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New single particle basis for microscopic description of decay processes
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A single particle basis consisting of two different harmonic oscillator representations is introduced with the
aim of studying microscopically- and cluster-decay processes. A correct description of the wave functions at
large distances is obtained within a minimal single particle basis. Experimental data corresponding to a large
number ofa decay transitions from even-even nuclei are well reproduc®@b56-28136)01406-9

PACS numbegps): 21.60.Gx, 23.60te

I. INTRODUCTION clusters or very unstable statgkd,20], where very high ly-
ing configurations may play an important role.

Microscopic calculations have shown that the continuum The aim of this paper is to present a single particle repre-
part of the nuclear spectrum plays an important role insentation which is rather small but at the same time is ad-
a-decay processdd—4]. In particular, one needs to include eduate to describe the quasicontinuum. The basis consists of
the continuum, or high lying configurations in bound repre-the eigenstates of two different sets of harmonic oscillator
sentations, to ensure a proper asymptotic behaviour of thgtates. One is suited to describe the discrete part of the spec-
a-particle formation amplitude at large distances. This is infrum and the other one the quasicontinuum. Since the prob-
sharp contrast to the usual spectroscopic calculations, whel@m outlined above lies in the poor description of the decay
shell-model representations that include only a few boundProcess at large distances, i.e., deficient or incomplete high
states of a realistic Woods-Saxon potential are enough ttying configurations in the basis used in the calculations, we
describe low energy properties wéb—8|. Spectroscopic hope that the m_troductlpn of such a representation v_v|II cure
properties of well deformed nuclei could also be Cor,\,e_those shortcomings while the calculation itself remains fea-
niently studied assuming that the core is a realistic WoodsSiPle- _

Saxon potential. However, the diagonalization of such a po- The basis becomes nonorthogonal, but the problem of
tential is usually performed within a spherical harmonicdealing with a Hermitian Hamiltonian can be solved rather
oscillator basis, and this also requires the introduction of@Sily by using an orthogonalization procedure.

high lying configuration§9—12]. In the calculation of abso- The formalism is described in Sec. Il, applications con-
lute decay widths this is even more important, in sphericaf€rning a decay processes from even-even nuclei are per-
[13] as well as in deformed nuclgl4—16. For instance, in form(_ad in Sec. lll, and the cor)clu.smns are drawn in S_ec. I\(.
Ref.[1] it was found that the inclusion of 13 major harmonic Details about the orthogonalization procedure are given in
oscillator shells was not enough to explain the ground-statée Appendix.

to ground-statex-decay width of?*?Po. In deformed nuclei

it was possible to reproduce the toteldecay width within a Il. FORMALISM

factor of 3, but only after including 18 major shells5,16|. .

In heavy cluster decay the use of a very large number of A. The basis

shells in the basis improves the calculation but still the cal- The many-body problem in nuclear physics can conve-
culated absolute decay widths are too small by32orders niently be treated using harmonic oscillator representations.
of magnitude with respect to the corresponding experimentalith this in mind, we write the stationary Schiinger equa-
data[16,17). tion describing the single particle motion of a particle of

All these facts indicate that the description of cluster-massM, in a spherical mean fiel#(r) as
decay processdincluding « particles within standard har-
monic oscillator representations, i.e., in terms of the eigen- _
states of a harmonic oscillator potential with parameters just Hy(£)=
suited to the nucleus under study, is inadequate to guide
experimental searches, or even reproduce experimental dat S . . .
[15]. Yet this is important particulaﬁy in relatioa to present weheregz(r,s) is the set of spatial and spin coordinates, and
experimental facilities and methods that would allow one to
detect even tiny signals which may correspond to the decay _ Mow 2.2
of highly hindered processes, such as the decay of heavy " 4 '

ho -
~ o V2+V(r)}¢(é>=E¢(f) 2.1
0
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is the harmonic oscillator parameter that best suits the poten-

