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Superfluid densities in neutron-star matter
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The superfluid densities in a mixture of neutron and proton superfluids are discussed within Fermi-liquid
theory. There are the usual diagonal densitigsand p,,, but also off-diagonal densitigs,, and p,, which
represent coupling between the two species. We express these quantities solely in terms of the Fermi momenta
and the Landau parametdf" in a way that explicitly satisfies the Galilean invariance constraints
Pppt Ppn=myN, andp,,+p,,=myn,. The results are of astrophysical interest, e.g., in a discussion of the
damping of gravitational instability in rapidly rotating neutron stars or of post-glitch relaxation of pulsars.
[S0556-28186)02911-1

PACS numbsgfs): 26.60:+c, 97.10.Cv, 97.60.Jd

I. INTRODUCTION in the context of the helium fluids and the electron liquid in
metals. Accordingly, standard methods can be used to derive
Neutron stars have a liquid core of neutrons in beta equithe relationship.
librium with protons. The number density of protons is found  The superfluid densities are defined by the equations
to be a few percent of the number density of neutrons. It is

thought that between densities ofx20" g/cm® and 9p="PppUpt Ppntn. @
~5x10* g/cm? the neutrons are in P, superfluid state L .
and the protons are in'&, superfluid staté1,2]. Yn=PnpUp PnUn- 2

ey e Tychodinanic of Superfid sooner T e HEred, (4 is the mass curent censiy fo he proto
y -1 Sp . P ?neutron$, andv, (v,) is the superfluid velocity. The elec-

current of the other speci¢8—5]. This coupling of a proton o

superfluid with a neutron superfluid is of considerable astrolfical current density isg,/m,, wheree andm, are the

physical interest as it influences the damping of gravitationafnarge and mass of the proton. The coefficigntare the
radiation instability in neutron stafé], as well as the post- superfluid densities to be calculated. This collection of coef-

glitch relaxation of pulsar§5]. It is therefore important to ficients is sometimes called a superfluid density tensor. We

have reliable expressions for the diagonal and off-diagona#void this terminology, as the coefficients are actually scalars
density coefficients in the mass current expressions. Agnder translations, rotations, and boosts. There is a negligible
pointed out in in Ref[7], it is unclear whether previously contribution to the mass current from the normal fluid com-

derived expressions satisfy the sum rulese Eq(4) below] ~ Ponent in the system under consideration here, since the tem-
expressing Galilean invariance. perature in neutron stars is much less than the gap energy.

In this paper we present a derivation, within Fermi-liquid We will therefore restrict our attention in this paper to the
theory, of the diagonal and off-diagonal densities in a mix-CaSe of zero temperature. Thus, the normal fluid velocities do
ture of neutron and proton superfluids and estimate their nu?0t @ppear in Eqgl) and(2). We shall adopt a slightly more

merical values in the neutron-star core. compact notation by introducing an isospin index
o(o=n,p). Equations(1) and(2) are then written as

Il. GENERAL CONSIDERATIONS Go=2 Poo'Vy - 3
U_/

The object of this section is to derive the relationship
between the mass currents of the two nucleon species and Galilean invariance implies sum rules for the superfluid
their respective superfluid velocities. In the case of a onedensities. In the ground state of the combined neutron-proton
component fluid in a translationally invariant backgroundsystem, we havé,=v,=0. When this state is viewed from
such as a pure neutron fluid or superfiifide at zero tem- a frame moving with velocity—g, these velocities are

perature, Galilean relativity requires thg¢&=nmv, whereg ~ Up=0,=0. In this frame we must havg,=nm,v, where

is the mass current is the number densityn is the mass, Np is the number density of the protons amg is their mass.
andy is the superfiuid velocity. In the interior of a neutron A corresponding statement holds for the neutrons. Compari-
star containing a mixture of neutrons and protons, the flow ofON With Eq.(3) then yields

