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A single particle basis consisting of two different harmonic oscillator representations is introduced with
aim of studying microscopicallya- and cluster-decay processes. A correct description of the wave functions
large distances is obtained within a minimal single particle basis. Experimental data corresponding to a
number ofa decay transitions from even-even nuclei are well reproduced.@S0556-2813~96!01406-9#
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I. INTRODUCTION

Microscopic calculations have shown that the continu
part of the nuclear spectrum plays an important role
a-decay processes@1–4#. In particular, one needs to includ
the continuum, or high lying configurations in bound rep
sentations, to ensure a proper asymptotic behaviour of
a-particle formation amplitude at large distances. This is
sharp contrast to the usual spectroscopic calculations, w
shell-model representations that include only a few bo
states of a realistic Woods-Saxon potential are enoug
describe low energy properties well@5–8#. Spectroscopic
properties of well deformed nuclei could also be con
niently studied assuming that the core is a realistic Woo
Saxon potential. However, the diagonalization of such a
tential is usually performed within a spherical harmo
oscillator basis, and this also requires the introduction
high lying configurations@9–12#. In the calculation of abso
lute decay widths this is even more important, in spher
@13# as well as in deformed nuclei@14–16#. For instance, in
Ref. @1# it was found that the inclusion of 13 major harmon
oscillator shells was not enough to explain the ground-s
to ground-statea-decay width of212Po. In deformed nucle
it was possible to reproduce the totala-decay width within a
factor of 3, but only after including 18 major shells@15,16#.
In heavy cluster decay the use of a very large numbe
shells in the basis improves the calculation but still the c
culated absolute decay widths are too small by 223 orders
of magnitude with respect to the corresponding experime
data@16,17#.

All these facts indicate that the description of clust
decay processes~includinga particles! within standard har-
monic oscillator representations, i.e., in terms of the eig
states of a harmonic oscillator potential with parameters
suited to the nucleus under study, is inadequate to g
experimental searches, or even reproduce experimental
@18#. Yet this is important particularly in relation to prese
experimental facilities and methods that would allow one
detect even tiny signals which may correspond to the de
of highly hindered processes, such as the decay of he
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clusters or very unstable states@19,20#, where very high ly-
ing configurations may play an important role.

The aim of this paper is to present a single particle rep
sentation which is rather small but at the same time is a
equate to describe the quasicontinuum. The basis consist
the eigenstates of two different sets of harmonic oscillat
states. One is suited to describe the discrete part of the sp
trum and the other one the quasicontinuum. Since the pr
lem outlined above lies in the poor description of the dec
process at large distances, i.e., deficient or incomplete h
lying configurations in the basis used in the calculations, w
hope that the introduction of such a representation will cu
those shortcomings while the calculation itself remains fe
sible.

The basis becomes nonorthogonal, but the problem
dealing with a Hermitian Hamiltonian can be solved rath
easily by using an orthogonalization procedure.

The formalism is described in Sec. II, applications co
cerninga decay processes from even-even nuclei are p
formed in Sec. III, and the conclusions are drawn in Sec. I
Details about the orthogonalization procedure are given
the Appendix.

II. FORMALISM

A. The basis

The many-body problem in nuclear physics can conv
niently be treated using harmonic oscillator representatio
With this in mind, we write the stationary Schro¨dinger equa-
tion describing the single particle motion of a particle o
massM0 in a spherical mean fieldV(r ) as

Hc~j![F2
\v

2l0
¹W 21V~r !Gc~j!5Ec~j! ~2.1!

wherej5(rW,s) is the set of spatial and spin coordinates, an

l05
M0v

\
~2.2!
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54 293NEW SINGLE PARTICLE BASIS FOR MICROSCOPIC . . .
is the harmonic oscillator parameter that best suits the pot
tial V(r ) within the nuclear volume, i.e., with
\v541A21/3.

The wave function that solves the eigenvalue proble
~2.1! has a separable form, i.e.,

cEl jV~j!5uEl j~r !@ i lYl~ r̂ !x1/2~s!# jV ~2.3!

where l is the angular momentum of the particle,j its total
spin, andV the corresponding projection on thez axis. The
radial part of the wave function satisfies the equation

2
\v

2l0
F1r d2

dr2
r2

l ~ l11!

r 2 GuEl j~r ![Hl j
~l0!uEl j~r !

5@E2V~r !#uEl j~r !.
~2.4!