tial  V(r) within the nuclear volume, i.e., with 3 ! ! "
ho=41A"13 100 - —
The wave function that solves the eigenvalue problem - / .
(2.1) has a separable form, i.e., 3 ~ ]
~ .
Yeijo(E)=ug (DY (P x1/2(9) 10 2.3 %* 50' /// N
= » i
wherel is the angular momentum of the particjeits total et // ]
spin, and() the corresponding projection on tkeaxis. The ;g 3 %/ -]
radial part of the wave function satisfies the equation g F————————————- 7/—:/:—_-7' .
5 o —Z= -
fiw[l d?  I(1+1 = == 1
" 2 ?Wr_(r—) Ugjj(r)= H|J UE|,(Y) _'"__“"’ f
=[E—=V(r)]Jug;(r). -50 —
(2.9 - .
PRI BT R
. . 0 5 10 16
The radial wave funct_|0n$1a, where « labels thg set of Radius (fm)
qguantum numbergE,l,j}, are usually expanded in a har-
monic oscillator(HO) basis, i.e., FIG. 1. The harmonic oscillator potentials that define our repre-
sentation. The full line is the potential that provides the low lying
shells of the basis and the dashed line the one that provides the high
)= 2 Caan r) (2.5 lying shells. The dark line is the Woods-Saxon potential.
WhereR?1| is the HO radial wave function with radial quan- u,(r)= 2 C<aln> R("Il)(r)
tum numbem and angular momentuin The HO parameter 2ng +1=Np=Ng T
N\ determines the representation. It may be convenient to
choose it according to the number of shells that one includes + > c? Rg”f)(r) 2.7
in the basis and, therefore, it might differ from the value of 2np+1=Np>Ng 2
Ao given in(2.2). We define\ as
wherel ; is the HO parameter corresponding to the HO po-
Mow tential which fits the Woods-Saxon interaction in the region
A=fho=f— (2.6)  of the discrete spectrurithe full line of Fig. 1, while \,

corresponds to a HO potential that describes better the con-
tinuum part of the spectrurfdashed line in Fig. 1 Notice
that these two different HO potentials are both centered at
the origin of coordinates.

Below we will describe how to evaluate the amplitudes
c in Eq. (2.7). But it is worthwhile to point out here that
although the representation used27) is discrete, the den-
sity of states is larger at high energies. In fact it can be made
as large as one wishes by properly decreasing the parameter
N2, as indicated in Fig. 1. This is just what is needed to

heavy nuclei it is sufficient to take in the expansion of the : . d
: ) . describe processes occurring at distances larger than the
radial wave function terms up tdNyg=2ny+1=6 major nuclear surface.

shells. One thus gets a good descnptlon_of thel,;”a"e func- For each of the HO potentials of Fig. 1 the radial wave
tions up to the geometrical nuclear radiRg=1.2A
function R satisfies

As discussed above, this approach is not enough for a
microscopic description of tha or cluster-decay processes,
for which it is very important to reproduce the wave function H(WR(” (N =t
at distances larger than the nuclear radius. It is known that in j
order to have a proper asymptotic behavior of the wave func-
tions at large distances it is necessary to include up tQyhere
N= 18 major shells in heavy nuclgl6]. But this can also be
achieved by using a mixed nonorthogonal HO basis in the

and the constant is chosen such that one obtains a HO
spectrum that best fits the discrete parMgf) (this usually
is a realistic Woods-Saxon potenjialn Fig. 1 we show
schematically the Woods-Saxon potentiddrk line and the
HO potential determined by (full line).

The solution given by2.5) is exact if one takes all the
terms in the expansion. For spectroscopic calculatiois
crete part of the spectrum and transition probabiljties

3 A\ ) o)
2n+|+———R Y(r)y (2.8

2
diagonalization procedure, thus reducing the number of Hf%i):_ﬁ_w lizr_ﬁgi) R<X|i>(r) (2.9
shells needed in the expansion and, at the same time, obtain- ) 2Ni|r dr r "

ing a better description of the decay process. That is, instead
of the expansiori2.5 we will use the representation and\; is the HO parameter of the potential
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The diagonalization of the potentiglin terms of the two  F| (R)
HO representations can be performed by inserting in Eq. “
(2.1) the expanded wave functid@.7). One then obtains the

following set of equations: - J dRdé,dEadERl YL (RIV (€)W a(£a)]* Wil £p)
(12) (12) e 11) 12) oV (2.17
Hnln Hnln Dtﬂl I£11n I;ln anl
H2D 22 @ Z(21> 722 c? whereR= (46, ¢) are the angular center of mass coordinates
nany nan; “”z NNy M2y ““z andWy(&y) is the internal wave function of the nucleifs

(2.10  with internal coordinategy .
As usual[24], we write the internak-particle wave func-
where the amplitudes are as in Eq(2.7) and the overlap tion as a product oh=1=0 HO states, i.e.,
integrals are defined by

W (£,) =PRI (F )OO (F )OI (F ) X7 (5y,55)

T = (ninil i) = <R‘“|R”k>> (2.1
X X00 (S3,54) (2.18

while the Hamiltonian kernels are given by where ® is the radial HO wave function with parameter

_ \,=0.513fm 2, [24] x the corresponding spin wave func-
H;'_?fﬁwfk[(znw + Z)I('k) — 2Ounil hr2nni] tion, and

(il [V[hengl) (2.12 I e f3—fs - .=
r.= =

- \/5 , vz \/E , rm—T,

where we have labeled by 1,2 the proton and by 3,4 the
fk:ﬁ, k=1,2. (2.13 neutron (_:oordina}tes. o
Ao We will describe the mother and daughter nuclei within
the BCS formalisnj24]. That is[14],

