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Superfluid densities in neutron-star matter
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The superfluid densities in a mixture of neutron and proton superfluids are discussed within Fermi-liq
theory. There are the usual diagonal densitiesrnn andrpp but also off-diagonal densitiesrnp andrpn which
represent coupling between the two species. We express these quantities solely in terms of the Fermi mo
and the Landau parameterf 1

pn in a way that explicitly satisfies the Galilean invariance constraints
rpp1rpn5mpnp andrnn1rpn5mnnn . The results are of astrophysical interest, e.g., in a discussion of th
damping of gravitational instability in rapidly rotating neutron stars or of post-glitch relaxation of pulsar
@S0556-2813~96!02911-1#

PACS number~s!: 26.60.1c, 97.10.Cv, 97.60.Jd
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I. INTRODUCTION

Neutron stars have a liquid core of neutrons in beta eq
librium with protons. The number density of protons is foun
to be a few percent of the number density of neutrons. I
thought that between densities of 231014 g/cm3 and
;531014 g/cm3 the neutrons are in a3P2 superfluid state
and the protons are in a1S0 superfluid state@1,2#.

In the hydrodynamics of superfluid solutions~or mix-
tures! the velocity of each species is coupled to the ma
current of the other species@3–5#. This coupling of a proton
superfluid with a neutron superfluid is of considerable ast
physical interest as it influences the damping of gravitatio
radiation instability in neutron stars@6#, as well as the post-
glitch relaxation of pulsars@5#. It is therefore important to
have reliable expressions for the diagonal and off-diago
density coefficients in the mass current expressions.
pointed out in in Ref.@7#, it is unclear whether previously
derived expressions satisfy the sum rules@see Eq.~4! below#
expressing Galilean invariance.

In this paper we present a derivation, within Fermi-liqu
theory, of the diagonal and off-diagonal densities in a m
ture of neutron and proton superfluids and estimate their
merical values in the neutron-star core.

II. GENERAL CONSIDERATIONS

The object of this section is to derive the relationsh
between the mass currents of the two nucleon species
their respective superfluid velocities. In the case of a o
component fluid in a translationally invariant backgrou
such as a pure neutron fluid or superfluid3He at zero tem-
perature, Galilean relativity requires thatgW 5nmvW , wheregW
is the mass current,n is the number density,m is the mass,
andvW is the superfluid velocity. In the interior of a neutro
star containing a mixture of neutrons and protons, the flow
neutrons entrains a flow of protons and vice versa. Thus
relationship of momentum and velocity is not as simple a
might at first seem. However, this drag effect is well studi
543/96/54~5!/2745~6!/$10.00
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in the context of the helium fluids and the electron liquid i
metals. Accordingly, standard methods can be used to de
the relationship.

The superfluid densities are defined by the equations

gW p5rppvW p1rpnvW n , ~1!

gW n5rnpvW p1rnnvW n . ~2!

HeregW p (gW n) is the mass current density for the proton
~neutrons!, andvW p (vW n) is the superfluid velocity. The elec-
trical current density isegW p /mp , wheree andmp are the
charge and mass of the proton. The coefficientsr are the
superfluid densities to be calculated. This collection of coe
ficients is sometimes called a superfluid density tensor. W
avoid this terminology, as the coefficients are actually scal
under translations, rotations, and boosts. There is a neglig
contribution to the mass current from the normal fluid com
ponent in the system under consideration here, since the t
perature in neutron stars is much less than the gap ene
We will therefore restrict our attention in this paper to th
case of zero temperature. Thus, the normal fluid velocities
not appear in Eqs.~1! and~2!. We shall adopt a slightly more
compact notation by introducing an isospin inde
s(s5n,p). Equations~1! and ~2! are then written as

gW s5(
s8

rss8vW s8 . ~3!

Galilean invariance implies sum rules for the superflu
densities. In the ground state of the combined neutron-pro
system, we havevW p5vW n50. When this state is viewed from
a frame moving with velocity2vW , these velocities are
vW p5vW n5vW . In this frame we must havegW p5npmpvW , where
np is the number density of the protons andmp is their mass.
A corresponding statement holds for the neutrons. Compa
son with Eq.~3! then yields

(
s8

rss85nsms . ~4!
2745 © 1996 The American Physical Society
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Furthermore, macroscopic thermodynamics tells us that
energy density change on changing the velocities at
temperature is

d«5(
ss8

rss8vW s•dvW s8 , ~5!

from which we deduce@4# that

rpn5rnp . ~6!

Any theory of the superfluid densities must satisfy Eqs.~4!
and ~6!.

