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Magnetically catalyzed fusion
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(Received 10 June 1996

We calculate the reaction cross sections for the fusion of hydrogen and deuterium in strong magnetic fields
as are believed to exist in the atmospheres of neutron stars. We find that in the presence of a strong magnetic
field (B=10' G), the reaction rates are many orders of magnitude higher than in the unmagnetized case. The
fusion of both protons and deuterons is important over a neutron star’s lifetime for ultrastrong magnetic fields
(B~10' G). The enhancement may have dramatic effects on thermonuclear runaways and bursts on the
surfaces of neutron starfsS0556-28186)05611-7

PACS numbes): 26.60+c, 32.60+i, 97.10.Ld, 97.60.Jd

I. INTRODUCTION: ATOMIC STRUCTURE g\m
IN AN INTENSE MAGNETIC FIELD Veitom(2)=— _\/_ - ( B)
In large magnetic fields a hydrogen atom is compressed 1
both perpendicular and parallel to the field direction. In a — 21942
sufficiently strong magnetic fieldB=10'? G), the Schie % \/Eexmez 1225 erfol V|2l V2a,)
dinger equation for the dynamics of the electron separates
into axial and perpendiculafazimuthal and radialequa- ®)
tions. As the potential is axisymmetric around the direction
of the magnetic field, we expect no azimuthal dependence iwhich for largez approaches- e?/z. The Schrdinger equa-
the ground-state wave function of the electron. tion with this potential is not analytically solvable. We can
In the direction perpendicular to the magnetic field, thenote certain features of the desired solution. Becaliggis
wave function can be obtained exactly]. This azimuthal everywhere finite, both the wave function and its first deriva-
wave function is denoted by two quantum numberand tive must be continuous. Rather than solve the equation di-
m. Here we taken=0, as then>0 solutions are less bound rectly, we use a variational principle, which constrains the
and therefore provide less shielding. ground-state wave functiorv&0) along the magnetic field
The perpendicular wave function has the same form as thtor the given values oh and m. The indexv counts the
Landau wave function for an electron in a magnetic field: number of nodes in the axial wave function. As with the
n>0 states, thev>0 states are barely bound compared to
1 2 the v=0 state.
Rom(p, 6) = pmex% _ P_Z (1) Lo_okmg at the rad_lal wave functlon, we take the wave
2 lmialtt day function along thez axis to be a Gaussian as well:

B=1

eime

’

AP E— o ~Bs 2(2)=—~— - (6)
om P Saml a2 d,8 2aj, l' \/—\/_ 4a
2
We must minimize the integral
where
ayy= VAl mgwn = Vicl[eH. 3 |=(Z|H e1lZ)= f  [(#212me)(V,2)*+V eq2’1dz. (7)
A. Axial wave function For this problem the integral igising the definition oZ and

Along the direction of the magnetic field, the electron m=0)

experiences an effective potential

= [ #2 aju?
o e? , I=2f ZZ{Zm 137 —e?\[ml2expqu?/2) erfo(u/\2) |du,
Veff,Om(Z):<R|V(r)|R>:fo —\/ZZ—TPZROm(P)ZWPdp- 0 e 78, ®

4
where we have substitutad=z/a,;. Next, we use the defi-
Performing the integral yields nition of Z,
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TABLE |. The results of the minimization.