The radial wave functionsua , wherea labels the set of
quantum numbers$E,l , j %, are usually expanded in a har
monic oscillator~HO! basis, i.e.,

ua~r !5 (
n50

`

canRnl
~l!~r ! ~2.5!

whereRnl
l is the HO radial wave function with radial quan

tum numbern and angular momentuml . The HO parameter
l determines the representation. It may be convenient
choose it according to the number of shells that one includ
in the basis and, therefore, it might differ from the value
l0 given in ~2.2!. We definel as

l5 fl05 f
M0v

\
~2.6!

and the constantf is chosen such that one obtains a H
spectrum that best fits the discrete part ofV(r ) ~this usually
is a realistic Woods-Saxon potential!. In Fig. 1 we show
schematically the Woods-Saxon potential~dark line! and the
HO potential determined byl ~full line!.

The solution given by~2.5! is exact if one takes all the
terms in the expansion. For spectroscopic calculations~dis-
crete part of the spectrum and transition probabilities! in
heavy nuclei it is sufficient to take in the expansion of th
radial wave function terms up toN052n01 l56 major
shells. One thus gets a good description of the wave fu
tions up to the geometrical nuclear radiusR051.2A1/3.

As discussed above, this approach is not enough fo
microscopic description of thea or cluster-decay processes
for which it is very important to reproduce the wave functio
at distances larger than the nuclear radius. It is known tha
order to have a proper asymptotic behavior of the wave fu
tions at large distances it is necessary to include up
N518 major shells in heavy nuclei@16#. But this can also be
achieved by using a mixed nonorthogonal HO basis in t
diagonalization procedure, thus reducing the number
shells needed in the expansion and, at the same time, obt
ing a better description of the decay process. That is, inst
of the expansion~2.5! we will use the representation
en-
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ua~r !5 (
2n11 l5N1<N0

can1
~1! Rn1l

~l1!
~r !

1 (
2n21 l5N2.N0

can2
~2! Rn2l

~l2!
~r ! ~2.7!

wherel1 is the HO parameter corresponding to the HO p
tential which fits the Woods-Saxon interaction in the regi
of the discrete spectrum~the full line of Fig. 1!, while l2
corresponds to a HO potential that describes better the c
tinuum part of the spectrum~dashed line in Fig. 1!. Notice
that these two different HO potentials are both centered
the origin of coordinates.

Below we will describe how to evaluate the amplitud
c in Eq. ~2.7!. But it is worthwhile to point out here tha
although the representation used in~2.7! is discrete, the den-
sity of states is larger at high energies. In fact it can be m
as large as one wishes by properly decreasing the param
l2 , as indicated in Fig. 1. This is just what is needed
describe processes occurring at distances larger than
nuclear surface.

For each of the HO potentials of Fig. 1 the radial wa
functionR satisfies

Hl j
~l i !Rnl

~l i !~r !5\vS 2n1 l1
3

2
2

l i r
2

2 DRnl
~l i !~r ! ~2.8!

where

Hl j
~l i !52

\v

2l i
F1r d2

dr2
r2

l ~ l11!

r 2 GRnl
~l i !~r ! ~2.9!

andl i is the HO parameter of the potentiali .

FIG. 1. The harmonic oscillator potentials that define our rep
sentation. The full line is the potential that provides the low lyin
shells of the basis and the dashed line the one that provides the
lying shells. The dark line is the Woods-Saxon potential.
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The diagonalization of the potentialV in terms of the two
HO representations can be performed by inserting in
~2.1! the expanded wave function~2.7!. One then obtains the
following set of equations:

S Hn1n18
~11! Hn1n28

~12!

Hn2n18
~21! Hn2n28

~22! D S can
18

~1!

can
28

~2! D 5ES In1n18~11! In1n28
~12!

In2n18
~21! In2n28

~22! D S can
18

~1!

can
28

~2! D
~2.10!

where the amplitudesc are as in Eq.~2.7! and the overlap
integrals are defined by

Inink8
~ ik !

[^l ini l ulknk8l &5^Rni l
~l i !uR

n
k8 l

~lk!
&, ~2.11!

while the Hamiltonian kernels are given by

Hnink8
~ ik !

5\v f k@~2nk81 l1 3
2 !Inink8

~ ik !
2 1

2 ^l ini l ulkr
2ulknk8l &#

1^l ini l uVulknk8l & ~2.12!

where, as in Eq.~2.6!,

f k5
lk

l0
, k51,2. ~2.13!

The overlap integrals~2.11! can be written in terms of
gamma functions@21#.

A method to diagonalize the Hermitian system~2.10!,
corresponding to the representation of the Schro¨dinger op-
erator in a nonorthogonal basis, is described in the Appen

B. Formation amplitude

Let us consider the ground state to ground statea-decay
process for an even-even nucleus

B→A1a. ~2.14!