The overlap integralg2.11) can be written in terms of

gamma funCtion$21]' \I,X( gx) = lr/IX'n'( gﬁ) (//XV( gv)! x:A,B, (22@
A method to diagonalize the Hermitian systg210),

corresponding to the representation of the Sdimger op-  \yhere

erator in a nonorthogonal basis, is described in the Appendix.

nl
|

(2.19
where, as in Eq(2.6),

¢X7(§7)2<§T| BCS>X7! T=1,V. (221)

B. Formation amplitude

Let us consider the ground state to ground stagecay One can write the mother nucleus wave function assuming
process for an even-even nucleus the daughter to be the core. Thus in configuration space one
gets, for protons,

B—A+a. (2.14
We will assume that the mother nuclet)(and the daugh- %”Bw:aE Xa’TQZO Alde oD o 0(2)1han,
ter nucleus Q) are spherically symmetric. Within the i (2.22
R-matrix approacH22,23 the total a-decay width can be
written as and a similar expression for the neutrons. Here

0 i j—Q

r(R)= 3 % (RIPL(R) (219 Ve 0= (7) W ma 223
L,=0 "= @

is the time reversed wave function. In the Fock space this
where the reduced widthzf (R) is proportional to the for- corresponds to the expansion

mation amplitudeF,_a(R) squared, i.e.,
+
52 |BCSp,= X“TQZO alﬂaad BCOar (2.29
7 (R= 5 RIFL (R (2.16
wherea:rlfQ are the creation operators corresponding to nor-

TheL, component of the formation amplitude is the overlapmal particles. The coefficientg, can be written in terms of
integral between the entrance and exitiecay channels, i.e., the BCS occupation amplitudes as
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- BT< BCS aa Qa A*BCS>AT
UAV®)

ar o, H (U(A

(A)y ,(B)
TUPUEVAVE L SOV

=y MvEB (2.25

By using Eq.(2.7) one obtains for the 2 expansion
Vo= 2 2 Bolammndl i (DSt (2]ovan
@ NNk
(2.2

where

J
Bﬂ(awnink) \/EXa (anc(ak)nk (227)

A similar expansion is obtained for the neutron part:

()

=2 E B,(B,0 )[4 ,,) (3t (Dlovas
k (2.29
where
vavn{nk)—%m . (229

pending on the rati®; = \;/\,. The quantitieSZﬁf‘id}‘“) are
the overlap integrals of Eq2.11), which now read
Nik o Ag)
Tt

= (R, %IRoe™) (2.32

with the relative HO parameter corresponding to one particle
moving in the potential and the other in the potentik] i.e.,

AL 2.3
ik ™ A|k ’ ( . 3
and the corresponding center of mass parameter
1
Aik=5 (Nt ). (2.34

| "k’
The radial c.m. wave funct|od>( h )O(R) corresponds to a

HO potential with the relative and c.m. parameters given by

’ A'kA'/k/
N = T (2.39
1
Al o L 5 (At Aprio). (2.36

ik
The overlap mtegralﬂ’\"‘ are defined in a similar way as

above with the generallzed Talmi-Moshinsky coefficients de-
pending on the mass ratio

One can perform all integrals over the integral coordinates in

Eqg. (2.17 analytically by transforming to relative coordi-

DLK = Ajrer [ A . (2.37

nates. Using the generalized Talmi-Moshinsky transforma-

tion with different massef28] (i.e., with different size pa-

rameters\; and\, in our casg one obtains fot. ,=0

ALK
Fo(R)I= > @k '(R)
Niki’k’

X > (nONO;0|N,ON,0;0)pi’k
nN,_N, ik

ik’ . i
Xﬁgk,AQGN?GNf> (2.30

whereGUR (GU')) is a geometrical coefficient depending
on the proton(neutron single particle parameters. Thus for

the proton it is[14]

> >

azNg Ning

{ossl o

X{n,ON,0;0[m;l .yl . ?0>Dik1§?i5 el

Gl(\ll:_)z Bﬂ'(aﬂ'nink)

1 (1)
(l‘rrz)J‘rr(l‘rrE)JW!o>
(2.32

whereB . are the coefficients given by EQ.27). The first

angular brackets denotg-LS recoupling coefficients and 0
the second the generalized Talmi-Moshinsky symbol de- k=1

Since in the applications it may be interesting to know in
what potential a given particle is moving, we will clearly
specify all the possible combinations in the summation
(2.30. There are five terms; they are

(1) i=k=1, i'=k'=1;
(2) i=k=2, i'=k'=2;
(3) i=k=1, i'=k'=2;
i—k=2, i'=k'=
i<k, i'#k;
(4) i=k=1, i'#k’;
i<k, i'=k'=
(5) i=k=2, i'#k’;
ik, i'=k'=

