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Magnetically catalyzed fusion
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We calculate the reaction cross sections for the fusion of hydrogen and deuterium in strong magnetic fi
as are believed to exist in the atmospheres of neutron stars. We find that in the presence of a strong ma
field (B*1012 G!, the reaction rates are many orders of magnitude higher than in the unmagnetized case.
fusion of both protons and deuterons is important over a neutron star’s lifetime for ultrastrong magnetic fie
(B;1016 G!. The enhancement may have dramatic effects on thermonuclear runaways and bursts on
surfaces of neutron stars.@S0556-2813~96!05611-7#

PACS number~s!: 26.60.1c, 32.60.1i, 97.10.Ld, 97.60.Jd
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I. INTRODUCTION: ATOMIC STRUCTURE
IN AN INTENSE MAGNETIC FIELD

In large magnetic fields a hydrogen atom is compress
both perpendicular and parallel to the field direction. In
sufficiently strong magnetic field (B*1012 G!, the Schro¨-
dinger equation for the dynamics of the electron separat
into axial and perpendicular~azimuthal and radial! equa-
tions. As the potential is axisymmetric around the directio
of the magnetic field, we expect no azimuthal dependence
the ground-state wave function of the electron.

In the direction perpendicular to the magnetic field, th
wave function can be obtained exactly@1#. This azimuthal
wave function is denoted by two quantum numbersn and
m. Here we taken50, as then.0 solutions are less bound
and therefore provide less shielding.

The perpendicular wave function has the same form as t
Landau wave function for an electron in a magnetic field:

R0m~r,u!5
1

A2m11pm!aH
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r2

4aH
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where

aH5A\/mevH5A\c/ueuH. ~3!

A. Axial wave function

Along the direction of the magnetic field, the electron
experiences an effective potential

V eff,0m~z!5^RuV~r !uR&5E
0
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Performing the integral yields
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V eff,0m~z!52
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~21!m
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exp~bz2/2aH

2 ! erfc~Abuzu/A2aH!GU
b51

,

~5!

which for largez approaches2e2/z. The Schro¨dinger equa-
tion with this potential is not analytically solvable. We can
note certain features of the desired solution. BecauseV eff is
everywhere finite, both the wave function and its first deriva
tive must be continuous. Rather than solve the equation
rectly, we use a variational principle, which constrains th
ground-state wave function (n50) along the magnetic field
for the given values ofn andm. The indexn counts the
number of nodes in the axial wave function. As with th
n.0 states, then.0 states are barely bound compared t
the n50 state.

Looking at the radial wave function, we take the wav
function along thez axis to be a Gaussian as well:

Z~z!5
1

A4 2pAaz
expS 2

z2

4az
2D . ~6!

We must minimize the integral

I5^ZuH effuZ&5E
2`

`

@~\2/2me!~¹zZ!21V effZ
2#dz. ~7!

For this problem the integral is~using the definition ofZ and
m50)

I52E
0

`

Z2F \2

2me

aH
3 u2

4az
4 2e2Ap/2exp~u2/2! erfc~u/A2!Gdu,

~8!

where we have substitutedu5z/aH . Next, we use the defi-
nition of Z,
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TABLE I. The results of the minimization.

Ruderet al. Our results
B ~G! Em50 ~Ry! Em51 ~Ry! am50 Em50 ~Ry! am51 Em51 ~Ry!

4.73109 2.04 1.20 1.14 1.77 1.59 1.15
4.731010 4.43 2.93 2.00 4.18 2.65 2.85
4.731011 9.45 6.69 3.79 8.91 4.79 6.44
4.731012 18.6 13.9 7.77 17.1 9.35 13.0
4.731013 17.3 29.6 20.0 23.6
4.731014 38.1 47.0 46.1 38.1
4.731015 102. 69.6 113.0 59.1
4.731016 265. 97.7 288.0 84.8
n

v

i

r
log
is
ity

u-
I52F \2

2me

aH
3

4A2paz
5E0

`

u2expS 2
u2aH

2

2az
2 D du

2
e2

2az
E
0

`

exp~u2/2!expS 2
u2aH

2

2az
2 D erfc~u/A2!duG .

