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An effective Hamiltonian consisting of bar&d— aN, yN vertex interactions and energy-independent
meson-exchangeN«— 7N, yN transition operators is derived by applying a unitary transformation to a model
Lagrangian withN,A, 7, p, o, and y fields. With appropriate phenomenological form factors and coupling
constants forp and A, the model can give a good description ®N scattering phase shifts up to tie
excitation energy region. It is shown that the best reproduction of the recent LEGS data of the photon-
asymmetry ratios inyp— °p reactions provides rather restricted constraints on the coupling streBgth
the electricE2 andG,, of the magnetidV 1 transitions of the bara— yN vertex and the less well-determined
coupling constantg,ny Of @ meson. Within the ranges thasy,=1.9+0.05, Gg=0.0=0.025, and
7<9g,un=10.5, the predicted differential cross sections and photon-asymmetry ratios are in an overall good
agreement with the data efo— #°p, yp— =" n, andyn— 7 p reactions from 180 MeV to thA excitation
region. The predicteM ,+ andE,+ multipole amplitudes are also in good agreement with the empirical values
determined by the amplitude analyses. The constructed effective Hamiltonian is free of the nucleon renormal-
ization problem and hence is suitable for nuclear many-body calculations. We have also shown that the
assumptions made in tH€-matrix method, commonly used in extracting empirically tfid— A transition
amplitudes from the data, are consistent with our meson-exchange dynamical model. It is found that the
helicity amplitudes calculated from our bay®l— A vertex are in good agreement with the predictions of the
constituent quark model. The differences between these bare amplitudes and the dressed amplitudes, which are
closer to the empirical values listed by the Particle Data Group, are shown to be due to the nonresonant meson
exchange mechanisms. Within the ranged,\n<10.5 of thew meson coupling favored by the data of the
photon-asymmetry ratios igp— 7°p reactions, our values of tHe2/M 1 ratio for theyN— A transition are
(0.0=1.3% for the bare vertex and-(1.8+0.9)% for the dressed vertekS0556-28186)04611-(

PACS numbeis): 13.75.Gx, 21.45tv, 24.10—i, 25.20.Lj

[. INTRODUCTION relations[1] or the K-matrix method4-7], our approach is
aimed at not only an investigation of thé¢* structure but
The main objective of investigating photoproduction andalso at the application of the constructed model to a consis-
electroproduction of mesons on the nucleon is to study theéent calculation ofN* in nuclear many-body systems.
structure of the nucleon excited staté$*(). This has been The meson-exchange models have been very successful in
pursued actively1] during the period around 1970. With the describing nucleon-nucleon interactioi®, electroweak in-
developments at several electron facilities since 1980, mor&eraction current$9,10], meson-meson scatterirjg1], and
extensive investigations of th& excitation have been car- meson-nucleon scattering2-14. It is therefore reasonable
ried out both experimentally and theoreticallg]. Apart to expect that the same success can also be achieved in the
from the need for precise and extensive measurements whichvestigation of pion photoproduction and electroproduction.
will soon be possible at CEBAF and Mainz, an accurateThis possibility has, however, not been fully explored. The
understanding of thBl* structure can be obtained only when dynamical models of pion photoproduction developed in
an appropriate reaction theory is developed to separate thHefs. [15-17 did contain the well-established meson ex-
reaction mechanisms from the hadron structure in thehange mechanisms of pion photoproduction, but phenom-
yN— N, 77N reactions. The importance of this theoretical enological separable potentials were used to describe the
effort can be understood by recalling many years experiencesN multiple scattering. The improvement made in Hé&8]|
in the development of nuclear physics. For example, the insuffered from the theoretical inconsistency in defining the
formation about the deformation of’C can be extracted meson exchangerN interaction andmN— yN transition.
from 12C(p,p’)*?C*(2*,4.44 Me)) inelastic scattering only The model developed in Ref§19,2( also does not treat
when a reliable reaction theofy8], such as the distorted- meson exchange completely since a zero-range contact term
wave impulse approximation or the coupled-channelds introduced to replace the particle-exchange terms of their
method, is used to calculate the initial and final proté8- N potential. In all of these models, the incomplete treat-
interactions. Accordingly, one expects that t& structure  ment of the meson-exchange interactions leads to some un-
can be determined only when the interactions in its decagertainties in interpreting the parameters characterizing the
channelsyN, #N, and 77N can be calculated from a reli- yN—A vertex which is the main interest in testing hadron
able reaction theory. It is the objective of this work to ad-models. The formulation developed in REZ1] can, in prin-
dress this problem from the point of view of meson exchangeiple, be used to examine the meson-exchange mechanisms
models. In contrast to approaches based on the dispersidm pion photoproduction, but has not been pursued numeri-
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cally. In this work, we will try to improve the situation by It is then necessary to include more terms in the effective
applying the unitary transformation method developed inLagrangian. A phenomenological procedure is then unavoid-
Ref. [22] to derive from a model Lagrangian an effective able to determine the accompanied low-energy constants.
Hamiltonian for a consistent meson-exchange description of In the meson-exchange model, one hopes to describe the
both thewN scattering and pion photoproduction. Further- N multiple scattering in the entire kinematic region includ-
more, the constructed model can be directly used to improving the highly nonperturbativd excitation region. The es-
and extend therNN Hamiltonian developed in Ref23]to  sential assumption is that theN multiple scattering is gov-
also describe the electromagneficexcitation in intermedi- €rned by a few-body Schadinger equation with the driving
ate energy nuclear reactions. terms calculated from the starting Lagrangian in a perturba-
The Starting point of Constructing a meson_exchangéion expanSion in the COUpIing constants. This can be real-
model is a model Lagrangian of relativistic quantum fieldized in practice only when the driving terms are regularized
theory. The form of the Lagrangian is constrained by theby appropriate phenomenological form factors. Qualitatively
observed symmetries of fundamental interactions, such aiPeaking, the meson-exchange model is an alternative to
Lorentz invariance, isospin conservation, chiral symmetryCHPT in the kinematic region where perturbative calcula-
and gauge invariance. The most common apprgadhis to  tions become very difficult or impossible. Both approaches
find an appropriate three-dimensional reduction of the laddei?volve phenomenological parameters. The success of each
Bethe-Salpeter equation of the considered model Lagrangia@PProach depends on whether these parameters can be inter-
The meson-exchange potentials are then identified with thereted theoretically.
driving terms of the resulting three-dimensional scattering In this work we will focus on theA excitation and will
equation. The most recent examples are e models de-  limit our investigation to the energy region wherer Jro-
veloped in Refs[12—14,19. The extension of this approach duction is negligibly small. By applying the unitary transfor-
to investigate pion photoproduction has also been made ifation of Ref.[22] to a model Lagrangian foN, A, , p,
Ref.[20]. w, and vy fields, we have obtained an effective Hamiltonian
Alternatively, one can construct a meson-exchange modeionsisting of bareA«~ wN,yN vertex interactions and
by deriving an effective Hamiltonian from the consideredenergy-independentN« N, yN transition operators. The
model Lagrangian. Historically, two approaches have beenrN scattering phase shiff88—4Q are used to determine the
developed. The first one is to use the Tamm-Dancoff aphadronic part of the constructed effective Hamiltonian which
proximation[25]. This method leads to an effective Hamil- has only seven parameters for defining the vertices of the
tonian which is energy dependent and contains unlinkedneson-exchangerN potential and theA« 7N transition.
terms, and hence cannot be easily used in nuclear many-bodyie strong vertex functions in thgN— N transition op-
calculations. A more tractable approach is to apply theerator are then also fixed. This is a significant improvement
method of unitary transformation which was developed byover the previous dynamical mod€l$5—17 in which the
Fukuda, Sawada, and Taketdi6] and independently by employed separable potentials have no dynamical relation
Okubo[27]. This approach, called the FST-Okubo method,with the pion photoproduction operator. A consistent de-
has been very useful in investigating nuclear electromagnetigcription of thewN scattering andyN— =N transition is
currents[28—3( and relativistic descriptions of nuclear in- crucial for separating the reaction mechanisms due to meson-
teractions[31—-34. The advantage of this approach is thatexchange nonresonant interactions from the tothll—A
the resulting effective Hamiltonian is energy independentransition.
and can readily be used in nuclear many-body calculation. Once the hadronic part of the effective Hamiltonian is
Motivated by the investigation of therNN dynamics determined, the resulting pion photoproduction amplitude
[23,35, this method has been extended in R2£] to derive  has only three adjustable parameteBg; of magneticM 1
an effective theory involving pion production channels. InandGg of electricE2 transitions of the bargN— A vertex,
this work, we adopt this method to develop a dynamicaland the less well-determinedNN coupling constant. We
model for wN scattering andyN— 7N reactions. will determine these three parameters by considering the
It is necessary to explain here how our approach is relatethost recent LEGS dafat1] of the photon-asymmetry ratios
to the approach based on chiral perturbation théGPT) in yp— a°p reactions. The resulting parameters are then
[36]. Since chiral symmetry is a well-established dynamicaltested against very extensive data in Rgd2—44.
symmetry of strong interactions, it should be used to con- It is customary to test hadron models by comparing the
strain our starting Lagrangian. This leads us to assume th#heoretical predictions ofN* —yN transition amplitudes
our starting Lagrangian is an effective Lagrangian for generwith the empirical values listed by the Particle Data Group
ating the tree diagrams in CHPT. The parameters are the®DG) [45]. Since the first systematic calculatip#6] based
completely determined by the well-established chiral dynameon the constituent quark model was performed, it has been
ics such as partially conserved axial-vector curf@€AC observed that the predictel— yN transition amplitudes
and current algebra. Therefore, our model and CHPT arf46-5Q are significantly smaller than the empirical values
identical in leading orders. The differences come from howlisted by the PDG45]. While the problem may be due to the
the unitarity is implemented to account for thé\ multiple  limitations of the constituent quark model, it is necessary to
scattering. In the spirit of CHPT, the “low”-momentum recognize that the empirical values of the PDG are obtained
pions are considered as weakly interacting Goldstone bosonsy using theK-matrix method[4—7] or dispersion relation
and hence their interactions with the nucleon can be treateld]. Both approaches contain assumptions about the nonreso-
as perturbationf37]. This amounts to restoring the unitarity nant contributions to theeN— A transition and must be jus-
perturbatively by calculating loop corrections order by order tified from a dynamical point of view. Within our dynamical
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model, we will address this point concerning tkematrix ~ method, it is sufficient to consider a simple system consist-
method. This leads us to identify our bag®—A vertex ing of only neutral pions and fictituous mesons. The ob-
with the constituent quark model. The dispersion relationjective is to derive an effective Hamiltonian from the La-
approach[1,5]1] is defined in a very different theoretical grangian density

framework and therefore is beyond the scope of this investi-

gation.