We will assume that the mother nucleus (B) and the daugh-
ter nucleus (A) are spherically symmetric. Within the
R-matrix approach@22,23# the totala-decay width can be
written as

G~R!5 (
La50

`

gLa

2 ~R!PLa
~R! ~2.15!

where the reduced widthgLa

2 (R) is proportional to the for-

mation amplitudeFLa
(R) squared, i.e.,

gLa

2 ~R!5
\2

2Ma
RuFLa

~R!u2. ~2.16!

TheLa component of the formation amplitude is the overl
integral between the entrance and exita-decay channels, i.e.
q.

ix.

p

FLa
~R!

5E dR̂djadjAdjB@YLa
~R̂!Ca~ja!CA~jA!#*CB~jB!

~2.17!

whereR̂5(u,f) are the angular center of mass coordinate
andCX(jX) is the internal wave function of the nucleusX
with internal coordinatesjX .

As usual@24#, we write the internala-particle wave func-
tion as a product ofn5 l50 HO states, i.e.,

Ca~ja!5F00
~la!

~rWp!F00
~la!

~rWn!F00
~la!

~rWpn!x00
~p!~s1 ,s2!

3x00
~n!~s3 ,s4! ~2.18!

where F is the radial HO wave function with paramete
la50.513fm22, @24# x the corresponding spin wave func-
tion, and

rWp5
rW12rW2
A2

, rWn5
rW32rW4
A2

, rWpn5
rWp2rWn

A2
, ~2.19!

where we have labeled by 1,2 the proton and by 3,4 t
neutron coordinates.

We will describe the mother and daughter nuclei withi
the BCS formalism@24#. That is@14#,

CX~jX!5cXp~jp!cXn~jn!, X5A,B, ~2.20!

where

cXt~jt!5^jtuBCS&Xt , t5p,n. ~2.21!

One can write the mother nucleus wave function assumi
the daughter to be the core. Thus in configuration space o
gets, for protons,

cBp5(
ap

xap (
V.0
A@capV~1!c apV̄~2!#cAp ,

~2.22!

and a similar expression for the neutrons. Here

c apV̄5~2 ! j2Vcap2V ~2.23!

is the time reversed wave function. In the Fock space th
corresponds to the expansion

uBCS&Bt5(
at

xat (V.0
aaV
† aaV̄

† u BCS&At ~2.24!

whereaatV
† are the creation operators corresponding to no

mal particles. The coefficientsxat
can be written in terms of

the BCS occupation amplitudes as
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xat
5Bt^BCSuaatV

† aatV̄

† uBCS&At

5
Uat

~A!Vat

~B!

Uat

~A!Uat

~B!1Vat

~A!Vat

~B!)
at8

~Ua
t8

~A!
Ua

t8
~B!

1Va
t8

~A!
Va

t8
~B!

!

>Uat

~A!Vat

~B! . ~2.25!

By using Eq.~2.7! one obtains for the 2p expansion

cBp5(
ap

(
nink

Bp~apnink!@fni ~ l j !p

~l i ! ~1!fnk~ l j !p

~lk!
~2!#0cAp

~2.26!

where

Bp~apnink![
ĵ

A2
xap

capni
~ i ! capnk

~k! . ~2.27!

A similar expansion is obtained for the neutron part:

cBn5(
bn

(
ni8nk8

Bn~bnni8nk8!@f
n
i8~ l j !n

~l i8!
~3!f

n
k8~ l j !n

~lk8!
~4!#0cAn

~2.28!

where

Bn~bnni8nk8![
ĵ

A2
xbn

cbnni8
~ i 8!

cbnnk8
~k8! . ~2.29!

One can perform all integrals over the integral coordinates
Eq. ~2.17! analytically by transforming to relative coordi
nates. Using the generalized Talmi-Moshinsky transform
tion with different masses@28# ~i.e., with different size pa-
rametersl1 andl2 in our case! one obtains forLa50

F0~R!5 (
Niki8k8

F
N0
~L ik

i 8k8!
~R!

3 (
nNpNn

^n0N0;0uNp0Nn0;0&D
ik
i 8k8

3I
n0
~l ik

i 8k8 ,la!
GNp

~ ik !GNn

~ i 8k8! ~2.30!

whereGp
( ik) (Gn

( i 8k8)) is a geometrical coefficient dependin
on the proton~neutron! single particle parameters. Thus fo
the proton it is@14#

GNp

~ ik !5 (
apnp

(
nink

Bp~apnink!

3K ~ lplp!0S 12 1

2D0;0US lp 12D j pS lp 12D j p ;0L
3^np0Np0;0uni lpnklp ;0&Dik

Inp0
~l ik ,la!