Ruderet al. Our results
B (G Em-0 (Ry) Em-1 (Ry) Am=0 Em-0 (Ry) Am=1 Em-1 (Ry)
4.7x10° 2.04 1.20 1.14 1.77 1.59 1.15
4.7x 100 4.43 2.93 2.00 4.18 2.65 2.85
4.7x 10 9.45 6.69 3.79 8.91 4.79 6.44
4.7x 10% 18.6 13.9 7.77 17.1 9.35 13.0
4.7x 108 17.3 29.6 20.0 23.6
4.7x10% 38.1 47.0 46.1 38.1
4.7x 10" 102. 69.6 113.0 59.1
4.7x 10 265. 97.7 288.0 84.8
52 aa , zaa B. Screening potential
=2 2m, —4\/ﬂa5f0 uTexp — _2a§ du When solving gravitational problems one often looks for
z electrostatic analogs. Here, we look for a gravitational analog
e? (= u2a2 to an electrostatic problem. The density of the electron is
H . I . . .
——f exp(u?/2)exp — —— | erfa(u/\2)dul. constant on concentric, similar homoemoids. For this density
2az)o 28; distribution the potential is directly solvabf8],
9
O(X)=— G azaz| [~ (%) = h(m)
The first integral is tractable yielding the quantity to be mini- ar /Jo \(r+ ai)(r+ a%)(r+ ai)
mized, (14)
=2 L 621F lle 1/a? i ili
= 16meaﬁ 2 2, alo ex 5 ( a) where we have the following auxiliary definitions:
fo(u/+2)d 0 o X
X erfq(u ul, 1 — i
Au/v2) (10 m’=a2y, — (15
i=1 a.i +7

with respect too=a,/ay . This minimization yields a value
of a,. Table | lists the results for the minimization for sev- and
eral magnetic field strengths and compares them with the
eigenvalues for the energy of the bound state derived by )
Ruderet al.[2]. Ruderet aluse a series of basis functions to y(m)= fm p(m?)dm?. (16)
solve the Schrdinger equation. 0

Our binding energies fall short of theirs by approximately
20%, because we are restricted by our trial wave function 2 _
We also tried a sum of Gaussiansybut this added degree dp our case, we use=—e’, 3;=a,=ay, 3;=3;, and
freedom did not yield significantly more tightly bound wave

functions. 1 m?
Using the results of the minimization, the electron prob- Y(m)= —\/— 1—exr{ - Ez) . a7
ability density is amN2m H
1 r? 4 Substituting these results i 4) yield
_ I PR 11 g ults into E4.4) yields
p(1,2) a&.az(zw)yzexr{ 242 2a§”’ (1D
where we have combined the two Gaussians in a revealing CI)()Z)Z 1 e?
fashion. The quadrupole moment of the distribution is given N
by Q=2a%(a?—1). Next we define a quantity
=exp{— 3 [r?/(ag+ T)+z2/(a§+7)]}d
a2 72 Xf T.
n?=r?+ —H) 22=r2+? (12) 0 (r+af)Vr+a;
‘ (18)

and recast the previous equation into the form

We change variables to simplify the integral. Using the natu-
. (13  ral units of the problem, we let=r/ay, z=z/a,, and
u= T/aﬁ . This gives the new equation

1 2
r2)=—o——=3exp — =
p(r.2) aZa,(2m)%? X[{ 2a,
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fwexp[— sr2l(1+u)+z%(a?+wl} g
0 (1+u)Ve?+u .

(19

where we again use the previous definitionnofThe poten-
tial at the center of the electron cloud=0, z=0) is given

by
e 2 In(a+a®—1)
ap 27 Ja?-1

Moving away from the origin a change of variables is useful
when evaluating the integral. Let
1

Axial Distance (o)

®(0,0= (20

U= m (21)
10
The integral becomes Redial Distance (a,)
.1 ¢ (b) a, = 10 (a,)
(D X) e ——— z H
( \/ﬁ aH 30 T T T T T T T T T T T
JleX[X— {r?v +?v/[l+(a2—l)v]})d - y
U. L N
0 \/(az_ 1)U2+U | ///_
(22 20 2
3 ot

As an example we present results B+ 9.8x 10'? G. For g 7 )
this field strengtha,;~10"*2 m anda,~10 ' m, and so & :
a=10. The range of the nuclear force is approximately 5 Z i
107> m or 0.00&, . Figure 1 depicts the potential in units 3 7
of e?/ay, for this configuration. The central potential is ap- & 10 = n

proximately 0.28% a,, and drops quickly in the radial direc-
tion. In the axial direction, the potential forms a “core.”