~9!

The first integral is tractable yielding the quantity to be mi
mized,

I52F \2

16meaH
2

1

a2 2
e2

2aH

1

aE0
`

expS u22 ~121/a2! D
3erfc~u/A2!duG , ~10!

with respect toa5az /aH . This minimization yields a value
of az . Table I lists the results for the minimization for se
eral magnetic field strengths and compares them with
eigenvalues for the energy of the bound state derived
Ruderet al. @2#. Ruderet al.use a series of basis functions
solve the Schro¨dinger equation.

Our binding energies fall short of theirs by approximate
20%, because we are restricted by our trial wave funct
We also tried a sum of Gaussians but this added degre
freedom did not yield significantly more tightly bound wav
functions.

Using the results of the minimization, the electron pro
ability density is

r~r ,z!5
1

aH
2 az~2p!3/2

expF2S r 2

2aH
2 1

z2

2az
2D G , ~11!

where we have combined the two Gaussians in a revea
fashion. The quadrupole moment of the distribution is giv
by Q52aH

2 (a221). Next we define a quantity

n25r 21S aHaz D
2

z25r 21
z2

a2 ~12!

and recast the previous equation into the form

r~r ,z!5
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B. Screening potential

When solving gravitational problems one often looks fo
electrostatic analogs. Here, we look for a gravitational ana
to an electrostatic problem. The density of the electron
constant on concentric, similar homoemoids. For this dens
distribution the potential is directly solvable@3#,

F~xW !52pGS a2a3a1
D E

0

` c~`!2c~m!

A~t1a1
2!~t1a2

2!~t1a3
2!
dt,

~14!

where we have the following auxiliary definitions:

m25a1
2(
i51

3 xi
2

ai
21t

~15!

and

c~m!5E
0

m2

r~m2!dm2. ~16!

In our case, we useG52e2, a15a25aH , a35az , and

c~m!5
1

azpA2p
F12expS 2

m2

2aH
2 D G . ~17!

Substituting these results into Eq.~14! yields

F~xW !5
1

A2p
e2

3E
0

`exp$2 1
2 @r 2/~aH

2 1t!1z2/~az
21t!#%

~t1aH
2 !At1az

2
dt.

~18!

We change variables to simplify the integral. Using the nat
ral units of the problem, we letr̄5r /aH , z̄5z/aH , and
u5t/aH

2 . This gives the new equation
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F~xW !5
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1

A2p
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`exp$2 1
2 @ r̄ 2/~11u!1 z̄ 2/~a21u!#%

~11u!Aa21u
du,

~19!

where we again use the previous definition ofa. The poten-
tial at the center of the electron cloud (r50, z50) is given
by

F~0,0!5
e2

aH

2

A2p

ln~a1Aa221!

Aa221
. ~20!

Moving away from the origin a change of variables is use
when evaluating the integral. Let

v5
1

11u
. ~21!

The integral becomes

F~xW !5
1

A2p

e2

aH

3E
0

1exp„2 1
2 $ r̄ 2v1 z̄ 2v/@11~a221!v#%…

A~a221!v21v
dv.

~22!

As an example we present results forB59.831012 G. For
this field strengthaH'10212 m andaz'10211 m, and so
a510. The range of the nuclear force is approximate
10215 m or 0.001aH . Figure 1 depicts the potential in unit
of e2/aH for this configuration. The central potential is a
proximately 0.25e2/aH and drops quickly in the radial direc
tion. In the axial direction, the potential forms a ‘‘core.’’

The total potential of the electron cloud and the prot
may be approximated by the quadrupole formula

V~xW !'2
a221

2

eaH
2

r 3
~3cos2f21! ~23!

for large separations.