~2.31!

whereBp are the coefficients given by Eq.~2.27!. The first
angular brackets denotej j -LS recoupling coefficients and
the second the generalized Talmi-Moshinsky symbol
in
-
a-

g
r

de-

pending on the ratioDik5l i /lk . The quantitiesInp0
(l i ,la) are

the overlap integrals of Eq.~2.11!, which now read

Inp0
~l ik ,la!

5^Rnp0
~l ik!uR00

~la!
& ~2.32!

with the relative HO parameter corresponding to one partic
moving in the potentiali and the other in the potentialk, i.e.,

l ik5
l ilk

L ik
, ~2.33!

and the corresponding center of mass parameter

L ik5
1

2
~l i1lk!. ~2.34!

The radial c.m. wave functionF
NaLa50
(L ik

i 8k8)
(R) corresponds to a

HO potential with the relative and c.m. parameters given

l ik
i 8k85

L ikL i 8k8

L ik
i 8k8

, ~2.35!

L ik
i 8k85

1

2
~L ik1L i 8k8!. ~2.36!

The overlap integralsI
na0
l ik
i 8k8

are defined in a similar way as

above with the generalized Talmi-Moshinsky coefficients d
pending on the mass ratio

Dik
i 8k85L i 8k8 /L ik . ~2.37!

Since in the applications it may be interesting to know i
what potential a given particle is moving, we will clearly
specify all the possible combinations in the summatio
~2.30!. There are five terms; they are

~1! i5k51, i 85k851;

~2! i5k52, i 85k852;

~3! i5k51, i 85k852;

i5k52, i 85k851;

iÞk, i 8Þk8;

~4! i5k51, i 8Þk8;

iÞk, i 85k851;

~5! i5k52, i 8Þk8;

iÞk, i 85k852.

The formation amplitude can then be written as

F0~R!5 (
k51

5

F0
~k!~R!. ~2.38!
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We will refer to this summation in the applications belo
but from the outset one may expect that properties ma
induced by the motion of the particles inside the nucl
volume will be determined by the termF0

(k51)(R).

III. NUMERICAL RESULTS

A. Diagonalization procedure

In this section we will apply the method developed abo
to describe thea decay of220Ra. This nucleus, as well as th
daughter nucleus216Rn, has a quadrupole deformatio
b2>0.1. As shown in Ref.@15# for this value of the defor-
mation the inclusion of the nonspherical terms in the estim
tion of the microscopic formation amplitude changes the
nal result ~total decay width! only by a few percent. It is
therefore important to analyze the extent to which a desc
tion of this case in terms of a spherical mean field is val

For the Woods-Saxon mean field we take the so ca
universal parametrization@11#.

We use the valueN056 for the principal quantum num
ber defining the limit between the two kinds of terms in t
expansion~2.7!. We will perform the calculation by using
total of 11 shells. For the HO parameter that is suppose
describe the discrete part of the spectrum we choose
value f 151.2 @see Eq.~2.6!#. This part of the spectrum
should be insensitive to the value of the HO parameter
fining the quasicontinuum part, i.e., tof 2 . One indeed sees in
Fig. 2 that this is the case.

This is an important conclusion because it implies that
orthogonalization procedure, which mixes all states, will n
affect the discrete part of the spectrum. That is, one kno
well the HO parameters that provide a good representatio
describe bound properties in the nucleus. Our proced
which is intended to allow the calculation of processes in
continuum, increases the dimension of the representation
without affecting the calculated bound properties.

One also sees in Fig. 2 that the high energy part of
spectrum is strongly dependent uponf 2 . For f 25 f 151.2 the
spectrum corresponds to the one used in standard cal
tions, i.e., by using one HO potential only. Asf 2 decreases
the level density increases and the representation is, th
fore, more suited to describe the quasicontinuum spectr
That is, by choosing a small HO parameterl2 the represen-
tation becomes more adequate to describe the wave func
at large distances. But the drawback of using a small va
for l2 is that the dimension of the representation may
come big and the calculation cumbersome, a feature tha
want to avoid. That will happen if, e.g., one wants to inclu
all possible shells up to a given energy. Yet one can fin
value of f 2 that greatly improves the calculation while th
number of shells needed is less than the one used within
one HO potential, as will be shown below.

B. The formation amplitude and total width

The width ~2.15! consists of two very distinct parts
namely, the formation probability and the penetrati
through the Coulomb barrier. Deformations are very imp
tant regarding the penetration through the Coulomb barr
but the formation amplitude corresponding to ground stat
,
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ground state decays is not dependent on the deformation
rameters@16#. We therefore will calculate in this section the
formation amplitude neglecting deformations. The effects
deformations on the penetration will be shown at the end.

