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Spreading width of the isobaric analog state and isospin mixing
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We study a relation between the spreading width of the isobaric analog state and the isospin mixing
probability of the corresponding parent state by using the Feshbach projection method. The formula is applied
for calculations of the spreading width of several heavy isotopes and compared with available experimental
data. Contributions from isovector monopole states are found to be important to explain quantitatively the
experimental spreading width. The isospin dependence of the calculated width of several isotopes is also found
to be consistent with the experimental observations.@S0556-2813~96!00912-0#

PACS number~s!: 24.30.Gd, 21.10.Hw, 21.10.Pc, 24.30.Cz
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The question of isospin impurities in nuclei has been
long-standing open question in nuclear physics. While
idea of isospin was proposed by Heisenberg more than
years ago, the isospin becomes again a popular subje
nuclear structure, especially due to the recent developme
experimental facilities of radioactive beams. It was poin
out theoretically that nuclei near the proton drip line hav
much larger isospin impurity than those of stable nuclei
cause of a favorable isospin geometrical factor@1#. Micro-
scopic calculations predict a large isospin mixing probabi
up to about 5% in medium heavy nuclei, for examp
100Sn. The effect of isospin impurities on the superallow
Fermi b decays has been also studied and a relation of
calculated Fermi transition rates to the Cabbibo-Kobaya
Maskawa mixing matrix is discussed@2–4#.

The discovery of isobaric analog resonances@5# was a
highlight of the study of isospin in nuclear physics. One
the important characteristics of the isobaric analog s
~IAS! is its narrow width. The width of IAS originates from
Coulomb interaction that couples the state to the part
continuum and to other states. Several works have been
to study the width of the IAS@6,7# in relation to the Coulomb
matrix elements. There is still no explicit formula which r
lates the isospin impurity with the width of the IAS. In th
paper, we would like to address possible relations betw
the spreading width of the IAS and the isospin mixing pro
ability in the corresponding parent nucleus.

We first derive a formula for the spreading width of th
IAS based on the projection method by Feshbach@8#. The
Hamiltonian consists of two parts

H5H01H1 , ~1!

whereH1 is the interaction which violates the isospin, i.e
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the isovector part of the Coulomb interaction, the cha
symmetry breaking~CSB! and charge independence brea
ing ~CIB! interactions@9#, while H0 conserves isospin. We
separate the whole space into two parts,P andQ spaces: The
P space consists of the parent state,up&, and the IAS,uIAS&,

uP&5$up&,uIAS&%. ~2!

The two states are defined as eigenstates ofH0 with good
isospin: up&5uT, Tz5T& and uIAS&5uT,T21&. The other
spaceQ512P consists of all eigenstates ofH0 , exceptup&
anduIAS&, having good isospin. By definition, the two spac
are orthogonal,PQ5QP50. Since the physical parent sta
and physical IAS should be eigenstates of the total Ham
tonianH, they have admixtures of different isospins due
H1. These mixings have been often discussed in relation
the conserved vector current hypothesis and the Cabb
Kobayashi-Maskawa unitary matrices in superallowed Fe
transitions@2–4#. For the present purpose, we have to hav
good isospin basis to relate the isospin impurity and
width of the IAS as will be discussed later.

The wave function projected onto theP space,PC, sat-
isfies the equation

@E2PHeff~E!P#PC50, ~3!

with

Heff~E!5H1H
Q

E2HQQ
H, ~4!

whereHQQ5QHQ. As PHQ5PH1Q due to PH0Q50,
P andQ spaces can be connected only byH1 . This is the
consequence of defining theP andQ spaces by eigenstate
of H0 , not by those ofH. It can be shown by theoretica
calculations@1,10# that the physical IAS is almost~more than
99%! an eigenstate ofH0 in nuclei near the stable line o
mass table.
2954 © 1996 The American Physical Society
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54 2955SPREADING WIDTH OF THE ISOBARIC ANALOG . . .
The spreading width of the IAS can be expressed as