C. Cloud-cloud potential

When we consider the interaction between the two el
tron clouds surrounding the protons, we must account
only for their electrical potential but also the antisymmet
of the mutual electron wave function. Because of the stro
ambient field, we expect that both electron spins will
aligned with the field, and so the spatial component of
wave function must be antisymmetric. That is,

C~xW1 ,xW2!5
1

A2
@c1~xW1!c2~xW2!2c1~xW2!c2~xW1!#, ~24!

where
c1~xW !5Ar~xW ! and c2~xW !5c1~xW2xW0!, ~25!

with r(xW ) given by Eq.~11! and xW0 is the position of the
center of the second electron cloud.
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The potential energy of the two electrons is given by~e.g.,
@4#!

F cc~xW0!5E E e2

uxW12xW2u
uC~xW1 ,xW2!u2d3x1d3x2 ~26!

5A~xW0!2J~xW0!, ~27!

whereA(xW0) andJ(xW0) are given by

FIG. 1. The left panel depicts the screening potential as a fu
tion of radius andz position. The right panel shows the total pote
tial experienced by an incoming proton. The dashed contour
notes zero potential. The other contours are logarithmically spa
In the left panel the bold contour traces a potential of 0.1e2/aH .
The contour levels increase toward the center with a spacing
101/20. In the right panel the bold contours trace potentials
61024,1023, . . . ,e2/aH .
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A~xW0!5E E e2

uxW12xW2u
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3x2 , ~28!
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where we have used the Gaussian form ofr(xW ) to simplify
the expression forJ(xW0), and to obtain its approximate value
we replacex12x2 by x0 and similarly for the other coordi-
nates.

To calculate the direct term of cloud-cloud potentia

@A(xW0)# we will take advantage of the special form of th
density distribution given in Eq.~11!. The direct term is in
general given by

A~xW0!5E d3x1r~xW12xW0!F~xW1!, ~32!

which is simply the convolution of the density distributio
with the potential. If we perform the Fourier transform of th
right-hand side, we get

A~xW0!5E d3kr̃~kW !F̃~kW !e2 ikW•xW0. ~33!

Expressing the Poisson equation in Fourier space gives

F~xW !524pE d3k

~2p!3/2
r̃~kW !

k2
e2 ikW•xW. ~34!

Because the magnetic field induces the deformation of b
electron clouds, the clouds are aligned, and they have
same Fourier transforms; therefore,

A~xW0!524pE d3k
@ r̃~kW !#2

k2
e2 ikW•xW0. ~35!

Becauser is a three-dimensional Gaussian, so is its Four
transform; consequently,

@ r̃~kW !#25
1

~2p!3/2
r̃~A2kW !. ~36!

Combining Eq.~35! and Eq.~36!, yields

A~xW0!524p
1

~2p!3/2
E d3k

r̃~A2kW !

k2
e2 ikW•xW0. ~37!

Performing a change of variableslW5A2kW gives
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A~xW0!524p
1

A2~2p!3/2
E d3l

r̃~ lW !

l 2
e2 i lW•xW0 /A2. ~38!

Comparing this equation with Eq.~34!, we get

A~xW0!5
1

A2
FS xW0A2D . ~39!

Therefore, the total potential energy between two hydrog
atoms separated byxW in the magnetic field is given by

V~xW !'
e2

r
1

1

A2
FS xW

A2D H 12expF2S r 2

2aH
2 1

z2

2az
2D G J

22F~xW !, ~40!

whereF(xW ) is simply the potential induced by the Gaussia
cloud of charge@Eq. ~22!#.

Far from the atoms (r@aaH), the interaction energy may
be approximated by the quadrupole-quadrupole energy

V~xW !'
3

4
~a221!2

e2aH
4

r 5
~35cos4f230cos2f13!,

~41!

wheref is the angle relative to the symmetry axis of th
atom.

Figures 2 and 3 depict the total potential energy betwe
two hydrogen atoms in a magnetic field for the sam
magnetic-field strength as Fig. 1 (B59.831012 G!. A com-
parison of the two figures illustrates that the exchange te
provides a slight attractive force between the two electro
clouds, because of the anticorrelation of the clouds. At lar
separations, both potentials are well approximated by t
quadrupole-quadrupole formula@Eq. ~41!#.

