\V518.4 MeV,
obtained from Eq.~24! is employed. The results for calcula
tions with kQ51 andkQ50.6, using the Reid 93 potentia
are shown, as well as calculations withkQ50.6, using the
Nijmegen II potential. We observe that both potentials g
almost identical results. The effective interaction derived
ing the unmodified relative-coordinate two-body Ham
tonian overbinds the system. On the other hand, the calc
tion with the modified Hamiltonian gives very reasonab
agreement with the experimental results. Unlike the exp
mental spectrum we still get the 2\V 01 state above the 1
\V 02; however, the discrepancy is reduced considerably
comparison with previous calculations@6# and most of the
rgies

val-
cleon-
n to be
TABLE II. Experimental and calculated binding energy, point proton radius in fm and excitation ene
Ex(J

p,T) for 4He. All energies are in MeV. The 8\V (p51) and 7\V (p52) calculation results are
presented. DifferentkQ choices correspond to different two-nucleon Hamiltonians, from which the multi
ued effective interaction was calculated, as explained in the text. Both the Reid 93 and Nijmegen II nu
nucleon potentials are used for comparison purposes. The harmonic-oscillator parameter is take
\V518.4 MeV. The experimental values are taken from Refs.@24,25#.

Reid 93 Reid 93 Nijmegen II
4He kQ51 kQ50.6 kQ50.6 Expt.

EB 31.115 27.408 27.499 28.296
A^r p

2& 1.378 1.434 1.432 1.46

Ex(01
1,0) 0 0 0 0

Ex(02
1,0) 24.009 21.619 21.724 20.21

Ex(01
2,0) 23.506 21.290 21.402 21.01

Ex(21
2,0) 25.118 22.852 22.948 21.84

Ex(21
2,1) 26.544 24.056 24.125 23.33

Ex(11
2,1) 26.874 24.263 24.325 23.64

Ex(11
2,0) 27.763 25.113 25.205 24.25

Ex(01
2,1) 27.940 25.247 25.325 25.28

Ex(12
2,1) 28.154 25.419 25.487 25.95
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TABLE III. Experimental and calculated binding energy, point proton radius in fm, magnetic mome
mN , quadrupole moment ine fm

2, and excitation energiesEx(J
p,T) for 5He. All energies are in MeV. The

7\V (p51) and 6\V (p52) calculation results are presented. DifferentkQ choices correspond to dif
ferent two-nucleon Hamiltonians, from which the multivalued effective interaction was calculated, a
plained in the text. The Reid 93 nucleon-nucleon potential is used, and the harmonic-oscillator param
taken to be\V517.8 MeV. The calculated322

1 state is associated with the experimental3
2

1 state as it is
dominated by the (0s)3(0p)2 configuration. See also Figs. 1 and 2. The experimental values are taken
Ref. @26#.

5He kQ51 kQ50.6 Expt.

EB 30.454 26.105 27.402
A^r p

2& 1.531 1.597 NAa

m -1.845 -1.844 NA
Q -0.437 -0.489 NA
Ex(

3
21

2 , 12) 0 0 0
Ex(

1
21

2 , 12) 2.537 2.026 461
Ex(

1
21

1 , 12) 4.062 3.113 NA
Ex(

3
21

1 , 12) 9.503 8.099 NA
Ex(

5
21

1 , 12) 9.520 8.172 NA
Ex(

3
22

2 , 12) 11.200 10.413 NA
Ex(

1
22

2 , 12) 15.049 14.025 NA
Ex(

1
22

1 , 12) 20.931 18.652 NA
Ex(

3
22

1 , 12) 21.378 19.454 16.75

aNot available.
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states compare better with the experiment data than in
recent calculation with a multivalued effective interactio
@8#.