In Sec. I, we will use a simple model Lagragian to ex-
plain how an effective Hamiltonian can be constructed by herel is th | int ting L . dth
using the unitary transformation method of REZZ]. The where .O(X) IS the usual noninteracting Lagrangian, and the
method is then applied to realistic Lagrangians to derive ir{nteracuon term is taken to be
Secs. Il and IV an effective Hamiltonian farN scattering
and pion photoproduction. The equations for calculating the Li(X) = = Gomm(X) $l(X). 2.2
7N scattering andyN— 7N amplitudes are also presented
there. The relationships with tHe-matrix method are then The Hamiltonian can be derived from E@.1) by using the
established. Results and discussions are given in Sec. V. TRgandard method of canonical quantization. In the second-
conclusions and discussions of future studies are given iguantization form, we obtaitin the convention of Bjorkin

L(x)=Lo(x)+L;(x), (2.1

Sec. VL. and Drell[52])
II. METHOD OF UNITARY TRANSFORMATION H=Ho+H,, 2.3
To explain the unitary transformation method of R&2]
[will be referred to as the Sato-Kobayashi-OhtsuB&O) with
|
Ho= f dK[E(K)a"(K)a(K)+E,(K)bT(K)b(K)], 2.4
H f ol dksck {[2a" (ky)a(Ky)b(K) (Ky — K, —K)
1=90mn a‘(Kp)a(ky 17 Ko~
\/(ZW)SSEﬁ(kl)EW(kZ)EU(k)
+a'(ky)af(ky)b(k) (K +kp—K) +a(ky)a(ky) b(k) 8(Ky +kp+K) ]+ H.c}, (2.5
|
WhereaT(IZ) and bT(IZ) are, respectively, the creation opera- o d|21d|22d|2
. o 7 . H =
tors for 7 and o parncles,Ea(k)—\/mzaJrk is the free en- | gaﬂwf J2m)8E (k)E (K) E.(K)
ergy for the particlax, and[H.c.] means taking the Hermit- MR
ian conjugate of the first term in the equation. We further x{a'(ky)a'(kp)b(K) 8(ky+K,—k)+[ H.c]},
assume that the mass of tbemeson is heavier than two- 2.7
pion mass, i.e.m,>2m,.. '
Because of the intrinsic many-body problem associated
with the starting quantum field theory, it is not possible to 0 dk,dk.dk
solve exactly the equation of motion for meson-meson scat-  H, :ga"n'ﬂ'f J(2m)%8E (K)E (K, E.(K)
™ \N1 m\ N2 4

tering defined by the above Hamiltonian. A simplification is
obtained by assuming that in the low- and intermediate-
energy regions, only “few-body” states are active and must
be treated explicitly. The effects due to “many-body” states - - S e s
are absorbed in effective interaction operators which can be +a(ki)a(ko)b(k) 8k +ko+K)]+[ H.cl}.
calculated in a perturbation expansion in coupling constants. (2.9
This few-body approach to field theory was pioneered by

Amado and Aaron[53]. In the SKO approach, this is The elementary processes induced HbS'/ are illustrated in

achieved by first decomposing the interaction Hamiltoniarthe upper half of Fig. 1. Fom,>2m,, the c— 7 decay
H,, Eq.(2.5), into two parts: and 77— o annihilation are “real processes” and can take

place in free space. On the other hand, the processes
o and vacuume o induced byHP are “virtual
P L0 processes’{lower part of Fig. ). They cannot occur in free
Hi=Hy +H, (2.6)  space because of the energy-momentum conservation. The

x{[2a'(ky)a(ky)b(Kk) 8(k; — k,—K)
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FIG. 1. Graphical representation of the interaction Hamiltonians F'_G- 2 Gr‘?‘fhical representation of the effective interaction
HP of Eq. (2.7) andH® of Eq. (2.8). HamiltoniansH,  of Eq. (2.19 andH,? of Eq. (2.20.

essence of the SKO method is to systematically eliminate th€Ur task is to findS, by solving Eq.(2.11). Considering two
virtual processes from the considered Hamiltonian by usingigenstate$i) and|f) of the free HamiltoniarH, such that
unitary transformations. As a result the effects of “virtual {f|Onli)=1, Egs.(2.11), (2.12, and(2.13 then lead to

processes” are included as effective operators in the trans-

formed Hamiltonian. o . iS, = -1 F,. (2.14
The transformed Hamiltonian is defined as Ei—E;
H =UHU' Note thatE; andE; are the eigenvalues of free Hamiltonian
Ho, and hence the solutid®, is independent of the collision
=U(Ho+HP+HJUT, (2.9  energyE of the total HamiltoniarH. This is an important

feature distinguishing our approach from the Tamm-Dancoff
whereU =exp(—iS) is a unitary operator defined by a Her- approximation. By using the above relation, it is easy to
mitian operatorS. By expandingU=1—-iS+--., the Verify that the solution of the operator equati¢hll) is
transformed Hamiltonian can be written as

< f dk,dk,dk
’ 1 1 I = omTT
H'=Ho+HF +HR+[Ho,iS]+[H, ,iS] J J(27)38E (K, E.(Ky)E,(K)

1 - - -

- ‘o . . . 6(ki—ko—k)

+ —[[Ho,iS],iS]+ - - - (2.10 t ) 1 "2

2! X |2 tat b GO T E o1+ EL (0
To eliminate from Eq(2.10 the virtual processes which are L. S(Ky+Ky+k)
of first order in the coupling constard,,,, the SKO +a(ky)alkz)b(k)z (k) TE (k) *E. (0| T H.c.].
method imposes the condition that N i 7 (215

A1
Q iS1=
H+[Ho,iS]=0. (219 By using Eq.(2.11), Eq. (2.10 can be written as

SinceH, is a diagonal operator in Fock space, EZ.11) H'=Hy+H,, (2.16
clearly implies thatS must have the same operator structure
of HR. with

To simplify the presentation, we writd? as
H/=HP+[H[,iS]+2[HR,iS]+ higher-order terms.
(2.17

SinceH{ , HR, andS are all of the first order in the coupling

h h ining th i .constang,,.., all processes included in the second and third
whereO, denotes the part containing the creation _and aMNiterms of theH| are of the order of? .. But some of them
hilation operators, ané,, is the rest of thenth term in Eq.

. are “real processes,” such as theexchanger interaction
E)%%\}r:gggeafsorm of Eq(2.12), the solution of Eq(2.11) can and m-exchangewrm— oo transition, as illustrated in the

upper half of Fig. 2. The other processes are “virtual pro-
cesses.” An example is the emission of twomesons by a
is=> O.dk.dk.dk. 21 pion illustrated in the lower half of Fig. 2. We therefore
En: J SiOndkadk, 213 rewrite Eq.(2.17 as

HO=> anondlzldRZdE, (2.12)

n
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H=HPHH RO S, 0L, 248 (1) =S | IHm g g
= I n

where —<f|HP|n><n|HF|i>En_Ef

H/P=([HF,iS]+1[HR,iS])P, (2.19 +<f|HP|n><”|H|Q|i>%{E 1E E 1E H
i~ En n— Ef

H{Q=([HFiS]+[H,iS])2. (2.20 (223

The calculation of the matrix element b ” therefore has a
very simple rule. For a given choice of basis stdi¢sand
|f), the allowed intermediate stateis determined by the
operator structure 0D, in Egs.(2.12 and (2.13. The de-
nominator in Eq(2.23 can easily be written down by using

In the above two definition$d; "(H| ) is obtained by evalu-
ating the commutators using Eq2.7), (2.8), and(2.15 and
keeping only the realvirtual) processes in the results.

The next step is éo perform a second unitary transforma
tion to eliminateH'~. In this paper we only consider the ' S
effective Hamiltonian up to second order in the couplinge'genv""lwfS of Lhe free Ijgmlltoplf}rﬂb. L
constant, and so we do not need to consider the second uni- Evaluating Hi and H;™ explicitly within the coupled
tary transformation. The effective Hamiltonian is then ob-77® o space, Eq(2.21) can be cast into the following more

tained by droppingd’< and higher-order terms in E¢.19: ~ familiar form for war scattering:
Heg=H+HP+H/", (2.21) ef =Hot foimntVon. (2.24

WhereH,P is defined by Eq(2.7), andHl’P can be calculated HereH, is the free Hamiltonian operator far and o me-
from Eq.(2.19 by using the solution Eq2.15 for S. Note  sons. The second term describes #he 77 transition with
that bothH® andiS contain a virtualr— o vertex. They the matrix element

are included inH/" of the effective HamiltoniarH in a

commutator form, as seen in the second term of Bdl9.

Consequently, the effect due to the- 7o vertex can give a (IZ K 't |IZ>= \/Eg,,m

7— mo—  loop correction to the pion mass operator of the 1heliama J(27)38E (K1) E (ko) E (k)
effective HamiltoniarH .. Furthermore, one can see by per- (2.25
forming some straightforward derivations that the matrix el-

ement ofH.4 between ar and awo state vanishes. This

simplification is the consequence of the SKO method definedhe =7 potential V... is obtained by using E¢2.23 to
by Eq.(2.11) in operator form, and is not due to the choice calculate  H/®  between two = states. For

of a model space in which some virtual states are omitted. Ifj)= ||2i112i2>: \/g[aE aE ]|0) and <f|:<;2f1|2f2|
we choose the pion masslity as the physical mass, the loop oo . _
correction should be dropped frot, " in order to avoid :<O|[a|2fla|2f2]\/; the possible intermediate states in Eg.

double counting. A similar situation will be encountered in (2.23 are|wmo) and|mwm7o) states. Inserting these in-
the derivation of therN effective Hamiltonian. The virtual termediate states into E(R.23 and carrying out straightfor-
N« 7N process can give Al—wN—N loop correction to ward operator algebra, we obtain

the nucleon mass operator. The matrix element of the con-

structed effective Hamiltonian between &h state and a s ;

«N state vanishes. In our model we choose the physical Vir=Vart Vs, (2.26
masses folN and 7r in the free Hamiltonian and hence the

loop corrections in the effective Hamiltonian are alsowi,[h the following the matrix elements between twemr
dropped. This phenomenological procedure saves us from ) 9
facing the complicated mass renormalization problem instates.
solving thewN scattering problems.

