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An effective Hamiltonian consisting of bareD↔pN, gN vertex interactions and energy-independe
meson-exchangepN↔pN,gN transition operators is derived by applying a unitary transformation to a mo
Lagrangian withN,D,p, r, v, andg fields. With appropriate phenomenological form factors and coupl
constants forr and D, the model can give a good description ofpN scattering phase shifts up to theD
excitation energy region. It is shown that the best reproduction of the recent LEGS data of the ph
asymmetry ratios ingp→p0p reactions provides rather restricted constraints on the coupling strengthsGE of
the electricE2 andGM of the magneticM1 transitions of the bareD↔gN vertex and the less well-determine
coupling constantgvNN of v meson. Within the ranges thatGM51.960.05, GE50.060.025, and
7<gvNN<10.5, the predicted differential cross sections and photon-asymmetry ratios are in an overal
agreement with the data ofgp→p0p, gp→p1n, andgn→p2p reactions from 180 MeV to theD excitation
region. The predictedM11 andE11 multipole amplitudes are also in good agreement with the empirical val
determined by the amplitude analyses. The constructed effective Hamiltonian is free of the nucleon ren
ization problem and hence is suitable for nuclear many-body calculations. We have also shown th
assumptions made in theK-matrix method, commonly used in extracting empirically thegN→D transition
amplitudes from the data, are consistent with our meson-exchange dynamical model. It is found th
helicity amplitudes calculated from our baregN→D vertex are in good agreement with the predictions of t
constituent quark model. The differences between these bare amplitudes and the dressed amplitudes, w
closer to the empirical values listed by the Particle Data Group, are shown to be due to the nonresonan
exchange mechanisms. Within the range 7<gvNN<10.5 of thev meson coupling favored by the data of th
photon-asymmetry ratios ingp→p0p reactions, our values of theE2/M1 ratio for thegN→D transition are
~0.061.3!% for the bare vertex and (21.860.9!% for the dressed vertex.@S0556-2813~96!04611-0#

PACS number~s!: 13.75.Gx, 21.45.1v, 24.10.2i, 25.20.Lj
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I. INTRODUCTION

The main objective of investigating photoproduction an
electroproduction of mesons on the nucleon is to study t
structure of the nucleon excited states (N* ). This has been
pursued actively@1# during the period around 1970. With the
developments at several electron facilities since 1980, m
extensive investigations of theD excitation have been car-
ried out both experimentally and theoretically@2#. Apart
from the need for precise and extensive measurements wh
will soon be possible at CEBAF and Mainz, an accura
understanding of theN* structure can be obtained only whe
an appropriate reaction theory is developed to separate
reaction mechanisms from the hadron structure in t
gN→pN,ppN reactions. The importance of this theoretica
effort can be understood by recalling many years experien
in the development of nuclear physics. For example, the
formation about the deformation of12C can be extracted
from 12C(p,p8)12C* (21,4.44 MeV! inelastic scattering only
when a reliable reaction theory@3#, such as the distorted-
wave impulse approximation or the coupled-channe
method, is used to calculate the initial and final proton-12C
interactions. Accordingly, one expects that theN* structure
can be determined only when the interactions in its dec
channelsgN, pN, andppN can be calculated from a reli-
able reaction theory. It is the objective of this work to ad
dress this problem from the point of view of meson exchan
models. In contrast to approaches based on the dispers
5413/96/54~5!/2660~25!/$10.00
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relations@1# or theK-matrix method@4–7#, our approach is
aimed at not only an investigation of theN* structure but
also at the application of the constructed model to a cons
tent calculation ofN* in nuclear many-body systems.

The meson-exchange models have been very successf
describing nucleon-nucleon interactions@8#, electroweak in-
teraction currents@9,10#, meson-meson scattering@11#, and
meson-nucleon scattering@12–14#. It is therefore reasonable
to expect that the same success can also be achieved in
investigation of pion photoproduction and electroproductio
This possibility has, however, not been fully explored. Th
dynamical models of pion photoproduction developed
Refs. @15–17# did contain the well-established meson ex
change mechanisms of pion photoproduction, but pheno
enological separable potentials were used to describe
pN multiple scattering. The improvement made in Ref.@18#
suffered from the theoretical inconsistency in defining th
meson exchangepN interaction andpN→gN transition.
The model developed in Refs.@19,20# also does not treat
meson exchange completely since a zero-range contact t
is introduced to replace the particle-exchange terms of th
pN potential. In all of these models, the incomplete trea
ment of the meson-exchange interactions leads to some
certainties in interpreting the parameters characterizing
gN→D vertex which is the main interest in testing hadro
models. The formulation developed in Ref.@21# can, in prin-
ciple, be used to examine the meson-exchange mechani
in pion photoproduction, but has not been pursued nume
2660 © 1996 The American Physical Society
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54 2661MESON-EXCHANGE MODEL FORpN SCATTERING AND . . .
cally. In this work, we will try to improve the situation by
applying the unitary transformation method developed
Ref. @22# to derive from a model Lagrangian an effectiv
Hamiltonian for a consistent meson-exchange description
both thepN scattering and pion photoproduction. Furthe
more, the constructed model can be directly used to impr
and extend thepNN Hamiltonian developed in Ref.@23# to
also describe the electromagneticD excitation in intermedi-
ate energy nuclear reactions.

The starting point of constructing a meson-exchan
model is a model Lagrangian of relativistic quantum fie
theory. The form of the Lagrangian is constrained by t
observed symmetries of fundamental interactions, such
Lorentz invariance, isospin conservation, chiral symme
and gauge invariance. The most common approach@24# is to
find an appropriate three-dimensional reduction of the lad
Bethe-Salpeter equation of the considered model Lagrang
The meson-exchange potentials are then identified with
driving terms of the resulting three-dimensional scatter
equation. The most recent examples are thepN models de-
veloped in Refs.@12–14,19#. The extension of this approac
to investigate pion photoproduction has also been mad
Ref. @20#.

Alternatively, one can construct a meson-exchange mo
by deriving an effective Hamiltonian from the considere
model Lagrangian. Historically, two approaches have be
developed. The first one is to use the Tamm-Dancoff
proximation@25#. This method leads to an effective Hami
tonian which is energy dependent and contains unlink
terms, and hence cannot be easily used in nuclear many-b
calculations. A more tractable approach is to apply
method of unitary transformation which was developed
Fukuda, Sawada, and Taketani@26# and independently by
Okubo @27#. This approach, called the FST-Okubo metho
has been very useful in investigating nuclear electromagn
currents@28–30# and relativistic descriptions of nuclear in
teractions@31–34#. The advantage of this approach is th
the resulting effective Hamiltonian is energy independe
and can readily be used in nuclear many-body calculat
Motivated by the investigation of thepNN dynamics
@23,35#, this method has been extended in Ref.@22# to derive
an effective theory involving pion production channels.
this work, we adopt this method to develop a dynamic
model forpN scattering andgN→pN reactions.

It is necessary to explain here how our approach is rela
to the approach based on chiral perturbation theory~CHPT!
@36#. Since chiral symmetry is a well-established dynamic
symmetry of strong interactions, it should be used to co
strain our starting Lagrangian. This leads us to assume
our starting Lagrangian is an effective Lagrangian for gen
ating the tree diagrams in CHPT. The parameters are t
completely determined by the well-established chiral dyna
ics such as partially conserved axial-vector current~PCAC!
and current algebra. Therefore, our model and CHPT
identical in leading orders. The differences come from h
the unitarity is implemented to account for thepN multiple
scattering. In the spirit of CHPT, the ‘‘low’’-momentum
pions are considered as weakly interacting Goldstone bos
and hence their interactions with the nucleon can be trea
as perturbations@37#. This amounts to restoring the unitarit
perturbatively by calculating loop corrections order by ord
in
e
of
r-
ove

ge
ld
he
as

try,

der
ian.
the
ing

h
e in

del
d
en
ap-
l-
ed
ody
the
by

d,
etic
-
at
nt
ion.

In
al

ted

al
n-
that
er-
hen
m-

are
ow

ons
ted
y
er.

It is then necessary to include more terms in the effecti
Lagrangian. A phenomenological procedure is then unavo
able to determine the accompanied low-energy constants

In the meson-exchange model, one hopes to describe
pN multiple scattering in the entire kinematic region includ
ing the highly nonperturbativeD excitation region. The es-
sential assumption is that thepN multiple scattering is gov-
erned by a few-body Schro¨dinger equation with the driving
terms calculated from the starting Lagrangian in a perturb
tion expansion in the coupling constants. This can be re
ized in practice only when the driving terms are regularize
by appropriate phenomenological form factors. Qualitative
speaking, the meson-exchange model is an alternative
CHPT in the kinematic region where perturbative calcul
tions become very difficult or impossible. Both approach
involve phenomenological parameters. The success of e
approach depends on whether these parameters can be i
preted theoretically.

In this work we will focus on theD excitation and will
limit our investigation to the energy region where 2p pro-
duction is negligibly small. By applying the unitary transfor
mation of Ref.@22# to a model Lagrangian forN, D, p, r,
v, andg fields, we have obtained an effective Hamiltonia
consisting of bareD↔pN,gN vertex interactions and
energy-independentpN↔pN,gN transition operators. The
pN scattering phase shifts@38–40# are used to determine the
hadronic part of the constructed effective Hamiltonian whic
has only seven parameters for defining the vertices of
meson-exchangepN potential and theD↔pN transition.
The strong vertex functions in thegN→pN transition op-
erator are then also fixed. This is a significant improveme
over the previous dynamical models@15–17# in which the
employed separable potentials have no dynamical relat
with the pion photoproduction operator. A consistent d
scription of thepN scattering andgN→pN transition is
crucial for separating the reaction mechanisms due to mes
exchange nonresonant interactions from the totalgN→D
transition.

Once the hadronic part of the effective Hamiltonian
determined, the resulting pion photoproduction amplitu
has only three adjustable parameters:GM of magneticM1
andGE of electricE2 transitions of the baregN→D vertex,
and the less well-determinedvNN coupling constant. We
will determine these three parameters by considering
most recent LEGS data@41# of the photon-asymmetry ratios
in gp→p0p reactions. The resulting parameters are th
tested against very extensive data in Refs.@42–44#.

It is customary to test hadron models by comparing t
theoretical predictions ofN*→gN transition amplitudes
with the empirical values listed by the Particle Data Grou
~PDG! @45#. Since the first systematic calculation@46# based
on the constituent quark model was performed, it has be
observed that the predictedD→gN transition amplitudes
@46–50# are significantly smaller than the empirical value
listed by the PDG@45#. While the problem may be due to the
limitations of the constituent quark model, it is necessary
recognize that the empirical values of the PDG are obtain
by using theK-matrix method@4–7# or dispersion relation
@1#. Both approaches contain assumptions about the nonre
nant contributions to thegN→D transition and must be jus-
tified from a dynamical point of view. Within our dynamica
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model, we will address this point concerning theK-matrix
method. This leads us to identify our baregN→D vertex
with the constituent quark model. The dispersion relati
approach@1,51# is defined in a very different theoretica
framework and therefore is beyond the scope of this inve
gation.