GA
↓ ~E!522 Im^IASuH1Q

1

E2HQQ
QH1uIAS&

522 Im(
q

u^IASuH1uq&u2

E2Eq1 iGq~E! /2

5(
q

Gq~E!
u^IASuH1uq&u2

~E2Eq!
21@Gq~E! /2#2

,

~5!

where the stateuq& belongs to theQ space. Let us assum
that the dominant contribution to Eq.~5! comes from cou-
plings to the isovector monopole~IVM ! states~denoted by
uM &! as doorway states, which is the case in many nu
near closed shells@11#. Then Eq.~5! is rewritten to be

GA
↓ ~EA!5(

M
GM~EA!

u^IASuH1uM &u2

~EA2EM !21@GM~EA! /2#2
.

~6!

Note thatGM(EA) in Eq. ~6! is the width of the IVM state at
the energyEA of the IAS, but not the physical~experimental!
width GM(EM) of the IVM state at its excitation energy. W
will show later thatGM(EA) is much smaller thanGM(EM)
as is expected from the proportionality to the density
states and fromEA,EM .

Strictly speaking, as the IVM states are eigenstates
H0 , note those ofH, there are nondiagonal terms in Eq.~5!
in addition to the diagonal ones (i5 j ),

(
iÞ j

^IASuH1uMi&^Mi u
1

E2H0
H1

1

E2H0

1•••uM j&^M j uH1uIAS&, ~7!

where

1

E2H
5

1

E2H0
1

1

E2H0
H1

1

E2H

5
1

E2H0
1

1

E2H0
H1

1

E2H0

1
1

E2H0
H1

1

E2H0
H1

1

E2H0
1••• ~8!

is used. These terms can be safely neglected since their
tributions prove to be small due to cancellation among the
on the one hand, and, on the other hand, due to quite s
nondiagonal matrix elements (H1) i j5^Mi uH1uM j& for large
isospin states compared to the diagonal ones for the isos
violating interaction. We adopt the calculated energies
IVM states with the two HamiltonianH5H01H1 for the
energy denominator of Eqs.~5! and~6!. This choice is justi-
fied since the nondiagonal matrix elements (H1) i j are much
smaller than the diagonal ones. In fact, the diagonal ma
element̂ Mi u1/(E2H)uMi is given as
ei

f

of

on-
,
all

in-
f

ix

^Mi u
1

E2H
uMi&

5^Mi u
1

E2H0
1

1

E2H0
H1

1

E2H0
1•••uMi&

5
1

E2Ei
1

1

E2Ei
~H1! i i

1

E2Ei
1

1

E2Ei

3(
j

~H1! i j
1

E2Ej
~H1! j i

1

E2Ei
1•••

5
1

E2Ei2~H1! i i
, ~9!

since the nondiagonal matrix elements (H1) i j ( iÞ j ) can
be safely neglected in the last step of the modificat
above.

An expression similar to Eq.~6! was derived forGA
↓ by

Mekjian @11#. The important difference between his and o
models is the following. In his model, two statesuIAS& and
uIVM & can be connected byH5H01H1 which includes the
isospin-invariant nuclear interaction while the isosp
violating termH1 only has nonzero matrix element in ou
model. This is the keypoint for treating the isospin-violatin
part of the interaction consistently to find a relation betwe
the width of the IAS and the isospin impurity of the pare
state. Because of smallness of the matrix elements ofH1 , the
nondiagonal contributions~7! for GA

↓ are negligible in our
approach as we pointed out above. He also introduced s
ad hocreasoning for neglected couplings of the IAS to IV
states with isospinT andT11. Our model takes into accoun
consistently all isospin multiplets of the IVM,T21, T, and
T11, in Eq.~6!, without any assumption on their coupling t
the IAS.