The total potential of the electron cloud and the proton
may be approximated by the quadrupole formula

1 1 | L | ] 1 1
10 20 30
Radial Distance (a,)

a’—1 eaﬁ
r

> (3cogp—1) (23

V(X)~—

for large separations. FIG. 1. The left panel depicts the screening potential as a func-

_ tion of radius ana position. The right panel shows the total poten-
C. Cloud-cloud potential tial experienced by an incoming proton. The dashed contour de-

When we consider the interaction between the two elechotes zero potential. The other contours are logarithmically spaced.
tron clouds surrounding the protons, we must account nof! the left panel the bold contour traces a potential o8/, .
only for their electrical potential but also the antisymmetry 1€ contour levels increase toward the center with a spacing of
of the mutual electron wave function. Because of the strong® .-, the right panel the bold contours trace potentials of
ambient field, we expect that both electron spins will be_10 1075 Ay
aligned with the field, and so the spatial component of the
wave function must be antisymmetric. That is,

I 1 . N - -
W (Xq,X2) =—=[ ¥h1(X1) Y2 X2) — h1(X2) ¥a(X1) ], (24)

V2

The potential energy of the two electrons is givenéy.,

[4])

R e’ ..
@ oo [ [ = WG Padx, (26
where X1 =X
P1(X)=Vp(x) and ¢y(X) = ¢y (X—Xo), (25 . _
- R =A(Xo) = I(Xo), (27)
with p(x) given by Eqg.(11) and X, is the position of the R .
center of the second electron cloud. whereA(xq) andJ(Xg) are given by
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- e’ . .
A(Xo):j J#pl(xl)pZ(XZ)dsxldSXZv (28
X1 —Xo|
1[ (X1=X2)Xo+(Y1—Y2)Yo (Z1—22)2
J(Xo)_j f d3x,d%x, > P1(X1)P2(X2)9X 2 + 2 (29
|Xl 2 ay a;
1(x5+ys 7
f daxldsxz[ T P1(X1)P2(X2)exf{ 2( 22 + 2 (30
A(X "o + % 31
~A(Xo)ex Ea 53 ) (31
|
where we have used the Gaussian formpf) to simplify . 5 ( D) i
the expression fod(X,), and to obtain its approximate value A(Xo)=—4m \/E(ZW)S/ZJ’ d”l z € ot (39
we replacex,;— X, by X and similarly for the other coordi-
nates. . ~ Comparing this equation with E434), we get
To calculate the direct term of cloud-cloud potential
[A()?O)] we will take advantage of the special form of the - 1 )20
density distribution given in Eq(11). The direct term is in A(Xo) = Eq) ) (39
general given by
Therefore, the total potential energy between two hydrogen
A(§0)=f d3x,p(X1—Xo) D (X7), (32)  atoms separated byin the magnetic field is given by
which is simply the convolution of the density distribution 5 - 5 )
with the potential. If we perform the Fourier transform of the V(X)~ e_+ — X 1—ex r .z
right-hand side, we get 2 2 2af,  2a’
—2®(x), (40)

A(Xg)= f d3Kp(K) D (K)e k%o, (33)

whered(x) is simply the potential induced by the Gaussian
Expressing the Poisson equation in Fourier space gives  cloud of chargdEq. (22)].
. Far from the atomsr& aay,), the interaction energy may
- d~k K - - i h le- [
B(X)= _47Tf e Pi((z) o ik (34) be approximated by the quadrupole-quadrupole energy
Because the magnetic field induces the deformation of both ) ,€ e? ﬁ
electron clouds, the clouds are aligned, and they have the V(X)~7z(a"~1) 5 (35c08¢—30c08h+3),

same Fourier transforms; therefore, (41)