In Sec. II, we will use a simple model Lagragian to e
plain how an effective Hamiltonian can be constructed
using the unitary transformation method of Ref.@22#. The
method is then applied to realistic Lagrangians to derive
Secs. III and IV an effective Hamiltonian forpN scattering
and pion photoproduction. The equations for calculating
pN scattering andgN→pN amplitudes are also presente
there. The relationships with theK-matrix method are then
established. Results and discussions are given in Sec. V.
conclusions and discussions of future studies are given
Sec. VI.

II. METHOD OF UNITARY TRANSFORMATION

To explain the unitary transformation method of Ref.@22#
@will be referred to as the Sato-Kobayashi-Ohtsubo~SKO!
on
l
ti-

-
by

in

he
d

The
in

method#, it is sufficient to consider a simple system consist
ing of only neutral pions and fictituouss mesons. The ob-
jective is to derive an effective Hamiltonian from the La-
grangian density

L~x!5L0~x!1LI~x!, ~2.1!

whereL0(x) is the usual noninteracting Lagrangian, and th
interaction term is taken to be

LI~x!52gsppfp
2 ~x!fs~x!. ~2.2!

The Hamiltonian can be derived from Eq.~2.1! by using the
standard method of canonical quantization. In the secon
quantization form, we obtain~in the convention of Bjorkin
and Drell @52#!

H5H01HI , ~2.3!

with
H05E dkW @Ep~k!a†~kW !a~kW !1Es~k!b†~kW !b~kW !#, ~2.4!

HI5gsppE dkW1dkW2dkW

A~2p!38Ep~k1!Ep~k2!Es~k!
$@2a†~kW1!a~kW2!b~kW !d~kW12kW22kW !

1a†~kW1!a
†~kW2!b~kW !d~kW11kW22kW !1a~kW1!a~kW2!b~kW !d~kW11kW21kW !#1@ H.c.#%, ~2.5!
es

he
wherea†(kW ) andb†(kW ) are, respectively, the creation opera
tors forp ands particles,Ea(k)5Ama

21k2 is the free en-
ergy for the particlea, and@H.c.# means taking the Hermit-
ian conjugate of the first term in the equation. We furth
assume that the mass of thes meson is heavier than two-
pion mass, i.e.,ms.2mp .

Because of the intrinsic many-body problem associat
with the starting quantum field theory, it is not possible
solve exactly the equation of motion for meson-meson sc
tering defined by the above Hamiltonian. A simplification
obtained by assuming that in the low- and intermedia
energy regions, only ‘‘few-body’’ states are active and mu
be treated explicitly. The effects due to ‘‘many-body’’ state
are absorbed in effective interaction operators which can
calculated in a perturbation expansion in coupling constan
This few-body approach to field theory was pioneered
Amado and Aaron@53#. In the SKO approach, this is
achieved by first decomposing the interaction Hamiltoni
HI , Eq. ~2.5!, into two parts:

HI5HI
P1HI

Q ~2.6!
-

er

ed
to
at-
is
te-
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s
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by

an

HI
P5gsppE dkW1dkW2dkW

A~2p!38Ep~k1!Ep~k2!Es~k!

3$a†~kW1!a
†~kW2!b~kW !d~kW11kW22kW !1@ H.c.#%,

~2.7!

HI
Q5gsppE dkW1dkW2dkW

A~2p!38Ep~k1!Ep~k2!Es~k!

3$@2a†~kW1!a~kW2!b~kW !d~kW12kW22kW !

1a~kW1!a~kW2!b~kW !d~kW11kW21kW !#1@ H.c.#%.

~2.8!

The elementary processes induced byHI
P are illustrated in

the upper half of Fig. 1. Forms.2mp , thes→pp decay
andpp→s annihilation are ‘‘real processes’’ and can take
place in free space. On the other hand, the process
p↔ps and vacuum↔pps induced byHI

Q are ‘‘virtual
processes’’~lower part of Fig. 1!. They cannot occur in free
space because of the energy-momentum conservation. T
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essence of the SKO method is to systematically eliminate
virtual processes from the considered Hamiltonian by us
unitary transformations. As a result the effects of ‘‘virtu
processes’’ are included as effective operators in the tra
formed Hamiltonian.

The transformed Hamiltonian is defined as

H85UHU†

5U~H01HI
P1HI

Q!U†, ~2.9!

whereU5exp(2iS) is a unitary operator defined by a He
mitian operatorS. By expandingU512 iS1••• , the
transformed Hamiltonian can be written as

H85H01HI
P1HI

Q1@H0 ,iS#1@HI ,iS#

1
1

2!
†@H0 ,iS#,iS‡1••• ~2.10!

To eliminate from Eq.~2.10! the virtual processes which ar
of first order in the coupling constantgspp , the SKO
method imposes the condition that

HI
Q1@H0 ,iS#50. ~2.11!

SinceH0 is a diagonal operator in Fock space, Eq.~2.11!
clearly implies thatiS must have the same operator structu
of HI

Q .
To simplify the presentation, we writeHQ as

HI
Q5(

n
E FnOndkW1dkW2dkW , ~2.12!

whereOn denotes the part containing the creation and an
hilation operators, andFn is the rest of thenth term in Eq.
~2.8!. In the form of Eq.~2.12!, the solution of Eq.~2.11! can
be written as

iS5(
n

i E SnOndkW1dkW2dkW . ~2.13!

FIG. 1. Graphical representation of the interaction Hamiltonia
HI

P of Eq. ~2.7! andHI
Q of Eq. ~2.8!.
the
ing
al
ns-

r-

e
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ni-

Our task is to findSn by solving Eq.~2.11!. Considering two
eigenstatesu i & and u f & of the free HamiltonianH0 such that
^ f uOnu i &51, Eqs.~2.11!, ~2.12!, and~2.13! then lead to

iSn5
21

Ef2Ei
Fn . ~2.14!

Note thatEi andEf are the eigenvalues of free Hamiltonian
H0, and hence the solutionSn is independent of the collision
energyE of the total HamiltonianH. This is an important
feature distinguishing our approach from the Tamm-Danco
approximation. By using the above relation, it is easy
verify that the solution of the operator equation~2.11! is

iS5gsppE dkW1dkW2dkW

A~2p!38Ep~k1!Ep~k2!Es~k!

3S F2a†~kW1!a~kW2!b~kW !
d~kW12kW22kW !

2Ep~k1!1Ep~k2!1Es~k!

1a~kW1!a~kW2!b~kW !
d~kW11kW21kW !

Ep~k1!1Ep~k2!1Es~k!
G1 H.c.D .

~2.15!

By using Eq.~2.11!, Eq. ~2.10! can be written as

H85H01HI8 , ~2.16!

with

HI85HI
P1@HI

P ,iS#1 1
2 @HI

Q ,iS#1 higher-order terms.
~2.17!

SinceHI
P , HI

Q, andS are all of the first order in the coupling
constantgspp , all processes included in the second and thi
terms of theHI8 are of the order ofgspp

2 . But some of them
are ‘‘real processes,’’ such as thes-exchangepp interaction
and p-exchangepp→ss transition, as illustrated in the
upper half of Fig. 2. The other processes are ‘‘virtual pro
cesses.’’ An example is the emission of twos mesons by a
pion illustrated in the lower half of Fig. 2. We therefore
rewrite Eq.~2.17! as

ns FIG. 2. Graphical representation of the effective interactio
HamiltoniansHI

8P of Eq. ~2.19! andHI8
Q of Eq. ~2.20!.
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HI85HI
P1HI8

P1HI8
Q1 (

n>3
O~gspp

n !, ~2.18!

where

HI8
P5~@HI

P ,iS#1 1
2 @HI

Q ,iS# !P, ~2.19!

HI8
Q5~@HI

P ,iS#1 1
2 @HI

Q ,iS# !Q. ~2.20!

In the above two definitions,HI8
P(HI8

Q) is obtained by evalu-
ating the commutators using Eqs.~2.7!, ~2.8!, and~2.15! and
keeping only the real~virtual! processes in the results.

The next step is to perform a second unitary transform
tion to eliminateH8Q. In this paper we only consider th
effective Hamiltonian up to second order in the coupli
constant, and so we do not need to consider the second
tary transformation. The effective Hamiltonian is then o
tained by droppingH8Q and higher-order terms in Eq.~2.18!:

Heff5H1HI
P1HI8

P , ~2.21!

whereHI
P is defined by Eq.~2.7!, andHI8

P can be calculated
from Eq. ~2.19! by using the solution Eq.~2.15! for S. Note
that bothHI

Q and iS contain a virtualp↔ps vertex. They
are included inHI8

P of the effective HamiltonianHeff in a
commutator form, as seen in the second term of Eq.~2.19!.
Consequently, the effect due to thep↔ps vertex can give a
p→ps→p loop correction to the pion mass operator of t
effective HamiltonianHeff . Furthermore, one can see by pe
forming some straightforward derivations that the matrix
ement ofHeff between ap and aps state vanishes. This
simplification is the consequence of the SKO method defin
by Eq. ~2.11! in operator form, and is not due to the choic
of a model space in which some virtual states are omitted
we choose the pion mass inH0 as the physical mass, the loo
correction should be dropped fromHI8

P in order to avoid
double counting. A similar situation will be encountered
the derivation of thepN effective Hamiltonian. The virtual
N↔pN process can give aN→pN→N loop correction to
the nucleon mass operator. The matrix element of the c
structed effective Hamiltonian between anN state and a
pN state vanishes. In our model we choose the phys
masses forN andp in the free Hamiltonian and hence th
loop corrections in the effective Hamiltonian are al
dropped. This phenomenological procedure saves us f
facing the complicated mass renormalization problem
solving thepN scattering problems.

Because of Eq.~2.14!, Eqs.~2.12! and ~2.13! lead to the
simple relation

^ f u iSu i &5
21

Ef2Ei
^ f uHI

Qu i &, ~2.22!

whereu f & and u i & are two eigenstates ofH0. With the above
relation, the calculation ofHI8

P , Eq. ~2.19!, becomes
a-
e
ng
uni-
b-

he
r-
el-

ed
e
. If
p

in

on-
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e
so
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in

^ f uHI8
Pu i &5(

n
H ^ f uHI

Pun&^nuHI
Qu i &

1

Ei2En

2^ f uHI
Qun&^nuHI

Pu i &
1

En2Ef

1^ f uHI
Qun&^nuHI

Qu i &
1

2 F 1

Ei2En
2

1

En2Ef
G J .

~2.23!

The calculation of the matrix element ofHI8
P therefore has a

very simple rule. For a given choice of basis statesu i & and
u f &, the allowed intermediate staten is determined by the
operator structure ofOn in Eqs. ~2.12! and ~2.13!. The de-
nominator in Eq.~2.23! can easily be written down by using
eigenvalues of the free HamiltonianH0.