Because of Eq(2.14), Egs.(2.12 and(2.13 lead to the g2 1 1
simple relation <kf1kf2|me|ki1ki2>: (2::;3 \/2E (Kep) \/2E Ken)
a\Rf1 a\Rf2
L -1 . 1 1
(flisli) = z—(fIHRl), (2.22 «
o= V2E (ki1) V2E(Ki2)

()(k. ) (=)
where|f) and|i) are two eigenstates ¢f,. With the above XDy (kistkiz) +Dg “(Kp k)],
relation, the calculation dH(P, Eq. (2.19, becomes (2.2
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Lo . 2 1 1 HereT is aN—A isospin transition operator defined by the
t _ 907”7 . 3 1 1 1113
(Kr1Kra| Vol Kinkiz) = 2m° 2E (k) V2E. (k) reduced matrix elemens4] (||T||2)=—(}||T'||3)=2. By
m m 2 using the standard canonical quantization, a Hamiltonian can

1 1 be derived from the above Lagrangian except the term in-
X volving theA field. The difficulty of quantizing tha field is
V2E (K1) V2E(ki2) well known, as discussed, for example, in Rgfs5] and

_ _ [56]. As part of our phenomenology, we take the simplest
X[Bolkiz=kez) + Dolkiz=kKr2) prescription by imposing the anticommutation relation

+ D (ki1 —Ks1) + D o(kiz— ki) ],

(2.28 {Ag.AL}=8(p—p"), (3.7

where

where A,;(AE) is the annihilation(creatior) operator for a
D,(K)= = ! >=D)(k)+D)(k), (2.29 A state. This choice then leadS5] to the A propagator
ke—mjg given later in EQ.(3.18. The alternative approaches pro-
. posed in Ref[56] will not be considered.
with Following the procedure described in Sec. I, the next step
1 1 is to decompose the resulting Hamiltonian intoH$ for
_— _ (2.30 “physical processes” and a-I,Q for “virtual processes.”
2E (k) ko+Eq(k) From Egs.(3.3—(3.6), it is clear that the real processes in
this case aré < 7N andp« 7 transitions which can take

This completes the illustration of the SKO method in de-p|ace in free spacébecausen,>my+m, andm,>2m,).
riving an effective Hamiltonian from a model Lagrangian of The virtual processes amd«< N, N—pN, N—zA, and
relativistic quantum field theory. The extension of the m—mp transitions. These virtual processes can be elimi-
method to consider more realistic Lagrangians is straightforyateq by introducing a unitary transformation operaSor
ward and will not be further detailed. In the following sec- \yhich can be determined by using the similar method in
tions, we will simply write down the starting Lagrangians obtaining the solution Eqg2.13 and (2.14). Here, we of
and the resulting effective Hamiltonians up to second ordeggyrse encounter a much more involved task to account for
in the coupling constants formN scattering and the the Dirac spin structure, isospin, and also the antiparticle
yN— 7N reaction. components ol andA. To see the main steps, we present in

the Appendix an explicit derivation of the potential due to
lll. 7N SCATTERING the L,y term, Eq.(3.3).

For practical applications, it is sufficient to present our
results in the coupledrN® A subspace in which therN
scattering problem will be solved. The resulting effective
Hamiltonian then takes the form

D (k)=

We start with the following commonly assumgh?] La-
grangian forN,A,#, andp fields:

L(x)=Lg(x)+L,(x), (3.2
wherelL y(x) is the usual noninteracting Lagrangian, and the N_H oy n
interaction is taken to be Herr =Hot acmntvan, 38
Li(¥)=Lann(X) + Lana(¥) +Lonn(¥) + Ly 7a(X), 3.2 whereH, is the free Hamiltonian forr, N, and A. Note
(32 thatI", ., ,n [Figs. 3@ and 3b)] is the only vertex interac-
L . P tion in the constructed effective Hamiltonian. Our model is
with (in the convention of Bjorkin and Dre[52]) therefore distinctively different from the previous meson-
o exchangemN models[12-14,19 which all involve a bare
Loan(X) ==~ INX) Y5 Y L TUN(X) I* - (X)), nucleon statéN, and aNg« 7N vertex.
m (3.3 The 7N potentialv . in Eg. (3.8 is found to be
fona— = . _
L= P00 TYn(0) - 0,6,00 +[ Hel, (34 VN TN FUNGT U U, U @9
- 7 . K, . wherev is the direct nucleon pole terffig. 3(c)], vy_ the
L onn(X) = Gonnt(X) 5 | ¥, (X) = ﬂ%ﬂ%:ﬁ(x) nucleon-exchange terfiFig. 3d)], v, the p-exchange term
[Fig. 3@)], Va, the interaction due to the anti-component
X (), (3.5 of the A propagation[Fig. 3(f)], and Vag the A-exchange

. . term[Fig. 3(g)]. To simplify the presentation, we will only
Lopra(X)=0prn(PrXd dr)- & . (3.0 give the matrix element ob .y in the #N center-of-mass
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FIG. 3. Graphical representation of the inter-
A actions of the effective Hamiltonian, E(8.8), in
\ the coupledmN® A space.
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Vany = + . + 8 + + Ao
. r
I‘_\ .
N N Yo Va, Va,
{) { ©) { )
frame. The initial and final four-moment&‘,k’# for pions k'“=(E_(K'),K)
andp#,p’* for the nucleons in Fig. 3 are therefore defined e

as , _
) p'= (En(K'),~K).
k#*=(E ,(k),k), (3.10
In terms of these variables, the matrix element of each term

p":(EN(k),—IZ), of Eq. (3.9 between tworN states can be written as

J
(R o, m,) = ot [\ T R ) @11
H MMy Y oK1 Ms, M7 = , Uk oK' KDUZ g s :
s v s (277)3 2E_(k') En(k’) 2E_(K) En(k) k",mg,m’ K,mg,m_

f‘rrNA

where Up,mgm_ is the Dirac spinor,mg and m_ are the 2 _—
—=| THkL G [SE(p+K)+S4"(p' k)

nucleon spin and isospin quantum numbers, iaaddi’ are
the pion isospin components. The interaction mechanisms

are contained in the functiods(K'i’,ki). After performing

IAD(E’i’,IZi)z(

=S (p+k) — S (p +K)ITik,

lengthy derivations, we find that these functions can be writ- (3.15
ten in the concise forms
N N f NN 2 U1 i — fﬂ'NA 2 T 1 LV ’
Ing(K'i7 ki) =| = ) 779K L [Sy(p+K)+Sy(p’ +K)] Lae(Ki ki) =| <= Tik, 2 [S"(p=K')
x v, (3.12 +Sk"(p' —K)]Tik,. (3.16
. fun)? . The propagators in the above equations are defined as
Ing(K'T" ki) = ) 77Kz [Su(p—K') +Su(p’ — k)]
XTir’ySk,, (313) S :—1 3.1
NP = (3.17
-, e 19NN prn Ky o
I,(K'i yk|):M5ii’ka Yu— 5—i0,,(p—p")
4 2mN “AV AV AV
) p*p DA A A
\ SHP) = ———|2| —g“+ |+
X[Dy (p—p")(k+k"),\] 3(p—my) My 2
Py —py*
+[(p—p’)<—>(k’—k)]], (3.14 TTm | (3.18
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v v 2
gtr—ptp’img

M o---z=c---  c-mpec--- AN
—_—— . 3.1 = .
p2_m§ ( 9 @ @ + FRNM—N-[N
N

In Eqg. (3.15, we also have introduced a propagator

Dy (p)=—

4
mA wp(l)p

Ea(P) po—Ea(p)’

o

SiV#(p) = (3.20

where w# is the Rarita-Schwinger spindas explicitly de-

fined in Ref.[17]). In the A rest frame, this propagator re- Ty Ty e
duces to the simple form _.\ = _\ +
0
. 0% . - 1 °
S(+)|J( ) —— 3§IJ_O_IO_J) G, G -
p o 6 ( Po—Mx } A . #
(3.2)

for i,j=1,2,3. The other elements involving time compo- FIG. 4. Graphical representation of scattering equations defined
nents vanish in this special framg{")#°=8(*)0*=0, The by Egs.(3.23—(3.30.
appearance of this propagator in £§.15 is to remove the ] . ] ]
mN—A— N mechanism which can be generated by theThe first term is t_he nonresonant amplitude determined only
vertex interactionl’, ., .y Of the effective Hamiltonian Eq. by the 7N potential:
(3.8). This comes about naturally in our derivations.

We note that the above expressions are remarkbly similar tan(E)=vant v anGan(BE)tan(E), (3.29
to those derived from using Feynman rules. The only differ-
ences are in the propagators of the intermediate particle¥‘."th
These propagators are evaluated by using the momenta of the P
external particles which are restricted on their mass shell, as G.n(E)= N : (3.29
defined in Eq.(3.10. For the off-energy-shell dynamics i E—En(k)—EL(k) +i€’
[En(K)+E (k) #En(K')+E(k')], these propagators can ) o
have two possible forms, depending on which set of externavhere Py is the projection operator for theN subspace.
momenta is used. The propagators in E§s12—(3.16) are The second term of Eq3.23 is the resonant term deter-
the average of these two possible forms of propagators. Mor@ined by the dressed propagator and the dressed vertex
details can be seen in the Appendix where the derivation ofunctions. They are defined by
UN=UN, TUN, IS given explicitly. 0 0

In the wN center-of-mass frame, th& in the vertex in- Ca(B)=GA(B)+GA(B)Za(E)G4(E)
teractionT', ., .y IS at rest. In this particular frame, the P,

Rarita-Schwinger spinors reduce to a simple form such that = E-my_S.(E)’ (3.26
the matrix element of the vertex interactibp_, .\ takes the A=A
familiar form with
- fana i 1 P
AT o KDY=~ 0E)= 2
< | A N| > m. m 2E7T(k) GA(E) E—mA (3.27)

[En(K)+mys o and

HereSis aN—A transition spin operator. It is defined by o
the same reduced matrix element as the transition isospin o an(BE)=[1+ G n(E)t nE) s N,  (3.29
operatorT.