Al%g) = _47TJ d3k[p(k)]2 o, a5 \;\{ngrr](_e(ﬁ is the angle relative to the symmetry axis of the
Figures 2 and 3 depict the total potential energy between
Becausep is a three-dimensional Gaussian, so is its FourietWo hydrogen atoms in a magnetic field for the same
transform; consequently, magnetic-field strength as Fig. B€9.8x 10' G). A com-
parison of the two figures illustrates that the exchange term

. 1 . provides a slight attractive force between the two electron
[P(k)]zzmzp(\/zk)- (36)  clouds, because of the anticorrelation of the clouds. At large
separations, both potentials are well approximated by the
Combining Eq.(35) and Eq.(36), yields qguadrupole-quadrupole formul&qg. (41)].
R 2k .. II. ESTIMATING REACTION RATES
Ao =~ 47— AR ko (3 . . c o
2w ) In a fluid state, there will be three possible reaction chan-

R R nels: (i) proton-proton dominates in hot, totally ionized gas,
Performing a change of variablés- \2k gives (i) proton-atom dominates in nearly completely ionized gas,
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) 2m
— |T|?~ex —ija”dr ?(V(r)—E) (42)
V(r)—E
du e’lay )

(43)

30

wexp( —ZMEJ

wall

20

wexp< —26.693[21’4f IId uJV(u)—é’) ,
(44)

whereB, is the magnetic-field strength in units of #G3,
u is the dimensionless radiuda,, and £ and V are the
dimensionless energga, /e and potential.
N For the proton-atom channel, the potential includes both
] that of the nucleusy=1/u and the surrounding electron
1 cloud [Eq. (22)]. At large distances from the nucleus,
o Al I o u>> a, the total potential is well approximated by the quad-
0 10 20 30 rupole[Eg. (23)]. For the atom-atom channel, the total po-
Radial Distance (ay) tential includes contributions from the proton-proton, proton-
electron and electron-electron potentigisy. (40)], which is
well approximated by the quadrupole-quadrupole formula
- . [Eq. (41)] for large separations.
L ] To calculate the transition probability, we use these quad-
V(8)=—0.11 _ rupole formulas to approximate the potential tor4«, and
for u<1/2, we approximate the potential energy between the
electron clouds and the electron clouds and the protons by
their central values. This both speeds the calculation and
reduces the numerical error.
Figure 4 traces the transmission probability for protons to
0 interact with atoms and atoms to interact with atoms at zero
- ] relative energy as a function of angle and magnetic field. In
- . the atom-proton case, the protons can most easily penetrate
L i through the mutual potential barrier along the axis of the
magnetic field and the penetration probability increases
markedly with the strength of the magnetic field. In the
atom-atom case, we see that the maximum transmission
probability occurs at an angle to the field direction and that
C 1 Ly with antisymmetrization of the electron density the transmis-
0 10 20 30 sion probability increases dramatically. For the reaction rate
Axial Distance (ay) estimates that follow we will account for the antisymmetri-
zation energy of the two electron clouds.

FIG. 2. The figures depict the total potential energy between tWC{ioTo translate this transmission probability into a cross sec-

2 .
magnetized hydrogen atoms excluding the antisymmetrization en- n, We, musft averfagérll'| over_ a sp;}here and d'n]EIUdéa the
ergy. For the left panel, the contour spacing is the same as in th@PPrOPriateS factor for the reaction wher®(E) is defined as

right panel of Fig. 1. The right panel illustrates the potential along S(E)= 0E|T|2~SO(1+S E) (45)
the axis of the magnetic field. =

Axial Distance (a,)

@]

(b) a, = 10 (o)

©
I

Potential Energy (e?/a,)

|
©
T
|

In this way, the strong energy dependence of the reaction

o . .
and (jii) atom-atom dominates in neutral and partially jon- Cr0SS section is removed. For the reactigk(p,e” »)D,