Using the relation

uA&5
1

A2T
T2up&, ~10!

with T25Tx2 iTy5
1
2(tx2 i ty), the spreading width~6! can

be rewritten as

GA
↓ (EA)5(

i
G i

M(EA)
1

2T

u^Mi uH1T2up&u2

~EA2EM
i !21~GM

i /2!2

.
GM

2T(
i

u^Mi u@H1 ,T2#1T2H1up&u2

~EA2EM
i !21~GM/2!2

~11!

where i labels the three IVM components with isospinT
21, andT11, and theGM

i ’s are assumed to be the same
We approximate the Coulomb interaction by the one-bo

potential felt by a proton inside a uniformely charged sph
of radiusR @7#,

Vc52
Ze2

R3 (
i

~ 1
2 r i

22 3
2R

2!@ 1
22tz~ i !#[Vc01Vc1 ,

~12!
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and identify the isovector partVc1 asH1. Using the commutator@ tz ,T2#52T2 , we obtain

@Vc1 ,T2#52(
i
vc~ i !t2~ i ![2Vc

~2 ! , ~13!

with vc( i )5(Ze2/R3) 12r i
2. The widthGA

↓ is now given as

GA
↓5GM

1

2T H u^M ;T21,T21u2A2V21
c up&u2

~EA2EM
T21!21~GM /2!2

1
u^M ;T,T21u2A2V21

c up&1A2T^M ;T,TuVc1up&u2

~EA2EM
T !21~GM /2!2

1
u^M ;T11,T21u2A2V21

c up&1A2~2T11!^M ;T11,TuVc1up&u2

~EA2EM
T11!21~GM /2!2 J , ~14!
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where we use the relations

T6uT,Tz&5~T7Tz!~T6Tz11!uT,Tz61&, ~15!

andV21
c 5(1/A2)Vc

(2) . The IVM stateuM & can be consid-
ered as the particle-hole~ph! excitation from both the state
up& and uIAS& in theP space,

uM ;T1 i ,Tz&5u$uP&T^ uph21&T51} Tz
T1 i&. ~16!

The matrix elements in Eq.~14! are expressed by the reduce
matrix elementṽc5(1/A3)^(ph21)T51uuvcuu0& to be

^M ;T1 i ,T21uV21
c uT,T&5~TT121uT1 iT21!ṽc

~17!

and

^M ;T,TuVcuT,T&5~TT10uTT!ṽc . ~18!

The spreading widthGA
↓ is then expressed as

GA
↓5GM ṽ c

2 1

T H S 2T21

2T11D 1

@~EA2EM
T21!2 1~GM/2!2#

1
~T21!2

T11

1

@~EA2EM
T !21~GM/2!2#

1
4T2

~2T11!~T11!

1

@~EA2EM
T11!21~GM/2!2# J .

~19!

Note in Eq.~19! that the largest contribution toGA
↓ comes

from the second term on the right-hand side~RHS!, namely,
from the IVM state uM ;T,T21& in stable nuclei with
T@1. This is different from Ref.@11# in which only the
uM ;T21,T21& state is considered as the IVM. We can e
press the isospin dependence of the energy denomin

DEM
T85EM

T82EA by using an isovector potential@12#

DEM
T85\v1

V1

A
tW•TW c , ~20!

where\v and tW are the excitation energy and isospin of t
IVM state, respectively,Tc is the isospin of the core, an
V1 is the symmetry potential coefficient.
-
tor

A perturbation formula is often used to obtain the isosp
mixing probability in the parent nucleus due to the coupli
to the IVM state@7#. The mixing amplitude of the paren
state up&5uT,T& can be given also by the reduced matr
elementṽc as

ap,M
T115

1

Ep2EM
T11 ^M ;T11,TuVcuT,T&

52
1

DEMp
~TT10uT11T!ṽc

52
1

DEMp

1

AT11
ṽc , ~21!

whereDEMp5EM
T112Ep . Comparing Eqs.~19! and ~21!,

we can obtain a relation betweenGA
↓ andap,M

T11 as

GA
↓5GM~ap,M

T11!2
T11

T H S 2T21

2T11D 1

~DEM
T21!2

1
~T21!2

T11

1

~DEM
T !2

1
4T2

~2T11!~T11!

1

~DEM
T11!2 J

3~DEMp!2. ~22!

