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Spreading width of the isobaric analog state and isospin mixing
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We study a relation between the spreading width of the isobaric analog state and the isospin mixing
probability of the corresponding parent state by using the Feshbach projection method. The formula is applied
for calculations of the spreading width of several heavy isotopes and compared with available experimental
data. Contributions from isovector monopole states are found to be important to explain quantitatively the
experimental spreading width. The isospin dependence of the calculated width of several isotopes is also found
to be consistent with the experimental observati¢86556-28136)00912-0

PACS numbgs): 24.30.Gd, 21.10.Hw, 21.10.Pc, 24.30.Cz

The question of isospin impurities in nuclei has been ahe isovector part of the Coulomb interaction, the charge
long-standing open question in nuclear physics. While thesymmetry breakingCSB) and charge independence break-
idea of isospin was proposed by Heisenberg more than 6ihg (CIB) interactions[9], while H, conserves isospin. We
years ago, the isospin becomes again a popular subject eéparate the whole space into two paRsndQ spaces: The
nuclear structure, especially due to the recent development & space consists of the parent state), and the IAS|IAS),
experimental facilities of radioactive beams. It was pointed
out theoretically that nuclei near the proton drip line have a |P)y={|m),|IAS)}. 2
much larger isospin impurity than those of stable nuclei be-
cause of a favorable isospin geometrical fadtbk Micro-  The two states are defined as eigenstatesl gfwith good
scopic calculations predict a large isospin mixing probabilityisospin: |7)=|T, T,=T) and |IAS)=|T,T—1). The other
up to about 5% in medium heavy nuclei, for examplespaceQ=1—P consists of all eigenstates bify, except|w)
1093, The effect of isospin impurities on the superallowedand|IAS), having good isospin. By definition, the two spaces
Fermi B decays has been also studied and a relation of thare orthogonalP Q= QP=0. Since the physical parent state
calculated Fermi transition rates to the Cabbibo-Kobayashiand physical IAS should be eigenstates of the total Hamil-
Maskawa mixing matrix is discuss¢é—4). tonianH, they have admixtures of different isospins due to

The discovery of isobaric analog resonang8swas a H;. These mixings have been often discussed in relation to
highlight of the study of isospin in nuclear physics. One ofthe conserved vector current hypothesis and the Cabbibo-
the important characteristics of the isobaric analog stat&obayashi-Maskawa unitary matrices in superallowed Fermi
(IAS) is its narrow width. The width of IAS originates from transitiong 2—4]. For the present purpose, we have to have a
Coulomb interaction that couples the state to the particlggood isospin basis to relate the isospin impurity and the
continuum and to other states. Several works have been domédth of the IAS as will be discussed later.
to study the width of the 1A$6,7] in relation to the Coulomb The wave function projected onto tlie space, PV, sat-
matrix elements. There is still no explicit formula which re- isfies the equation
lates the isospin impurity with the width of the IAS. In this
paper, we would like to address possible relations between [E-PH(E)P]P¥ =0, ©)]
the spreading width of the IAS and the isospin mixing prob-
ability in the corresponding parent nucleus. with

We first derive a formula for the spreading width of the
IAS based on the projection method by Feshbfgh The Q
Hamiltonian consists of two parts Her(E)=H+H E——HQQ H, )

H=Ho*H., D here Hoo=QHQ. As PHQ=PH;Q due to PH,Q=0,

whereH; is the interaction which violates the isospin, i.e., P and Q spaces can be connected only Hy. This is the
consequence of defining tHe andQ spaces by eigenstates
of Hy, not by those ofH. It can be shown by theoretical

*Electronic address: suzuki@chs.nihon-u.ac.jp calculationd 1,10] that the physical IAS is almos$ore than
Electronic address: sagawa@Uu-aizu.ac.jp 99%) an eigenstate oH, in nuclei near the stable line of
*Electronic address: colo@mi.infn.it mass table.

0556-2813/96/546)/29545)/$10.00 54 2954 © 1996 The American Physical Society



54 SPREADING WIDTH OF THE ISOBARIC ANALGS . . . 2955

The spreading width of the IAS can be expressed as

. Mil g IM3)
TA(E)=—2 IM(IAS|H,;Q ———— QH;|IAS) 1 1 1
E=Hao =(M|| + H +e M)
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where the statéq) belongs to theQ space. Let us assume E-Ei—(Hy; °

that the dominant contribution to E¢5) comes from cou-
plings to the isovector monopolgVM) states(denoted by since the nondiagonal matrix elementd,f;; (i#j) can
IM)) as doorway states, which is the case in many nuclebe safely neglected in the last step of the modification

near closed shellgl1]. Then Eq.(5) is rewritten to be above.
An expression similar to Eq6) was derived forl“,ﬁ by
| B |(IAS|H,|M)|? Mekjian [11]. The important difference between his and our
FA(EA)_EM: I'w(Ea) (Ea—Ep)2+[Ty(En)/2]2 models is the following. In his model, two statgaS) and