The calculation for5He was performed for several value
of \V and different model spaces in order to study the d
pendence of different states on these quantities. In Table
we show the 7\V (p51) and 6\V (p52) results, re-
spectively, using\V517.8 MeV obtained from Eq.~24!.
The controversy regarding the shell-model calculations
this nucleus has to do with the nature of the excited sta
@32#. In the standard shell-model formulation, also employ
here, the center of mass of the nucleus is bound in
harmonic-oscillator potential, and so all states are bou
However, they do not necessarily belong to the internal
citations of the studied nucleus. They may as well cor
spond to, e.g., a two-cluster configuration. One would exp
that such states are more sensitive to the variation of
model space size and the harmonic-oscillator binding pot
tial @33#. In Fig. 1 we present the\V dependence of the
5He states calculated in the 7\V (p51) and 6\V
(p52) model spaces, respectively, by using the effect
interaction obtained forkQ50.6 andNmax58 in Eq. ~23!.
Note that only three experimental states are known in t
nucleus. Also the excitation energy of the12

2 state is deter-
mined with a large error. For comparison, in Fig. 2 resu
for the 5\V (p51) and 4\V (p52) model spaces, re-
spectively, are presented. The effective interaction for t
calculation has been derived from Eq.~23! with the same
kQ50.6 but differentNmax56. We observe a large sensitiv
ity for the higher excited states on changes in\V with the
exception of32 2

1 . This state, dominated by the (0s)3(0p)2

configuration, is a good candidate for the experimental3
2

1

state. Note also the significant shifts of the excited sta
again with the exception of32 2

1 and 1
2 1

2 , downwards in en-
ergy, when the model space is enlarged. Even if we can
he

-
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a
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-
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draw a definitive conclusion, these facts indicate that exc
states obtained in the calculation, but unobserved, may
states, which do not correspond to5He internal excitations.

The calculated results for6Li are presented in Table IV
A 6\V calculation was performed for the positive-pari
states using\V517.2 MeV obtained from Eq.~24!. Again
the effective interaction, derived from the Hamiltonian~5!, is
too strong and overbinds the system. The calculation w
the modified Hamiltonian~23! gives very reasonable agree
ment with experiment for all properties shown. In addition

FIG. 1. Energy dependence for the5He states on the harmonic
oscillator energy\V in a full 6\V and 7\V calculation. Only the
three lowest negative-parity states are shown. The positive-pa
states32

1, 52
1 and 7

2
1, 92

1 have very close energies. Therefore, on
single lines for these pairs of states are presented. The secon3

2
1

state is dominated by thes3p2 configuration and should correspon
to the experimental32

1 state. For further description of the calcula
tion, see the text.
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the experimental states presented in the Table IV, ano
Jp531,T50 state with the excitation energy 15.8 MeV
known. The lowestJp531,T50 2\V state obtained in ou
kQ50.6 calculation has an energy of 13.840 MeV, with
main configuration of (0s)4(0p)1(1p0 f )1. Another candi-
date for this experimental state may be the calculated s
with an excitation energy of 18.378 MeV, dominated by t
configurations (0s)4(1s0d)2 and (0s)3(0p)2(1s0d)1.
Likely, the latter state may be more stable against mo
space and\V variations. We also performed a 5\V calcu-
lation for the negative-parity states of6Li. The lowest calcu-
lated state isJp522,T50 with an excitation energy 9.13
MeV, followed by Jp512,T50 (Ex59.335 MeV! and
Jp502,T50 (Ex511.372 MeV!. Such states have not bee
observed experimentaly.

FIG. 2. Energy dependence for the5He states on the harmonic
oscillator energy\V in a full 4\V and 5\V calculation. See Fig.
1 for the details.
er

te

el

In Table V we present the6He characteristics. As isospi
symmetry is not broken in the present calculations, the en
gies are the same as those for6Li with T51. In addition, the
proton and neutron radii are evaluated. Reasonable ag
ment with the experimantal values is found.