The formation amplitude can then be written as
5

=> FY(R). (2.39
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We will refer to this summation in the applications below, S B U L I B o
but from the outset one may expect that properties mainly r ]
induced by the motion of the particles inside the nuclear 40 (a)
volume will be determined by the terf{="(R). = ' ]
5 — :
IIl. NUMERICAL RESULTS g o ]
= L ]
A. Diagonalization procedure _20F 7

In this section we will apply the method developed above
to describe ther decay of?*Ra. This nucleus, as well as the PP S TS P B B
daughter nucleus®®Rn, has a quadrupole deformation 02 04 06 08 Lo 1.2
B>=0.1. As shown in Ref[15] for this value of the defor-
mation the inclusion of the nonspherical terms in the estima-
tion of the microscopic formation amplitude changes the fi-
nal result(total decay width only by a few percent. It is 60
therefore important to analyze the extent to which a descrip-
tion of this case in terms of a spherical mean field is valid.

For the Woods-Saxon mean field we take the so called
universal parametrizatiofil].

We use the valu®&,=6 for the principal quantum num-
ber defining the limit between the two kinds of terms in the
expansion(2.7). We will perform the calculation by using a
total of 11 shells. For the HO parameter that is supposed to

lIIIIlIIIIIIIIIIIIIIII

(b)

40

20

Energy (MeV)

describe the discrete part of the spectrum we choose the —ROF =

value f;=1.2 [see Eq.(2.6)]. This part of the spectrum F , | | 5
. o i _40 Er——= b

should be insensitive to the value of the HO parameter de 2 0.4 0.6 0.6 10 12

fining the quasicontinuum patrt, i.e., tg. One indeed sees in
Fig. 2 that this is the case.

This is an important conclusion because it implies that the
orthogonalization procedure, which mixes all states, will not  FIG. 2. Single particle levels if*Ra as a function of the har-
affect the discrete part of the spectrum. That is, one know&°nic oscillator parametérz_for f1=1.2. The basis consists of the
well the HO parameters that provide a good representation tg'¢/lSN1=1-6 (corresponding td,) andN,=7-11 (correspond-
describe bound properties in the nucleus. Our procedurd?d t© f2). We call this “minimal basis.”(@) Protons, andb) neu-
which is intended to allow the calculation of processes in theé' 0"
continuum, increases the dimension of the representation, but
without affecting the calculated bound properties. ground state decays is not dependent on the deformation pa-

One also sees in Fig. 2 that the high energy part of theameterd16]. We therefore will calculate in this section the
spectrum is strongly dependent upign Forf,=f;=1.2the formation amplitude neglecting deformations. The effects of
spectrum corresponds to the one used in standard calculgeformations on the penetration will be shown at the end.
tions, i.e., by using one HO potential only. As decreases In order to evaluate the formation amplitude we have first
the level density increases and the representation is, thergs perform the BCS calculation that defines the intrinsic
fore, more suited to describe the quasicontinuum spectrunyaye functions of the nuclei involved in the decay. We esti-

That is, by choosing a small HO parameierthe represen- mated the BCS parameters by using the third order mass
tation becomes more adequate to describe the wave functioRference relatior[29], which gives for22° Ra A,=1.091

at Iargg distances. .But th_e drawback of using a small valug/lev’ A,=0.914 MeV, and for?'6 Rn: A,=1.066 MeV,
for N\, is that the dimension of the representation may be- ~0.926 MeV. We then computed the occupation ampli-
) ) n=0. .

come big ar_1d the calpulanon cumbersome, a featurg that WfidesU andV for each system as a function of the parameter
want to avoid. That will happen if, e.g., one wants to include

all possible shells up to a given energy. Yet one can find a2
value of f, that greatly improves the calculation while the
number of shells needed is less than the one used within on(g
one HO potential, as will be shown below.

Expansion parameter f,

It is worthwhile to stress here that a large scale shell
odel calculation would be the best proper way to include a
rge configuration mixing. Anyway this is almost impos-
sible when many active particles are considered. That is why
the BCS method has been widely used since the pioneering
work by Soloviev[25] in a-decay calculations. In addition
The width (2.15 consists of two very distinct parts, we have showr{26] how the mixing induced by pairing

namely, the formation probability and the penetrationinteraction at the level of BCS approximation, for spherical
through the Coulomb barrier. Deformations are very impor-as well as for deformed nuclei, is able to induce a large
tant regarding the penetration through the Coulomb barrieenhancement of clustering properties in heavy spherical or
but the formation amplitude corresponding to ground state taleformed nuclei. In particular, we have arrived at the con-

B. The formation amplitude and total width
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clusion that the effective inclusion of the nuclear correlations