In order to evaluate the formation amplitude we have fir
to perform the BCS calculation that defines the intrins
wave functions of the nuclei involved in the decay. We est
mated the BCS parameters by using the third order ma
difference relation@29#, which gives for 220 Ra Dp51.091
MeV, Dn50.914 MeV, and for216 Rn: Dp51.066 MeV,
Dn50.926 MeV. We then computed the occupation ampl
tudesU andV for each system as a function of the paramet
f 2 .
It is worthwhile to stress here that a large scale she

model calculation would be the best proper way to include
large configuration mixing. Anyway this is almost impos
sible when many active particles are considered. That is w
the BCS method has been widely used since the pioneer
work by Soloviev@25# in a-decay calculations. In addition
we have shown@26# how the mixing induced by pairing
interaction at the level of BCS approximation, for spherica
as well as for deformed nuclei, is able to induce a larg
enhancement of clustering properties in heavy spherical
deformed nuclei. In particular, we have arrived at the co

FIG. 2. Single particle levels in220Ra as a function of the har-
monic oscillator parameterf 2 for f 151.2. The basis consists of the
shellsN151–6 ~corresponding tof 1) andN257–11 ~correspond-
ing to f 2). We call this ‘‘minimal basis.’’~a! Protons, and~b! neu-
trons.
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clusion that the effective inclusion of the nuclear correlatio
~particularly the proton-neutron interaction! through the pro-
cedure of fitting the strength to reproduce the experimen
pairing gap is somehow a proper way of including the ve
complicated correlations that induce clustering in nuc
@27#.

The idea of this calculation was to find a minimal bas
that describes well the calculated width. As mention
above,f 1 was fixed to have the valuef 151.2 and, therefore,
the possible different bases are determined by the param
f 2 . But let us stress once more that the results do not~and
cannot! depend on the value that one chooses forf 2 . If f 2 is
big then one needs many shells to reach the final value
the calculated quantities, as expected@16#. We found that the
minimal basis is given by the choicef 250.7. The basis con-
sists then of the HO shellsN150–6 corresponding to the
parameterf 151.2 and the shellsN257–11 corresponding to
f 250.7. Considering that the basis provided by only o
harmonic oscillator potential requires at least 18 major sh
to reproduce the experimental results@16# one can say that
our basis is very small.

We performed the calculation within the minimal bas
around the touching radius which is defined by

Rc51.2~A216Rn

1/3
1A

4He

1/3
!59.15 fm. ~3.1!

In Fig. 3~a! we present different terms entering the formati
amplitude~2.38! as a function of the c.m. radiusR. One sees
that the contribution corresponding to the discrete part of
spectrum (k51, drawn by dashes! is peaked on the nuclea
radius while the mixed contribution between discrete a
quasicontinuum parts (k53, plotted by dots! is centered on
the touching radius. The total amplitude is drawn by a so
line.

An important test for the calculation is that it should b
independent of the distanceR outside the nuclear surface
This dependence is shown in Fig. 3~b! for the three cases o
Fig. 3~a!. One can notice that the main contribution to th
total width is provided by the term in Eq.~2.38! that contrib-
utes most to the formation amplitude around the touch
radius, i.e., the termk53. The contribution from the inner
part of the nucleus (k51! is very small. The total contribu-
tion ~full line! is indeed practically independent of the di
tance forR>9 fm, i.e., beyond the touching radii, and re
produces well the experimental value. For smaller radii
width is very small. This is because we have neglected a
symmetrization effects between the daughter nucleus and
a cluster@30–32# but this does not affect our results becau
we are able to compute the formation amplitude well beyo
the touching point, where those effects are negligible@13#.
This is the main reason why it is important to have a relia
theory capable of describing the decay process at large
tances.

It is interesting to analyze the reason why the minim
basis reproduces so well the experimental data, although
relatively a very small basis. We thus show in Fig. 4~a! the
ratio between the calculated width and the correspond
experimental value as a function of the parameterf 2 . One
sees that the calculated width reaches the experimental v
just in a region off 2 values aroundf 250.7. Outside this
ns
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region the theory does not reproduce the experimental va
within the shells included in the minimal basis. That is, ou
side this region the basis does not span the Hilbert subsp
that contains the functions determining thea decay process
around the touching radius.

In Fig. 4~b! one sees that increasing the basis dimensi
one gets saturation.

One also observes in Fig. 4 that the main contribution
the formation amplitude is provided by the termF0

(k53) in
the expansion~2.38! ~plotted by dots!, while the contribution
from the discrete part (k51, plotted by a dashed line! is very
small.

One concludes that it is not possible to reproduce t
experimental value in a region around the touching po
with a smaller number of major shells for any value of th
expansion parameter because then the maximum would
under the experimental value.