(6) |IVM) can be connected iy =Hy+H; which includes the
isospin-invariant nuclear interaction while the isospin-

Note thatl"y,(E,) in Eq. () is the width of the IVM state at Violating termH; only has nonzero matrix element in our
the energyE, of the IAS, but not the physicaexperimental model. This is the keypoint for treating the isospin-violating
width T'y,(E,,) of the IVM state at its excitation energy. We Part of the interaction consistently to find a relation between
will show later thatl'y,(E,) is much smaller thaft y (Ey) the width of the IAS and the isospin impurity of the parent
as is expected from the proportionality to the density ofState. Because of smaliness of the matrix elemenks, ofthe
states and fronE,<E,, . nondiagonal contribution§7) for F,& are negligible in our
Strictly speaking, as the IVM states are eigenstates ofPproach as we pointed out above. He also introduced some

H,, note those of, there are nondiagonal terms in £§) ~ @d hocreasoning for neglected couplings of the IAS to IVM
in addition to the diagonal ones< ), states with isospifl andT+1. Our model takes into account

consistently all isospin multiplets of the IVM,—1, T, and
1 T+1, in Eq.(6), without any assumption on their coupling to
the 1AS.
Using the relation

24 IASIH MM g H g

+-[Mj(Mj[H4[IAS), @ .
where |A)= N T |m), (10
1 1 1 1
= + H, with T_=T,—iT,= H(ry—i 7y), the spreading widtii) can
E=H E=H, E-H, “E-H be rewritten as
1 N 1 H 1
“E- - 1EC . 1 M;|H,T_|m)|?
E-H, E—H, 'E—H, FUED =S Ty (Ex) — [(Mi[H T _| )]
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(8) Mi|[Hy, T_1+T_Hy|m)|?

(Ea—Em)?+(Tw/2)?

| Y
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is used. These terms can be safely neglected since their con-
tributions prove to be small due to cancellation among the

on the one hand, and, on the other hand, due to quite small
nondiagonal matrix elementsig);;=(M;|H,|M;) for large
isospin states compared to the diagonal ones for the isospi
violating interaction. We adopt the calculated energies o
IVM states with the two Hamiltoniatd=Hy+H, for the
energy denominator of Eq&) and(6). This choice is justi- 72
fied since the nondiagonal matrix elemenit;);; are much __ == 1.2_3p2\rL_¢ (i)\]—
smaller than the diagonal ones. In fact, the diagonal matrix "¢ R? 2.“ (2= 2RO ~Ll(D]1=Veo + Var,
element(M;|1/(E—H)|M; is given as (12

herei labels the three IVM components with isospin

1, andT+1, and thel'},’s are assumed to be the same.
We approximate the Coulomb interaction by the one-body
otential felt by a proton inside a uniformely charged sphere

of radiusR [7],
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and identify the isovector pai.; asH;. Using the commutatdit,,T_]=—T_, we obtain

with v (i) =(Z€*/R®)3r?. The widthT'} is now given as

l"}\: MoT

[Ver, T-1=— 2 ve(it-()=—VL, (13)
[ (M;T—1,T=1=V2Ve |m)2  [(M;T,T—1|—2VC | m)+ V2T(M; T, T|Vy| )|
(Ea—Ep D2+ (T'y/2)? (Ea—Ep)2+(T'y/2)2
N |<M;T+ 1,T—1|— \/§V°_1|7T)+ \V2(2T+ 1)<M;T+1,T|VC1|7T>|2 14

(Ea—Epy H2+(T'y/2)?

where we use the relations

Ti|T|TZ>:(TITZ)(TiTZ+ :I-)lTyTzi 1>v (15
andV® ,=(1/y2)V{"). The IVM state|M) can be consid-
ered as the particle-holgh) excitation from both the states
|7y and|IAS) in the P space,

IM;T+i,TH=[{|P)T@lph HT=} 1) (16)

The matrix elements in Eq14) are expressed by the reduced

matrix element .= (1/y3)((ph~*)7=?||v¢/|0) to be

(M;T+i, T=1VS T, T)=(TTL-1|T+iT-1)v,
17

and
(M;T,T|VT,T)=(TT10TT)v,. (18
The spreading widtﬂ“,& is then expressed as
1
[(Ea—Ey H2+(Tw/2)?]
(T—1)? 1
T+1 [(Ea—Epn)?+(Tw/2)?]
. 472 1
(2T+1)(T+1) [(Ea—Ey M2+ (Tu/2)?] |
(19