Because of the absence ofrdN<— N vertex in the effec- whereP, is the projection operator for th& state, and the
tive Hamiltonian, Eq(3.8), it is straightforward to derive the A self-energy is defined by
7N scattering equations in the coupledN® A space. The _
derivation procedure is similar to that given in REZ3] for SAE)=T ;noaGan(BE)T A -n(E). (3.30
the more complicate@rNN problem. The essential idea is to
apply the standard projection operator technique of nucleaEquationy3.23—(3.30 are illustrated in Fig. 4. These equa-
reaction theory3]. The resulting scattering amplitude can betions are solved in partial-wave representation. To find the
cast into the form solution for the integral equatio(8.24), it is necessary to

_ _ regularize therN potential by introducing a form factor for

T NE)=t NE)+ s nE)GA(E)T ;n_a(E). (3.23  each vertex in Eq943.12—(3.16. In this work, we choose

FWNHA(E):FWNﬂA[l—FGﬂTN(E)th(E)L (32&
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Crir Srir Following the approach of Ref17], the pion photoproduc-
Inpt ] kK'i’ ki)—=[InpT] K'i'",Ki ] X ] , .
[t Tl )= [no* el ) tion mechanisms are defined by the hadronic Lagrangians

XF (K F an(K), (3.3)  defined by Egs(3.1) and (4.1 and the electromagnetic in-
teraction Lagrangians

L(K'i7 ki) —1 ,(K'i" Ki)F (K=K )F pn(K—K'),

(332 Lem: LyNN+ L77777+ L’yﬂ'NN+ L’yp77+ L)/UMT+ LyNA y
4.2
with
) with
= A721-NN
Fann(k) = @ (3.33 o -
NN Lynn= —edn(X) éA(X)_ﬁaﬂv[(gvAM(x)]}‘/’N(X)-
Foan(k—K)=F,,(K—K'), (3.39 4.3
A2 2 ef nn— I
=\ v Lyann= =~ N vsAILTX (%) Jaihn(X),
o+ (k=K) u
(3.39 (4.9
For mNA vertex with an external pion momentuk) we L,,TW:e[r?“(Z),T(X)X<Z>,T(X)]3AM(X), (4.5
choose
A2 2 9
Fana(=| 5= (3.36 Lpmy =" €apyal SAP(X)]b(X) [ P(X)], (4.6)
A7'rNA+k g
We have also tried other parametrizations of form factors, Do
but they do not give better fits to theN scattering phase wazm—yeaﬁyg[a“AB(x)]qﬁfr(x)[a%f,(x)], 4.7
shifts. T
IV. PION PHOTOPRODUCTION LyNAzieWA‘TJwAV(x)wN(x)+[H.c.]. 4.9

To proceed, we need to first extend the Lagrangian, EQqere g=(1+ r5)/2, k= (Kkpt kp)I2+ (Kp— Kp) T5/2.  The
(3.1, to0 includew meson coupling which is know[m,l‘/] to Y NA coupling in Eq.(4.8) is
play an important role in pion photoproduction. We choose

the following rather conventional forrfwith «,~0)
I,,=(GuK}),+GeKE ), 4.9

as defined in Eq€2.100h and(2.109 of Ref.[17]. Its matrix

K(})
= M - 12y
Lonn=Gunntin(X)| 7, u(X) 2my 7 PuX) |In(X). element between aN with momentump and aA with mo-
(4.2 mentump, can be written explicitly as

A(py)|T,IN(P))=(Gy—G > Mt pegh
< (pA)| ,LLV| (p)>_( M E) (mA+mN)2_q2 ZmN €uvapB q
6 my +Mmy
. 5 anB N Yo
+GE|7 [(mA+mN)2_q2][(mA_mN)Z_qz] my €,u)\aﬁp q Evy5pAq ’ (41@
|
with P=(p+p,)/2 andp,=p+a. duction is therefore a simple extension of the effective

By applying the usual canonical quantization procedureHamiltonian of the form of Eq(2.21):
we can obtain from the above Lagrangians an electromag-
netic interaction HamiltoniarH,,. In this work, we will
treat the electromagnetic field as an external classical field,
and hence the electromagnetic interactlég,, can be ne- =Ho+H{+H/P+H, (4.11
glected in constructing the unitary transformation operator
S. The effective Hamiltonian for describing pion photopro- with

em
H eff H eff+ eff
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results in the center-of-mass frame. The momenta variables
g* for the photonp* for the initial nucleonk* for the pion,
andp’# for the final nucleon, in Fig. 5, are therefore

rA<—>yN =

9“=(q,q),
pt=(En(q),— ),

k= (E .(k),K),

p'#=(En(k),— k). (4.14

G () In terms of these variables, expressi@nl0 becomes very
simple. The matrix element of tHe, ..,y vertex can then be
A expressed in terms of the spin and isosiin A transition-
a,p operatorsS and T introduced in Sec. lll. At the resonance
energy,m,=En(q)+q, Eqg. (4.10 leads to

- En(q) +my
<A|F7NHA|q)\>__ (277)3/2 2EN(q)

« 1 3m,
J2q 2my(my+my)

+Gg(S-€,0-0+S-qo-€,)],  (4.19

To[iGuSXq- €,

) 0
where Ex is the photon polarization vector. The matrix ele-

. . . __ment of the nonresonant interaction,, can be written as
FIG. 5. Graphical representation of the effective interactions

I‘A,_,)/N andeN of Eq (413
<k| ’mém;|vﬂ'y|q)\rmsmr>

Hef=Hemt+ [Hem,iS] (4.12
1 1 1 my my
By evaluatingH gy in the coupled\ ® wN@ yN subspace, we T (27)® JoE ® v2q VE (k) VEN(Q)

obtain an extension of E¢3.8):

XIEmém; E IZV(EL&)\) LLIstmT- (4-16)

HgﬁHHgquT:HO+FA<—>7TN+vﬂ'N+FA<—>7N+vﬂ'y1

4.1 . . .
.13 The nonresonant pion photoproduction mechanisms are con-

where ', and v have already been given in Egs. tained inl{” for the direct nucleon termiFigs. Sc), 5(d),
(3.1)-(3.22. The resonant and nonresonant electromagand §e)], |77 for the pion pole ternjFig. 5(f)], 177, for the
netic interactions are, respectively, describedlay, 5 and  vector meson-exchand€ig. 5g)], andl 3 ,¢ for the direct
v, and are illustrated in Fig. 5. We again omit the detailsand exchangeé terms[Figs. §h) and Fi)]. Explicitly, we
of the derivation of these two terms, and simply present ouhave

BEN) +i o0 (M)A
N

efﬂ'NN "é)\ +i K O Lalo k4
eE(N) lz—mNU,wE( )¥q

I T7(Ki,q\) = =

i 7y kSy(p’ +K) +i

2m

w

' (4.1

X Sn(p—K) iy k— €ij37; Y £(N)

TY( i efWNN 5/ A7 ' ’
IZ7(KiLah) = — ——€ija7; (B~ P)[(k+p—p")-e(M)DL(p—p")], (4.18
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Ty, goNNg my Ti v ’ a ’
17 (ki,qn)==* ﬁ" L | Va5 Tun(P=P')7 | XD (PP ) €upyue (M)A (P=P')?,
. . JunND o iK v a
Iwy(klaq)\)_ m z i3] ’)/,U._zm ,un(p p )77 XD# (p p )eaﬁ'yv ()\)qﬁ(p p )7 (419)
TY(RI A efmna 1t s
IZ2(Ki,qh) =——TII T ;€2\ S (p—K) Tik, , (4.20
TY (Ui efﬂ'NA T LV ([~ () )uv( ! b
IB(KIqN) = = ——Tik,[Sy"(p" +K) = ST (p" +K) I T3l 5€7(N). (4.21
|
Here we observe again that the above expressions are very GWNHGWN,
similar to the results derived by using Feynman rules. How-
ever, they have an important feature that the time compo- T.n—Kon,
nents of the momenta in the propagators and strong interac-
tion vertices are evaluated by using the external momenta of t.n—Kon,
the final 7N state. This is the consequence of applying the o o
unitary transformation method defined in E4.12. In ad- FAHwN_,FinN,
dition to including nonresonant terms[Figs. §h) and i)],
this is another feature which makes our model different from P,
the model developed in Ref17]. G,—Gh= EmmiosN(E) (4.26
It is straightforward to derive from the effective Hamil- 24
tonian, Eq.(4.13, thet matrix of pion photoproduction: with
TW<E>=tw<E>+FA%N<E>GA<E>FYNHA(E).(4 ’ SK(E)=T sy aGoNEITE L n(B). (429
Note that theA self-energyi'g is now a real number, and the
where the nonresonant amplitude is defined by propagatoiG} has a pole aE= MR:mA+E§(MR).
The corresponding matrix for pion photoproduction can
t,(E)=v,,+t N(E)GNnE)v,,. (4.23 be obtained from Eqsi4.22—(4.24) by the same replace-

ment, Eq.(4.25:

The dressed/N«— A is defined by K. (E)=k (E)+F (E)GP(E)F (5
yT ym A—mN A yN—A ’

= = 4.2
T a(B)=T s+ T s (E)Gn(EDo . (428
(4.24 it
In the above equation§ ,F_AHwN , G, andt_ have been Kyz=0ynt kWN(E)G’;N(E)vw, (4.29
defined in Sec. Ill. The standard partial-wave decomposition o
is used to obtain the multipole amplitudes fram, for the NHA(E) ryNﬁAer Noa(E)GENE) v,y
yN— 7N reaction and fromI',_ .y for the dressed (4.30
A~ aN vertex. Equationg4.22—(4.24 are illustrated in ]
Fig. 6. For the on-shell matrix elements [E=Ey(kg)