Contrary to the previous no-core shell-model calculatio
@6,8#, the effective interaction used in the present calcu
tions does not contain a parameterD adjusted for each
nucleus in order to get a reasonable binding energy. Bes
the model-space size, the present calculations depend
on the harmonic-oscillator frequency\V and on the param-
eter kQ , appearing in the relative-coordinate two-nucle
Hamiltonian ~23!, which distinguishes the structure of th
P space from that of theQ space. For the results presented
Tables I–V, we chose\V according to formula~24! and
kQ was fixed to reproduce the result of the exact3H calcu-
lation. Consequently, our calculations contain no variable
rameters and meaningful comparisons can be made betw
our calculated binding energies and the quantities deri
from them and the experimental values as well as the res
of other calculations.

In this regard, we note the recent calculation of valen
energies of6He and 6Li and the neutron separation energ
of 5He, using the two-frequency shell-model approach@34#.
For example, our calculation withkQ50.6 and the Reid 93
potential gives for the neutron separation energy of5He,
Esp5EB(

5He)2EB(
4He)521.303 MeV to be compared

with the experimental value of20.894 MeV. Similarly, the
valence energy of 6He is found to be Eval(

6He)
52@EB(

6He)1EB(
4He)22EB(

5He)#523.151 MeV, com-
pared with the experimental22.761 MeV. Furthermore,
Eval(

6Li)52@EB(
6Li) 1EB(

4He) 2 EB(
5He) 2 EB(

5Li) #
526.845 MeV, where we usedEB(

5Li)5EB(
5He)

526.105 MeV from Table III, as the Coulomb contribution
not taken into account in the calculations, more or less c
nt in

o-
eid 93

ther
TABLE IV. Experimental and calculated binding energy, point proton radius in fm, magnetic mome
mN , quadrupole moment ine fm2, and excitation energiesEx(J

p,T) for 6Li. All energies are in MeV. The
6\V calculation results are presented. DifferentkQ choices correspond to different two-nucleon Hamilt
nians, from which the multivalued effective interaction was calculated, as explained in the text. The R
nucleon-nucleon potential is used, and the harmonic-oscillator parameter is chosen to be\V517.2 MeV.
Only the states dominated by the 0\V configuration are presented. See the text for the discussion of o
states. The experimental values are taken from Refs.@25,26#.

6Li kQ51 kQ50.6 Expt.

EB 37.532 31.647 31.995
A^r p

2& 1.995 2.097 2.42

m 0.839 0.839 0.822
Q 0.027 -0.052 -0.082
Ex(11

1,0) 0 0 0
Ex(31

1,0) 2.368 2.398 2.19
Ex(01

1,1) 4.301 3.695 3.56
Ex(21

1,0) 4.966 4.438 4.31
Ex(21

1,1) 6.878 6.144 5.37
Ex(12

1,0) 7.232 6.277 5.65
Ex(22

1,1) 10.641 9.333 NA
Ex(11

1,1) 11.442 10.019 NA
Ex(13

1,0) 11.847 10.467 NA
Ex(02

1,1) 13.866 12.050 NA
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TABLE V. Experimental and calculated binding energy, point proton and neutron radius in fm
excitation energiesEx(J

p,T) for 6He. All energies are in MeV. The presented results are for 6\V and are
performed as described in Table IV. The experimental values are taken from Refs.@26,27#.

6He kQ51 kQ50.6 Expt.

EB 33.230 27.953 29.269
A^r p

2& 1.629 1.707 1.72

A^r n
2& 2.196 2.317 2.59

Ex(01
1,1) 0 0 0

Ex(21
1,1) 2.577 2.449 1.80

Ex(22
1,1) 6.339 5.638 NA

Ex(11
1,1) 7.140 6.324 NA

Ex(02
1,1) 9.565 8.355 NA
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cel. Here the experimental value is26.559 MeV. We ob-
serve good agreement of these quantities with the exp
mental values, in fact, better than that obtained in Ref.@34#.
Apparently, the reason for these improved results is the
of the model space, which is much larger in our calculatio

In Ref. @32# concerns were raised about the stability
6Li to the a1d threshold in previous no-core calculation
@6#. From the present results we deduce that6Li is bound
against this threshold by 1.314 MeV, compared with the
perimental value of 1.474 MeV. Note that the deuteron
treated exactly in our formalism,EB(d)52.2246 MeV. To
arrive at the present number, we used the Coulomb en
contributions to binding energyEC(Z[2)520.76 MeV and
EC(Z[3)521.46 MeV. Another issue raised in Ref.@32#
was the sign of the quadrupole moment of6Li. As in the
previous no-core calculations@6,8#, we also get the sign cor
rectly in our kQ50.6 calculation. Clearly, this is a conse
quence of a reasonable effective interaction and a la
enough model space.