Another quantity that can be calculated with our forma
ism is the spectroscopic factor

S5E
0

`

uF0~R!u2R2dR. ~3.2!

FIG. 3. Formation amplitude~a! and ratio between the theoreti-
cal and experimental width~b! corresponding to the ground state t
ground state transition of220Ra as a function of the distance be
tween thea particle and the daughter nucleus216Rn. The minimal
basis was used. The dashed line is the contribution fromF0

(k51) in
the expansion~2.38! while the dotted line is the contribution from
F0
(k53) . The final values are represented by the full lines.
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The result of the calculation for this decay
S57.031022, which is in agreement with a calculatio
where the Pauli principle acting among the particles in
core and in thea particle was taken into account proper
@31#.

It is also interesting to analyze the influence of the pair
correlations on the decay process. We found that the ca
lated results are very sensitive to the BCS parameters
shown in Fig. 5. In this figure the dependence of the ra
between the calculated and experimental widths as a func
of the gap parameter is presented~full line!. One sees that the
total width can change by several orders of magnitude
changingD within ‘‘reasonable’’ limits. It is thus remarkable
that choosing theD value prescribed by spectroscopic calc
lations in agreement with experimental data one gets just
right width.

The calculation of the formation amplitude was pe
formed by neglecting deformations. These are only imp
tant regarding the penetration through the Coulomb barr
This is also shown in Fig. 5~dashed line!, where one sees
that the calculated decay width, for a quadrupole deform
tion b250.3, increases by a factor of 5, practically indepe
dently of the BCS parameters. Again in this case, it is
markable that one gets the experimental width by just tak
the deformation parameters extracted from spectrosc
studies.

FIG. 4. Ratio between the theoretical and experimental de
widths calculated as in Fig. 3 as a function of~a! the parameter
f 2 and ~b! the number of shellsN2 .
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C. a decay systematics

In this section we will analyze ground state to groun
statea decays from even-even nuclei by using the minim
basis discussed in the previous section, i.e., by choosing
HO shells according to

f 151.2, N150–6; f 250.7, N256–11. ~3.3!

For the Woods-Saxon potential we adopted again the univ
sal set of values@11#. As in the previous section, the BCS
gap parameters were calculated according to the third or
mass formula@29#. Even if the dependence of the width upo
the distance around the touching point is weak, we w
present the calculated values averaged on the inter
R58–10 fm, i.e., around the touching point.

We have calculated the totala-decay width correspond-
ing to 26 cases of even-even heavy nuclei, i.e., above208 Pb
in the periodic table. The aim of this calculation is to prob
the validity of the conclusions reached in the previous se
tion for a large number of nuclei as well as to analyze th
effect of deformations on the decay process. For this
computed the total width by using a spherical as well as
deformed Coulomb barrier for the penetration problem.
both cases we applied the semiclassical~WKB! approxima-
tion, which is known to be very good ina decay@15,33#.
The deformation parameters were taken from Ref.@35# and
the experimental values of the widths from Refs.@19,34#.

In Table I are given the results of the calculation. Consi
ering that this is a complete microscopic calculation witho
any free parameter, one can say that the agreement betw
theory and experiment is excellent.

One important feature that can be seen in this table is
contributions of deformations to the decay widths. As e
pected, when the deformation increases the difference

ay

FIG. 5. Dependence of the averaged width on the BCS g
parameter corresponding to a spherical barrier~solid line! and a
deformed barrier~dashed line! for the ground state to ground state
decay of220Ra.
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TABLE I. Absolutea-decay widths calculated assuming a spherical barrier (Gsph) and deformed barrier
defined by the parameterb2 (Gexp). The calculation was performed within the minimal basis. The deforma
tion parameters are from Ref.@35# and the experimental values of the widths from Refs.@34,19#. The Fröman
method@33# has been used to calculate the penetration through the deformed Coulomb barrier.