Evaluating HI
P and HI8

P explicitly within the coupled
pp % s space, Eq.~2.21! can be cast into the following more
familiar form for pp scattering:

Heff
pp5H01 f s↔pp1Vpp . ~2.24!

HereH0 is the free Hamiltonian operator forp ands me-
sons. The second term describes thes↔pp transition with
the matrix element

^kW1kW2u f pp,sukW &5
A2gspp

A~2p!38Ep~k1!Ep~k2!Es~k!
.

~2.25!

The pp potentialVpp is obtained by using Eq.~2.23! to
calculate HI8

P between two pp states. For

u i &5ukW i1kW i2&5A1
2 @akW i1

†
akW i2
†

#u0& and ^ f u5^kW f1kW f2u

5^0u@akW f1akW f2#A
1
2 the possible intermediate states in Eq.

~2.23! are upps& and upppps& states. Inserting these in-
termediate states into Eq.~2.23! and carrying out straightfor-
ward operator algebra, we obtain

Vpp5Vpp
s 1Vpp

t , ~2.26!

with the following the matrix elements between twopp
states:

^kW f1kW f2uVpp
s ukW i1kW i2&5

gspp
2

~2p!3
1

A2Ep~kf1!

1

A2Ep~kf2!

3
1

A2Ep~ki1!

1

A2Ep~ki2!

3@Ds
~2 !~ki11ki2!1Ds

~2 !~kf11kf2!#,

~2.27!
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^kW f1kW f2uVpp
t ukW i1kW i2&5

gspp
2

~2p!3
1

A2Ep~kf1!

1

A2Ep~kf2!

3
1

A2Ep~ki1!

1

A2Ep~ki2!

3@Ds~ki12kf2!1Ds~ki22kf2!

1Ds~ki12kf1!1Ds~ki22kf1!#,

~2.28!

where

Ds~k!5
1

k22ms
2 5D ~1 !~k!1D ~2 !~k!, ~2.29!

with

Ds
~6 !~k!5

1

2Es~k!

61

k07Es~k!
. ~2.30!

This completes the illustration of the SKO method in d
riving an effective Hamiltonian from a model Lagrangian
relativistic quantum field theory. The extension of t
method to consider more realistic Lagrangians is straight
ward and will not be further detailed. In the following se
tions, we will simply write down the starting Lagrangian
and the resulting effective Hamiltonians up to second or
in the coupling constants forpN scattering and the
gN→pN reaction.

III. p-N SCATTERING

We start with the following commonly assumed@17# La-
grangian forN,D,p, andr fields:

L~x!5L0~x!1LI~x!, ~3.1!

whereL0(x) is the usual noninteracting Lagrangian, and t
interaction is taken to be

LI~x!5LpNN~x!1LpND~x!1LrNN~x!1Lrpp~x!,
~3.2!

with ~in the convention of Bjorkin and Drell@52#!

LpNN~x!52
f pNN

mp
c̄N~x!g5gmtWcN~x!]m

•fW p~x!,

~3.3!

LpND5
f pND

mp
c̄D

m~x!TW cN~x!•]mfW p~x!1@ H.c.#, ~3.4!

LrNN~x!5grNNc̄N~x!
tW

2
•FgmfW r

m~x!2
kr

2mN
smn]nfW r

m~x!G
3cN~x!, ~3.5!

Lrpp~x!5grpp~fW p3]mfW p!•fW r
m . ~3.6!
e-
of
e
for-
c-
s
der

he

HereTW is aN→D isospin transition operator defined by th
reduced matrix element@54# ^ 3

2uuTuu 12&52^ 1
2uuT†uu

3
2&52. By

using the standard canonical quantization, a Hamiltonian
be derived from the above Lagrangian except the term
volving theD field. The difficulty of quantizing theD field is
well known, as discussed, for example, in Refs.@55# and
@56#. As part of our phenomenology, we take the simple
prescription by imposing the anticommutation relation

$DpW ,DpW 8
†

%5d~pW 2pW 8!, ~3.7!

whereDpW (DpW
†
! is the annihilation~creation! operator for a

D state. This choice then leads@55# to the D propagator
given later in Eq.~3.18!. The alternative approaches pro
posed in Ref.@56# will not be considered.

Following the procedure described in Sec. II, the next s
is to decompose the resulting Hamiltonian into aHI

P for
‘‘physical processes’’ and aHI

Q for ‘‘virtual processes.’’
From Eqs.~3.3!–~3.6!, it is clear that the real processes
this case areD↔pN andr↔pp transitions which can take
place in free space~becausemD.mN1mp andmr.2mp).
The virtual processes areN↔pN, N↔rN, N↔pD, and
p↔pr transitions. These virtual processes can be elim
nated by introducing a unitary transformation operatorS
which can be determined by using the similar method
obtaining the solution Eqs.~2.13! and ~2.14!. Here, we of
course encounter a much more involved task to account
the Dirac spin structure, isospin, and also the antiparti
components ofN andD. To see the main steps, we present
the Appendix an explicit derivation of the potential due
theLpNN term, Eq.~3.3!.

For practical applications, it is sufficient to present o
results in the coupledpN% D subspace in which thepN
scattering problem will be solved. The resulting effectiv
Hamiltonian then takes the form

Heff
pN5H01GD↔pN1vpN , ~3.8!

whereH0 is the free Hamiltonian forp, N, andD. Note
thatGD↔pN @Figs. 3~a! and 3~b!# is the only vertex interac-
tion in the constructed effective Hamiltonian. Our model
therefore distinctively different from the previous meso
exchangepN models@12–14,19# which all involve a bare
nucleon stateN0 and aN0↔pN vertex.

ThepN potentialvpN in Eq. ~3.8! is found to be

vpN5vND1vNE1vr1vDD
1vDE

, ~3.9!

wherevND is the direct nucleon pole term@Fig. 3~c!#, vNE the
nucleon-exchange term@Fig. 3~d!#, vr the r-exchange term
@Fig. 3~e!#, vDD

the interaction due to the anti-D component

of the D propagation@Fig. 3~f!#, and vDE
the D-exchange

term @Fig. 3~g!#. To simplify the presentation, we will only
give the matrix element ofvpN in the pN center-of-mass
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FIG. 3. Graphical representation of the inter-
actions of the effective Hamiltonian, Eq.~3.8!, in
the coupledpN% D space.
m

frame. The initial and final four-momentakm,k8m for pions
andpm,p8m for the nucleons in Fig. 3 are therefore define
as

km5„Ep~k!,kW…, ~3.10!

pm5„EN~k!,2kW…,
d
k8m5„Ep~k8!,kW…,

p8m5„EN~k8!,2kW….

In terms of these variables, the matrix element of each ter
of Eq. ~3.9! between twopN states can be written as
^kW8i 8,ms8mt8uvaukW i ,ms ,mt&5
1

~2p!3
1

A2Ep~k8!
A mN

EN~k8!

1

A2Ep~k!
A mN

EN~k!
.ū2kW8,ms8,mt8

I a~kW8i 8,kW i !u2kW ,ms ,mt
, ~3.11!
where upW ,ms ,mt
is the Dirac spinor,ms and mt are the

nucleon spin and isospin quantum numbers, andi and i 8 are
the pion isospin components. The interaction mechanis
are contained in the functionsI a(kW8i 8,kW i ). After performing
lengthy derivations, we find that these functions can be wr
ten in the concise forms

I ND~kW8i 8,kW i !5S f pNN

mp
D 2t i 8g5k” 8 1

2 @SN~p1k!1SN~p81k8!#

3t ig
5k” , ~3.12!

I NE~k
W8i 8,kW i !5S f pNN

mp
D 2t ig5k” 12 @SN~p2k8!1SN~p82k!#

3t i 8g
5k” 8, ~3.13!

I r~kW8i 8,kW i !5
igrNNgrpp

4
e i i 8ktkH Fgm2

kr

2mN
ismn~p2p8!nG

3@Dr
ml~p2p8!~k1k8!l#

1@~p2p8!↔~k82k!#J , ~3.14!
ms

it-

IDD
~kW8i 8,kW i !5S f pND

mp
D 2Ti 8† km8

1
2 @SD

mn~p1k!1SD
mn~p81k8!

2SD
~1 !mn~p1k!2SD

~1 !mn~p81k8!#Tikn ,

~3.15!

IDE~kW8i 8,kW i !5S f pND

mp
D 2Ti†km

1
2 @SD

mn~p2k8!

1SD
mn~p82k!#Ti 8kn8 . ~3.16!

The propagators in the above equations are defined as

SN~p!5
1

p”2mN
, ~3.17!

SD
mn~p!5

1

3~p”2mD!
F2S 2gmn1

pmpn

mD
2 D 1

gmgn2gngm

2

2
pmgn2pngm

mD
G , ~3.18!
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Dr
mn~p!52

gmn2pmpn/mr
2

p22mr
2 . ~3.19!

In Eq. ~3.15!, we also have introduced a propagator

SD
~1 !mn~p!5

mD

ED~p!

vp
mv̄p

n

p02ED~p!
, ~3.20!

wherevp
m is the Rarita-Schwinger spinor~as explicitly de-

fined in Ref.@17#!. In theD rest frame, this propagator re
duces to the simple form

S~1 !i j ~p! ——→
pW→0

11g0

6
~3d i j2s is j !

1

p02mD

~3.21!

for i , j51,2,3. The other elements involving time compo
nents vanish in this special frame,S(1)m05S(1)0n50. The
appearance of this propagator in Eq.~3.15! is to remove the
pN→D→pN mechanism which can be generated by th
vertex interactionGD↔pN of the effective Hamiltonian Eq.
~3.8!. This comes about naturally in our derivations.

We note that the above expressions are remarkbly sim
to those derived from using Feynman rules. The only diffe
ences are in the propagators of the intermediate partic
These propagators are evaluated by using the momenta o
external particles which are restricted on their mass shell,
defined in Eq.~3.10!. For the off-energy-shell dynamics
@EN(k)1Ep(k)ÞEN(k8)1Ep(k8)#, these propagators can
have two possible forms, depending on which set of exter
momenta is used. The propagators in Eqs.~3.12!–~3.16! are
the average of these two possible forms of propagators. M
details can be seen in the Appendix where the derivation
vN5vND1vNE is given explicitly.

In the pN center-of-mass frame, theD in the vertex in-
teraction GD↔pN is at rest. In this particular frame, the
Rarita-Schwinger spinors reduce to a simple form such t
the matrix element of the vertex interactionGD↔pN takes the
familiar form

^DuGD↔pNukW i &52
f pND

mp

i

A~2p!3
1

A2Ep~k!

3AEN~k!1mN

2EN~k!
SW •kWTi . ~3.22!

HereSW is aN→D transition spin operator. It is defined by
the same reduced matrix element as the transition isos
operatorT.