In the case of superallowed Fermib decay, the isospin mix-
ing yields the second-order effects in the Fermi transit
probability between the parent state and the IAS@2#. On the
other hand, formula~22! shows a direct relation betwee
GA
↓ and the mixing probability (ap,M

T11)2 with some coeffi-
cients.

The isospin mixing probability (apM
T11)2 is estimated by

using the energy-weighted sum rule for the IVM states@7#,

TABLE I. Widths GM(E) in
208Bi at the corresponding energie

of the main RPA IVM states and atEA ~second column!. All values
are in MeV.

GM(E) At its energy At the IAS~EA518.8!

E539.0 6.00 1.79
E545.7 5.34 0.41
E550.7 4.90 0.16
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TABLE II. Spreading widths of the IAS,GA
↓ , in Sn, Sb, I, and Bi isotopes.T denotes isospin, andPIM

given by Eq.~24! is the isospin mixing probability without the geometrical factor (T11). GA
↓ calculated by

using Eq.~25! with GM(EA) given are shown with experimental values taken from Ref.@15#.

GA
↓ ~keV!

ASn T PIM GM5500 keV GM5700 keV Expt.

111Sn 11/2 0.039 264 20.5 28.7 1763
113Sn 13/2 0.039 733 20.9 29.2 22610
115Sn 15/2 0.040 201 21.2 29.7 2268
117Sn 17/2 0.040 665 21.6 30.3 2268
119Sn 19/2 0.041 129 22.0 30.8 3669
121Sn 21/2 0.041 588 22.4 31.3 4068
123Sn 23/2 0.042 045 22.7 31.8 3968

GA
↓ ~keV!

ASb T PIM GM5600 keV GM5700 keV Expt.

113Sb 11/2 0.041 338 25.8 30.2 1765
115Sb 13/2 0.041 826 26.3 30.7 2265
117Sb 15/2 0.042 310 26.8 31.2 3065
119Sb 17/2 0.042 790 27.2 31.8 2965
121Sb 19/2 0.043 268 27.7 32.3 3265
123Sb 21/2 0.043 743 28.2 32.9 3465

GA
↓ ~keV!

AI T PIM GM5500 keV Expt.

125I 19/2 0.047 751 25.4 2365
127I 21/2 0.048 261 25.8 2465
129I 23/2 0.048 766 26.2 2865

GA
↓ ~keV!

ABi T PIM GM5450 keV Expt.

207Bi 41/2 0.163 925 78.2 7868
209Bi 43/2 0.164 979 79.0 7565
to

th
f
in

tion
ed
at
ee-

ed
95%
ks

eir

ed.
ra-
he
to

ith
a-
~apM
T11!25

1

T11
PIM . ~23!

with the value

PIM5Z2A2/336.831027. ~24!

GA
↓ then becomes

GA
↓5GM~EA!PIM

1

T H S 2T21

2T11D 1

@12~V1 /A\v!~T11!#2

1
~T21!2

T11

1

@12~V1 /A\v!#2

1
4T2

~T11!~2T11!

1

@11~V1 /A\v!T#2 J , ~25!

where Eq.~20! has been explicitly used.
As was pointed out before,GM(EA) is the width of the

IVM state at the energy of the IAS. It is not possible
obtain experimental information onGM(EA), while there is
very little experimental information on the value of the wid
GM(EM) of the IVM. In order to estimate the value o
GM(EA), this quantity has been numerically calculated
208Bi, according to the formalism developed in Ref.@13#.
First, a self-consistent discrete random phase approxima
~RPA! calculation of the IVM strength has been perform
by employing the Skyrme interaction SIII. Discrete states
positive energy are obtained by diagonalizing the Hartr
Fock mean field on a harmonic oscillator basis~\v56.2
MeV, Nshell515!. The particle-hole basis has been check
to be large enough so that the results exhaust more than
of the IVM energy-weighted sum rule. Three main pea
around the excitation energiesE539.0, 45.7, and 50.7 MeV
collect together most of the monopole strength and th
wave functions are labeled, respectively,uM1&, uM2&, and
uM3&. The total width of the stateuMi& lying at energyE is
determined as

GM~E!522 Im^Mi uW↑~E!1W↓~E!uMi&. ~26!