(particularly the proton-neutron interactjotiirough the pro- 0.04F ! ! ! ! (;) -
cedure of fitting the strength to reproduce the experimental .
pairing gap is somehow a proper way of including the very 0.02 4
complicated correlations that induce clustering in nuclei - 4 .
[27). € o.oot = -
The idea of this calculation was to find a minimal basis g C ]
that describes well the calculated width. As mentioned - ]
above,f; was fixed to have the valug =1.2 and, therefore, —0.02 - ~
the possible different bases are determined by the parameter n 3
f,. But let us stress once more that the results do(aot 004 | i | e
cannoj depend on the value that one choosesfforlf f, is T TR
big then one needs many shells to reach the final values of Radius (fm)
the calculated quantities, as expedi#f]. We found that the
minimal basis is given by the choidg=0.7. The basis con-
sists then of the HO shellsl;=0-6 corresponding to the o —
parametef ;= 1.2 and the shellsl,=7-11 corresponding to [ ! ! ! (b)
f,=0.7. Considering that the basis provided by only one __ [ ]
harmonic oscillator potential requires at least 18 major shells ~ § 5 —
to reproduce the experimental resyli$] one can say that g i ]
our basis is very small. 2 of-
We performed the calculation within the minimal basis 4 - > ]
around the touching radius which is defined by :e F T e .
i) -5 Tt~ \—:
Re=L12AA; o+ A7) =9.15 fm. (3.0 - .
—-10 (o 4 I [ T | ‘ | S N} l [T I ]
8.0 8.5 9.0 9.5 10.0
In Fig. 3(a) we present different terms entering the formation Radius (fm)

amplitude(2.38 as a function of the c.m. radil® One sees
that the contribution corresponding to the discrete part of the FIG. 3. Formation amplitud) and ratio between the theoreti
spectrum k=1, drawn by dasheds peaked on the nuclear s T ; ) )
radius while the mixed contribution between discrete andé?('):r':g :‘;Z”tr:;r:i"t"ilo"r:"2;?02{202555?3:2%rt]ootpfhgr%li‘;}g :ct:ti);?
qua3|c0nt_|nuum _partsk(:3, plotted k_)y dOt.)SIS centered on . tween thew particle and the daughter nucle&¥Rn. The minimal
the touching radius. The total amplitude is drawn by a soli asis was used. The dashed line is the contribution Y in
line. BOS . L L O

. . . . the expansiorf2.38 while the dotted line is the contribution from

An important test for the calculation is that it should be _-3) : :

. . . F . The final val ted by the full | .
independent of the distand® outside the nuclear surface. ° € N VFLES afe represeiied By e T nes
This dependence is shown in FigbBfor the three cases of
Fig. 3(@. One can notice that the main contribution to the
total width is provided by the term in E¢2.38 that contrib-
utes most to the formation amplitude around the touchin
radius, i.e., the ternk=3. The contribution from the inner
part of the nucleusk=1) is very small. The total contribu-
tion (full line) is indeed practically independent of the dis-
tance forR=9 fm, i.e., b_eyond the touching radil, and_.re- One also observes in Fig. 4 that the main contribution to
produces well the experimental value. For smaller radii thghe formation amplitude is provided by the tem&k:g) in
width is very small. This is because we have neglected anti, . ; I
o the expansioli2.38 (plotted by dotg while the contribution
symmetrization effects between the daughter nucleus and tr}%m the discrete parti=1, plotted by a dashed liés ver
a cluster[30—32 but this does not affect our results because mall P P y y
we are aple to cpmpute the formation amplitude We" beyon Oﬁe concludes that it is not possible to reproduce the
the touching point, where those effects are negligl@). experimental value in a region around the touching point

This is the main reason why it is important to have a rellableWith a smaller number of major shells for any value of the

:gﬁgg capable of describing the decay process at large dISe'xpansion parameter because then the maximum would lie
o . .. _under the experimental value.
It is interesting to analyze the reason why the minimal . .
; . ... Another quantity that can be calculated with our formal-
basis reproduces so well the experimental data, although it IS 11 is the spectrosconic factor
relatively a very small basis. We thus show in Figa)4the P P
ratio between the calculated width and the corresponding -
experimental value as a function of the paramdter One ng IFo(R)|?R%dR. (3.2
sees that the calculated width reaches the experimental value 0
just in a region off, values around,=0.7. Outside this

region the theory does not reproduce the experimental value
within the shells included in the minimal basis. That is, out-
side this region the basis does not span the Hilbert subspace
Yhat contains the functions determining thedecay process
around the touching radius.