2T-1
2T+1

21
°T

Ta=Twv

Note in Eq.(19) that the largest contribution tBlA comes
from the second term on the right-hand si@&HS), namely,
from the IVM state |[M;T,T—1) in stable nuclei with
T>1. This is different from Ref[11] in which only the

A perturbation formula is often used to obtain the isospin
mixing probability in the parent nucleus due to the coupling
to the IVM state[7]. The mixing amplitude of the parent
state|7)=|T,T) can be given also by the reduced matrix
elemenfv, as

1
aIrTN]I-:E _ET+1<M;T+1vT|Vc|TvT>
T M
__AEM,,(TquT+1T)UC
1 1 _
=— Ve, (21
AEv, (T+1
where AEy ,=E,, '—E,. Comparing Eqs(19) and (21),

we can obtain a relation betwedl), anda]\ as

T+1(({2T-1 1
= T+1\2
FA FM(aw,M) T 2T+1 (AEIA_]-)Z
(T-1)%2 1 . 472 1
T+1 (AE))? (2T+1)(T+1) (AELTY)?
X(AEpm )2 (22)

In the case of superallowed Fergidecay, the isospin mix-
ing vyields the second-order effects in the Fermi transition
probability between the parent state and the [&F On the
other hand, formula22) shows a direct relation between
I'x and the mixing probability ¢} 1) with some coeffi-
cients.

The isospin mixing probability ¢'1')? is estimated by
using the energy-weighted sum rule for the IVM stdték

[M;T—1T—1) state is considered as the IVM. We can ex- _ ot _ _
press the isospin dependence of the energy denominator TABLE I. Widths T'y(E) in °%8i at the corresponding energies

AE], =E;, —E, by using an isovector potentifl2]

AET =ho+ ﬁf-f' (20)
M A c

whereZiw andt are the excitation energy and isospin of the g—45.7
IVM state, respectively[T. is the isospin of the core, and g=50.7

V, is the symmetry potential coefficient.

of the main RPA IVM states and &, (second column All values
are in MeV.

'w(E) At its energy At the IAS(E5=18.8
E=39.0 6.00 1.79

5.34 0.41

4.90 0.16
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TABLE II. Spreading widths of the IAST'4, in Sn, Sb, I, and Bi isotoped. denotes isospin, anfy,
given by Eq.(24) is the isospin mixing probability without the geometrical fact®r{(1). 1“,& calculated by
using Eq.(25) with T'\,(E,) given are shown with experimental values taken from [RES].

') (keV)
ASn T Pm 'y =500 keV I'y=700 keV Expt.
gp 11/2 0.039 264 20.5 28.7 13
135 13/2 0.039 733 20.9 29.2 220
155 15/2 0.040 201 21.2 29.7 23
75 17/2 0.040 665 21.6 30.3 23
195 19/2 0.041 129 22.0 30.8 30
21gp 21/2 0.041 588 22.4 31.3 48
1235 2312 0.042 045 22.7 31.8 38
I'x (keV)
ASh T Pim 'y, =600 keV 'y, =700 keV Expt.
H3gp 11/2 0.041 338 25.8 30.2 1B
115 13/2 0.041 826 26.3 30.7 25
Higp 15/2 0.042 310 26.8 31.2 36
asYo) 17/2 0.042 790 27.2 31.8 28
21gp 19/2 0.043 268 27.7 32.3 35
123gp 21/2 0.043 743 28.2 329 35
'} (keV)
Al T Pim 'y, =500 keV Expt.
125 19/2 0.047 751 25.4 285
127 21/2 0.048 261 25.8 245
129 23/2 0.048 766 26.2 285
T4 (keV)
ABI T Pim 'y, =450 keV Expt.
207g;j 4112 0.163 925 78.2 788
209g; 4312 0.164 979 79.0 755
o1, 1 2088, according to the formalism developed in REL3].
(@ )" =77Pm- (23 First, a self-consistent discrete random phase approximation

with the value
Pm=Z?A?*x6.8x107". (24)
I'j then becomes

1

. 2T7-1
FA:FM(EA)PM?

2T+1

1
[1—(V,/Ahw)(T+1)]?