IV. CONCLUSIONS

In the present paper we have presented different way
constructing a starting-energy-independent two-body ef
tive interaction. In particular, we studied the Lee-Suzu
similarity transformation method and compared two differe
iteration schemes for obtaining a solution, the vertex ren
malization method and the Krenciglowa-Kuo method. Wh
applying the vertex renormalization method, we obtained
derivatives of theG matrix exactly by using the derivative
of the referenceG matrix. A third approach involved a direc
calculation of the transformation operatorv. When the con-
vergence conditions of the iteration methods are satisfied
three approaches lead to the same two-body effective in
action. Our conclusion is that, for the large model spaces
we employ, the only viable option is the direct calculati
method. For large model spaces (Nmax.4), the iteration
methods either fail to converge or the calculations are t
consuming or both.

Unlike in most previous applications, where the no
Hermitian effective interaction was Hermitized by averagi
the conjugate matrix elements, we Hermitize the effect
interaction exactly using a similarity transformation. It w
demonstrated in Ref.@35# that the averaging is a good ap
proximation for the Hermitiansd and p f effective interac-
ri-

ze
.
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tions. We observe here, however, that for large mo
spaces, like those we employ, the non-Hermiticity could
significant. It is certainly preferable to work with the exact
Hermitized interaction.

Employing the derived effective interaction, we have p
formed shell-model calculations, in which up to nine ma
harmonic-oscillator shells may be occupied. In order to ta
into account part of the many-body effects, we utilized t
new multivalued effective interaction approach@8#. The re-
sults for no-core, fullN\V calculations are given for nucle
with A53–6. The effective interaction was derived from th
Reid 93 nucleon-nucleon potential, but calculations w
also made with Nijmegen II potential for comparison. A
observed earlier@7#, when the Lee-Suzuki method is applie
for a two-nucleon system with a harmonic-oscillator aux
iary potential, the resulting effective interaction is too stro
and leads to overbinding of the many-body system. T
problem is caused by incomplete cancellation of the rela
coordinate part of the auxiliary potential. To mend this fla
we introduced a modification of theQ-space part of the
relative-coordinate two-nucleon Hamiltonian, from whic
the effective interaction is calculated. In effect this weake
the auxiliary potential in theQ space.

In the present calculations, besides the model-space
the only free parameters are the harmonic-oscillator
quency \V and the parameter modifing the two-nucle
Hamiltonian, as discussed above. The latter parameter
fixed from the 3H binding energy calculation~fitted to the
result of an exact3H calculation! and\V was taken from
the phenomenological formula~24!. Hence, unlike previous
no-core calculations, we are able to compare, for nuclei o
than 3H, quantities derived from binding energies, such
valence energies, with experiment.

For most calculated characteristics we found good ag
ment with the experimental values. In agreement with
previous observation@5#, we found that the Reid 93 an
Nijmegen II potentials give very similar results. The questi
of low-lying positive-parity states in5He was also investi-
gated. We observed that the calculated low-lying positi
parity states have not converged, regarding changes in
model-space size and variations in\V. This may indicate
that they do not correspond to internal excitations of5He.
However, we are not in a position to make a conclus
statement concerning this issue.

Because we derive the transformation operatorv explic-
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itly in our calculations, we are able to use it for calculati
any effective operator, employing the approaches discus
in Refs. @36,37#, in a similar way as in our model calcula
tions @9#. Besides calculating other effective operators,
also intend to extend the calculations to largerA.
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