Because of the absence of apN↔N vertex in the effec-
tive Hamiltonian, Eq.~3.8!, it is straightforward to derive the
pN scattering equations in the coupledpN% D space. The
derivation procedure is similar to that given in Ref.@23# for
the more complicatedpNN problem. The essential idea is to
apply the standard projection operator technique of nucl
reaction theory@3#. The resulting scattering amplitude can b
cast into the form

TpN~E!5tpN~E!1ḠD→pN~E!GD~E!ḠpN→D~E!. ~3.23!
-
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The first term is the nonresonant amplitude determined on
by thepN potential:

tpN~E!5vpN1vpNGpN~E!tpN~E!, ~3.24!

with

GpN~E!5
PpN

E2EN~k!2Ep~k!1 i e
, ~3.25!

wherePpN is the projection operator for thepN subspace.
The second term of Eq.~3.23! is the resonant term deter-
mined by the dressedD propagator and the dressed verte
functions. They are defined by

GD~E!5GD
0 ~E!1GD

0 ~E!SD~E!GD~E!

5
PD

E2mD2SD~E!
, ~3.26!

with

GD
0 ~E!5

PD

E2mD
~3.27!

and

ḠpN→D~E!5GpN→D@11GpN~E!tpN~E!#, ~3.28!

ḠD→pN~E!5@11GpN~E!tpN~E!#GD→pN , ~3.29!

wherePD is the projection operator for theD state, and the
D self-energy is defined by

SD~E!5GpN→DGpN~E!ḠD→pN~E!. ~3.30!

Equations~3.23!–~3.30! are illustrated in Fig. 4. These equa
tions are solved in partial-wave representation. To find th
solution for the integral equation~3.24!, it is necessary to
regularize thepN potential by introducing a form factor for
each vertex in Eqs.~3.12!–~3.16!. In this work, we choose

FIG. 4. Graphical representation of scattering equations defin
by Eqs.~3.23!–~3.30!.
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@ I ND1I NE#~kW8i 8,kW i !→@ I ND1I NE#~kW8i 8,kW i !

3FpNN~kW8!FpNN~kW !, ~3.31!

I r~kW8i 8,kW i !→I r~kW8i 8,kW i !FrNN~kW2kW8!Frpp~kW2kW8!,
~3.32!

with

FpNN~kW !5S LpNN
2

LpNN
2 1kW2

D 2, ~3.33!

FrNN~kW2kW8!5Frpp~kW2kW8!, ~3.34!

5S Lr
2

Lr
21~kW2kW8!2

D 2.
~3.35!

For pND vertex with an external pion momentumkW , we
choose

FpND~kW !5S LpND
2

LpND
2 1kW2

D 2. ~3.36!

We have also tried other parametrizations of form facto
but they do not give better fits to thepN scattering phase
shifts.

IV. PION PHOTOPRODUCTION

To proceed, we need to first extend the Lagrangian,
~3.1!, to includev meson coupling which is known@4,17# to
play an important role in pion photoproduction. We choo
the following rather conventional form~with kv;0)

LvNN5gvNNc̄N~x!Fgmfv
m~x!2

kv

2mN
smn]nfv

m~x!GcN~x!.

~4.1!
rs,

q.

se

Following the approach of Ref.@17#, the pion photoproduc-
tion mechanisms are defined by the hadronic Lagrangia
defined by Eqs.~3.1! and ~4.1! and the electromagnetic in-
teraction Lagrangians

Lem5LgNN1Lgpp1LgpNN1Lgrp1Lgvp1LgND ,
~4.2!

with

LgNN52ec̄N~x!F êAW ~x!2
k̂

2mN
smn@]nAm~x!#GcN~x!,

~4.3!

LgpNN52
e fpNN
mp

c̄N~x!g5AW ~x!@tW3fW p~x!#3cN~x!,

~4.4!

Lgpp5e@]mfW p~x!3fW p~x!#3Am~x!, ~4.5!

Lrpg5
grpg

mp
eabgd@]aAb~x!#fW p~x!•@]gfW r

d~x!#, ~4.6!

Lvpg5
gvpg

mp
eabgd@]aAb~x!#fp

3 ~x!@]gfv
d ~x!#, ~4.7!

LgND5 iec̄D
mT3GmnA

n~x!cN~x!1@H.c.#. ~4.8!

Here ê5(11t3)/2, k̂5(kp1kn)/21(kp2kn)t3/2. The
gND coupling in Eq.~4.8! is

Gmn5~GMKmn
M 1GEKmn

E !, ~4.9!

as defined in Eqs.~2.10b! and~2.10c! of Ref. @17#. Its matrix
element between anN with momentump and aD with mo-
mentumpD can be written explicitly as
^D~pD!uGmnuN~p!&5~GM2GE!F 3

~mD1mN!22q2
mD1mN

2mN
emnabP

aqbG
1GEig

5F 6

@~mD1mN!22q2#@~mD2mN!22q2#

mD1mN

mN
emlabP

aqbengd
l pD

gqdG , ~4.10!
e
with P5(p1pD)/2 andpD5p1q.
By applying the usual canonical quantization procedu

we can obtain from the above Lagrangians an electrom
netic interaction HamiltonianHem. In this work, we will
treat the electromagnetic field as an external classical fi
and hence the electromagnetic interactionHem can be ne-
glected in constructing the unitary transformation opera
S. The effective Hamiltonian for describing pion photopr
re,
ag-

eld,

tor
o-

duction is therefore a simple extension of the effectiv
Hamiltonian of the form of Eq.~2.21!:

Heff→Heff1Heff
em

5H01HI
P1HI8

P1Heff
em, ~4.11!

with
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Heff
em5Hem1@Hem,iS#. ~4.12!

By evaluatingHeff
em in the coupledD % pN% gN subspace, we

obtain an extension of Eq.~3.8!:

Heff
p →Heff

gp5H01GD↔pN1vpN1GD↔gN1vpg ,
~4.13!

where GD↔pN and vpN have already been given in Eq
~3.11!–~3.22!. The resonant and nonresonant electrom
netic interactions are, respectively, described byGD↔gN and
vpg , and are illustrated in Fig. 5. We again omit the deta
of the derivation of these two terms, and simply present

FIG. 5. Graphical representation of the effective interacti
GD↔gN andvgN of Eq. ~4.13!.
s.
ag-

ils
our

results in the center-of-mass frame. The momenta variab
qm for the photon,pm for the initial nucleon,km for the pion,
andp8m for the final nucleon, in Fig. 5, are therefore

qm5~q,qW !,

pm5„EN~q!,2qW …,

km5„Ep~k!,kW…,

p8m5„EN~k!,2kW…. ~4.14!

In terms of these variables, expression~4.10! becomes very
simple. The matrix element of theGD↔gN vertex can then be
expressed in terms of the spin and isospinN→D transition-
operatorsS andT introduced in Sec. III. At the resonance
energy,mD5EN(q)1q, Eq. ~4.10! leads to

^DuGgN→DuqW l&52
e

~2p!3/2
AEN~q!1mN

2EN~q!

3
1

A2q
3mD

2mN~mD1mN!
T3@ iGMSW 3qW •eWl

1GE~SW •eWlsW •qW 1SW •qW sW •eWl!#, ~4.15!

whereeWl is the photon polarization vector. The matrix ele
ment of the nonresonant interactionvpg can be written as

^kW i ,ms8mt8uvpguqW l,msmt&

5
1

~2p!3
1

A2Ep~k!

1

A2q
A mN

EN~k!
A mN

EN~q!

3ū2kWm
s8mt8F(a I a

pg~kW i ,qW l!Gu2kWmsmt
. ~4.16!

The nonresonant pion photoproduction mechanisms are co
tained in I N

pg for the direct nucleon terms@Figs. 5~c!, 5~d!,
and 5~e!# , Ip

pg for the pion pole term@Fig. 5~f!#, I r,v
pg for the

vector meson-exchange@Fig. 5~g!#, andIDD,DE
pg for the direct

and exchangeD terms @Figs. 5~h! and 5~i!#. Explicitly, we
have

ns
I N
pg~kW i ,qW l!5

e fpNN
mp

F i t ig5k”SN~p81k!S êe” ~l!1 i
k̂

2mN
smne~l!mqnD1 i S êe” ~l!1 i

k̂

2mN
smne~l!mqnD

3SN~p2k!t ig
5k”2e i j 3t jg

5e” ~l!G , ~4.17!

Ip
pg~kW i ,qW l!52

e fpNN
mp

e i j 3t jg
5~p” 82p” !@~k1p2p8!•e~l!Dp~p2p8!#, ~4.18!
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I r
pg~kW i ,qW l!5

grNNgrpg

mp

t i
2 Fgm2

ikr

2mN
smh~p2p8!hG3Dr

mn~p2p8!eabgnea~l!qb~p2p8!g,

Iv
pg~kW i ,qW l!5

gvNNgvpg

mp
d i ,3Fgm2

ikv

2mN
smh~p2p8!hG3Dv

mn~p2p8!eabgnea~l!qb~p2p8!g ~4.19!

IDE
pg~kW i ,qW l!5

e fpND

mp
T3
†Gmd

† ed~l!SD
mn~p2k!Tikn , ~4.20!

IDD
pg ~kW i ,qW l!52

e fpND

mp
Ti
†km@SD

mn~p81k!2S~1 !mn~p81k!#T3Gnded~l!. ~4.21!
in

d

n

Here we observe again that the above expressions are
similar to the results derived by using Feynman rules. Ho
ever, they have an important feature that the time comp
nents of the momenta in the propagators and strong inte
tion vertices are evaluated by using the external momenta
the finalpN state. This is the consequence of applying t
unitary transformation method defined in Eq.~4.12!. In ad-
dition to including nonresonantD terms@Figs. 5~h! and 5~i!#,
this is another feature which makes our model different fro
the model developed in Ref.@17#.

It is straightforward to derive from the effective Hamil
tonian, Eq.~4.13!, the t matrix of pion photoproduction:

Tgp~E!5tgp~E!1ḠD→pN~E!GD~E!ḠgN→D~E!,
~4.22!

where the nonresonant amplitude is defined by

tgp~E!5vgp1tpN~E!GpN~E!vgp . ~4.23!

The dressedgN↔D is defined by

ḠgN→D~E!5GgN→D1ḠpN→D~E!GpN~E!vgp .
~4.24!

In the above equations,GD ,ḠD↔pN ,GpN, andtpN have been
defined in Sec. III. The standard partial-wave decompositi
is used to obtain the multipole amplitudes fromTgp for the
gN→pN reaction and from ḠD↔pN for the dressed
D↔pN vertex. Equations~4.22!–~4.24! are illustrated in
Fig. 6.