In Fig. 4(b) one sees that increasing the basis dimension
one gets saturation.
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10 :l LELEL I LI I LI I LILELEL I LILER L I FrrrT : 10 [ T T T T I T T T I T T T T I T T T T
g s (a) E i N,=0-6 f, =12 ]
5 - ] L
} : : 5— Nz = 7_11, fz = 0.7
: . -
~— B 5, o -
e - 9 & I 1
&8 -5 — < L -e-===
- - A —_— -
r ] Sy
_10 [ L1l I L1 | I Ll 1.1 I 1 111 I L1l | Ll 1.1 ] \v-2> J
00 02 04 06 08 10 1.2 o ]
—4

Expansion parameter f,

10 | Ll I L) I T T T ] y
- E ~10 e o by ey by
—~ s (b) _ 0.0 06 10 15 2.0
8 X ] A {MeV)
} A LI
- - » -
r_‘ﬂ of = FIG. 5. Dependence of the averaged width on the BCS gap
Y, == ] parameter corresponding to a spherical bar(glid ling) and a
e W fe—-----"T-7 ] deformed barriefdashed ling for the ground state to ground state
o -5 -] decay of??Ra.
PP N I S B R C. a decay systematics
6 8 10 12 14 16 . . .
Number of major shells In this section we will analyze ground state to ground

statea decays from even-even nuclei by using the minimal
asis discussed in the previous section, i.e., by choosing the

FIG. 4. Ratio between the theoretical and experimental deca .
O shells according to

widths calculated as in Fig. 3 as a function @j the parameter

f, and(b) the number of shelldl,. f,=12, Ny=0-6; f,=07, N,=6-11. (3.3

The result of the calculation for this decay is
S=7.0x1072, which is in agreement with a calculation For the Woods-Saxon potential we adopted again the univer-
where the Pauli principle acting among the particles in thesal set of value$11]. As in the previous section, the BCS

core and in thex particle was taken into account properly 9P parameters were calculated according to the third order
[31]. mass formuld29]. Even if the dependence of the width upon

he distance around the touching point is weak, we will

. . . . ]
It is also interesting to analyze the influence of the pairin .
J y P \ resent the calculated values averaged on the interval

correlations on the decay process. We found that the calcyz

lated results are very sensitive to the BCS parameters, a =810 fm, i.e., around the touching po_mt.
- Nt .~ We have calculated the total-decay width correspond-
shown in Fig. 5. In this figure the dependence of the ratia

between the calculated and experimental widths as a function 3 to 26 cases of even-even heavy nuclei, i.e., ativ@b

of the gap parameter is presentédil line). One sees that the N the periodic table. The aim of this calculation is to probe

| width h b | ord ¢ itud bthe validity of the conclusions reached in the previous sec-
total width can change by several orders of magnitude bYj,, for g large number of nuclei as well as to analyze the

changingA within “reasonable” limits. It is thus remarkable offact of deformations on the decay process. For this we
that choosing the value prescribed by spectroscopic Calcu'computed the total width by using a spherical as well as a
lations in agreement with experimental data one gets just thgeformed Coulomb barrier for the penetration problem. In
right width. both cases we applied the semiclassi®®KB) approxima-
The calculation of the formation amplitude was per-tion, which is known to be very good in decay[15,33.
formed by neglecting deformations. These are only imporThe deformation parameters were taken from R&$] and
tant regarding the penetration through the Coulomb barriethe experimental values of the widths from RefE9,34].
This is also shown in Fig. 5dashed ling where one sees In Table | are given the results of the calculation. Consid-
that the calculated decay width, for a quadrupole deformaering that this is a complete microscopic calculation without
tion B8,=0.3, increases by a factor of 5, practically indepen-any free parameter, one can say that the agreement between
dently of the BCS parameters. Again in this case, it is retheory and experiment is excellent.
markable that one gets the experimental width by just taking One important feature that can be seen in this table is the
the deformation parameters extracted from spectroscopicontributions of deformations to the decay widths. As ex-
studies. pected, when the deformation increases the difference be-
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TABLE I. Absolute a-decay widths calculated assuming a spherical bartigg) and deformed barrier
defined by the parametgt, (I'c,). The calculation was performed within the minimal basis. The deforma-
tion parameters are from R¢B5] and the experimental values of the widths from RE84,19. The Franan
method[33] has been used to calculate the penetration through the deformed Coulomb barrier.