neutrons entrains a flow of protons and vice versa. Thus the

relationship of momentum and velocity is not as simple as it E Poor =NyM, . (4)
might at first seem. However, this drag effect is well studied o’
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Furthermore, macroscopic thermodynamics tells us that th&ace which are small on the scale of the Fermi wave vectors,
energy density change on changing the velocities at zerthis expansion is justified. A second, more subtle, point
temperature is about this expression is that it is usually appliedntormal
Fermi fluids, not the superfluids we discuss here. However,
de=> PY . (5) the chang_e ir_1 th_e wave function produ_ced_by condensation of
goTe Tren a Fermi liquid, judged by the alteration in the momentum
distribution, is so minor that Fermi-liquid expressions valid

go’

from which we deduc¢4] that in the normal state may still be applied to the condensed
_ state. This point has been particularly emphasized by Leggett
Ppn~ Pnp- 6 [9] in the context of superfluidHe. Finally we note that this
Any theory of the superfluid densities must satisfy Ed@3. form of.the_expansmn is not capable of tgklng the Spln.-OI‘bIt
and (6). interaction into account. For that, a matrix representation of

the spin degrees of freedom is necessary.

We wish to evaluate the general expression in(Egin a
relatively special situation, that of superfluid flow. The mo-
mentum distribution for species is that of a Fermi sea

The energy of a Fermi liquid consisting of two fermion translated by a vectdj, so that
species is given by

Ill. FERMI-LIQUID THEORY
FOR A NEUTRON-PROTON MIXTURE

NI (K) =G, ka(k—ke,). (1D

E(Cong(K) D= EOJF%T e5(K)ong(K) For example, if the proton superfluid velocityds then the
proton Fermi surface is translated Gy=myu, but the neu-

1 ’ ’ I i
TR VN L (R,R")8nZ(R)an, (K'). tron Fermi surface is unchanged, and

ZRR/SS/UU/ s¥
(7) SE=E—Eo=22, £P(K)snP(Kk)
q
This is a simple generalization of a formula used in the 1 .
theory of heavy nucleﬁ8]_. This formula will fqrm the_ b_asis +§ > fgg(k,k’)qp. KGp- K’ 0(k—Kgp)
of the theory of superfluid drag, and so we discuss it in some RK'ss'

detail._ N X 8(K' —Kep). (12)
E, is the ground state energy, aadZ(K) is the occupa-

tion function which labels the excited states of the systemThis equation may be simplified by defining the spin-
Because these states are reached from the correspondi

noninteracting states by adiabatic continuation, this label ha,?_‘qm
the same meaning as in the noninteracting case. The ener
of the excited state is affected by the interaction. This energ
may be parametrized by the functionsd(K) and

f‘STg,’(IZ,R’), which are called collectively the Landau param-

eters. fW'(R,R’):; f27'P,(cog ), 13

The functione ¢ (K) incorporates the mass renormalization
whered is the angle betweek andK’; rotational invariance

!
o

metrized interactioh?® = 477 + fi‘l’], and by noting

at the form of the momentum sum picks out only one of
Be components in the expansion of the interaction function
h Legendre polynomials. Thus we define

Ezklm* ®) implies thatf depends only on this angle. The energy then

dk o’ simplifies to
where the derivative is evaluated at the appropriate Fermi oL T i
surfaces given by the Fermi wave vectors 5E:2§R: eP(K) 5np(|2)+2% fIPk-K" 6(K' —Kgp), (14)

_ 2. \1/3
ke =(3mn,) 5 © and the sums may be performed to yield

We have chosen units in whidh=1 and shall also work in 2 5 (472
a unit volume. Equatioii8) defines the effective mass. The _ q ST cpp4 2
function f determines the interaction between quasiparticles. 2my  (2m)°\ 3

Since it represents a second partial derivative of the energy _ _ _
with repect to the occupation number, it satisfies symmetryn the second term in the result, the first numerical factor
conditions comes from the sum over spin and phase space density, and

the second factor comes from the angular averages. It is con-
70" (R,R') =27 (R,R')=f7_(K,K')=f% (k',K). (10) Vventional at this stage to define a dimensionless interaction
ss s ss ss parameter. First we note that the density of quasiparticle
The expression for the system energy amounts to an extates at the Fermi surface is given by
pansion valid at low excitation energy. Since the superfluid . )
flows we will discuss represent distortions of the Fermi sur- D,=mg ke, /e, (16)