II. ESTIMATING REACTION RATES

In a fluid state, there will be three possible reaction cha
nels: ~i! proton-proton dominates in hot, totally ionized gas
~ii ! proton-atom dominates in nearly completely ionized ga
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and ~iii ! atom-atom dominates in neutral and partially ion
ized gas. For the first channel, we can use the standard t
monuclear reaction rates~e.g.,@5#!. For the latter two chan-
nels we must include the screening potentials that w
calculated in the previous section to determine the poten
wall through which the interacting particles must penetrat

A. Transmission probability

In the WKB approximation, the probability to traverse
through a potential wall is

FIG. 2. The figures depict the total potential energy between tw
magnetized hydrogen atoms excluding the antisymmetrization
ergy. For the left panel, the contour spacing is the same as in
right panel of Fig. 1. The right panel illustrates the potential alon
the axis of the magnetic field.
-
her-

e
tial
e.

uTu2'expS 22E
wall

drA2m

\2 ~V~r !2E! D ~42!

'expS 22A2maH
e

\Ewall
duAV~r !2E

e2/aH
D

~43!

'expS 226.69B12
21/4E

wall
duAV~u!2ED ,

~44!

whereB12 is the magnetic-field strength in units of 1012 G,
u is the dimensionless radiusr /aH , and E and V are the
dimensionless energyEaH /e

2 and potential.
For the proton-atom channel, the potential includes bo

that of the nucleusV51/u and the surrounding electron
cloud @Eq. ~22!#. At large distances from the nucleus
u..a, the total potential is well approximated by the quad
rupole @Eq. ~23!#. For the atom-atom channel, the total po
tential includes contributions from the proton-proton, proto
electron and electron-electron potentials@Eq. ~40!#, which is
well approximated by the quadrupole-quadrupole formu
@Eq. ~41!# for large separations.

To calculate the transition probability, we use these qua
rupole formulas to approximate the potential foru.4a, and
for u,1/2, we approximate the potential energy between t
electron clouds and the electron clouds and the protons
their central values. This both speeds the calculation a
reduces the numerical error.

Figure 4 traces the transmission probability for protons
interact with atoms and atoms to interact with atoms at ze
relative energy as a function of angle and magnetic field.
the atom-proton case, the protons can most easily penet
through the mutual potential barrier along the axis of th
magnetic field and the penetration probability increas
markedly with the strength of the magnetic field. In th
atom-atom case, we see that the maximum transmiss
probability occurs at an angle to the field direction and th
with antisymmetrization of the electron density the transm
sion probability increases dramatically. For the reaction ra
estimates that follow we will account for the antisymmetr
zation energy of the two electron clouds.

To translate this transmission probability into a cross se
tion, we must averageuTu2 over a sphere and include the
appropriateS factor for the reaction whereS(E) is defined as

S~E!5sEuTu2'S0~11S1E!. ~45!

In this way, the strong energy dependence of the react
cross section is removed. For the reaction1H(p,e1n)D,
S054.38310225 MeV b, andS1511.2 MeV21 at low ener-
gies @6#. The reaction of the less abundant deuterons w
protons has a much largerS factor ofS052.531027 MeV b
andS1527.8 MeV21 @5#.

Given these definitions, the reaction proceeds at a rate

r 125~11d12!
21n1n2^sv& ~46!

5~11d12!
21n1n2S 8

mp D 1/2
3S0~11S1kT!~kT!21/2uTu2, ~47!
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2756 54JEREMY S. HEYL AND LARS HERNQUIST
wherem is the reduced mass of the reactants, andn1 ,n2 are
their number densities.r 12 has the units of reactions per un
time per unit volume, and so we can define a typical ti
scale for a reactant to be consumed:

t125n1 /r 12. ~48!

We will use this time scale to assess the effectiveness o
screening in catalyzing the nuclear fusion reactions. We
account for the increasing excitation of the gas as the t
perature increases and the onset of thermonuclear reac
above several 106 degrees.