— — 25 — 1
ized gas. For the first channel, we can use the standard the$_0_4'38>< 10 M‘?V b, andS,=11.2 MeV"" at low ener- )
monuclear reaction ratdg.g.,[5]). For the latter two chan- gies [6]. The reaction of the less abundant deuterons with

— —7
nels we must include the screening potentials that wé)r%tgni ggsBaMm$T I[zéag&factor 0f$p=2.5x10"" MeVb
calculated in the previous section to determine the potentia"imGi\}_n th. % finit .n the reaction or ds at a rate of
wall through which the interacting particles must penetrate. en these detinitions, the reaction proceeds at a rate o
ro=(1+ 819 " 'nyny(ov) (46)
A. Transmission probability L 8 |12
=(1+ 0812 "Ny o
In the WKB approximation, the probability to traverse #
through a potential wall is X Sp(1+SkT)(kT)"YATZ, (47
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FIG. 3. The figures depict the total potential energy between two  FIG. 4. The left panel depicts the transmission probability as a
magnetized hydrogen atoms including the antisymmetrization enfunction of angle and magnetic field for a proton and an atom to
ergy. For the left panel, the contour spacing is the same as in thi@teract at zero relative energy. The right panel depicts the same

right panel of Fig. 1. The right panel illustrates the potential alongpProbability for two atoms. The solid lines trace the probability if the
the axis of the magnetic field. antisymmetrization energy of the electrons is considered. The

dashed lines show the probability without antisymmetrization.

whereu is the reduced mass of the reactants, apg, are
their number densities,, has the units of reactions per unit
time per unit volume, and so we can define a typical time The screening is much less effective if the electron is in

B. Ground-state fraction

scale for a reactant to be consumed: an excited state, and so we estimate the fraction of atoms in
the ground state by first calculating the ionization equilib-
T1o= N1 /T 5. (48)  rium and then the fraction of neutral atoms in the ground
state.

We will use this time scale to assess the effectiveness of the Lai and Salpetef7] give the form of the Saha equation
screening in catalyzing the nuclear fusion reactions. We alstor hydrogen atoms, electrons, and protons in equilibrium in
account for the increasing excitation of the gas as the tenthe presence of a quantizing magnetic field. Throughout this
perature increases and the onset of thermonuclear reactiof@malism, we use the natural units of the problem; i'Bis
above several fodegrees. the temperature in units of 3.¥5.0° K, M is the mass of the
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system in units of the electron’s ma&k340 for hydrogen

and 3670 for deuteriujnb is the strength of the magnetic (a)l ———
field in units of 2.3510° G, andng is the number density L 1
of the gas in units of 6.7610?*cm 3. 1= —
We first look at the unexcited hydrogen atom. For the i i
partition function of the ground state in a quantizing mag- - 4
netic field, Lai and Salpetdi7] give 0.8 - .
A MT\ Y2 (E(H) 2 i ]
Z ground H) =Ny 1/3( E) eXF( T )ZJ_ . (49 206 — _
> L .
where E(H)=—-0.1682 (the ground-state energy of the % . i
atom), | =Inb, and 0.4 - —
-2/3 - .
n K1 max E (K,) L i
__9 LU
ZL_(ZW)ZJO ZWKLdKLeX[{— T , (50) 0.2 - -
—23 2 i ]
n KL max K
g L Lo v o by o | Lo 1 L
= + = 0
2= f KLdKLeXF{ TR 4 4.5 5 55 6
(51) Temperature (K)
_sMIT (b)
= ng 2/3?1 (52) L T T T T T T T
1 = _
whereM, =M + &b/l (with ¢£=2.8) and - .
MI1? - i
7=0.64¢b| 1+ ——| . (53) 0.8 I~ N
¢b 3 L ]
Here we have explicitly integrated t, . and so we So6 - ]
replaceM | of Lai and Salpetef7] with M/ = C s
5 —7i2M' T ><§ 04 N N
M/ =M{[1-| 1+ —= , (54) i i
. ) ) 09 | p=1000 g cm™ _
andM | is as given by Lai and SalpetEr], L i
M’ =M 1— 2MJ_T>_1 (55) 0 i IR R REN N E L ] L ]
s T ' 4 4.5 5 5.5 6