54 SUPERFLUID DENSITIES IN NEUTRON-STAR MATTER 2747

and then we set m, m, 2 m2
P+ = +FLPI3) + +F"
F§7=D,f". ap ™2 ™2 Moy (LTI Mg (LRI
2 L2 ¢np

This leads to the relatiokg,=37*D,n,/m¥ , and finally +Kgpkg,f1Pmpmy /97, (26)

qz The two identities, Eq(22) and Eq.(26), replace the effec-

SE=n, p* (1+F5Pr3). (18 tive mass identity of the one-component system. They are
2mj generalizations of the identities given by Bgsg[10] to the

case where the two component species have different bare
masses. The cross coupling of the two superfluids arises
qz from the last term in Eq(22). This cross coupling is often
5E=np2—+ oV, (19 referred to as superfluid drag although it involves no dissi-
pation of energy. It is interesting to observe that the cross

where the contributions of kinetic and potential energies couplmg exists just to the extent that the one-component
Sffectlve mass relationship fails to hold.

have been explicitly separated. The same considerations a

plied to a state of neutron superflow give the analogous
equations IV. DERIVATION OF THE SUPERFLUID DENSITIES

The energy of this state may also be expressed as

2 We start from the basic fact that the number of nucleons
6E=nnq—n*(1+ FI3) (20)  of each species is conserved, and therefore the densities
2 separately satisfy the continuity equation

and on,
q2 mUT +V-§,=0. (27)
SE=n + éV. 21 . . , .
"2m @D This equation defines the mass currgnt In order to obtain
) . an explicit expression fog,, we consider the flow of qua-
SincesV must be the same in both castie two are related  gjparticles in phase space. The distribution function satisfies
by a Galilean boogt we have the relation

1 1 s (kr) Veng(k,r)- Vigd(K
———=-Vn . f
npm; ———(1+Fpp/3) m; ———(1+F””/3) at (k.F)- Vies(kir)
mp m, my
(22) +VenZ(K,F)- V2K, ), (28)
This introductory calculation gives us the tools we need tQ, hare
derive the restrictions imposed on the Landau parameters by
Galilean relativity. In the case of a one-component Fermi ) oo )
liquid, this principle gives the well-known identity Bk, =eJ(K,N+ E fog (k,k")én, (K',F) (29
s’

*/m=1+ . . N . . .
me/m=1+F4/3 23 is thelocal quasiparticle energjl1]. We now linearize this

However, in the case of a mixture of Fermi liquids this iden-in on to obtain a Landau-Boltzmann transport equation
tity doesnot hold—the effective mass of a proton is affected

by its interaction with the neutrons as well as its interaction aong(K,r,t) £V, (R0 57(R)
with other protons. To obtain the generalization to a mixture, at (k.r, s
we again consider the ground state as viewed from a frame
moving with a velocity—v [10]. The two Fermi surfaces are —V.O(K—Ke ) KK
displaced by slightly different amount§;,,=m_,v. The cal- kO Fo) k’sE’,o’ s¢ ( )
culation of the energy change proceeds by substituting Eq.
(11) into Eq. (7) to give ><Va5n (k’,*, )=0. (30
2 . .. . . .
qp op a, n In order to display the similarity of this equation to the con-
oE= np2 (1+F /3)+”n2 * (1+F/3) tinuity equation, we use the fact thaV O (k—kg,)
=(K)8(eg—eg,) to rewrite it as
+k§pk§nfl Gyl /97 (24) KoF
. . o aend(K,Fb) " "
As this is a boosted ground state there is no change in pe———+0(k)- V| onZ(Kk,F,t)+ 8(ex—er,)
tential energy and this energy may also be written as at
9% a X > t70(KK)eng (K, Ft)|=0. (31)
SoE= I’lp2 +Np5— om, (25 R ss

Combining these two equations yields a second identity We sum this equation over the momenta and spins and use
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n, aon (k)
—2 (32)
which yields an expression
=m 2 Z(R)5nZ(K) (33)

for the mass current. Here the definition

SHL(R)=onI+ S(ex—er,) > F75 (KK')on% (K')
[
(34

has been made.