TheK-matrix formulation of thegN→pN reaction is of-
ten used@4–7# in the analysis of data. Within our formula
tion, this can be obtained by replacing thepN free Green
functionGpN , Eq. ~3.25!, by

GpN~E!→GpN
P ~E!5P

PpN

E2EN~k!2Ep~k!
, ~4.25!

whereP means taking the principal-value part of the prop
gator. If this replacement is used in the calculations of Eq
~3.23!–~3.30!, all scattering quantities will be real numbers
TheseK-matrix quantities are defined by exactly the sam
Eqs.~3.23!–~3.30! with the changes
very
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GpN→GpN
P ,

TpN→KpN ,

tpN→kpN ,

ḠD↔pN→ḠD↔pN
k ,

GD→GD
P5

PD

E2mD2SD
k ~E!

, ~4.26!

with

SD
k ~E!5GpN→DGpN

P ~E!ḠD→pN
k ~E!. ~4.27!

Note that theD self-energySD
k is now a real number, and the

propagatorGD
P has a pole atE5MR5mD1SD

k (MR).
The correspondingK matrix for pion photoproduction can

be obtained from Eqs.~4.22!–~4.24! by the same replace-
ment, Eq.~4.25!:

Kgp~E!5kgp~E!1ḠD→pN
k ~E!GD

P~E!ḠgN→D
k ~E!,

~4.28!

with

kgp5vgp1kpN~E!GpN
P ~E!vgp , ~4.29!

ḠgN→D
k ~E!5GgN→D1ḠpN→D

k ~E!GpN
P ~E!vgp .

~4.30!

For the on-shell matrix elements @E5EN(k0)
1Ep(k0)5q1EN(q)#, it is straightforward to find the fol-
lowing relation in each partial wave:

Tgp~k0 ,q!5@12 iprTpN~k0 ,k0!#Kgp~k0 ,q!.
~4.31!

For investigating the hadron structure, we are interested
the gN↔D vertex. As seen in Eqs.~4.24! and ~4.30!, the
dressed vertices in thet matrix and in theK matrix are dif-
ferent. In thet-matrix formulation ḠgN,D , Eq. ~4.24!, is a
complex quantity, while in theK-matrix formulation
ḠgN,D
k , Eq. ~4.30!, is a real function. Consequently, we nee

to be careful about the meaning of theE2/M1 ratio of the
dressedgN↔D vertex. The clearest definition seems to be i
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theK matrix formulation because as the energy approach
the resonance positionMR5mD1SD

k (MR), Eq. ~4.28! is re-
duced to

Kgp~E!5
A

E2MR
1B, ~4.32!

with

A5ḠD→pN
k ~E!ḠgN→D

k ~E!, ~4.33!

B5kgp~E!. ~4.34!

The separable form of the residueA of theK matrix leads to
an interesting result that the ratio between theE1 andM1
multipole amplitudes of the dressedgND vertex can be di-
rectly calculated from the residues of the corresponding m
tipole amplitudes of thegN→pN reaction. The reason is
that both amplitudes have the same strong interact
dressed vertex in theP33 channel, and hence the ratio be
tween the residues does not depend on it. Explicitly, we ha

REM5F A~E11!

A~M11!G
gN→pN

5
ḠD→pN
k ~P33!ḠgN→D

k ~E11!

ḠD→pN
k ~P33!ḠgN→D

k ~M11!

5
ḠgN→D~E11!

ḠgN→D~M11!
. ~4.35!

The above relation is the basis of the model-independ
analysis of Ref.@6#. We will discuss this issue in the nex
section.

V. RESULTS AND DISCUSSIONS

Our first task is to determine the parameters of the effe
tive pN Hamiltonian derived in Sec. II. Apart from the
known pNN coupling constantfpNN

2 /4p50.08, the model
has seven parameters: the coupling consta
(gr

25grNNgrpp , kr , fpND) of Eqs.~3.12!–~3.16!, the cutoff
parameters (LpNN ,LpND ,Lr) of the form factors~3.34!–

FIG. 6. Graphical representation of pion production amplitud
defined by Eqs.~4.22!–~4.24!.
es

ul-

ion
-
ve

ent
t

c-

nts

~3.37!, andmD of the D bare mass. These parameters are
determined by fitting thepN phase shifts. Without including
inelastic channels, our scattering equations Eqs.~3.23!–
~3.30! are valid rigorously only in the energy region where
thepN scattering is purely elastic. We therefore first take a
conservative approach to only fit the data in the energy re
gion below TL5250 MeV pion laboratory energy. This
model, called model L, is sufficient for investigating pion
photoproduction up to 400 MeV photon laboratory energy
Our results are displayed in Fig. 7. We see that within the
uncertainties of the phase shift data@38–40# the model can
give a good account of alls andp partial waves except the
P13 channel atTL.120 MeV. We have found that this dif-
ficulty cannot be removed by trying various form factors
other than those given in Eqs.~3.34!–~3.37!, and following
the previous works@12,13# to include the exchange of a fic-
titious scalars meson. To see the origin of this problem, we
show in Fig. 8 the contributions from each mechanism o
Fig. 3 to the on-shell matrix elements of thepN potential.
Clearly, the fit to the phase shift data involves delicate can
cellations between different mechanisms. It is possible to
improve the fit toP13 by weakening ther exchange or the
D exchange. But this change will destroy the good fits to al
other partial waves. Fortunately, thepN scattering effect due
to theP13 channel is weak in determining the pion photopro-
duction cross sections. We therefore will not pursue the so
lution of this problem here. Perhaps this can be solved onl
when ther exchange is replaced by the two-pion exchange
considered in Ref.@14#. To be consistent, the coupling with
two-pion channels, such aspD and rN, must also be in-
cluded. These two possible improvements can be achieve
by extending the unitary transformation method introduced
in Secs. II–IV to second order in the coupling constants.

Let us now examine in more detail theP33 channel which
is most relevant to our later investigation of theD excitation

es

FIG. 7. ThepN phase shifts calculated from thepN model L of
Table I are compared with the empirical values of the analyses o
Ref. @39# ~open squares! and Ref.@38# ~solid squares!. TL is the
pion laboratory energy.
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2672 54T. SATO AND T.-S. H. LEE
in pion photoproduction. As seen in Eq.~3.23!, the resonant
part of theP33 amplitude is determined by the dressed prop
gatorGD of Eq. ~3.26! and the dressed vertexḠD↔pN of Eqs.
~3.28! and~3.29!. Clearly, theD resonance peak ofpN scat-
tering can be obtained only when the model can genera
D self-energy such that the real part o
@E2mD2SD(E)#→0 as thepN-invariant massW ap-
proaches the resonance eneryW5MR51236 MeV. Our
model has this desired property, as illustrated in the up
half of Fig. 9. Another important feature in theP33 channel
is that thepN potential generates the dressedD↔pN ver-
tex, as defined in Eqs.~3.28! and~3.29!. We have found that
this renormalization effect modifies greatly theD↔pN form
factor in the low-momentum region. To see this, we cast
bare vertex@Eq. ~3.22! including the form factorFpND(k)
defined by Eq.~3.36!# and the dressed vertex@Eq. ~3.28!#
into the forms

^DuGD↔pNukW i &52
f pND

mp

i

A~2p!3
1

A2mp

Fbare~k!SW •kWTi ,

~5.1!

^DuḠD↔pNukW i &52
f̄ pND

mp

i

A~2p!3
1

A2mp

Fdressed~k!SW •kWTi ,

~5.2!

with the normalizationuFdressed(0)u5Fbare(0)51. We find
that the dressed coupling constantf̄ pND is 1.3 of the bare
coupling constantfpND . The dressed form factorF̄pND(k)
falls off faster than the bare form factorFpND(k) in momen-
tum space, as seen in the lower half of Fig. 9. This me
that the nonresonantpN interaction has extended theD ex-
citation region to a larger distance in coordinate space.

FIG. 8. The on-shell matrix elements ofpN potentials defined
by Eqs.~3.11!–~3.16!. TL is the pion laboratory energy. The nota
tions areND :vND, NE :vNE, r:vr , DD :vDD

, DE :vDE
, and Tot is the

sum.
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A significant difference between our approach and th
previouspN models@12–14,19# is in the treatment of the
P11 channel. By employing the unitary transformation, th
pN↔N vertex does not appear in the effective Hamiltonian
Eq. ~3.8!, and hence our formulation ofpN scattering is
straightforward. It does not require the nucleon mass reno
malization. It is natural to ask whether our approach po
sesses the well-established nucleon-pole dynamics. T
question can be answered by examining Fig. 10 in which t
pN phase shifts and the scatteringt-matrix elements calcu-
lated from the nucleon pole termvND only @Fig. 3~c!# and the
full potential are compared. We see in the the upper half
Fig. 10 thatpN phase shifts due to the nucleon-pole term
~dotted curve! are repulsive as expected. The fit to theP11
data is due to a delicate cancellation between the repuls
nucleon-pole term and the attraction coming mainly from
r- andD-exchange terms~see theP11 case in Fig. 8!. In the
lower half of Fig. 10, we see that as the energy approach
the threshold,W5mp1mN , the nucleon pole term~dotted
curve! apparently dominates the interaction. If we analyt
cally continue to the nucleon pole position,k05 ikN
@mN5EN( ikN)1Ep( ikN)#, the scattering amplitude will be
determined by the nucleon pole term, i.e.

-

FIG. 9. The upper half shows the mass of theD state defined by
Eq. ~3.30!.mD51299.07 MeV is the bare mass of model L of Table
I, MR51236 is the experimental resonance position, andW is the
pN-invariant mass. The lower half shows the bare and dress
D→pN form factors defined by Eqs.~5.1! and ~5.2! with
f̄ pND51.3f pND . k is the pion momentum in theD rest frame.
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54 2673MESON-EXCHANGE MODEL FORpN SCATTERING AND . . .
t(k0 ,k0 ,W→mN);vND;1/(W2mN).
The parameters of the constructed model are listed in

first row ~model L! of Table I. The calculated scatterin
lengths are presented in the first column of Table II. They
all in good agreement with the data. If we assume the u
versality of r coupling, we then havegrNN5grpp56.2
which is close to that determined in Refs.@12,13#. The fit is
also sensitive to ther tensor coupling constantkr . Our
value is close to that of Ref.@12#, but is much smaller than
6.6 used in Ref.@13#.