No. Nucleus Bo I exp (MeV) I spn (MeV) I 4ot (MeV) [ son/T exp I et/ T exp
1 21%pg 0.00 1.615) 1.7(-15) 1.7(-15) 1.14 1.14
2 2%pg 0.00 2.918 1.5-18) 1.5-18) 0.53 0.53
3 2%pq 0.00 3.021) 2.0-21) 2.0-21) 0.68 0.68
4 21%pq 0.00 2.424) 1.3-24) 1.3-24) 0.56 0.56
5 21%Rn 0.07 1.0-17) 4.8-18) 5.0-18) 0.47 0.50
6 21%R_n 0.09 1.3-20) 6.7(-21) 7.3-21) 0.51 0.56
7 22Rn 0.13 8.1-24) 4.5-24) 5.6(-24) 0.55 0.69
8 22Rn 0.14 1.427) 6.1(-28) 8.3-29 0.44 0.60
9 22Ra 0.11 2.0-20) 1.5-20) 1.8-20) 0.79 0.91
10 22Ra 0.19 1.2-23 5.4(-24) 9.1(-24) 0.46 0.77
11 22Ra 0.18 1.427) 5.2(-28) 8.4(-28) 0.37 0.61
12 22Ra 0.20 8.633) 2.6-33 5.0-33 0.30 0.58
13 224Th 0.21 3.%-22 1.4-22) 2.5-22) 0.39 0.71
14 226Th 0.23 1.8-25) 4.7(-26) 1.0(-25) 0.26 0.56
15 2281h 0.23 5.%-30) 1.7(-30) 3.9-30) 0.30 0.71
16 230Th 0.24 1.%-34) 5.0(-35) 1.4-34) 0.34 0.94
17 2%2Th 0.26 8.0-40) 2.2(-40) 7.6(-40) 0.27 0.94
18 230y 0.26 1.7-28) 7.1(-29 2.1(-28) 0.42 1.24
19 2 0.26 1.4-31) 4.6(-32) 1.5-31) 0.32 1.04
20 24y 0.27 4.2-35) 1.1(-35) 4.0(-35) 0.26 0.96
21 =8 0.28 4.6-37) 9.8-39) 4.1(-37) 0.22 0.89
22 238 0.28 2.5-39) 3.7(-40) 1.6(-39) 0.14 0.65
23 2%y 0.28 1.2-31) 3.5-32 1.4-31) 0.30 1.21
24 240py 0.29 1.633 3.1(-34) 1.3-33) 0.19 0.82
25 24Py 0.29 3.035 5.4(-36) 2.5-35) 0.18 0.82
26 244py 0.29 1.437) 2.9-39 1.4-37) 0.20 0.97

tween the calculated spherical and deformed widths also in-
creases, but the contribution of deformations always ] I L i LI I L L S B
improves the calculation, sometimes by large factors, as in
the decay of?*Pu.

The effects of deformations shown in Table | can perhaps 3
better be seen in Fig. 6, where the ratio between theoretical
and experimental widths is presented for the different nuclei
of Table I. Open circles correspond to calculations per-
formed within a spherical framework while the stars are the § 2
values calculated with deformations. One again sees in this
figure that the agreement between theory and experiment is
excellent if all the ingredients, including deformations, are
properly included in the calculation. The mean value of the
ratio between the theoretical and experimental widths is
0.79, with a standard deviation of 0.21. For comparison, one
can mention that neglecting deformatiof®., the “spheri-
cal” values in Table ] the average value of the ratio is 0.41
with the same standard deviation, i.e., 0.21.

The good agreement between theory and experiment -1 == ‘é' = '1|0' -t '1|5‘ - ';0' =t '2'5
shown in Table | and Fig. 6 has to be consider in the context Nucleus
not only of the dependence of the width upon deformations
(shown thergbut also of its strong dependence upon @e FIG. 6. Ratio between the theoretical and experimental decay
value [24] and the BCS parameters, as seen in Fig. 5. Allwidths for sphericalcircles and deformedstars barriers corre-
these quantities can be very different in the rather disparateponding to the decays in Table I. The parameléendf defining
collection of nuclei of Table 1. the minimal basis are also given.
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IV. CONCLUSIONS ratio between the theoretical and experimental decay widths

The calculation of absoluta-decay widths is a very dif- for all calculated cases is 0.79 with a standard deviation of

ficult undertaking because either one calculates it at a short We also calculated spectroscopic factors, which are in
d'staﬂce' as for spectroscopic _quantities, where the_ Pau ood agreement with other calculations, where the Pauli
pnncple acting among the particles in t.he core aqd in th rinciple was taken into account propefl§1]. In this con-
o particle is important, or one calculates_ It at Iarg_e distance xt, it is important to notice that the basis used in this paper
where standard shell model representations are inadequate ,major HO shellsis rather small. For comparison one
de_sc”be the decay Process. In this paper we ha\_/e atta_ck ay mention that similar calculations using only one HO
thstvl?,rozl'?fm byt chhoosmg as re_|||3rtesenta:t|o? Eli b"ﬁis ?rowdte otential required the inclusion of 18 major shgll§]. This
s%ellsoofltr?éerr:e reasrgqnotglt(':or?sgeatgrkss sg;ﬂa ;‘ H Oe gzgﬁts. aimall basis may make microscopic calculations of more
. P : ) . ) P ' omplicated decayssuch as the decay of heavy clusjers
that describes well spectroscopic properties, i.e., distances y

o : asible.
to around _the nuclear su_rface. Th'§ IS th_e HO potential USEA" e found that the main contribution to the total width is
generally in spectroscopic calculations, i.e., the one that fit

best the corresponding Woods-Saxon poterisat Fig. 1 f)rowded by that part of the formation amplitude centered