The K-matrix formulation of theyN— =N reaction is of- T Ex(ko)=a+En(a)], it is straightforward to find the fol-
ten used4—7] in the analysis of data. Within our formula- lowing relation in each partial wave:

tion, this can be obtained by replacing thé\ free Green
functionG .y, Eq.(3.25, by Tyn(Ko,a)=[1—impT n(Ko.Ko) 1K, (Ko, ). .31

P PN 4.9 For investigating the hadron structure, we are interested in
E—En(K)—E(K)’ (429 the YN—A vertex. As seen in Eqg4.24 and (4.30, the
dressed vertices in thematrix and in theK matrix are dif-

whereP means taking the principal-value part of the propa-ferent. In thet-matrix formulationI',y », Eq. (4.24), is a
gator. If this replacement is used in the calculations of Eqscomplex quantity, while in theK-matrix formulation
(3.23—(3.30, all scattering quantities will be real numbers. FyN A EQ.(4.30, is a real function. Consequently, we need
TheseK-matrix quantities are defined by exactly the sameto be careful about the meaning of tB2/M1 ratio of the
Egs.(3.23—(3.30 with the changes dressedyN« A vertex. The clearest definition seems to be in

G.n(E)—=GP\(E)=
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the K matrix formulation because as the energy approaches ,, : .
the resonance positiod RzmA+2'g(M r), EQ.(4.28 is re-
duced to

K,.(E)= +B, (4.32

with
A:FKHWN(E)F_'l;NHA(E)i (433

B=Kk,,(E). (4.34)

The separable form of the residaeof the K matrix leads to
an interesting result that the ratio between Eie andM 1

multipole amplitudes of the dressedNA vertex can be di-

rectly calculated from the residues of the corresponding mul- | < ig: ]
tipole amplitudes of theyN— 7N reaction. The reason is “oral ol ]
that both amplitudes have the same strong interaction .4 s | ! .

dressed vertex in th@,5 channel, and hence the ratio be- 0 100 200 0 100 200
tween the residues does not depend on it. Explicitly, we have

120 P ta
100 7
80 b

A(Eq+)
A(My+)

FIG. 7. ThewN phase shifts calculated from theN model L of
Table | are compared with the empirical values of the analyses of
yN—aN Ref. [39] (open squargsand Ref.[38] (solid squares T, is the

K K ion laboratory energy.
TE L n(Pa)T¥y A (Eq) P Y energy

FZHW,\,(P%)F';NHA(MN) (3.37, andm, of the A bare mass. These parameters are
_ determined by fitting therN phase shifts. Without including
~ Donea(Ege) inelastic channels, our scattering equations E§23—
T (M) (4.39 (3.30 are valid rigorously only in the energy region where
M—atTie the wN scattering is purely elastic. We therefore first take a
The above relation is the basis of the model-independerfionservative approach to only fit the data in the energy re-
analysis of Ref[6]. We will discuss this issue in the next gion below T, =250 MeV pion laboratory energy. This
section. model, called model L, is sufficient for investigating pion
photoproduction up to 400 MeV photon laboratory energy.
V. RESULTS AND DISCUSSIONS Our results are displayed in Fig. 7. We see that within the
uncertainties of the phase shift d4&8—4Q the model can
Our first task is to determine the parameters of the effecgive a good account of a#i andp partial waves except the
tive wN Hamiltonian derived in Sec. Il. Apart from the P,; channel aff, >120 MeV. We have found that this dif-
known wNN coupling constanff,NN/47-r:O.08, the model ficulty cannot be removed by trying various form factors
has seven parameters: the coupling constantsther than those given in Eq63.34—(3.37), and following
(g§=gpNngM, Kk,, fona) Of EQs.(3.12—(3.16), the cutoff  the previous work$12,13 to include the exchange of a fic-
parameters A ,yn.A7na.A,) Of the form factors(3.34—  titious scalare meson. To see the origin of this problem, we
show in Fig. 8 the contributions from each mechanism of
Fig. 3 to the on-shell matrix elements of theN potential.
v N N Clearly, the fit to the phase shift data involves delicate can-
@ = @ + rYN>_*_’\FA—>T[N cellations between different mechanisms. It is possible to
N N improve the fit toP3 by weakening thep exchange or the
A exchange. But this change will destroy the good fits to all
other partial waves. Fortunately, theé\ scattering effect due

EM

\/ Tynaa ) RURLEYN S~ Dinsa to theP 53 channel is weak in determining the pion photopro-
% * A duction cross sections. We therefore will not pursue the so-
N TN N two-pion channels, such asA and pN, must also be in-
* cluded. These two possible improvements can be achieved
by extending the unitary transformation method introduced

lution of this problem here. Perhaps this can be solved only
when thep exchange is replaced by the two-pion exchange
considered in Refl14]. To be consistent, the coupling with
in Secs. -1V to second order in the coupling constants.
FIG. 6. Graphical representation of pion production amplitudes ~Let us now examine in more detail tig; channel which
defined by Eqs(4.22—(4.24). is most relevant to our later investigation of theexcitation
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FIG. 8. The on-shell matrix elements efN potentials defined
by Egs.(3.1)—(3.16. T, is the pion laboratory energy. The nota-
tions areNp g NefUN PIU,, Ap iy, Ag WA and Tot is the
sum.

in pion photoproduction. As seen in E@.23, the resonant
part of theP 33 amplitude is determined by the dressed propa-
gatorG, of Eq.(3.26 and the dressed vertéX ., .\ Of Egs. k(fm™)

(3.28 and(3.29. Clearly, theA resonance peak afN scat-

tering can be obtained only when the model can generate a g|G. 9. The upper half shows the mass of thetate defined by

A self-energy such that the real part of Eq.(3.30. m,=1299.07 MeV is the bare mass of model L of Table
[E-my—2,(E)]—0 as the mN-invariant massW ap- |, Mg=1236 is the experimental resonance position, #hés the
proaches the resonance enefy=Mgz=1236 MeV. Our #N-invariant mass. The lower half shows the bare and dressed
model has this desired property, as illustrated in the uppeA— =N form factors defined by Egs(5.1) and (5.2) with

half of Fig. 9. Another important feature in th®; channel  f_y,=1.3f .y . kK is the pion momentum in thA rest frame.

is that thewN potential generates the dresskd-> 7N ver-

tex, as defined in Eq$3.28 and(3.29. We have found that A significant difference between our approach and the
this renormalization effect modifies greatly the— 7N form previouswN models[12-14,19 is in the treatment of the
factor in the low-momentum region. To see this, we cast thd>;; channel. By employing the unitary transformation, the
bare verteEq. (3.22 including the form factor= ya(Kk) 7N+ N vertex does not appear in the effective Hamiltonian,
defined by Eq.3.36] and the dressed vertd¥q. (3.28] Eq. (3.8, and hence our formulation ofN scattering is

into the forms straightforward. It does not require the nucleon mass renor-
malization. It is natural to ask whether our approach pos-
. fona 1 N sesses the well-established nucleon-pole dynamics. This
(AL anlki)=—— T2mizm. Foard K)S-KT;, question can be answered by examining Fig. 10 in which the

w ™ w (5.1) 7N phase shifts and the scatteribgnatrix elements calcu-

' lated from the nucleon pole termy, only [Fig. 3(c)] and the
T i 1 full potential are compared. We see in the the upper half of

= -, 7NA 2 e ; ;
(AT o ki)=— Fdresselk) S KT, Fig. 10 thatmN phase shifts due to the nucleon-pole term
M. J(2m)%J2m, reese ' (dotted curve are repulsive as expected. The fit to theg;

(5.2 data is due to a delicate cancellation between the repulsive

. o ] nucleon-pole term and the attraction coming mainly from
with the normalization| F yresse0)| = Frard0)=1. We find  ,_ andA-exchange termésee thePy, case in Fig. & In the
that the dressed coupling consteniy, is 1.3 of the bare |ower half of Fig. 10, we see that as the energy approaches
coupling constanf .y, . The dressed form factdf ya (k) the thresholdW=m_+my, the nucleon pole terndotted
falls off faster than the bare form factbr, (k) in momen-  curve apparently dominates the interaction. If we analyti-
tum space, as seen in the lower half of Fig. 9. This meansally continue to the nucleon pole positiorkg=iky
that the nonresonantN interaction has extended tdeex-  [my=Ey(iky) +E(iky)], the scattering amplitude will be
citation region to a larger distance in coordinate space.  determined by the nucleon pole term, i.e.,
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FIG. 11. The photon-asymmetry ratioR,=doy/do, of
vp— 7%p at 90° .E, is the photon energy in the laboratory frame.

FIG. 10. ThewN phase shifts §) and scattering amplitude The results in the upper half are from using
[t(Ko,Ko,W)] with the wN-invariant masaV=Ey(ko) + E (ko) in ~ Gm=1.85, Gg=0.025, and three values of,yn. The results in
the P4, channel. The solid curves are from the full calculation. Thethe lower half are from using\y=1.85, g,ny=10.5, and four
dotted curves are from the calculation including only the nucleorvalues ofGg . The data are from Ref$41,42.
pole potentiaby of Fig. 3(c).

production mechanism@-ig. 5 still have unknown param-

t(ko, Ko, W—my) ~v, ~1/(W—my). eters associated with the vector meson-exchange and the

The parameters of the constructed model are listed in theN«— A vertex. Following the previous approa¢h7], we
first row (model L) of Table I. The calculated scattering assume that the photon-meson coupling constgpts and
lengths are presented in the first column of Table Il. They ar@,,~, can be determined from the partial decay widths listed
all in good agreement with the data. If we assume the uniby the Particle Data Grouy@5]. For thew meson, we further
versality of p coupling, we then havey,yn=0,.,=6.2 assume that the tensor couplirgyy=0 and thewNN form
which is close to that determined in Ref42,13. The fitis  factor is identical to thegNN form factor given in Table I.
also sensitive to the tensor coupling constant,. Our  The coupling constang,y is not well determined in the
value is close to that of Ref12], but is much smaller than literature. We will treat it as a free parameter, although the
6.6 used in Ref[13]. quark model valug ,nn=(39,nn)/2 Seems to be a reason-

We now turn to presenting our results of pion photopro-able guess. Thus, our investigation of pion photoproduction
duction. With thewNN,7AN, andpNN vertices defined by has only three adjustable paramet&sg; andGg of the bare
the parameters given in Table I, the considered pion photoA« yN vertex, and the coupling constagf,\y Of the w

TABLE I. The parameters of theN models. The units are 1/F for cutoff parametarsand MeV for the
bareA mass. Model L and model H are obtained respectively from fitti\yy phase shifts up to 250 MeV

and 400 MeV.
Model f2 4 AN 9oNNDp e Ky A, fona Ana my
Model L 0.08 3.2551 38.4329 1.825 6.2305 2.049 3.29 1299.07
Model H 0.08 3.7447 39.0499 2.2176 7.5569 2.115 3.381 1318.52
A2 \° 2\ Afa \°
Form factor F (K =| ———>3| , F(0)=| 5%=]| , FauK=|—=—>
NN AZ N +K i Ai+q2 N A2+ K
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TABLE Il. The calculated#N scattering lengthgin unit of
fermis) are compared with the values determined in Ré#6).