III. FERMI-LIQUID THEORY
FOR A NEUTRON-PROTON MIXTURE

The energy of a Fermi liquid consisting of two fermio
species is given by

E„@dns
s~kW !#…5E01(

kWss
«s

s~kW !dns
s~kW !

1
1

2 (
kWkW8ss8ss8

f ss8
ss8~kW ,kW8!dns

s~kW !dns8
s8~kW8!.

~7!

This is a simple generalization of a formula used in
theory of heavy nuclei@8#. This formula will form the basis
of the theory of superfluid drag, and so we discuss it in so
detail.

E0 is the ground state energy, anddns
s(kW ) is the occupa-

tion function which labels the excited states of the syst
Because these states are reached from the correspo
noninteracting states by adiabatic continuation, this label
the same meaning as in the noninteracting case. The en
of the excited state is affected by the interaction. This ene
may be parametrized by the functions«s

s(kW ) and

f ss8
ss8(kW ,kW8), which are called collectively the Landau para
eters.

The function«s
s(kW ) incorporates the mass renormalizati

d«s

dk
5k/ms* , ~8!

where the derivative is evaluated at the appropriate Fe
surfaces given by the Fermi wave vectors

kFs5~3p2ns!1/3. ~9!

We have chosen units in which\51 and shall also work in
a unit volume. Equation~8! defines the effective mass. Th
function f determines the interaction between quasipartic
Since it represents a second partial derivative of the en
with repect to the occupation number, it satisfies symm
conditions

f ss8
ss8~kW ,kW8!5 f s8s

ss8~kW ,kW8!5 f ss8
s8s

~kW ,kW8!5 f ss8
ss8~kW8,kW !. ~10!

The expression for the system energy amounts to an
pansion valid at low excitation energy. Since the superfl
flows we will discuss represent distortions of the Fermi s
the
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face which are small on the scale of the Fermi wave vect
this expansion is justified. A second, more subtle, po
about this expression is that it is usually applied tonormal
Fermi fluids, not the superfluids we discuss here. Howev
the change in the wave function produced by condensatio
a Fermi liquid, judged by the alteration in the momentu
distribution, is so minor that Fermi-liquid expressions va
in the normal state may still be applied to the conden
state. This point has been particularly emphasized by Leg
@9# in the context of superfluid3He. Finally we note that this
form of the expansion is not capable of taking the spin-or
interaction into account. For that, a matrix representation
the spin degrees of freedom is necessary.

We wish to evaluate the general expression in Eq.~7! in a
relatively special situation, that of superfluid flow. The m
mentum distribution for speciess is that of a Fermi sea
translated by a vectorqW s so that

dns
s~kW !5qW s• k̂d~k2kFs!. ~11!

For example, if the proton superfluid velocity isvW , then the
proton Fermi surface is translated byqW p5mpvW , but the neu-
tron Fermi surface is unchanged, and

dE5E2E052(
kW

«p~kW !dnp~kW !

1
1

2 (
kWkW8ss8

f ss8
pp

~kW ,kW8!qW p• k̂qW p• k̂8d~k2kFp!

3d~k82kFp!. ~12!

This equation may be simplified by defining the spi

symmetrized interactionf ss85 1
2@ f11

ss81 f12
ss8#, and by noting

that the form of the momentum sum picks out only one
the components in the expansion of the interaction funct
in Legendre polynomials. Thus we define

f ss8~kW ,kW8!5(
l

f l
ss8Pl „cos~u!…, ~13!

whereu is the angle betweenkW andkW8; rotational invariance
implies that f depends only on this angle. The energy th
simplifies to

dE52(
kW

«p~kW !dnp~kW !12(
kWkW8

f 1
ppk̂• k̂8d~k82kFp!, ~14!

and the sums may be performed to yield

dE5np
q2

2mp*
1

2

~2p!6 S 4p

3 D 2f 1ppkFp4 q2. ~15!

In the second term in the result, the first numerical fac
comes from the sum over spin and phase space density,
the second factor comes from the angular averages. It is
ventional at this stage to define a dimensionless interac
parameter. First we note that the density of quasipart
states at the Fermi surface is given by

Ds5ms* kFs /p
2, ~16!
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and then we set

F1
ss5Ds f 1

ss . ~17!

This leads to the relationkFs
4 53p4Dsns /ms* , and finally

dE5np
qp
2

2mp*
~11F1

pp/3!. ~18!

The energy of this state may also be expressed as

dE5np
qp
2

2mp
1dV, ~19!

where the contributions of kinetic and potential energ
have been explicitly separated. The same consideration
plied to a state of neutron superflow give the analog
equations

dE5nn
qn
2

2mn*
~11F1

nn/3! ~20!

and

dE5nn
qn
2

2mn
1dV. ~21!