No. Nucleus b2 G exp ~MeV! Gsph ~MeV! Gdef ~MeV! Gsph/G exp Gdef /Gexp

1 212Po 0.00 1.5~-15! 1.7~-15! 1.7~-15! 1.14 1.14
2 214Po 0.00 2.9~-18! 1.5~-18! 1.5~-18! 0.53 0.53
3 216Po 0.00 3.0~-21! 2.0~-21! 2.0~-21! 0.68 0.68
4 218Po 0.00 2.4~-24! 1.3~-24! 1.3~-24! 0.56 0.56
5 216Rn 0.07 1.0~-17! 4.8~-18! 5.0~-18! 0.47 0.50
6 218Rn 0.09 1.3~-20! 6.7~-21! 7.3~-21! 0.51 0.56
7 220Rn 0.13 8.1~-24! 4.5~-24! 5.6~-24! 0.55 0.69
8 222Rn 0.14 1.4~-27! 6.1~-28! 8.3~-28! 0.44 0.60
9 220Ra 0.11 2.0~-20! 1.5~-20! 1.8~-20! 0.79 0.91
10 222Ra 0.19 1.2~-23! 5.4~-24! 9.1~-24! 0.46 0.77
11 224Ra 0.18 1.4~-27! 5.2~-28! 8.4~-28! 0.37 0.61
12 226Ra 0.20 8.6~-33! 2.6~-33! 5.0~-33! 0.30 0.58
13 224Th 0.21 3.5~-22! 1.4~-22! 2.5~-22! 0.39 0.71
14 226Th 0.23 1.8~-25! 4.7~-26! 1.0~-25! 0.26 0.56
15 228Th 0.23 5.5~-30! 1.7~-30! 3.9~-30! 0.30 0.71
16 230Th 0.24 1.5~-34! 5.0~-35! 1.4~-34! 0.34 0.94
17 232Th 0.26 8.0~-40! 2.2~-40! 7.6~-40! 0.27 0.94
18 230U 0.26 1.7~-28! 7.1~-29! 2.1~-28! 0.42 1.24
19 232U 0.26 1.4~-31! 4.6~-32! 1.5~-31! 0.32 1.04
20 234U 0.27 4.2~-35! 1.1~-35! 4.0~-35! 0.26 0.96
21 236U 0.28 4.6~-37! 9.8~-38! 4.1~-37! 0.22 0.89
22 238U 0.28 2.5~-39! 3.7~-40! 1.6~-39! 0.14 0.65
23 238Pu 0.28 1.2~-31! 3.5~-32! 1.4~-31! 0.30 1.21
24 240Pu 0.29 1.6~-33! 3.1~-34! 1.3~-33! 0.19 0.82
25 242Pu 0.29 3.0~-35! 5.4~-36! 2.5~-35! 0.18 0.82
26 244Pu 0.29 1.4~-37! 2.9~-38! 1.4~-37! 0.20 0.97
y

tween the calculated spherical and deformed widths also i
creases, but the contribution of deformations alway
improves the calculation, sometimes by large factors, as
the decay of244Pu.

The effects of deformations shown in Table I can perhap
better be seen in Fig. 6, where the ratio between theoretic
and experimental widths is presented for the different nucle
of Table I. Open circles correspond to calculations per
formed within a spherical framework while the stars are th
values calculated with deformations. One again sees in th
figure that the agreement between theory and experiment
excellent if all the ingredients, including deformations, are
properly included in the calculation. The mean value of the
ratio between the theoretical and experimental widths i
0.79, with a standard deviation of 0.21. For comparison, on
can mention that neglecting deformations~i.e., the ‘‘spheri-
cal’’ values in Table I! the average value of the ratio is 0.41
with the same standard deviation, i.e., 0.21.

The good agreement between theory and experime
shown in Table I and Fig. 6 has to be consider in the contex
not only of the dependence of the width upon deformation
~shown there! but also of its strong dependence upon theQ
value @24# and the BCS parameters, as seen in Fig. 5. A
these quantities can be very different in the rather dispara
collection of nuclei of Table I.
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FIG. 6. Ratio between the theoretical and experimental deca
widths for spherical~circles! and deformed~stars! barriers corre-
sponding to the decays in Table I. The parametersN and f defining
the minimal basis are also given.
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IV. CONCLUSIONS

The calculation of absolutea-decay widths is a very dif-
ficult undertaking because either one calculates it at a sh
distance, as for spectroscopic quantities, where the P
principle acting among the particles in the core and in t
a particle is important, or one calculates it at large distanc
where standard shell model representations are inadequa
describe the decay process. In this paper we have attac
this problem by choosing as representation a basis provi
by two different harmonic oscillator potentials. The lowe
shells of the representation are taken from a HO poten
that describes well spectroscopic properties, i.e., distance
to around the nuclear surface. This is the HO potential us
generally in spectroscopic calculations, i.e., the one that
best the corresponding Woods-Saxon potential~see Fig. 1!.
The highest shells are taken from a HO potential that
rather shallow, thus with a greater density of states in t
quasicontinuum, i.e., suited to describe distances outside
nuclear surface. The corresponding basis is formed by
shellsN150–6 obtained from the HO potential with param
eter f 151.2 @see Eq.~2.13!# and the shellsN257–11 ob-
tained from the HO potential withf 250.7. In other words,
one can conclude that we have used a realistic single part
basis. The good asymptotic behavior of the single parti
wave function means a nonexponential decrease in the
~for radial distances larger than the nuclear radius!. The lo-
cation of the last maximum for the single particle radi
wave function is found at a point where

N\v5V~r ! ~4.1!

so that if the HO parameterl is smaller this radius is pushed
far away. If this is the case, the previous equation is satisfi
for a larger radius and smallerN for a shallower HO poten-
tial. The coherent superposition coming from the large m
ing of different contributions in the region behind the la
maximum produces a non exponential decay of the finala
formation amplitude@1,15#.