. . . around the touching point, i.e., the term connecting the dis-
The highest shells are taken from a HO potential that '%rete and quasicontinuum parts of the single particle spec-

rathe.r Sh"?‘”OW' thus Wit.h a greater _densjty of states !n th?rum. We also found that deformations are important to de-
guasicontinuum, i.e., suited to describe distances outside tt%

nuclear surface. The corresponding basis is formed by theecnbe the decay process properly.
shellsN,=0-6 obtained from the HO potential with param-
eterf,=1.2 [see Eq.(2.13] and the shellN,=7-11 ob- APPENDIX: DIAGONALIZATION PROCEDURE IN A
tained from the HO potential witfi,=0.7. In other words, NONORTHOGONAL BASIS

one can conclude that we have used a realistic single particle | this appendix we will recall the method to solve the
basis. The good asymptotic behavior of the single particlgigenvalue problem for a Hermitian matrix in a nonorthogo-

wave function means a nonexponential decrease in the tgila| hasig2.10). Let us consider the general eigenvalue prob-
(for radial distances larger than the nuclear radii®e lo- |gm

cation of the last maximum for the single particle radial
wave function is found at a point where HP, =E ¥, (A1)

N7 w=V(r) (4.9 where the eigenfunction,, corresponding to the eigen-

valueE,, is expanded in a nonorthogonal bagis,
so that if the HO parametar is smaller this radius is pushed K P g o

far away. If this is the case, the previous equation is satisfied
for a larger radius and small&t for a shallower HO poten- ‘Pk=2 Clnqbn=2 Chk®ns (A2)
tial. The coherent superposition coming from the large mix- n n
ing of different contributions in the region behind the last
;?)?;I;?iuor ;)r:]OdeiLthgs[la,ng]?n exponential decay of the final (Al){ multiplying to the left by ¢,, and integrating one
Within this representation one is able to calculate the for-Obta'ns
mation amplitude of thex particle at large distances, thus
avoiding the formidable task of considering exactly the Pauli > {bmlH|bn)Cr=Ex Y, Chl bl ). (A3)
principle between the core and the particle. In addition, n n
one achieves this with a rather small basis, since it is just = = . )
constructed to fit the decay process. This basis is nonorthis is just the general eigenvalue problem to be solved
thogonal, but one can use any of the methods available tgiven by Eq.(2.10, with the metric matrix
treat such a basis. One of such methods, which is the one
used in this paper, is presented in the Appendix. L= ( bl ) (A4)
In our calculations we have used for the mean field stan- , ) . .
dard Woods-Saxon potentials with parameters that we ha\/ll?:Et us first find the eigenvalugs; and eigenvectory); of
taken from independent spectroscopic calculations. We inNe Symmetric metric matrix
cluded the pairing correlations among the particles as pre-
scribed by standard BCS calculations and, therefore, there is > LontY1j=F;Ym; (A5)
no free parameter in the calculated absolute decay widths. [
With these prescriptions we calculated a rather large num-
ber of a-decay widths in heavy nuclei. To probe the validity where the orthonormality conditions for the eigenvectors
of the calculations, we have checked in all cases that thgold:
widths are only weakly dependent upon the distances be-
tween the cores and the particles outside the nuclear sur- E VARV (A6)
faces, which in the calculated nuclei are between 8 fm and 10 oM T
fm. The calculated values of the widths agree well with the
corresponding experimental values. The mean value of th&he system of functions

T denoting the matrix transposition. Inserti(gy2) into Eq.
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A for the symmetric matrix
=2 = (A7)
¢
is orthonormal, because frofd5) and (A6) one obtains ([H] )= 2 \/_<¢m| |¢n) \/_ (A10)

Yi
(ilvp =2 Yies 1, i 2 J_Y 3. (A8)
: \/— T \/— \/— o Using (A7) and (A9) one finally obtains the following ex-

Expanding the initial eigenfunctioni, (A2) in terms of this pression for the expansion coefficients(A®):

basis,
) Z o} ——Z Xy —1 A (Al1)
K= X lﬂ“ (Ag) kn i ki /—Fi in-

one obtains an eigenvalue problem
Here the eigenvalueB; and the eigenvector‘s{% are solu-
2 ( ¢/||H|i/fi>XT-= XL (A10) tions of the systenfA5) and (A6) and the eigenvector)ﬁli
i the solutions of A10) and (A11).
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