SincedV must be the same in both cases~the two are related
by a Galilean boost!, we have the relation

npmp
2F 1mp

2
1

mp*
~11F1

pp/3!G5nnmn
2F 1mn

2
1

mn*
~11F1

nn/3!G .
~22!

This introductory calculation gives us the tools we need
derive the restrictions imposed on the Landau parameter
Galilean relativity. In the case of a one-component Fe
liquid, this principle gives the well-known identity

m* /m511F1/3. ~23!

However, in the case of a mixture of Fermi liquids this ide
tity doesnot hold—the effective mass of a proton is affect
by its interaction with the neutrons as well as its interact
with other protons. To obtain the generalization to a mixtu
we again consider the ground state as viewed from a fr
moving with a velocity2vW @10#. The two Fermi surfaces ar
displaced by slightly different amounts:qW s5msvW . The cal-
culation of the energy change proceeds by substituting
~11! into Eq. ~7! to give

dE5np
qp
2

2mp*
~11F1

pp/3!1nn
qn
2

2mn*
~11F1

nn/3!

1kFp
2 kFn

2 f 1
npqpqn /9p4. ~24!

As this is a boosted ground state there is no change in
tential energy and this energy may also be written as

dE5np
qp
2

2mp
1nn

qn
2

2mn
. ~25!

Combining these two equations yields a second identity
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np
mp

2
1nn

mn

2
5np

mp
2

2mp*
~11F1

pp/3!1nn
mn
2

2mn*
~11F1

nn/3!

1kFp
2 kFn

2 f 1
npmpmn /9p4. ~26!

The two identities, Eq.~22! and Eq.~26!, replace the effec-
tive mass identity of the one-component system. They a
generalizations of the identities given by Sjo¨berg@10# to the
case where the two component species have different b
masses. The cross coupling of the two superfluids aris
from the last term in Eq.~22!. This cross coupling is often
referred to as superfluid drag although it involves no diss
pation of energy. It is interesting to observe that the cro
coupling exists just to the extent that the one-compone
effective mass relationship fails to hold.

IV. DERIVATION OF THE SUPERFLUID DENSITIES

We start from the basic fact that the number of nucleo
of each species is conserved, and therefore the densi
separately satisfy the continuity equation

ms

]ns

]t
1¹•gW s50. ~27!

This equation defines the mass currentgs . In order to obtain
an explicit expression forgs , we consider the flow of qua-
siparticles in phase space. The distribution function satisfi

]ns
s~kW ,rW !

]t
52¹ rWns

s~kW ,rW !•¹kW «̃s
s~kW ,rW !

1¹kWns
s~kW ,rW !•¹ rW«̃s

s~kW ,rW !, ~28!

where

«̃s
s~kW ,rW ![«s

s~kW ,rW !1 (
kW8s8s8

f ss8
ss8~kW ,kW8!dns8

s8~kW8,rW ! ~29!

is the local quasiparticle energy@11#. We now linearize this
in dn to obtain a Landau-Boltzmann transport equation

]dns
s~kW ,rW,t !

]t
1¹ rWdns

s~kW ,rW,t !•vW s
s~kW !

2¹kWQ~k2kFs!• (
kW8,s8,s8

f ss8
ss8~kW ,kW8!

3¹ rWdns8
s8~kW8,rW,t !50. ~30!

In order to display the similarity of this equation to the con
tinuity equation, we use the fact that¹kWQ(k2kFs)
5vW (kW )d(«kW2«Fs) to rewrite it as

]dns
s~kW ,rW,t !

]t
1vW s

s~kW !•¹ rWFdns
s~kW ,rW,t !1d~«kW2«Fs!

3 (
kW8,s8,s8

f ss8
ss8~kW ,kW8!dns8

s8~kW8,rW,t !G50. ~31!

We sum this equation over the momenta and spins and u
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]ns

]t
5(

kW ,s

]dns
s~kW !

]t
, ~32!

which yields an expression

gW s5ms(
kW ,s

vW s
s~kW !dñs

s~kW ! ~33!

for the mass current. Here the definition

dñs
s~kW ![dns

s1d~«kW2«Fs! (
kW8,s8,s8

f ss8
ss8~kW ,kW8!dns8

s8~kW8!

~34!

has been made.
This is now an explicit expression for the mass curre

To obtain the superfluid densities, it only remains to evalua
it when a supercurrent is flowing. We therefore tak
vW s5qW s /ms , and use Eq.~11! for the change in the distribu-
tion function.