Within this representation one is able to calculate the fo
mation amplitude of thea particle at large distances, thu
avoiding the formidable task of considering exactly the Pa
principle between the core and thea particle. In addition,
one achieves this with a rather small basis, since it is j
constructed to fit the decay process. This basis is non
thogonal, but one can use any of the methods available
treat such a basis. One of such methods, which is the
used in this paper, is presented in the Appendix.

In our calculations we have used for the mean field sta
dard Woods-Saxon potentials with parameters that we h
taken from independent spectroscopic calculations. We
cluded the pairing correlations among the particles as p
scribed by standard BCS calculations and, therefore, ther
no free parameter in the calculated absolute decay width

With these prescriptions we calculated a rather large nu
ber ofa-decay widths in heavy nuclei. To probe the validit
of the calculations, we have checked in all cases that
widths are only weakly dependent upon the distances
tween the cores and thea particles outside the nuclear sur
faces, which in the calculated nuclei are between 8 fm and
fm. The calculated values of the widths agree well with th
corresponding experimental values. The mean value of
ort
auli
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ratio between the theoretical and experimental decay wid
for all calculated cases is 0.79 with a standard deviation
0.21.

We also calculated spectroscopic factors, which are
good agreement with other calculations, where the P
principle was taken into account properly@31#. In this con-
text, it is important to notice that the basis used in this pa
~11 major HO shells! is rather small. For comparison on
may mention that similar calculations using only one H
potential required the inclusion of 18 major shells@16#. This
small basis may make microscopic calculations of m
complicated decays~such as the decay of heavy cluster!
feasible.

We found that the main contribution to the total width
provided by that part of the formation amplitude center
around the touching point, i.e., the term connecting the d
crete and quasicontinuum parts of the single particle sp
trum. We also found that deformations are important to
scribe the decay process properly.

APPENDIX: DIAGONALIZATION PROCEDURE IN A
NONORTHOGONAL BASIS

In this appendix we will recall the method to solve th
eigenvalue problem for a Hermitian matrix in a nonorthog
nal basis~2.10!. Let us consider the general eigenvalue pro
lem

HCk5EkCk ~A1!

where the eigenfunctionCk , corresponding to the eigen
valueEk , is expanded in a nonorthogonal basisfn ,

Ck5(
n

Ckn
T fn5(

n
Cnkfn, ~A2!

T denoting the matrix transposition. Inserting~A2! into Eq.
~A1!, multiplying to the left byfm , and integrating one
obtains

(
n

^fmuHufn&Ckn
T 5Ek(

n
Ckn
T ^fmufn&. ~A3!

This is just the general eigenvalue problem to be solv
given by Eq.~2.10!, with the metric matrix

I mn[^fmufn&. ~A4!

Let us first find the eigenvaluesF j and eigenvectorsYl j of
the symmetric metric matrix

(
l
I mlYl j5F jYmj ~A5!

where the orthonormality conditions for the eigenvecto
hold:

(
i
YmiYin

T 5dmn . ~A6!

The system of functions
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c i5(
k

Yik
T

AFi

fk ~A7!

is orthonormal, because from~A5! and ~A6! one obtains

^c i uc j&5(
k

Yjk
T

AFi
(
l
I kl

Yl j

AF j

5(
k

Yik
T

AFi

AF jYk j5d i j . ~A8!

Expanding the initial eigenfunctionsCk ~A2! in terms of this
basis,

Ck5(
i
Xki
T c i , ~A9!

one obtains an eigenvalue problem

(
i

^c l uHuc i&Xki
T 5EkXki

T ~A10!
for the symmetric matrix

^c l uHuc i&5(
mn

Ylm
T

AFl

^fmuHufn&
Yni

AFi

. ~A10!

Using ~A7! and ~A9! one finally obtains the following ex-
pression for the expansion coefficients in~A2!:

Ckn
T 5(

i
Xki
T 1

AFi

Yin
T . ~A11!

Here the eigenvaluesFi and the eigenvectorsYin
T are solu-

tions of the system~A5! and ~A6! and the eigenvectorsXki
T

the solutions of~A10! and ~A11!.
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