Model L Model H Koch-Pietarinen
25— —
Si1 0.1588 0.1737 0.1730.003 Gp =-0025
Sa1 -0.1191 —0.1198 —0.101+0.004 Gs=j°-°25
Py —0.0976 —0.0864 —0.081+0.002 =20 ]
Ps; —0.0509 —0.0478 —0.045+0.002 \
P —0.0363 —0.0383 —0.030+0.002 ’ ?
P 0.2523 0.2797 0.2140.002

exchange. We have, however, some ideas about the ranges of | | | | | |

these parameters. If we assume that bare vertex interaction 0 25 50 75 100 125 150

'y, can be identified with the constituent quark model Jom

[46,48,47,49,50) then|Gg/Gy|~0 since the one-gluon ex-

change interaction gives negligible-state components in FIG. 12. The region of the parametes,{,Gw ,Gg) for de-

N andA. We also expect that the coupling should be close scribing the data ofyN— «N reactions. See text for the explana-

to the quark model predictio,yn=39,nv/2~9, if thep  tions.

coupling from ourmN model(Table |) is used. It is therefore

reasonable to only consider the regian,y<15 and 12 are also in good agreement with th€ data at other

|Ge/Gy|=0.1. angles and ther" data. These are shown in Fig. 13 fof
Since thew-exchange mechanisiiFig. 5(g)] does not production and Fig. 14 foir* production. These results are

produce charged pions direcilgnly throughmN charge ex- obtained from using the parameters defined by the

change, the ranges ofg,yn, Gu, and Gg can be most interaction points of the Gg=+0.025 lines in

sensitively determined by considering the datar8fphoto-  Fig. 12 @,nn.Gwm.Ge)=(10.5,1.85+0.025), and

production. In the considered region thé&tz /Gy|<0.1 and (7.0,1.95-0.025). Both sets of parameters yield equally

gonn< 15, we have found that the magnitudes of th&  good agreement with the® data(Fig. 13. For =" produc-

differential cross sections depend mainly®p . The values tion, the predictions are in good agreements with the data of

of g,nn @andGg can be narrowed down by considering spinthe photon-asymmetry ratid3,, but underestimate the dif-

observables. In this work, we make use of the recent LEG$erential cross sections by about 10% at most energies. Since

[41] data of photon-asymmetry ratioR,=doy/do, of  the w exchange has a small contribution to thé produc-

yp— 7°p reaction. We have found that the slopeRf(E) tion (only through charge-exchangeN final state interac-

at a fixed pion angle is sensitive to the valueggf,y. This  tion), the only way to resolve this difficulty within our model

is illustrated in the upper half of Fig. 11 for the case ofis to increase the value db,,. But this will lead to an

Gy=1.85 andG=0.025. A smallerg,,yy Yields a steeper overestimate of ther® cross section from Bonn.

slope. The data clearly favay,yn~10.5. In the lower half Although the difficulty in reproducing the* data in Fig.

of Fig. 11, we see that the magnitude, not the slop&.pis  14(b) could be an indication of the deficiency of our model,

significantly changed by varying the value &g from  the possibility of a largerr® cross section has been sug-

-0.1 to +0.1. The data are consistent with gested by threer® data at§=120° from Ref.[44] [Fig.

—0.025=Gg=<0.025, while Ge=+0.025 seems to give a 13(b)]. To fit these three data points, we need to increase

better fit. Results similar to Fig. 11 can be obtained by usingsy from 1.85 to 2.0 for the case @f,yy = 10.5 and from

a higher valueGy,=1.95. In this case, a smaller value of 1.95 to 2.1 for the case o,y = 7. The results from these

g.nn= 7 is needed to maintain the same fit to the magnitudéwo changes inGy, are, respectively, the solid and dotted

of the differential cross section as well as the slope of the

R, . But the best value o&¢ to reproduce the magnitude of ~ TABLE Ill. The parameters for the/N— mN interactions de-

R, is —0.025 instead oft 0.025 for theg,,yy=10.5 case. In  fined in Egs.(4.16—(4.20 and Fig. 5.

fact, we have observed a strong correlation between the a

lowed values ofGy, and g,yy. In all cases, the allowed fann:Aznn - Table |
value of Gg is consistent with —0.025<Gg=<+0.025. fona.Ama - Table |
Therefore, the acceptable values @,g,nn) are on the  gonn= VI,nnGprr - Table |
curve between th&g=—0.025 andGg=+0.025 lines in A ,nn=A, .k, - Table |
Fig. 12. To determine the precise valueRfy=Gg/Gy, Opry 0.102% Ref. [45]
which measures the deformation of thewe clearly need to  g,,., 0.324% Ref. [45]
pin down thew meson coupling constagt,yy - In Table Ill,  g,nn 7 - 105 See text
we list the determined values &y, Gg, andg,yy @long A, yw=A, - Table |
with all other parameters used in our calculations ofx, =0 - See text
yN— N reactions. Gwm(0) 1.85 - 2.0 See text
The predictions from using the parameters lying on theg.(0) + 0.025 See text

curve betweerGg= +0.025 andGg= —0.025 lines of Fig.
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FIG. 13. The photon-asymmetry rati¢@ and differential cross
sections(b) for the yp— 7%p reaction at four angles in the center-
of-mass frame. The solid and dotted curves are, respectively, fro
the calculation using the parameters g,(n,Gwm.Gg)
=(10.5,1.85;+0.025), and (7.0,1.95;0.025). The data are from nance peaks. In all cases, the theoretical predictions under-
Refs.[41,42. E, is the photon energy in the laboratory frame.  estimate the data at 380 MeV and higher energies. This is
expected, since the constructed model does not include in-
curves in Figs. 15 and 16. The predicted photon-asymmetrglastic channels which should start to play a significant role
ratios[Figs. 1%a) and 16a)] are still in good agreement with at energies above about 350 MeV. For example, the inelastic
the data. The agreement with the" data[Fig. 16b)] is production mechanisnyN— A — 7N should exist since it
clearly improved. But the calculated® differential cross is known that therN scattering at this higher energy can be
sectiong Fig. 15b)] overestimate the Bonn dafd2,43 by  described only when the coupling with theA channel is
about 15%. Clearly, the disagreement betweenrthedata at  included. To investigate this effect, it is necessary to extend
#=120° [Fig. 15b)] from Refs.[42,43 and[44] must be the derivation of effective Hamiltonians presented in Secs.
resolved by new measurements. Il and IV to include thewA as well as other two-pion states.
To further reveal the dynamical content of our model, we We now focus on the theoretical interpretations of the
compare in Fig. 17 our predictions of angular distributionsA < yN vertex. The values oB,; andGg determined above
with the data compiled in Refl43] for yp—«’p [Fig.  characterize the bark— yN vertex which can only be iden-
17(@)], yp— 7' n [Fig. 17b)], and yn— 7 p [Fig. 17c)] tified with hadron models with no coupling with theN or
reactions. All results calculated from using the parametersther hadronic reaction channels. One possible interpretation
lying on the curve between theGg=+0.025 and is to compare the determingd,, and Gg with the predic-
Geg=—0.025 lines in Fig. 12 are very close to the solid tions of the most well-developed constituent quark model
curves which are from using g{nn.Gm.Ge)  [46,48,47,49,5D To explore this possibility, it is necessary
=(10.5,1.85,0.025). Again, we see that the charged pioto first discuss the quantities in our model which can be
production cross sections are underestimated. If a largezompared with the results from empirical amplitude analyses
Gy=2.0 is used in this calculation, we obtain the dotted[6,7,57]. For investigating theA mechanism, we need to
curves which are in a better agreement with the charged pioanly consider theyN— 7N multipole amplitudesM+ and
data, but overestimate the® data by about 15% at reso- E;+ with a P final =N state and the dressed vertex func-

FIG. 14. Same as Fig. 13, except for the— 7" n reaction.
mhhe data are from Ref42].
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FIG. 15. The photon-asymmetry rati¢@ and differential cross FIG. 16. Same as Fig. 15, except for the— 7" n reaction.