The operatorsW↑,↓ are defined in Ref.@13#, where also the
detailed calculation of their matrix elements is sketch
W↑ couples the discrete RPA states with nuclear configu
tions in which one particle is in the continuum; therefore, t
imaginary part of its diagonal matrix elements is intended
reproduce the escape width of the RPA states.W↓ couples
the discrete RPA states with doorway states made up w
particle-hole configurations plus a low-lying collective vibr
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tion, and its presence in Eq.~26! should ensure that also th
spreading width is taken into account. The widths defined
Eq. ~26! for the three statesuMi& ( i51, . . . ,3! are shown in
Table I. The second column displays the widthsGM(EM) of
each state at its own energy. They are estimated to be a
5 MeV, which looks reasonable in comparisons with oth
nuclei: GM(EM)510–15 MeV in 16O and 40Ca @14#. The
widthsGM(EA) of each state at the energy of the IAS are
the last column of Table I: They are rather state depend
anyhow much smaller thanGM(EM). This is due to the fact
thatGM(E) depends on the density of states at the energyE,
andEA is much smaller thanEM . The average of the thre
valuesGM(EA) is about 500 keV with the weight of th
transition strengths~which are not shown!. We therefore
used the valuesGM(EA)5500–700 keV for the following
analysis of the spreading width of the IAS.

The spreading widths of the IAS calculated according
Eq. ~25! are tabulated in Table II for Sn, Sb, In, and B
isotopes and compared with the experimental data@15#. The
adoptedGM(EA) value is also shown in the upper line o
each table.V1 and\v in Eq. ~20! are taken to be 100 and 3
MeV ~28 MeV in the case for208Bi!, respectively@10,16#.
The calculated widths show in general good agreement w
the empirical values. The experimental width increases as
isospinT increases for the Sn, Sb, and In isotopes. The
tope dependence of the calculated values is consistent
the empirical one, although the rate of calculated increas
smaller than that of the empirical increase. We should no
that the calculated increase is due to the contribut
of the second term in Eq.~25! @from the IVM state
uM ;T,Tz5T,T21& in Eq. ~14!#. If there were only
the contribution from the first term~from the IVM state
uM ;T21,T21&! in Eq. ~25!, which is the case in Ref.@11#,
the width itself is one order of magnitude smaller than
values in Table II and the calculated values decrease as
function of the isospinT, contradicting the empirica
tendency. The main configurations of the IVM sta
.
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y

out
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o

th
he
-
ith
is
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e
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,

uM ;T,T21&, are those with ph excitations built on the IAS
Important contributions, thus, come from coupling to t
2p-2h states top of the IAS, which are not included in t
previous approach@7,11#.

In summary, we derived a relation between the spread
width of the IAS,GA

↓ , and the isospin mixing probability o
the corresponding parent state. It is pointed out that
model basis should have good isospin in order to obtain
explicit relation between the widthGA

↓ and the isospin mix-
ing in the ground states. The dominant contribution to
width GA

↓ comes from the coupling with the IVM state
uM ;T,T21& anduM ;T,T&. With the use of a model calcula
tion of the isospin mixing probability, the valuesGA

↓ are ob-
tained for the Sn, Sb, In, and Bi isotopes and show qua
tatively reasonable agreement with empirical data. T
calculated increase of the width as the isospin increases
each isotope is consistent with the experimental observat
while the increase rate of experiments is larger than tha
the calculations. The present analysis based on formula~25!
suggest the intimate connection between the spreading w
of the IAS and the isospin impurity. It would be quite inte
esting to study experimentally the widthGA

↓ of nuclei near
the proton drip line since the isospin mixing in these nucle
expected one order of magnitude larger than those of st
nuclei so that the width of the IAS will be also much larg
than that of stable nuclei.
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