We now turn to presenting our results of pion photopr
duction. With thepNN,pDN, andrNN vertices defined by
the parameters given in Table I, the considered pion pho

FIG. 10. ThepN phase shifts (d) and scattering amplitude
@ t(k0 ,k0 ,W)# with thepN-invariant massW5EN(k0)1Ep(k0) in
theP11 channel. The solid curves are from the full calculation. T
dotted curves are from the calculation including only the nucle
pole potentialvND of Fig. 3~c!.
the
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production mechanisms~Fig. 5! still have unknown param-
eters associated with the vector meson-exchange and t
gN↔D vertex. Following the previous approach@17#, we
assume that the photon-meson coupling constantsgrpg and
gvpg can be determined from the partial decay widths liste
by the Particle Data Group@45#. For thev meson, we further
assume that the tensor couplingkvNN50 and thevNN form
factor is identical to therNN form factor given in Table I.
The coupling constantgvNN is not well determined in the
literature. We will treat it as a free parameter, although th
quark model valuegvNN5(3grNN)/2 seems to be a reason-
able guess. Thus, our investigation of pion photoproductio
has only three adjustable parameters:GM andGE of the bare
D↔gN vertex, and the coupling constantgvNN of the v

FIG. 11. The photon-asymmetry ratiosRg5ds i /ds' of
gp→p0p at 90° .Eg is the photon energy in the laboratory frame.
The results in the upper half are from using
GM51.85, GE50.025, and three values ofgvNN . The results in
the lower half are from usingGM51.85, gvNN510.5, and four
values ofGE . The data are from Refs.@41,42#.

he
on
TABLE I. The parameters of thepN models. The units are 1/F for cutoff parametersLa and MeV for the
bareD mass. Model L and model H are obtained respectively from fittingpN phase shifts up to 250 MeV
and 400 MeV.

Model f pNN
2 /4p LpNN grNNgrpp kr Lr f pND LpND mD

Model L 0.08 3.2551 38.4329 1.825 6.2305 2.049 3.29 1299.07
Model H 0.08 3.7447 39.0499 2.2176 7.5569 2.115 3.381 1318.52

Form factorFpNN~k!5S LpNN
2

LpNN
2 1k2D 2, Fr~q!5S Lr

2

Lr
21qW 2

D 2, FpND~k!5S LLND
2

LpND
2 1k2D 2
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2674 54T. SATO AND T.-S. H. LEE
exchange. We have, however, some ideas about the rang
these parameters. If we assume that bare vertex interac
GD↔gN can be identified with the constituent quark mod
@46,48,47,49,50#, thenuGE /GMu;0 since the one-gluon ex
change interaction gives negligibleD-state components in
N andD. We also expect that thev coupling should be close
to the quark model prediction,gvNN53grNN/2;9, if the r
coupling from ourpN model~Table I! is used. It is therefore
reasonable to only consider the regiongvNN<15 and
uGE /GMu<0.1.

Since thev-exchange mechanism@Fig. 5~g!# does not
produce charged pions directly~only throughpN charge ex-
change!, the ranges ofgvNN , GM , andGE can be most
sensitively determined by considering the data ofp0 photo-
production. In the considered region thatuGE /GMu<0.1 and
gvNN< 15, we have found that the magnitudes of thep0

differential cross sections depend mainly onGM . The values
of gvNN andGE can be narrowed down by considering sp
observables. In this work, we make use of the recent LE
@41# data of photon-asymmetry ratiosRg5ds i /ds' of
gp→p0p reaction. We have found that the slope ofRg(E)
at a fixed pion angle is sensitive to the value ofgvNN . This
is illustrated in the upper half of Fig. 11 for the case
GM51.85 andGE50.025. A smallergvNN yields a steeper
slope. The data clearly favorgvNN;10.5. In the lower half
of Fig. 11, we see that the magnitude, not the slope, ofRg is
significantly changed by varying the value ofGE from
20.1 to 10.1. The data are consistent wit
20.025<GE<0.025, whileGE510.025 seems to give a
better fit. Results similar to Fig. 11 can be obtained by us
a higher valueGM51.95. In this case, a smaller value o
gvNN57 is needed to maintain the same fit to the magnitu
of the differential cross section as well as the slope of
Rg . But the best value ofGE to reproduce the magnitude o
Rg is 20.025 instead of10.025 for thegvNN510.5 case. In
fact, we have observed a strong correlation between the
lowed values ofGM and gvNN . In all cases, the allowed
value of GE is consistent with20.025<GE<10.025.
Therefore, the acceptable values of (GM ,gvNN) are on the
curve between theGE520.025 andGE510.025 lines in
Fig. 12. To determine the precise value ofREM5GE /GM ,
which measures the deformation of theD, we clearly need to
pin down thev meson coupling constantgvNN . In Table III,
we list the determined values ofGM , GE , andgvNN along
with all other parameters used in our calculations
gN→pN reactions.

The predictions from using the parameters lying on t
curve betweenGE510.025 andGE520.025 lines of Fig.

TABLE II. The calculatedpN scattering lengths~in unit of
fermis! are compared with the values determined in Ref.@40#.

Model L Model H Koch-Pietarinen

S11 0.1588 0.1737 0.17360.003
S31 20.1191 20.1198 20.10160.004
P11 20.0976 20.0864 20.08160.002
P31 20.0509 20.0478 20.04560.002
P13 20.0363 20.0383 20.03060.002
P33 0.2523 0.2797 0.21460.002
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12 are also in good agreement with thep0 data at other
angles and thep1 data. These are shown in Fig. 13 forp0

production and Fig. 14 forp1 production. These results are
obtained from using the parameters defined by t
interaction points of the GE560.025 lines in
Fig. 12: (gvNN ,GM ,GE)5(10.5,1.85,10.025), and
(7.0,1.95,20.025). Both sets of parameters yield equal
good agreement with thep0 data~Fig. 13!. Forp1 produc-
tion, the predictions are in good agreements with the data
the photon-asymmetry ratiosRg , but underestimate the dif-
ferential cross sections by about 10% at most energies. Si
thev exchange has a small contribution to thep1 produc-
tion ~only through charge-exchangepN final state interac-
tion!, the only way to resolve this difficulty within our model
is to increase the value ofGM . But this will lead to an
overestimate of thep0 cross section from Bonn.

Although the difficulty in reproducing thep1 data in Fig.
14~b! could be an indication of the deficiency of our mode
the possibility of a largerp0 cross section has been sug
gested by threep0 data atu5120° from Ref. @44# @Fig.
13~b!#. To fit these three data points, we need to increa
GM from 1.85 to 2.0 for the case ofgvNN 5 10.5 and from
1.95 to 2.1 for the case ofgvNN 5 7. The results from these
two changes inGM are, respectively, the solid and dotted

FIG. 12. The region of the parameters (gvNN ,GM ,GE) for de-
scribing the data ofgN→pN reactions. See text for the explana
tions.

TABLE III. The parameters for thegN→pN interactions de-
fined in Eqs.~4.16!–~4.20! and Fig. 5.

fpNN ,LpNN – Table I
f pND ,LpND – Table I
grNN5AgrNNgrpp – Table I
LrNN5Lr ,kr – Table I
grpg 0.1027e Ref. @45#
gvpg 0.3247e Ref. @45#
gvNN 7 – 10.5 See text
LvNN5Lr – Table I
kv50 – See text
GM(0) 1.85 – 2.0 See text
GE(0) 6 0.025 See text
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54 2675MESON-EXCHANGE MODEL FORpN SCATTERING AND . . .
curves in Figs. 15 and 16. The predicted photon-asymm
ratios@Figs. 15~a! and 16~a!# are still in good agreement with
the data. The agreement with thep1 data @Fig. 16~b!# is
clearly improved. But the calculatedp0 differential cross
sections@Fig. 15~b!# overestimate the Bonn data@42,43# by
about 15%. Clearly, the disagreement between thep0 data at
u5120° @Fig. 15~b!# from Refs. @42,43# and @44# must be
resolved by new measurements.

To further reveal the dynamical content of our model,
compare in Fig. 17 our predictions of angular distributio
with the data compiled in Ref.@43# for gp→p0p @Fig.
17~a!#, gp→p1n @Fig. 17~b!#, andgn→p2p @Fig. 17~c!#
reactions. All results calculated from using the parame
lying on the curve between theGE510.025 and
GE520.025 lines in Fig. 12 are very close to the so
curves which are from using (gvNN ,GM ,GE)
5(10.5,1.85,0.025). Again, we see that the charged p
production cross sections are underestimated. If a la
GM52.0 is used in this calculation, we obtain the dott
curves which are in a better agreement with the charged
data, but overestimate thep0 data by about 15% at reso

FIG. 13. The photon-asymmetry ratios~a! and differential cross
sections~b! for thegp→p0p reaction at four angles in the cente
of-mass frame. The solid and dotted curves are, respectively, f
the calculation using the parameters (gvNN ,GM ,GE)
5(10.5,1.85,10.025), and (7.0,1.95,20.025). The data are from
Refs.@41,42#. Eg is the photon energy in the laboratory frame.
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nance peaks. In all cases, the theoretical predictions und
estimate the data at 380 MeV and higher energies. This
expected, since the constructed model does not include
elastic channels which should start to play a significant ro
at energies above about 350 MeV. For example, the inela
production mechanismgN→pD→pN should exist since it
is known that thepN scattering at this higher energy can b
described only when the coupling with thepD channel is
included. To investigate this effect, it is necessary to exte
the derivation of effective Hamiltonians presented in Sec
III and IV to include thepD as well as other two-pion states

We now focus on the theoretical interpretations of th
D↔gN vertex. The values ofGM andGE determined above
characterize the bareD↔gN vertex which can only be iden-
tified with hadron models with no coupling with thepN or
other hadronic reaction channels. One possible interpreta
is to compare the determinedGM andGE with the predic-
tions of the most well-developed constituent quark mod
@46,48,47,49,50#. To explore this possibility, it is necessary
to first discuss the quantities in our model which can b
compared with the results from empirical amplitude analys
@6,7,57#. For investigating theD mechanism, we need to
only consider thegN→pN multipole amplitudesM11 and
E11 with a P33 final pN state and the dressed vertex func

r-
rom

FIG. 14. Same as Fig. 13, except for thegp→p1n reaction.
The data are from Ref.@42#.
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2676 54T. SATO AND T.-S. H. LEE
tion ḠgN,D . These can be computed from Eqs.~4.22!–~4.24!
or Eqs. ~4.28!–~4.30! by performing the standard partial-
wave decomposition~see, for example, the Appendix of Ref
@17#!. We will discuss these quantities using the results ca
culated from setting (gvNN ,GM ,GE)5(10.5,1.85,0.025)
~solid curves in Figs. 13, 14, and 17!.

The predicted amplitudesM11 andE11 are compared in
Fig. 18 with the results from the empirical amplitude analy
ses@7,57#. We see in the upper part of Fig. 18 that the pre
dictedM11 amplitudes are in good agreement with empirica
values. In the lower half, we show that both theE11 ampli-
tudes calculated from usingGE510.025~solid curves! and
GE520.025 ~dotted curves! are within the uncertainties of
the amplitude analyses. This is consistent with our analy
using LEGS data, as seen in the lower part of Fig. 11. T
uncertainties of the empirical values of theE11 amplitude
are due to the lack of complete data of spin observable
More experimental efforts are clearly needed to pin down t
value ofGE which is needed to test models of hadron stru
ture.