FIG. 3. The figures depict the total potential energy between
magnetized hydrogen atoms including the antisymmetrization
ergy. For the left panel, the contour spacing is the same as in
right panel of Fig. 1. The right panel illustrates the potential alo
the axis of the magnetic field.
it
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B. Ground-state fraction

The screening is much less effective if the electron is
an excited state, and so we estimate the fraction of atom
the ground state by first calculating the ionization equili
rium and then the fraction of neutral atoms in the grou
state.

Lai and Salpeter@7# give the form of the Saha equatio
for hydrogen atoms, electrons, and protons in equilibrium
the presence of a quantizing magnetic field. Throughout
formalism, we use the natural units of the problem; i.e.,T is
the temperature in units of 3.153105 K, M is the mass of the

two
en-
the
ng

FIG. 4. The left panel depicts the transmission probability a
function of angle and magnetic field for a proton and an atom
interact at zero relative energy. The right panel depicts the sa
probability for two atoms. The solid lines trace the probability if th
antisymmetrization energy of the electrons is considered. T
dashed lines show the probability without antisymmetrization.
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system in units of the electron’s mass~1840 for hydrogen
and 3670 for deuterium!, b is the strength of the magneti
field in units of 2.353109 G, andng is the number density
of the gas in units of 6.7631024 cm23.

We first look at the unexcited hydrogen atom. For t
partition function of the ground state in a quantizing ma
netic field, Lai and Salpeter@7# give

Z ground~H !.ng
21/3SMT

2p D 1/2expS uE~H !u
T DZ' , ~49!

where E(H)520.16l 2 ~the ground-state energy of th
atom!, l5 lnb, and

Z'5
ng

22/3

~2p!2
E
0

K' max
2pK'dK'expF2

E'~K'!

T G , ~50!

Z'.
ng

22/3

2p E
0

K' max
K'dK'expF2

t

2M'T
lnS 11

K'
2

t D G
~51!

5ng
22/3

M'9T

2p
, ~52!

whereM'5M1jb/ l ~with j.2.8) and

t.0.64l jbF11
Ml

jb G2. ~53!

Here we have explicitly integrated toK' max, and so we
replaceM'8 of Lai and Salpeter@7# with M'9

M'9 5M'8 F12S 11
K' max
2

t
D 2t/2M'8 TG , ~54!

andM'8 is as given by Lai and Salpeter@7#,

M'8 5M'S 12
2M'T

t D 21

. ~55!

As K' max→`, M'9→M'8 and we recover the Lai-Salpete
@7# result.K' max is the upper limit on the perpendicular mo
mentum for the given state. The electron clouds of neighb
ing atoms should not overlap; otherwise, the gas would
come pressure ionized. Therefore, we take the size of
state,RK5K' /b,Rg5ng

21/3, as the defining condition on
K' max. We obtain

K' max5bng
21/3. ~56!

The total partition function of the neutral atom is given by

Z~H !5Z ground~H !zn~H !zm~H !, ~57!

wherezn andzm are the partition functions for excitations o
the n andm quantum numbers, respectively. Lai and S
peter@7# argue that thezn(H).1 as these states are hard
occupied relative to the ionized,m.0, and ground states
For the contribution of them.0 states to the partition func
tion, they obtain
c
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zm~H !.~11e2b/MT! (
m50

` M'm9

M'9

3expF2
1

T S 0.16l 220.16l m
2 1m

b

M D G , ~58!

where we have several additional auxiliary definitions

l m5 lnS b

2m11D , ~59!

FIG. 5. The ground-state fraction as a function of temperatu
density, and magnetic field. The left panel shows the neutral fra
tion as a dashed line and the unexcited fraction as a solid line
r;1 g cm23 andB51012, 1014, and 1016 G. The right panel is for
a densityr;1000 g cm23.
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and as with ground state we correct forK' max,` with

M'm9 5M'm8 F12S 11
K' max
2

t
D 2tm/2M'm8 TG ~60!

andM'm8 is as given by Lai and Salpeter@7#,

M'm8 5M'mS 12
2M'mT

tm
D 21

. ~61!