. T t K
As K| ma—®, MT—M/| and we recover the Lai-Salpeter emperature (K)

[7] result.K | axis the upper limit on the perpendicular mo-

mentum for the given state. The electron clouds of neighbor- FIG. 5. The ground-state fraction as a function of temperature,
ing atoms should not overlap; otherwise, the gas would bedensity, and magnetic field. The left panel shows the neutral frac-
come pressure ionized. Therefore, we take the size of th#on as a dashed line and the unexcited fraction as a solid line for
state,Rq=K, /b<Ry=nj, 13 as the defining condition on »~19 cm 3 andB=10'% 10" and 16°G. The right panel is for

K, max- We obtain a densityp~1000 g cni 3.
KL max= bng v, (56) = M
Zn(H)=(1+e7PMT) ¥ T
The total partition function of the neutral atom is given by m=0 M}
1 b
Z(H)=Z gound )2, (H) Zo(H), (57 xex,{-f(o.mz_oaammm)}. =9

wherez, andz,, are the partition functions for excitations of
the v and m quantum numbers, respectively. Lai and Sal-\yhere we have several additional auxiliary definitions
peter[7] argue that the,(H)=1 as these states are hardly
occupied relative to the ionizedn>0, and ground states.
For the contribution of then>0 states to the partition func-

tion, they obtain Im=In| 5——/, (59
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1070 & E 10 3 E
100 4 10° .
108 [ 2 108 — N
107 ;_ ; 107 é— ’ %
E E| — E T 3
S 1 <06 L 1 yr i
—10° & — — 108 & —
— E - e -
10° & . 10° | -
E 3 = / 3
- J - J 3
104 & - 104 E / -
E E E O/ E
F ] 105 L & .
100 g /: 0% ~ 3
: ; - / ]
L _ 10?2 &= / —=
/‘OZ ;IIH‘ Il \HIIH‘ I|H“[|! \\HHH' \\||H||| \HHHI‘ 1|HH|I| ||HH|]| |\HHH’ \\HHH' I__E O e l””"' \|||]|||| \|||||||| IIH“”' ‘IH“”‘ II”“H' I““'"‘ IHHI"' ‘II“IIII 'E
10" 102 103 10 105 108 107 108 109 100 107 102 10% 104 10° 108 107 108 109 1010
plg cm=3) p(g cm=9)
®) D(p,y)*He B=1x10'8 G (b) D(p,y)°He B=1x10"? G
J-IIIHI T K””"I T H“"Il ||H||||| ||HH||| T \HHIII T HI“"I T H|||||| T |||||||| T | 1()]0 H“”‘ T H|HH| T HHW‘ T ||H|H‘ T HH”“ T HHH!' T H\Hlll T H\“l“ T |||||||| T TTTT H
100 E 3 E
100 ;_ _; 109 é é
10° | = 100 | .
~ F _lyr Lyr - - i
S0 = = R E
— E 3 F 3
105 ;_ 7% _; 105 2 -
B / 3 E ]
104 & /// - 104 —
g %Y E F 3
E QL J r T
10° '\7, - 10° & E
F / : F 3
r , 3
2 L / 102 = =
10 E\"Il 1 Hllml LLHU“I 1 \H”"l ||HH”| 1 HHHll 1 H[Hlll 1 \H||||| | “HlH‘ ||||||||| 7UU| 1 I””“' L I“HH‘ 1 I”HH‘ L ”””I‘ L HHHII . \HH"' L HIH"' L HI”H‘ ;IHHH‘ B
10" 102 103 104 105 108 107 108 109 100 107 102 103 104 105 10% 107 108 109 10°
plg cm-3) plg cm-)