FIG. 15. The photon-asymmetry ratios~a! and differential cross
sections~b! for thegp→p0p reaction at four angles. The solid and
dotted curves are, respectively, from the calculations usi
the parameters (gvNN ,GM ,GE)5(10.5,2.0,10.025), and
(7.0,2.10,20.025). The data are from Refs.@41,42#. Eg is the pho-
ton energy in the laboratory frame.
.
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The dressedD↔gN vertex, defined by Eq.~4.24!, is a
complex number. By making the usual partial-wave decom
position, its magneticM1 and electricE2 components can be
written asG(a)5uG(a)ueif(a) with a5M11 ,E11 . The pre-
dicted dressed vertex functionsG(a) are the solid curves in
Fig. 19. We see that their magnitudesuG(a)u are very differ-
ent from the corresponding values~dotted curves! of the bare
D↔gN vertex. The differences are due to the very large
contribution of the nonresonant mechanism described by th
second term of Eq.~4.24!. Our results indicate that an accu-
rate reaction theory calculation of the nonresonant pion pho
toproduction mechanisms is needed to determine the ba
D↔gN vertex from the pion photoproduction data. This re-
quires a dynamical treatment of the nonresonant pion phot
production mechanisms, as we have done in this work
Within the meson-exchange formulation presented in thi
work, the determinedGM andGE of the bareD↔gN vertex
can be compared with the predictions from a hadron mode
which does not include the coupling with thepN ‘‘reaction’’
channel~both pion and nucleon are on their mass shell!.

We now turn to investigate theK-matrix method which
has been the basis of the empirical amplitude analyses
Refs.@6,7#. In Ref. @6#, it was shown that if the background
term is assumed to be a slowly varying function of energy

ng

FIG. 16. Same as Fig. 15, except for thegp→p1n reaction.
The data are from Ref.@42#.
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FIG. 17. Differential cross sections ofgp→p0p ~a!, gp→p1n ~b!, andgn→p2p, ~c! reactions. The solid~dotted! curves are calculated
by usingGM51.85 (2.0). Both calculations using the same (gvNN ,GE)5(10.5,10.025). The data are from Ref.@43#. Eg is the photon
energy in the laboratory frame.
x

the ratioREM between theE11 and M11 of the gN→D
transition at the resonant energyW5MR can then be ex-
tracted ‘‘model independently’’ from the data of th
gN→pN reaction. The only limitation is the accuracy of th
employedpN amplitudes and theM11 andE11 multipole
amplitudes of thegN→pN reaction. By using Eqs.~4.32!–
~4.35!, we can examine whether theK-matrix method of Ref.
@6# is consistent with our dynamical model. In Fig. 20, w
display our predictions of the energy dependence of the t
K matrix ~solid curve!, the contribution from the resonan
term ~dotted curve! which has a pole atW51236 MeV, and
e
e

e
otal
t

the nonresonant contributionB ~dashed curve!. Clearly, the
energy dependence of the nonresonant termB is rather weak.
The assumption made in the empirical analysis of Ref.@6# is
fairly consistent with our dynamical model.

By using Eq.~4.33!, we can calculate the residueA of the
K matrix from the dressed vertexḠgN→D

k defined by Eq.
~4.30!. The results~solid curve! for theM11 transitions are
compared with that calculated from using the bare verte
GgN→D in the the upper half of Fig. 21. Similar to the results
in Fig. 19 in thet-matrix formulation, we see the large non-
resonant mechanisms in dressing thegN→D vertex. The
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2678 54T. SATO AND T.-S. H. LEE
correspondingE2/M1 ratiosREM are compared in the lower
half of Fig. 21. The nonresonant mechanisms change
ratio by a factor of about 2 at resonance energyW51236
MeV.

In Table IV, we list the predictedE11 andM11 ampli-
tudes of theD↔gN vertex evaluated at the resonance e
ergy W51236 MeV. The parameters (gvNN ,GM ,GE) 5
~10.5, 1.85, 0025! and~7.0, 1.95,20.025! from the fits to the
data~Figs. 13 and 14! are used in these calculations. We se
that our average valueREM 5 (21.8 6 0.9!% is not too
different from the average value (21.07 6 0.37!% of the
empirical analysis@6#. Since the assumption made in Ref.@6#
is consistent with our model as discussed above, the diff
ence perhaps mainly comes from the experimental uncerta
ties of the multipole amplitudes employed in the analysis

FIG. 18. The predicted multipole amplitudesM11 andE11 in
the total isospinI53/2 channel are compared with the empirica
values of Refs.@38# ~solid squares! and @57# ~open squares!. The
parameters used in this calculation areGM51.85,gvNN510.5, with
GE50.025~solid curve! and20.025~dotted curve!. Eg is the pho-
ton energy in the laboratory frame.

FIG. 19. TheM11 andE11 multipole amplitudes of the dressed
vertexḠgN→D defined by Eq.~4.24! and the bare vertexGgN→D are
compared. The dressed vertex is a complex function written
G(a)5uG(a)ueif(a) with a5M11 ,E11 . W is the gN-invariant
mass.
the

n-

e

er-
in-
of

Ref. @6#. The differences between our predicted multipo
amplitudes and the empirical values shown in Fig. 18 cou
also be responsible to this discrepancy. To compare our
sults with the values listed by the Particle Data Group~PDG!
@45#, we calculate the helicity amplitudes by

A3/25
A3
2

@E112M11#,

A1/252 1
2 @3E111M11#.

The results at the resonance energyW51236 MeV are listed
in Table V. The predictions from two constituent quark mod
els @48,47# are also listed for comparison. We notice that ou
bare values are close to the constituent quark model pred
tions @47,48#, and the dressed values are close to the valu
of the PDG@45#. This suggests that our bare vertex can b
identified with the constituent quark model. The long
standing discrepancy between the constituent quark mo
predictions and the PDG values is due to the nonreson
meson-exchange production mechanisms which must be
culated from a dynamical approach. Similar consideratio
must be taken in comparing the PDG values with the pred
tions of higher massN* resonances from hadron models.

The results we have presented so far are based on
pN model determined in a fit to thepN phase shifts only up
to 250 MeV. It is interesting to see the extent to which th
model can be extended to a higher-energy region where
inelastic processes are still not dominant. More important

l

as

FIG. 20. The predictedK matrix defined by Eq.~4.28!. The
solid curves are the full calculations. The dotted curves are from t
resonant term. The dashed curves~denoted asB) are the contribu-
tions from the nonresonant termkgp defined by Eq.~4.29!.W is the
gN-invariant mass.
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54 2679MESON-EXCHANGE MODEL FORpN SCATTERING AND . . .
we would like to examine whether the extended model c
yield significantly differentpN off-shell dynamics which
perhaps can help resolve the difficulty in reproducing th
magnitudes ofp1 cross section@see Fig. 14~b!#. To explore
these possibilities, apN model is constructed by fitting the
phase shifts data up to 400 MeV. This model is called mod
H to distingush it from model L from the fit up to only 250
MeV. The resulting parameters are also listed in Table I. T
phase shifts calculated from these two models are compa
in Fig. 22. We see that model H~dotted curves! clearly gives
a much better fit to the data in the entire considered ene
region. But it is not as accurate as model L in describing t

FIG. 21. TheM11 residues A of theK matrix @Eq. ~4.32!#
calculated from the dressedD→gN defined by Eq.~4.30! and the
bare vertex are compared in the upper half. Their correspond
ratiosREM5E11 /M11 are compared in the lower half.W is the
gN-invariant mass.

TABLE IV. The magneticM11 and electricE11 amplitudes of
D→gN transition atW51236 MeV.REM5E11 /M11 . The ampli-
tudes are in units of 1023 ~GeV!21/2. The numbers in the upper and
lower rows for each case are respectively from usin
(gvNN ,GM ,GE) 5 ~10.5, 1.85,1 0.025! and ~7.0, 1.95,20.025!.

M11 E11 REM Average

GD→gN ~bare! 175 22.28 21.3%
~0.06 1.3!%

184 12.28 11.2%

ḠD→gN ~dressed! 257 26.9 –2.7%

~21.86 0.9!%
258 22.26 20.9%
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the crucialP33 channel in the low-energy region. To accu
rately fit theP33 in the entire energy region and to resolv
the difficulty in theP13 channel, additional mechanisms ma
be needed.

ThegN→pN results calculated from using the models H
and L are compared in Fig. 23. The photon-asymmetry rat
@Figs. 23~a! and 23~c!# are equally well described by both
models. They yield, however, significant differences in d
scribing the differential cross sections. In Fig. 23~b!, we see
that model H gives a much better description of thep0 dif-
ferential cross sections in the high-energy region, but
slightly overestimates the cross sections at low energies. T
p1 differential cross sections are better described by mod
H, as seen in Fig. 23~d!. But the difficulty in reproducing the
magnitude is not removed entirely.

The results in Fig. 23 suggest that our predictions do d
pend to some extent on the accuracy of the constructedpN
model in describing thepN phase shifts. A natural next step
is to extend the present model to include the inelastic cha

ing

g

TABLE V. Helicity amplitudes of theD→gN transition at
W51236 MeV are compared with the values from Particle Da
Group ~PDG! @45# and the predictions of constituent quark mode
of Refs. @47,48#. The amplitudes are in units of 1023 ~GeV!21/2.
The numbers in the upper and lower rows for each case are, resp
tively, from using (gvNN ,GM ,GE) 5 ~10.5, 1.85,10.025! and~7.0,
1.95,20.025!.

A PDG Dressed Bare Ref.@48# Ref. @47#

A3/2 22576 8 2228 2153 2157 2186
2225 2158

A1/2 21416 5 2118 284 291 2108
2126 296

FIG. 22. ThepN phase shifts calculated from model L~solid
curves! and model H~dotted curves! are compared. The data are
from Refs.@38# ~solid squares! and@39# ~open squares!. TL is pion
energy in the laboratory frame.
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FIG. 23. Photon-asymmetry ratios and the differential cross sections for thegp→p0p ~a! and~b! andgp→p1n ~c! and~d! reactions.
The solid~dotted! curves are from calculations usingpN model L ~model H!. The parameters are (gvNN ,GM ,GE)5(10.5,1.85,10.025).
The data are from Refs.@41,42#. Eg is the photon energy in the laboratory frame.
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an-
nels to obtain an accurate fit up to 400 MeV. This extensio
then will introduce inelastic pion photoproduction mecha
nisms, such as thegN→pD→pN process, which may be
needed to resolve the difficulty in getting an accurate d
scription of both thep0 andp1 processes. Such a coupled
channels approach must also include the effect due to
excitations of higher massN* nucleon resonances. This mus
be pursued in order to make progress in using the forthco
ing data from CEBAF to test hadron models.