sectiongb) for the yp— 7°p reaction at four angles. The solid and The data are from Ref42].
dotted curves are, respectively, from the -calculations using

the  parameters g(,nn,Gu,Ge)=(10.5,2.0#0.025), and The dressed\<— yN vertex, defined by Eq(4.24), is a
(7.0,2.10;-0.025). The data are from Refel1,42. E, is the pho-  complex number. By making the usual partial-wave decom-
ton energy in the laboratory frame. position, its magneti®1 1 and electri€2 components can be
_ written asl’ () =|I'(a)|€' ¥ with a=M,+ ,E;+. The pre-
tion ',y o . These can be computed from E¢$.22—(4.24 dicted dressed vertex functioh¥ «) are the solid curves in
or Egs. (4.28—(4.30 by performing the standard partial- Fig. 19. We see that their magnitudé¥ «)| are very differ-
wave decompositiofsee, for example, the Appendix of Ref. ent from the corresponding valuédotted curvesof the bare
[17]). We will discuss these quantities using the results calA« yN vertex. The differences are due to the very large
culated from setting d,nn.Gm,Ge)=(10.5,1.85,0.025) contribution of the nonresonant mechanism described by the
(solid curves in Figs. 13, 14, and 17 second term of Eq4.24). Our results indicate that an accu-
The predicted amplitudelsl;+ andE,+ are compared in rate reaction theory calculation of the nonresonant pion pho-
Fig. 18 with the results from the empirical amplitude analy-toproduction mechanisms is needed to determine the bare
ses[7,57]. We see in the upper part of Fig. 18 that the pre-A+« yN vertex from the pion photoproduction data. This re-
dictedM ;- amplitudes are in good agreement with empiricalquires a dynamical treatment of the nonresonant pion photo-
values. In the lower half, we show that both tBg: ampli-  production mechanisms, as we have done in this work.
tudes calculated from usingg= +0.025(solid curveg and  Within the meson-exchange formulation presented in this
Gg=—0.025(dotted curvesare within the uncertainties of work, the determine®,, andGg of the bareA — yN vertex
the amplitude analyses. This is consistent with our analysisan be compared with the predictions from a hadron model
using LEGS data, as seen in the lower part of Fig. 11. Thevhich does not include the coupling with theéN “reaction”
uncertainties of the empirical values of thkg+ amplitude channel(both pion and nucleon are on their mass shell
are due to the lack of complete data of spin observables. We now turn to investigate thk-matrix method which
More experimental efforts are clearly needed to pin down thdvas been the basis of the empirical amplitude analyses of
value of Gg which is needed to test models of hadron struc-Refs.[6,7]. In Ref.[6], it was shown that if the background
ture. term is assumed to be a slowly varying function of energy,
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FIG. 17. Differential cross sections gp— 7°p (@), yp— 7" n (b), andyn— 7~ p, (c) reactions. The solidotted curves are calculated
by usingGy=1.85 (2.0). Both calculations using the sangg,{y,Gg)=(10.5,+0.025). The data are from Re#3]. E, is the photon
energy in the laboratory frame.

the ratio Rgy between theE;+ and M+ of the yN—A the nonresonant contributidd (dashed curve Clearly, the
transition at the resonant ener§y=Mg can then be ex- energy dependence of the nonresonant ®risirather weak.
tracted “model independently” from the data of the The assumption made in the empirical analysis of Rafis
yN— 7N reaction. The only limitation is the accuracy of the fairly consistent with our dynamical model.

employedwN amplitudes and thé1,+ and E;+ multipole By using Eq.(4.33, we can calculate the residéeof the
amplitudes of theyN— 7N reaction. By using Eq94.32— K matrix from the dressed verteR';,\HA defined by Eq.
(4.35, we can examine whether tikematrix method of Ref.  (4.30. The resultgsolid curve for the M+ transitions are

[6] is consistent with our dynamical model. In Fig. 20, we compared with that calculated from using the bare vertex
display our predictions of the energy dependence of the totdl',\_. , in the the upper half of Fig. 21. Similar to the results
K matrix (solid curve, the contribution from the resonant in Fig. 19 in thet-matrix formulation, we see the large non-
term (dotted curvg which has a pole atV=1236 MeV, and resonant mechanisms in dressing thd— A vertex. The
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FIG. 18. The predicted multipole amplitudés,+ andE;+ in
the total isospinl =3/2 channel are compared with the empirical
values of Refs[38] (solid squaresand[57] (open squargs The
parameters used in this calculation &g=1.85,9,nyy=10.5, with
Gg=0.025(solid curve and —0.025(dotted curve: E, is the pho-
ton energy in the laboratory frame.

1150 1200 1250 1300

correspondindg2/M 1 ratiosRgy, are compared in the lower W (MeV)

half of Fig. 21. The nonresonant mechanisms change the

ratio by a factor of about 2 at resonance enevgy 1236 FIG. 20. The predicted matrix defined by Eq(4.28. The

MeV. solid curves are the full calculations. The dotted curves are from the
In Table 1V, we list the predicted;+ andM;+ ampli-  resonant term. The dashed curdsnoted a8) are the contribu-

tudes of theA— yN vertex evaluated at the resonance en-tions from the nonresonant terky,, defined by Eq(4.29. W is the

ergy W=1236 MeV. The parametersg{nn.Gm.Ge) = yN-invariant mass.

(10.5, 1.85, 002hand(7.0, 1.95,—0.025 from the fits to the

data(Figs. 13 and 1#are used in these calculations. We seeRef. [6]. The differences between our predicted multipole
that our average valuBgy = (—1.8 £ 0.9% is not too amplitudes and the empirical values shown in Fig. 18 could
different from the average value-(1.07 = 0.379% of the  also be responsible to this discrepancy. To compare our re-
empirical analysi$6]. Since the assumption made in R@]  sults with the values listed by the Particle Data GréapG)

is consistent with our model as discussed above, the diffef45], we calculate the helicity amplitudes by

ence perhaps mainly comes from the experimental uncertain-

ties of the multipole amplitudes employed in the analysis of V3
A3/2:7[E1+ —My+],

Al/2: - %[3E1++ Ml+].

s The results at the resonance enevgy: 1236 MeV are listed
in Table V. The predictions from two constituent quark mod-
els[48,47)] are also listed for comparison. We notice that our
- bare values are close to the constituent quark model predic-
tions[47,48, and the dressed values are close to the values
- of the PDG[45]. This suggests that our bare vertex can be
identified with the constituent quark model. The long-
standing discrepancy between the constituent quark model
N predictions and the PDG values is due to the nonresonant
meson-exchange production mechanisms which must be cal-
i pr— P %o 0 prevs culated from a dynamical approach. Similar considerations
W (MeV) must be taken in comparing the PDG values with the predic-
tions of higher massl* resonances from hadron models.

FIG. 19. TheM,+ andE,+ multipole amplitudes of the dressed ~ The results we have presented so far are based on the
vertexI",y_., defined by Eq(4.24) and the bare verteR _, are 7N model determined in a fit to theN phase shifts only up
compared. The dressed vertex is a complex function written a$0 250 MeV. It is interesting to see the extent to which this
I'(a)=|T'(a)|e*® with a=M;+,E;+. W is the yN-invariant ~model can be extended to a higher-energy region where the
mass. inelastic processes are still not dominant. More importantly,
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TABLE V. Helicity amplitudes of theA— yN transition at
W=1236 MeV are compared with the values from Particle Data
Group (PDG) [45] and the predictions of constituent quark models
of Refs.[47,48. The amplitudes are in units of 18 (Gev) "2

‘0‘005""‘*-«..\___ 7 The numbers in the upper and lower rows for each case are, respec-
tively, from using @,nn.Gm »Ge) = (10.5, 1.8540.025 and(7.0,
1.95,-0.025.
<<
-0.010+ A PDG Dressed Bare RdM8] Ref.[47]
Ay, —257+8 —-228 —153  —157 —-186
—225 —158
00187 A, —141+5 -118 -84 -91 -108
—126 —-96
-0.01
the crucialP3; channel in the low-energy region. To accu-
- -0.02-) rately fit the P33 in the entire energy region and to resolve
= the difficulty in theP 5 channel, additional mechanisms may

be needed.

The yN— 7N results calculated from using the models H
and L are compared in Fig. 23. The photon-asymmetry ratios
[Figs. 23a) and 23c)] are equally well described by both

005 ! | models. They yield, however, significant differences in de-
1150 1200 1250 1300 scribing the differential cross sections. In Fig(23 we see
W (MeV) that model H gives a much better description of tHedif-
ferential cross sections in the high-energy region, but it

FIG. 21. TheM;+ residues A of theK matrix [Eq. (4.32]  slightly overestimates the cross sections at low energies. The
calculated from the dresseXl— yN defined by Eq(4.30 and the = differential cross sections are better described by model
bare vertex are compared in the upper half. Their corresponding, as seen in Fig. 28). But the difficulty in reproducing the
ratios Rey=E;+ /My+ are compared in the lower ha¥V is the  magnitude is not removed entirely.
yN-invariant mass. The results in Fig. 23 suggest that our predictions do de-
pend to some extent on the accuracy of the construstéd

we would like to examine whether the extended model cainodel in describing therN phase shifts. A natural next step
yield significantly differentzN off-shell dynamics which 1S to extend the present model to include the inelastic chan-
perhaps can help resolve the difficulty in reproducing the
magnitudes ofr* cross sectiofisee Fig. 14b)]. To explore
these possibilities, @N model is constructed by fitting the
phase shifts data up to 400 MeV. This model is called model
H to distingush it from model L from the fit up to only 250
MeV. The resulting parameters are also listed in Table I. The
phase shifts calculated from these two models are compared
in Fig. 22. We see that model (dotted curvesclearly gives ' - —
a much better fit to the data in the entire considered energy ~ 2° ‘

. o . . 25
region. But it is not as accurate as model L in describing the 5 20

15
10
TABLE IV. The magneticM -+ and electricE;+ amplitudes of 5

A— yN transition atW= 1236 MeV.Rgy=E;+ /M+. The ampli- 0
tudes are in units of I (GeV) ~ 2 The numbers in the upper and
lower rows for each case are respectively from using
(9onnGm - GEg) = (10.5, 1.85,+ 0.025 and(7.0, 1.95,—0.025.