(T—1)? 1
T+1 [1—(V,/Ahw)]?
472 1
T T D@T D) [1F (VAR o) TR

(29

where Eq.(20) has been explicitly used.
As was pointed out beford,,(E,) is the width of the

(RPA) calculation of the IVM strength has been performed
by employing the Skyrme interaction SllI. Discrete states at
positive energy are obtained by diagonalizing the Hartree-
Fock mean field on a harmonic oscillator bagign=6.2
MeV, Ngoi=15). The particle-hole basis has been checked
to be large enough so that the results exhaust more than 95%
of the IVM energy-weighted sum rule. Three main peaks
around the excitation energi€s=39.0, 45.7, and 50.7 MeV
collect together most of the monopole strength and their
wave functions are labeled, respectiveli,), |M,), and
|[M3). The total width of the statgM;) lying at energyE is
determined as

I'w(E)=—2 Im(M;|W(E)+W(E)|M),). (26)

The operatorsV''! are defined in Ref[13], where also the
detailed calculation of their matrix elements is sketched.
W' couples the discrete RPA states with nuclear configura-

IVM state at the energy of the IAS. It is not possible to tions in which one particle is in the continuum; therefore, the

obtain experimental information oh,(E,), while there is

imaginary part of its diagonal matrix elements is intended to

very little experimental information on the value of the width reproduce the escape width of the RPA staWs.couples

I'm(Ey) of the IVM. In order to estimate the value of

the discrete RPA states with doorway states made up with

I'u(Ea), this quantity has been numerically calculated inparticle-hole configurations plus a low-lying collective vibra-
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tion, and its presence in E(R6) should ensure that also the |M;T,T—1), are those with ph excitations built on the IAS.
spreading width is taken into account. The widths defined bymportant contributions, thus, come from coupling to the
Eq. (26) for the three statelv;) (i=1,...,3 are shownin 2p-2h states top of the IAS, which are not included in the
Table I. The second column displays the widihg(Ey) of  previous approacfi7,11].
each state at its own energy. They are estimated to be about |n summary, we derived a relation between the spreading
5 MeV, which looks reasonable 1'2 comp?orisons with othenyigth of the 1AS,T'}, and the isospin mixing probability of
nuclei: I'y(Ey)=10-15 MeV in 0 and™"Ca [14]. The  he corresponding parent state. It is pointed out that the
m‘gtgss {géliﬁznogfeﬁ'(;rtglztal‘re'l'ﬁg;hzrgnr?irt%roitiltee 'ﬁ‘; :rr]z(';;]godel basis should have good isospin in order to obtain the
: o xplicit relation between the widthi; and the isospin mix-
anyhow much smaller thaliy (Ey). This is due to the fact ing in the ground states. The dominant contribution to the

thatT'(E) depends on the density of states at the enéxgy width T, comes from the coupling with the IVM states

andE, is much smaller thaik,, . The average of the three )

values 'y (E,) is about 500 keV with the weight of the IM:T,T—1)and|M:T,T). With the use of a model calcula-

transition strengthgwhich are not shown We therefore tion of the isospin mixing probability, the valug, are ob-
tained for the Sn, Sb, In, and Bi isotopes and show quanti-

used the value$',(E,) =500-700 keV for the following
analysis of the spreading width of the IAS. tatively reasonable agreement with empirical data. The

The spreading widths of the IAS calculated according tocalculated increase of the width as the isospin increases for
Eqg. (25 are tabulated in Table Il for Sn, Sb, In, and Bi each isotope is consistent with the experimental observations
isotopes and compared with the experimental §af. The  while the increase rate of experiments is larger than that of
adoptedI",(E,) value is also shown in the upper line of the calculations. The present analysis based on fori@@Ha
each tableV; andfiw in Eq. (20) are taken to be 100 and 30 suggest the intimate connection between the spreading width
MeV (28 MeV in the case fof%Bi), respectively{10,16.  of the IAS and the isospin impurity. It would be quite inter-
The calculated widths show in general good agreement witlsting to study experimentally the widih, of nuclei near
the empirical values. The experimental width increases as th@e proton drip line since the isospin mixing in these nuclei is
isospinT increases for the Sn, Sb, and In isotopes. The iSOgypected one order of magnitude larger than those of stable

tope dependence of the calculated values is con_sistent Wiﬁjﬂjclei so that the width of the I1AS will be also much larger
the empirical one, although the rate of calculated increase ig a5 that of stable nuclei.

smaller than that of the empirical increase. We should notice
that the calculated increase is due to the contribution The authors would like to thank Nguyen Van Giai for

of the second term in Eq(25 [from the IVM state
IM;T, T,=T,T—1) in Eq. (14]. If there were only
the contribution from the first ternffrom the IVM state
[M;T—1,T—1)) in Eq. (25), which is the case in Ref11],

fruitful discussions and N. Auerbach for useful communica-
tions. They also thank Nguyen Van Giai for the kind hospi-
tality extended to them during their stay at Orsay. One of us
(G.C) would like to thank P. F. Bortignon for useful discus-

the width itself is one order of magnitude smaller than thesions on the widths of the isovector monopole states. This
values in Table Il and the calculated values decrease as thweork was supported in part by Grant-in-Aid for Scientific

function of the isospinT, contradicting the empirical
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