Since it is the second term in Eq.~34! which is respon-
sible for superfluid cross coupling, we show some of t
steps involved in its simplification:

d~«kW2«Fs! (
kW8,s8,s8

f ss8
ss8~kW ,kW8!dns8

s8~k8W !

52
ms

kFs
d~k2kFs! (

kW8s8
f 1

ss8k̂• k̂8qW s8• k̂8d~k82kFs!

~35!

52
ms

kFs
d~k2kFs!

4p

3

1

2p3(
s8

f 1
ss8qW s8• k̂kFs8

2 . ~36!

With these results, Eq.~33! becomes

gW s5ms(
kWs8

kW

ms*
qW s8• k̂d~k2kFs!Fdss81

ms* kFs8
2 f 1

ss8

3p2kFs
G .
~37!

Evaluation of the sums leads to

gW s5
ms
2

ms*
nsvW s1

ms
2kFs

3p2 f 1
ssnsvW s

1
1

9p4msm2skFs
2 kF2s

2 f 1
npvW 2s . ~38!

By comparison with Eqs.~1! and~2!, we now identify the
superfluid densities as

rpp5
mp
2

mp*
np~11F1

pp/3!, ~39!

rnn5
mn
2

mn*
nn~11F1

nn/3!, ~40!

rnp5rpn5
1

9p4mnmpkFn
2 kFp

2 f 1
np . ~41!
t.
te
e

e

These are the superfluid densities expressed entirely
terms of calculable quantities, the Landau parameters of th
neutron-proton mixture. They manifestly satisfy the symme
try rule, Eq.~6!. Earlier results@12,5# for the superfluid den-
sities omitted the factor of 11F1

pp/3 and 11F1
nn/3 in rpp

andrnn , respectively.
To show that the densities satisfy the sum rule, Eq.~4!,

we form the sum

rpp1rpn5
mp
2

mp*
np~11F1

pp/3!1
1

9p4mnmpkFn
2 kFp

2 f 1
np .

~42!

However, referring back to the two Fermi-liquid identities,
Eqs.~22! and~26!, and eliminatingnn from them leads to an
expression for the neutron-proton interaction term:

kFp
2 kFn

2 f 1
npmpmn /9p45npmpF12

mp

mp*
~11F1

pp/3!G .
~43!

Substitution of Eq.~43! into Eq. ~42! then leads to

rpp1rpn5mpnp , ~44!

and similar reasoning leads to

rnn1rnp5mnnn , ~45!

so that the expression for the superfluid densities is consi
tent with Galilean relativity.

V. ESTIMATION OF THE DENSITY COEFFICIENTS

Since the density coefficients satisfy the constraints~44!
and ~45!, the expressions~39! and ~40! can be simplified:

rpp5mpnp2rpn , ~46!

rnn5mnnn2rpn , ~47!

with rpn given by Eq.~41!. It is then clear that for a given
choice of the Fermi momentakFp and kFn , the diagonal
densitiesrpp and rnn , just like the off-diagonal density
rpn , can be expressed in terms of just one Landau parame
f 1
pn . In this section we estimate the value ofrpn in the
neutron-star core.

The Landau parameters are functions of the proton an
neutron densities or, equivalently, of the total nucleon den
sity n5np1nn and of the asymmetry parameter
a5(mnnn2mpnp)/(mnnn1mpnp). For nuclear matter
a50, while for pure neutron mattera51. The nucleon den-
sity is conveniently expressed in terms of an ‘‘average’
Fermi momentumkF5(1.5p2n)1/3. A fair approximation of
the dependence ona is given by@16#

f 1
np~kF ,a!5c~kF!, ~48!

f 1
pp~kF ,a!5a~kF!2b~kF!a, ~49!

f 1
nn~kF ,a!5a~kF!1b~kF!a. ~50!
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Thus we will take the value off 1
np to be independent of the

asymmetry parameter while the other two parameters dep
on the asymmetry in a linear fashion.

The theoretical value off 1
pn , like that of other Landau

parameters, is model dependent. To get an idea of the un
tainty involved we look at the expressions for the effectiv
mass. From Eq.~41!, we have

mp*

mp
511

1

3
DpF f 1pp1S kFnkFp

D 2f 1pnmn

mp
G ~51!

and

mn*

mn
511

1

3
DnF f 1nn1S kFpkFn

D 2f 1pnmp

mn
G . ~52!