These are the superfluid densities expressed entirely in
terms of calculable quantities, the Landau parameters of the
neutron-proton mixture. They manifestly satisfy the symme-
try rule, Eq.(6). Earlier result§12,5] for the superfluid den-
sities omitted the factor of +F{P/3 and 1+F1"/3 in p,,
andp,,, respectively.

To show that the densities satisfy the sum rule, &g,
we form the sum

2
mp pp 1 2 ¢np

Mp
(42)

However, referring back to the two Fermi-liquid identities,
Egs.(22) and(26), and eliminatingn,, from them leads to an

This is now an explicit expression for the mass currentexpression for the neutron-proton interaction term:
To obtain the superfluid densities, it only remains to evaluate
it when a supercurrent is flowing. We therefore take op
v,=(,/m,, and use Eq(11) for the change in the distribu- m* (1+ FI'3)]-
tion function. e (43
Since it is the second term in EB4) which is respon-
sible for superfluid cross coupling, we show some of theSubstitution of Eq(43) into Eq.(42) then leads to

2 1,2 gnp

steps involved in its simplification:

Sex—ery) > 120 (KK)SZ (K)

k',s", o’

—217 sk— keo) > 7KK/ Gyr - K/ S(K —Kgy)
kFU' k/ ’

(39

o 477 1 oo = ~ 9
_ZkFa' )?ﬁg f77 G, -kke, .. (36)

With these results, Eq33) becomes

IZ m*k ” fO'O'
=m E _* /k5 k kFo') /+F2—k:|
(r Fo
(37)
Evaluation of the sums leads to

N mi N mikFUfo.o. N

ng_m—:-nO'U(T—"_ W 1 Nglg
+im m_ k% k2_ {5 (39)

977.4 N KRERE_I1 V(-

By comparison with Eq91) and(2), we now identify the
superfluid densities as

m2
ppp:m—gnp(ﬁ FPP/3), (39)

2
My nn
Prn= No(1+F77/3), (40

1
Pnp:Ppn:Wmnmpklzinklzipfgp' (41)

PppT Ppn=MpN, (44)

and similar reasoning leads to
Pnnt Pnp=MyNy, (45)

so that the expression for the superfluid densities is consis-
tent with Galilean relativity.

V. ESTIMATION OF THE DENSITY COEFFICIENTS

Since the density coefficients satisfy the constraidty
and (45), the expression&39) and (40) can be simplified:

Ppp=MpNp— Ppn, (46)

Pnn= MpNy = Ppn, (47)

with p,, given by Eq.(41). It is then clear that for a given
choice of the Fermi momentkg, and kg, the diagonal
densitiesp,, and p,,, just like the off-diagonal density
Ppn, €an be expressed in terms of just one Landau parameter
f0". In this section we estimate the value pf, in the
neutron-star core.

The Landau parameters are functions of the proton and
neutron densities or, equivalently, of the total nucleon den-
sity n=np,+n, and of the asymmetry parameter
a=(myn,—myngy)/(myn,+myng). For nuclear matter
a=0, while for pure neutron matter=1. The nucleon den-
sity is conveniently expressed in terms of an “average”
Fermi momentunkg = (1.572n) 3. A fair approximation of
the dependence om is given by[16]

f1P(ke , @) =c(kg), (48)
f0P(ke,@)=a(ke) —b(ke)a, (49
f?_n(kp,a’):a(kp)'f'b(kp)a. (50)
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Thus we will take the value of;P to be independent of the star matter over the density range of interest, so that
asymmetry parameter while the other two parameters deperfd”(kg , @)~ f'P(kgo,0), as suggested by EGL8) and by the
on the asymmetry in a linear fashion. discussion following Eq(53).