-0.03

o
.
2
T
1

3§ (deg)
T T T T T T
1 1 1 1 1 1

M+ Eq+ Rem Average

'y (bare 175 —2.28 -1.3%
(0 0=+ 1 3)% 0 100 200 300 400 0 100 200 300 400

184 +2.28 +1.2%

Iy, (dresseg 257  —-6.9  -2.7% FIG. 22. ThewN phase shifts calculated from model(kolid
(—-1.8+ 0.9% curves and model H(dotted curvesare compared. The data are
258 —-2.26 —0.9% from Refs.[38] (solid squaresand[39] (open squargsT, is pion
energy in the laboratory frame.
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FIG. 23. Photon-asymmetry ratios and the differential cross sections farpher®p (a) and(b) and yp— 7" n (c) and(d) reactions.
The solid(dotted curves are from calculations usingN model L (model H. The parameters arg {yy,Gwm ,Ge) =(10.5,1.85:+0.025).
The data are from Ref§41,42. E, is the photon energy in the laboratory frame.

nels to obtain an accurate fit up to 400 MeV. This extensiorof the A, the model can give a good descriptionsf scat-
then will introduce inelastic pion photoproduction mecha-tering phase shifts up to the excitation energy region. The
nisms, such as theN— 7A— 7N process, which may be only adjustable parameters in the resulting pion photopro-
needed to resolve the difficulty in getting an accurate deduction amplitude are the coupling strengts of the elec-
scription of both then® and =" processes. Such a coupled- tric E2 andG,, of the magnetidV 1 transitions of the bare
channels approaCh must also include the effect due to thg(_> ;),N vertex and the |ess We”_determined Coup"ng con-
excitations of higher mad$* nucleon resonances. This must stantg,yy Of the @ meson. We have shown that the best
_be pursued in order to make progress in using the fOfthCO”}'eproduction of the recent LEGS data of the photon-
ing data from CEBAF to test hadron models. asymmetry ratios of the/p— 7°p reaction depends sensi-
tively on these three parameters and yie@lg=1.9+0.05
and Gg=0.0+0.025 within the range #g,yn=10.5.
Within these ranges of parameters, the predicted differential
We have applied the unitary transformation method firstcross sections and photon-asymmetry ratios are in an overall
proposed in Ref[22] to derive from a model Lagrangian good agreement with the data pp— 7°p, yp— =" p, and
with N,A, 7, p, w, and v fields an effective Hamiltonian yn— a~p reactions from 180 MeV to th& excitation re-
consisting of bareA~ aN, yN vertices and an energy- gion. The model, however, underestimates thid— 7N
independent meson-exchangeN potential (Fig. 3 and  cross section at energies above theegion. This is expected
yN— aN transition operatofFig. 5). With the parameters since the constructed model does not include inelastic chan-
listed in Table | for the strong form factors and the bare massels, such asrA, pN channels, which should start to play a

VI. CONCLUSIONS AND FUTURE STUDIES
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significant role at energies above about 350 MeV. Includinghe authorgT. S) would like to thank the Theory Group of
these channels could also be needed to resolve the difficultyhysics Division at Argonne National Laboratory for the
in fitting P53 #N phase shifts(Fig. 22. The constructed hospitality and discussions. This work is supported by the
effective Hamiltonian is free of the nucleon renormalizationU.S. Department of Energy, Nuclear Physics Division, under
problem and hence is suitable for nuclear many-body calcu€ontract No. W-31-109-ENG-38, and by Grant-in-Aid of
lations. Scientific Research, the Ministry of Education, Science and
We have also analyzed th€-matrix method which is Culture, Japan under Contract No. 07640405.
commonly used to extract empirically théN— A transition
amplitudes from theyN— 7N data. It is found that the as-
sumptions made in th&-matrix method[6] are consistent
with our meson-exchange dynamical model. Our average

value of theE2/M1 ratioRey = (— 1.8+ 0.9% is close to To see how the Feynman-amplitude-like expressions of
(—1.07 = 0.7)% of Ref.[6]. The helicity amplitudes calcu- gqs.(3.12—(3.16 are obtained in our approach, we give a

lated from our bareyN—A vertex are in good agreement detailed derivation ofrN potential from the familiar La-
with the predictions of the constituent quark modéfable  grangian

IV). The differences between these bare amplitudes and the
empirical values extracted from the data by using the
K-matrix method are shown to be due to the nonresonant
meson-exchange mechanisms. This suggests that the bare r

APPENDIX: DERIVATION OF =N POTENTIAL

f NN~ > -
p(X) ys Y Th(X) - 9, (X)

vertex interactions in our effective Hamiltonian can be iden- m,

tified with hadron models in which theN and w7 N “re-

action” channelgboth 7= andN are on their mass shglare fna - . -

excluded in the calculation of th&* excitation. Unfortu- s PAOTY(X) -0, (x) | +[He],  (AD)

nately we are not able to pin down ti#2/M1 ratio of the

barey— A vertex by considering the existing data of photon-
asymmetry ratios and differential cross sections. More pregnere ¥(x), ¥(x), and ¢(x) are, respectively, the field
cise data of other spin observables are needed to make

progress. This will be pursued when the data becomes avai?_pera:ors fo(!rg\ll_,l Aj andr, -tr Ilf theﬂ? _{_'N |spt_sp|n tra_nsmtt)n f
able, along with the extension of our approach to investigat perator, angiH.c.] meéans taking the Fermitian conjugate o
pion electroproduction. e first term. By applying the canonical quantization proce-

The unitary transformation method developed here can bgure(see S?C' i abou_t the_ problem concerning LthGeIr:i),
extended to higher-energy regions for investigating highe € can cjenve a Haml_ltoman from E¢AL). The resulting
massN* resonances. To proceed, we need to perform th amiltonian can be written as
unitary transformation up to second order in the coupling
constants to account for them2production channels. The
resulting scattering equations will be defined in a larger
coupled channel spadé* & 7N® yN& 77 N. This research
program can be carried out in practice since the numerical .
methods for solving such a Faddeev-type coupled-channe\g'
equations(because of the presence of the three-badyN
unitary cu} have been well developg83]. Our effort in this
direction will be published elsewhere.

H:H0+H|, (AZ)
th

H=HP+HQ, (A3)
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1

1 IR I VO my my t - o
Hf = J—m—d d ’dk[l \ e Tusk, AL brag,s(p+Kk—p’
=2 | e g PP K Vg V() Uikl D5k K= p')

.quNA ’ mN [ mA —t u T t R
- mﬂ' EN(p/) EA(p)dp’Tawﬁk”b[;’ApaR,aa(p_k_p )1 (A4)

whereal’a, b;g, andA;g are, respectively, the creation operators4oMN, andA statesg is the pion isospin index, and and

w* are, respectively, the spinors of Dirac and Rarita-Schwinger fields. ClaaRygdescribes theA — 7N real processes
[similar to Figs. 1a) and Xb) with the changer— A] which can take place in free space. On the other hand, the virtual
processesgsimilar to Figs. 1c)—1(f)] are due to the Hamiltonian
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1

H=3 [ 5o an—————apdp ok
a J (2m)7° 2E (k)

i WNN‘\/EN(p \/ EN(D )IUp vsTKu bp,bp[ 5 IO aka+5(p _p+k)ak ]

+ug ysmkvp bp,dp[ s(p'+p—K)ag ,+ o(p’ +5+I2)a§’a]+v_,;,y5kr“u,3d,;,b5

X[=8(=p' = p—K)ag .+ 8(—p' —p+K)a J+vp yskrvsds dl[ — 8(—p'+p—K)ag .+ 6(—p' +p+K)ay I}

.7TNA f—# -5(p' —p+Klar +o% vk, ALdYs(p +p+K)al
\/EN p)\/EA(p {0 ugk, AL bso(p' = K)ag , + wf gk, AL d] a(p' +p+K)af )

+if77NA [ m my TERIL btAaé(*/_*_E)aﬁ 15 Pk dQAaé(_*,_*_IZ)aA ) (A5)
m. VEy(p) VEs(p)t P @pKulpBpolP =P kaTUpr@ K, dgrApd(—p'—p Kol l-

Note that the above equation includes an antinucleon spinarhich is included to maintain the relativistic feature of the
starting quantum field theory.

To proceed, we need to derive the unitary transformation opegatBy the procedures outlined in Sec. 8,is related to
HR. Hence, the actual task of deriving thé\ potential is to evaluate E¢2.23 from theH" andHR defined above. Let us
first focus on the first fourrNN coupling terms of Eq(A5). We need to consider

0).

liy=Db! aka

t T
|f>=bp,a|;a,

The allowed intermediate states bg al,a,amo) for the first term, and
|n>=di~ bg,bgaéaag,a,m), d - b:;,b:;lo) for the other three terms involving the antinucleon componen$ubstituting
n m

these intermediate states into EJ.23 and performing straightforward operator algebra, we then obtain

(Ko’ ,p'|HP|Ka 5>:(f’TNN/m”)2 ! L Z M \/—1u* (AB)
I 2m® J2E.(k) VEN(P) ¥ En(P)2E_(k) ©’
where
M= s T ks - - e
En(Pn) Pn™Pn 2[En(P) —En(pn) +E(K)  En(Pn) —En(p’) —E(k")

1

M= My K7,Ug Us ysK' 7,0 =
EN(pm) YsRhTq Pm pm75 a' 2

1 1
En(p) —En(Pm) —EA(K) EN(pm)_EN(p,)'i_EN(k)},

with p,,=p—k’'=p’—k, and

MO =— N K' 7,0 _;v_c vekr E ! - ! }
En(pn) 72 TV P =P YSRTa g T E (p )~ En(Pp) —En(K')  En(p)+En(Pn)+EL(K) |’

M@ TN kr o =T - ek 1 1 }
=— TeU_p U Ta' 5 ; - .
En(pr) 2 @V —Pnt —Pn 58 T ol T (p7) = En(Pm) T E4(K)  En(P)+ En(Pm) — EH(K)

By using the properties that

My 1
E (p) pup 2E (p [mN ‘}/OEN(p) ‘y p]

(A7)

my = 1
E (p) UpUp 2E (p)[ mN+yOEN(p) y p]
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one can easily show that, for an arbitrany,

My _ 1 . my _ 1 1 ( . a)( 1 1 )
——Uu; U, _aU_p = mMy— v —
En(Pn) P Prpo— En(pr) | En(pr) P Prpot En(pn) 2En(p) | Y P 0B (P T Dot En(pr)
1 1
+ yoE +
Yo N(pn)(po_EN(pn) p0+EN(pn)>
1 Potmy 1

= <=7 —[My= 7 Pn+ YoPol =

 po—Ex(pn) pi—my  Pa—my’

(A8)

wherep,=(Po,Pr)-
By using Eq.(A8), we can combine various propagators in E§6) to obtain

1 1 1

4 1 1
(i) — P
2 M=y TS i T T (PR =

BR)—my (B —R—my " T

1
y5k7a+ ySKTaz

wherep= (EN(p),ﬁ) andk= (Ew(k),IZ). The above result looks remarkably simple. It resembles very much the usual Feynman
amplitudes, except that the intermediate nucleon propagator is the average of two Dirac propagators for the momenta evaluated
using the incoming or outgoingN momentum variables.

The evaluation of thé terms is much more involved, but yields a similar form as given in E2j45 and(3.16). Similar
derivations can also be carried out to define #¢ interactions, Eq(3.14), due to thep meson.
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