Our expressions differ from those of Ref.@10# by the insig-
nificant factor ofmn /mp in the last term of each equation
Henceforth we takemn5mp[m. Reference@13# tabulates
the values ofm* /m for nuclear matter and for neutron mat
ter. In the range of densities of interest to us (2/3 nuclear
;33 nuclear! the values for the effective mass vary by
factor of 2 between models. For any given model,m* varies
by no more than a factor of 2 as the density varies fro
0.15 fm23 to 0.60 fm23. Thus the theoretical uncertainty in
the values of Landau parameters seems to be larger than
range of variability of the same parameters in the superflu
core of the neutron star.

On the empirical side, values of the Landau paramet
have been extracted from the properties of excited states
208Pb and of neighboring nuclei@14,15#, with the result that
F1
np520.560.25. Theoretical calculations for the same p

rameter have been reported@17,18# for nuclear matter, giving

S 2kF0m*p2\2 D f 1np~kF0,0!521.1. ~53!

We shall adopt the latter value in our estimates below. He
n05kF0

3 /(1.5p2) is the density of nuclear matter. Note tha
the value off 1

np from Eq. ~53!, although derived for nuclear
matter, when applied to pure neutron matter~for which we
also takeF1

nn2F1
pp520.2, following Ref. @16#!, gives the

resultmn* /mn2mp* /mp'0.4. This is in agreement with val-
ues calculated over a wide range of densities for neutron-
matter@10#.

Equations~41! and ~53! can be combined to give

rnp
rn

5
rnp
mnrn

521.13
1

3S kFpkFn
D 2F mp

2m* S kFnkF0
D 3

f 1
np~kFn ,a!

f 1
np~kF0 ,0! G .

~54!

Taking into account that for neutron matter of the same de
sity as nuclear matterkFn521/3kF0 and takingm* /m50.6
for nuclear matter, the expression in the square bracket
found to be approximately (n/n0)

1/3. Here we assumed tha
the value off 1

np in Eq. ~53! is the correct value for neutron-
end

cer-
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star matter over the density range of interest, so t
f 1
np(kF ,a)' f 1

np(kF0,0), as suggested by Eq.~48! and by the
discussion following Eq.~53!.

Thus, we estimate that, to within a factor of 2
rpn'20.04mnnn . This implies that rpp'2mpnp in
neutron-star matter.

VI. DISCUSSION

As we have seen, expressions for the diagonal and
diagonal densities derived in the context of Fermi-liqu
theory explicitly satisfy the Galilean invariance constrain
This allows the diagonal densitiesrpp and rnn to be ex-
pressed in terms of the off-diagonal densityrnp. All the den-
sities can then be expressed in terms of just one Lan
parameter f 1

np , and we estimaterpn'20.04mnnn , and
hencerpp'2mpnp , in neutron-star matter.

Our results lead to an estimate for the dimensionless d
sity ‘‘determinant’’ (rpprnn2rnprpn) /(rprn)'2. This
value is about the same as one used in a recent calculatio
the oscillations of superfluid neutron stars@7#.

Knowledge of the value of the off-diagonal density is cr
cial in estimating the coupling of the superfluid interior
the normal components of the neutron star. As shown in R
@5#, the Fermi-liquid interaction~expressed by the off-
diagonal density! of the neutron and proton superfluid
causes the neutron vortex lines~carrying angular momen-
tum! to be magnetized. Of all the interaction processes
tween the electrons and the neutron superfluid, the one w
the shortest time scale yet identified is the scattering of e
trons from the induced magnetic fields of the vortex line
The electrons are not superfluid and their viscous coupling
the crust then provides a mechanism for transfer of angu
momentum from the neutron superfluid to the crust. The c
pling time td between the crust and the superfluid from th
compound mechanism is therefore directly affected by
value of the off-diagonal densities.

In order to estimatetd , we use the formalism develope
in Ref. @19#, which leads to

td;100S rpp

rnp
D 2P, ~55!

whereP is the period of the pulsar. Substituting the valu
given above forrpp andrnp , we arrive attd;625P. For the
Vela pulsar (P50.89 s!, this leads totd;56s. These esti-
mates are similar to those of Refs.@5# and @19#. Since the
post-glitch relaxation time of pulsars is generally of ord
weeks or longer, we may conclude, in agreement with ear
authors, that the coupling between crust and core superfl
is not responsible for the observed relaxation time.

We are very grateful to L. Lindblom, P. Haensel, A. Ch
bukov, A. B. Balantekin, and A. Alpar for helpful discus
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National Science Foundation through Grant No. DMR
9214739. R.J. thanks NORDITA for supporting his visit
Finland. W.K. thanks the Alfred P. Sloan Foundation f
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