The theoretical value of}", like that of other Landau Thus, we estimate that, to within a factor of 2,
parameters, is model dependent. To get an idea of the uncerp,~—0.04n;n,,. This implies that py,~2myn, in
tainty involved we look at the expressions for the effectiveneutron-star matter.
mass. From Eq41), we have

VI. DISCUSSION

m; 1 an z nmn . .
m =1t 3D foP+ PR fin— (51 As we have seen, expressions for the diagonal and off-
My Fp My diagonal densities derived in the context of Fermi-liquid
and theory explicitly satisfy the Galilean invariance constraints.
This allows the diagonal densitigs’® and p"" to be ex-
. ) pressed in terms of the off-diagonal dengifif. All the den-
My 1 Kep my sities can then be expressed in terms of just one Landau
— =1+ =Dy f1"+| 2| 0L, (52) presse J
my 3 Ken m, parameterf;”, and we estimatep,,~—0.04m,n,, and

hencep,,~2myn,, in neutron-star matter.

: . L Our results lead to an estimate for the dimensionless den-

Our expressions differ from those of R¢LO] by the insig- sity “determinant” (pPPp""—p. p..) [(popn)~2. This
npFpn pFn .

nificant factor ofm,/m, in the last term of each equation. 5,6 js about the same as one used in a recent calculation of
Henceforth we taken,=m,=m. Reference[13] tabulates 1o oscillations of superfluid neutron St4f.
the values ofn*/m for nuclear matter and for neutron mat- Knowledge of the value of the off-diagonal density is cru-
ter. In the range of densities of mterest.to us (2/3 nuclear Qg in estimating the coupling of the superfluid interior to
~3x nucleay the values for the effective mass vary by a he normal components of the neutron star. As shown in Ref.
factor of 2 between models. For any given m(_)de’t, varies 5], the Fermi-liquid interaction(expressed by the off-
by no more than a factor of 2 as the density varies fromiagonal density of the neutron and proton superfluids
0.15 fm ™3 to 0.60 fm™3. Thus the theoretical uncertainty in causes the neutron vortex linésarrying angular momen-
the values of Landau parameters seems to be larger than tﬁ?m) to be magnetized. Of all the interaction processes be-
range of variability of the same parameters in the superfluigyeen the electrons and the neutron superfluid, the one with
core of the neutron star. the shortest time scale yet identified is the scattering of elec-
On the empirical side, values of the Landau parametergons from the induced magnetic fields of the vortex lines.
gg\ve been extracted from the properties of excited states fiye electrons are not superfluid and their viscous coupling to
%Pb and of neighboring nuclgl4,15, with the result that  the crust then provides a mechanism for transfer of angular
F1P=—0.5+0.25. Theoretical calculations for the same pa-moementum from the neutron superfluid to the crust. The cou-
rameter have been reportei, 18| for nuclear matter, giving  pling time 74 between the crust and the superfluid from this
compound mechanism is therefore directly affected by the
P value of the off-diagonal densities.
( Fo )f?p(kFO,O): —-11. (53 In order to estimatey, we use the formalism developed

T*h? in Ref.[19], which leads to
- . 2
We shall adopt the latter value in our estimates below. Here, walo({ @) P, (55)
Ng= k,3:0/(1.5772) is the density of nuclear matter. Note that Pnp

the value off® from Eq. (53), although derived for nuclear

matter, when applied to pure neutron mattfer which we  whereP is the period of the pulsar. Substituting the values

also takeF|"—F?P=—0.2, following Ref.[16]), gives the given above fop,, andp,,, we arrive atrq~625P. For the

resultm} /m,—m¥/m,~0.4. This is in agreement with val- Vela pulsar £=0.89 9, this leads tory~56s. These esti-

ues calculated over a wide range of densities for neutron-stapates are similar to those of Ref&] and[19]. Since the

matter[10]. post-glitch relaxation time of pulsars is generally of order

Equations(41) and(53) can be combined to give weeks or longer, we may conclude, in agreement with earlier

authors, that the coupling between crust and core superfluid
is not responsible for the observed relaxation time.

an

Pnp_ Pnp =—11><E Kep ’ Mp /@ Xfrl]p(anva) .
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