VI. CONCLUSIONS AND FUTURE STUDIES

We have applied the unitary transformation method fir
proposed in Ref.@22# to derive from a model Lagrangian
with N,D,p, r, v, and g fields an effective Hamiltonian
consisting of bareD↔pN, gN vertices and an energy-
independent meson-exchangepN potential ~Fig. 3! and
gN→pN transition operator~Fig. 5.!. With the parameters
listed in Table I for the strong form factors and the bare ma
n
-

e-
-
the
t
m-

st

ss

of theD, the model can give a good description ofpN scat-
tering phase shifts up to theD excitation energy region. The
only adjustable parameters in the resulting pion photopr
duction amplitude are the coupling strengthsGE of the elec-
tric E2 andGM of the magneticM1 transitions of the bare
D↔gN vertex and the less well-determined coupling con
stantgvNN of the v meson. We have shown that the bes
reproduction of the recent LEGS data of the photo
asymmetry ratios of thegp→p0p reaction depends sensi-
tively on these three parameters and yieldsGM51.960.05
and GE50.060.025 within the range 7<gvNN<10.5.
Within these ranges of parameters, the predicted differen
cross sections and photon-asymmetry ratios are in an ove
good agreement with the data ofgp→p0p, gp→p1p, and
gn→p2p reactions from 180 MeV to theD excitation re-
gion. The model, however, underestimates thegN→pN
cross section at energies above theD region. This is expected
since the constructed model does not include inelastic ch
nels, such aspD, rN channels, which should start to play a



e
he
er
f
nd

of
a

f
e-

n-

54 2681MESON-EXCHANGE MODEL FORpN SCATTERING AND . . .
significant role at energies above about 350 MeV. Includin
these channels could also be needed to resolve the diffic
in fitting P13 pN phase shifts~Fig. 22!. The constructed
effective Hamiltonian is free of the nucleon renormalizatio
problem and hence is suitable for nuclear many-body calc
lations.

We have also analyzed theK-matrix method which is
commonly used to extract empirically thegN→D transition
amplitudes from thegN→pN data. It is found that the as-
sumptions made in theK-matrix method@6# are consistent
with our meson-exchange dynamical model. Our avera
value of theE2/M1 ratioREM 5 (21.86 0.9!% is close to
(21.076 0.7!% of Ref. @6#. The helicity amplitudes calcu-
lated from our baregN→D vertex are in good agreemen
with the predictions of the constituent quark models~Table
IV !. The differences between these bare amplitudes and
empirical values extracted from the data by using th
K-matrix method are shown to be due to the nonreson
meson-exchange mechanisms. This suggests that the
vertex interactions in our effective Hamiltonian can be ide
tified with hadron models in which thepN andppN ‘‘re-
action’’ channels~bothp andN are on their mass shell! are
excluded in the calculation of theN* excitation. Unfortu-
nately we are not able to pin down theE2/M1 ratio of the
bareg→D vertex by considering the existing data of photon
asymmetry ratios and differential cross sections. More p
cise data of other spin observables are needed to m
progress. This will be pursued when the data becomes av
able, along with the extension of our approach to investiga
pion electroproduction.

The unitary transformation method developed here can
extended to higher-energy regions for investigating high
massN* resonances. To proceed, we need to perform t
unitary transformation up to second order in the couplin
constants to account for the 2p production channels. The
resulting scattering equations will be defined in a larg
coupled channel spaceN* % pN% gN% ppN. This research
program can be carried out in practice since the numeri
methods for solving such a Faddeev-type coupled-chann
equations~because of the presence of the three-bodyppN
unitary cut! have been well developed@53#. Our effort in this
direction will be published elsewhere.
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APPENDIX: DERIVATION OF pN POTENTIAL

To see how the Feynman-amplitude-like expressions
Eqs. ~3.12!–~3.16! are obtained in our approach, we give
detailed derivation ofpN potential from the familiar La-
grangian

L5F2
f pNN

mp
c̄~x!g5g

mtWc~x!•]mfW ~x!

1
f pND

mp
cW D

m~x!TW c~x!•]mfW ~x!G1@H.c.#, ~A1!

where c(x), cD
m(x), and f(x) are, respectively, the field

operators forN, D, andp, TW is theD→N isospin transition
operator, and@H.c.# means taking the Hermitian conjugate o
the first term. By applying the canonical quantization proc
dure~see Sec. III about the problem concerning theD field!,
we can derive a Hamiltonian from Eq.~A1!. The resulting
Hamiltonian can be written as

H5H01HI , ~A2!

with

HI5HI
P1HI

Q , ~A3!

whereHP(HQ) describes processes which can~cannot! take
place in free space. Explicitly, we can write in second qua
tization form
tual
HI
P5(

a
E 1

~2p!3/2
1

A2Ep~k!
dpWdpW 8dkW H i f pND

mp
A mN

EN~p!
A mD

ED~p8!
v̄pW

m
8TaupWkmDpW8

†
bpWakWad~pW 1kW2pW 8!

2 i
f pND

mp
A mN

EN~p8!
A mD

ED~p!
ūpW 8Ta

†vpW
m
kmbpW8

†
DpWakW ,a

† d~pW 2kW2pW 8!, ~A4!

whereak,a
† , bpW

†, andDpW
† are, respectively, the creation operators forp, N, andD states,a is the pion isospin index, andu and

vm are, respectively, the spinors of Dirac and Rarita-Schwinger fields. Clearly,HP describes theD↔pN real processes
@similar to Figs. 1~a! and 1~b! with the changes→D# which can take place in free space. On the other hand, the vir
processes@similar to Figs. 1~c!–1~f!# are due to the Hamiltonian
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HI
Q5(

a
E 1

~2p!3/2
1

A2Ep~k!
dpWdpW 8dkW

3F i f pNN

mp
A m

EN~p!
A m

EN~p8!
$ūpW 8g5t

ak”upWbpW8
†
bpW@2d~pW 82pW 2kW !akW ,a1d~pW 82pW 1kW !akW ,a

†
#

1ūpW 8g5t
ak”vpWbpW8

†
dpW
†
@2d~pW 81pW 2kW !akW ,a1d~pW 81pW 1kW !akW ,a

†
#1 v̄pW 8g5k”t

aupWdpW 8bpW

3@2d~2pW 82pW 2kW !akW ,a1d~2pW 82pW 1kW !akW ,a
†

#1 v̄pW 8g5k”t
avpWdpW 8dpW

†
@2d~2pW 81pW 2kW !akW ,a1d~2pW 81pW 1kW !akW ,a

†
#%

2 i
f pND

mp
A m

EN~p8!
A mD

ED~p8!
$v̄pW 8

m
upWkmDpW 8

†
bpWd~pW 82pW 1kW !akW ,a

†
1v̄pW 8

m
•vpWkmDpW 8

†
dpW

1d~pW 81pW 1kW !ak,a
† %

1 i
f pND

mp
A m

EN~p8!
A mD

ED~p!
$ūpW 8vpW

m
kmbpW 8

†
DpWd~pW 82pW 2kW !akW ,a1 v̄pW 8vpW

m
kmdpW 8DpWd~2pW 82pW 2kW !akW ,a%G . ~A5!

Note that the above equation includes an antinucleon spinorv, which is included to maintain the relativistic feature of th
starting quantum field theory.

To proceed, we need to derive the unitary transformation operatorS. By the procedures outlined in Sec. II,S is related to
HI
Q . Hence, the actual task of deriving thepN potential is to evaluate Eq.~2.23! from theHI

P andHI
Q defined above. Let us

first focus on the first fourpNN coupling terms of Eq.~A5!. We need to consider

u i &5bpW
†
akWa
† u0&,

u f &5bp8
† akWa8

† u0&.

The allowed intermediate states in Eq.~2.23! are un&5bpW n
† u0&, bpWm

†
ak8a8
† aka

† u0& for the first term, and

un&5d
2pW n

†
bpW 8
†
bpW
†
akWa
†
akW8a8
† u0&, d2pWm

†
bpW 8
†
bpW
†u0& for the other three terms involving the antinucleon componentv. Substituting

these intermediate states into Eq.~2.23! and performing straightforward operator algebra, we then obtain

^kW8a8,pW 8uHI
PukWa,pW &5

~ f pNN /mp!2

~2p!3
1

A2Ep~k8!
A mN

EN~p8!
ūpW 8F(

i51

4

M ~ i !GA mN

EN~p!

1

A2Ep~k!
upW , ~A6!

where

M ~1!5
mN

EN~pn!
g5k” 8ta8upW nūpW n8g5k”ta

1

2F 1

EN~p!2EN~pn!1Ep~k!
2

1

EN~pn!2EN~p8!2Ep~k8!G ,
with pW n5kW1pW 5kW81pW 8,

M ~2!5
mN

EN~pm!
g5k”taupWmūpWmg5k” 8ta8

1

2 F 1

EN~p!2EN~pm!2Ep~k8!
2

1

EN~pm!2EN~p8!1EN~k!G ,
with pWm5pW 2kW85pW 82kW , and

M ~3!52
mN

EN~pn!
g5k” 8ta8v2pW n

v̄2pW n
g5k”ta

1

2 F 1

2EN~p8!2EN~pn!2Ep~k8!
2

1

EN~p!1EN~pn!1Ep~k!G ,
M ~4!52

mN

EN~pm!
g5k”tav2pWm

v̄2pWm
g5k” 8ta8

1

2F 1

2EN~p8!2EN~pm!1Ep~k!
2

1

EN~p!1EN~pm!2Ep~k8!G .
By using the properties that

mN

EN~p!
upW ūpW5

1

2EN~p!
@mN1g0EN~p!2gW •pW #,

~A7!
mN

EN~p!
vpW v̄pW5

1

2EN~p!
@2mN1g0EN~p!2gW •pW #,
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one can easily show that, for an arbitraryp0,

mN

EN~pn!
upW nūpW n

1

p02EN~pN!
1

mN

EN~pN!
v2pW n

v̄2pW n

1

p01EN~pN!
5

1

2EN~pn!
F ~mN2gW •pW n!S 1

p02EN~pn!
2

1

p01EN~pn!
D

1g0EN~pn!S 1

p02EN~pn!
1

1

p01EN~pn!
D G

5
1

p0
22EN

2 ~pn!
@mN2gW •pW n1g0p0#5

p” n1mN

pn
22mN

2 5
1

p” n2mN
,

~A8!

wherepn5(p0 ,pW n).
By using Eq.~A8!, we can combine various propagators in Eq.~A6! to obtain

(
i51

4

M ~ i !5g5k” 8ta8

1

2F 1

~p”1k” !2mN
1

1

~p”1k” 8!2mN
Gg5k”ta1g5k”ta

1

2F 1

~p”2k” 8!2mN
1

1

~p” 82k” !2mN
Gg5k” 8ta8,

wherep5„EN(p),pW … andk5„Ep(k),kW…. The above result looks remarkably simple. It resembles very much the usual Feynm
amplitudes, except that the intermediate nucleon propagator is the average of two Dirac propagators for the momenta ev
using the incoming or outgoingpN momentum variables.

The evaluation of theD terms is much more involved, but yields a similar form as given in Eqs.~3.15! and~3.16!. Similar
derivations can also be carried out to define thepN interactions, Eq.~3.14!, due to ther meson.
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