M'm is given by the relation

FIG. 6. The two panels depict the reaction time scale for
reactionsp(p,e1n)D andD(p,g)3He for B51016 G over a range
of temperatures and densities. The dashed contour tracest of 1 sec.
The solid contours trace locii of time scales ranging from 1 yea
1010 years with a factor of 10 in between each contour.
12
M

M'm
.

b

M F m11

b/M10.16l m
2 20.16l m11

2

2
m

b/M10.16l m21
2 20.16l m

2 G , ~62!

and we use the additional definition

tm.0.64l m~M'm2M !F11
M

M'm2M G2. ~63!

he

to

FIG. 7. The two panes depict the reaction time scale for the
reaction D(p,g)3He for B51014 G and 1012 G over a range of
temperatures and densities. The dashed contour tracest of 1 sec.
The solid contours trace locii of time scales ranging from 1 year to
1010 years with a factor of 10 in between each contour.
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The ratio of the number of atoms in the ground state to
number of neutral atoms is given by

X ground~H !

X~H !
5
Z ground~H !

Z~H !
5

1

zm~H !
. ~64!

Next we calculate the ionization-recombination equilibriu

X~H !

XpXe
5

Z~H !

Z~p!Z~e!
~65!

.ngS b

2p D 22

M'9 S T

2p D 1/2tanhS b

2MTD
3expS uE~H !u

T D zm~H !, ~66!

whereX(H)5n(H)/ng , Xp5np /ng , andXe5ne /ng are the
number density fractions of the different species.

Combining Eq.~64! and Eq.~66! yields the fraction of
‘‘shielded’’ nuclei as a a function of temperature, densi
and magnetic-field strength. Figure 5 depicts the fraction
unexcited hydrogen atoms in the gas as function of temp
ture for several field strengths and two densities.

C. Thermonuclear reactions

We parametrize the thermonuclear reaction rates~e.g.,
@5#! by

r pp53.06310237 cm3 sec21np
2T6

22/3exp~233.71T6
21/3!,

~67!

r pD53.28310219 cm3 sec21npnDT6
22/3exp~237.11T6

21/3!.
~68!

The time scale for the exhaustion of a particular reac
becomes
the

m:

ty,
of
era-

tant

t15
n1

r thermo1r magneto
. ~69!

Figure 6 shows the reaction time scale for the consumptio
of hydrogen and deuterium in the reactionsp(p,e1n)D and
D(p,g)3He, respectively, for a magnetic field of 1016 G.

Even in this very strong magnetic field, thep-p reaction
proceeds only very slowly below temperatures of 13106

deg; however, over 106’s of years, the hydrogen gas would
be processed to deuterium and then to helium in such
strong magnetic field. It would provide a steady source of
energy, while eroding the storehouse of hydrogen which
could potentially fuel a thermonuclear runaway. Relatively,
the second reaction proceeds instantly with time scales o
less than 1 year for the interesting range of densities an
temperatures.

For the weak fields depicted in Fig. 7 only the deuterium
reaction proceeds at a significant rate.

III. DISCUSSION

We find that in strong magnetic fields (B*1012 G!, the
cross section for nuclear fusion is dramatically larger than in
the unmagnetized case. For these strong fields, deutero
fuse to 3He over short time scales (&106 yr! for the density
and temperatures expected on the surface of a neutron st
Because of the inherent weakness of thep-p interaction, the
fusion of protons to deuterium is only important over cosmo-
logical timescales for ultrastrong fields (B*1016 G! in spite
of the large enhancement in the cross section of this reaction

For larger atoms (Z.1), we expect that reaction cross
sections will also be larger in the presence of an intens
magnetic field. However, the shielding is unlikely to be as
effective as for theZ51 case, because additional electrons
must occupym.0 levels which are much less effective at
screening the nuclear charge.
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