FIG. 6. The two panels depict the reaction time scale for the FIG. 7. The two panes depict the reaction time scale for the
reactionsp(p,e* »)D andD(p,v)3He for B=10' G over a range reaction Dp,y)°He for B= 10" G and 16° G over a range of
of temperatures and densities. The dashed contour traoks sec. ~ témperatures and densities. The dashed contour tracésl sec.
The solid contours trace locii of time scales ranging from 1 year tol he solid contours trace locii of time scales ranging from 1 year to
10'° years with a factor of 10 in between each contour. 10 years with a factor of 10 in between each contour.

and as with ground state we correct r < with M b m+1
1- =
M,m M|b/M+0.162-0.162,,

1 max

M/ =M 1| 1+ (60) m

2 ) —T/2M | T
b/M+0.162,_,—0.162

} . (62

andM | . is as given by Lai and SalpetEr],

-1 and we use the additional definition
2M | T
1-—- . (61

Tm

Mim:MLm

2
7m20-64m(MLm_M) Mim—_M} .

M, n, is given by the relation
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The ratio of the number of atoms in the ground state to the

number of neutral atoms is given by

X groun((H) _ z groum{H) _
X(H) — Z(H)  zn(H)’

(64)

Next we calculate the ionization-recombination equilibrium:

X(H)  Z(H)

XoXe  Z(P)Z(©) €9
b -2 T 1/2 b
2”9(E) MI(E ta”"(zMT)
X ex lE(TH)|>Zm(H), (66)

whereX(H)=n(H)/ng, X,=n,/ng, andX=ne/ng are the

number density fractions of the different species.
Combining Eq.(64) and Eq.(66) yields the fraction of

“shielded” nuclei & a a function of temperature, density,
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Tn=—"7T""".
r thermo‘*’r magneto

Figure 6 shows the reaction time scale for the consumption
of hydrogen and deuterium in the reactign®,e* »)D and
D(p,y)3He, respectively, for a magnetic field of *0G.

Even in this very strong magnetic field, tipep reaction
proceeds only very slowly below temperatures of 10°
deg; however, over £ of years, the hydrogen gas would
be processed to deuterium and then to helium in such a
strong magnetic field. It would provide a steady source of
energy, while eroding the storehouse of hydrogen which
could potentially fuel a thermonuclear runaway. Relatively,
the second reaction proceeds instantly with time scales of
less than 1 year for the interesting range of densities and
temperatures.

For the weak fields depicted in Fig. 7 only the deuterium
reaction proceeds at a significant rate.

Ill. DISCUSSION

and magnetic-field strength. Figure 5 depicts the fraction of . . o 5
unexcited hydrogen atoms in the gas as function of tempera- We find that in strong magnetic field8&10'* G), the

ture for several field strengths and two densities.

C. Thermonuclear reactions

We parametrize the thermonuclear reaction rdes.,
[5]) by

I pp=3.06X 10" 3" cn® sec *nTg Pexp( —33.705 ),
(67)

rop=23.28x 10" e sec 'n np Ty Zlexp — 37.11; 19)
pD . p''D'6 . 6 (68)

cross section for nuclear fusion is dramatically larger than in
the unmagnetized case. For these strong fields, deuterons
fuse to ®He over short time scaless(10° yr) for the density
and temperatures expected on the surface of a neutron star.
Because of the inherent weakness of php interaction, the
fusion of protons to deuterium is only important over cosmo-
logical timescales for ultrastrong fieldB8£ 10'® G) in spite
of the large enhancement in the cross section of this reaction.
For larger atoms {>1), we expect that reaction cross
sections will also be larger in the presence of an intense
magnetic field. However, the shielding is unlikely to be as
effective as for thez=1 case, because additional electrons

The time scale for the exhaustion of a particular reactaninust occupym>0 levels which are much less effective at

becomes

screening the nuclear charge.
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