
apan

odel.
quire-
free

PHYSICAL REVIEW C NOVEMBER 1996VOLUME 54, NUMBER 5

0556-2813
Baryons as solitonic solutions of the chiral sigma model

Wolfgang Bentz
Department of Physics, Faculty of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, J

Josef Hartmann and Friedrich Beck
Institut für Kernphysik, Technical University of Darmstadt, Schlobgartenstr. 9, D-64289 Darmstadt, Germany

~Received 28 June 1996!

Self-consistent solitonic solutions with baryon number one are obtained in the chiral quark sigma m
The translational invariant vacuum is stabilized by a Landau ghost subtraction procedure based on the re
ment of the Ka¨llén-Lehmann~KL ! representation for the meson propagators. The connection of this ghost
model ~KL model! to the more popular Nambu-Jona-Lasinio~NJL! model is discussed in detail.
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I. INTRODUCTION

The development of effective models of QCD and the
application to the structure of hadrons is an important a
active field in contemporary medium energy physics. In mo
of these models, mesonic degrees of freedom, in particu
pions, play an important role. This is based on the obser
tion that, in the limit of a large number of colors, QCD
reduces to an effective theory of mesons described by
effective action in terms of these variables@1#. Since this
effective action reflects the underlying quark dynamics, it
natural to base effective models on a Lagrangian with qua
and meson fields, and to integrate out the quark fields. T
quark-meson theory should properly incorporate the chi
symmetry and its spontaneous breakdown, which are imp
tant features of low energy QCD. One of the first models
this kind, the Friedberg-Lee model@2,3# in its simplest form,
involved just the isoscalar-scalar sigma meson. In order
incorporate chiral symmetry, one is naturally led to the line
sigma model which in addition includes the pion as a Gol
stone boson@4#. The nucleon, which emerges as a soliton
the meson field equations, was investigated in the mean fi
approximation to this model@5#. First calculations, which
neglected the contribution of the quark Dirac sea to the
fective action, were actually quite successful@6#.

If one attempts to include the effects due to the Dirac s
it is natural to consider the fields and parameters of the lin
sigma model, e.g.; the pion mass, as the ‘‘physical’’~or
‘‘dressed’’! ones and to follow the standard renormalizatio
treatment. It has been shown, however, that the renormal
tion procedure in the framework of the loop expansion lea
to an instability of the translational invariant vacuum@7,8#.
That is, the energy of the vacuum~without any valence
quarks! can be lowered without bounds by increasing th
high momentum components of the meson fields. This pro
lem, which is common to all renormalized asymptotical
nonfree theories@9#, can be traced back to an unphysic
Tachyon pole~the so called Landau ghost! of the meson
propagators@10#. Since, contrary to quantum electrodynam
ics, in hadronic effective field theories this ghost pole occu
usually at rather low energies of the order of the baryon ma
~.1 GeV!, the model as it stands cannot be applied cons
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tently to hadron physics. Based on the working hypothes
that this difficulty is not inherent to the model itself but to
the approximation scheme used~loop expansion!, a method
was proposed to construct a ghost free model within the lo
expansion@11#. The essence of this approach, which is bas
on the work of Redmond and Bogoliubovet al. @12#, is the
construction of meson propagators which satisfy the Ka¨llén-
Lehmann~KL ! representation. In practice this amounts to th
prescription to subtract the ghost pole term from th
Schwinger-Dyson propagators, which should be regarded
forming part of the definition of the approximation used.1 By
considering the vacuum part of the effective mesonic acti
for fixed mesonic profiles, it has been shown recently@14#
that this method can be applied successfully to finite soliton
The method has also been applied to assess higher loop
fects in infinite systems@15#.

The purpose of the present paper is twofold: First, w
wish to establish the connection of the KL model discuss
above to the more popular Nambu-Jona-Lasinio~NJL! model
@16–20#. To establish a quantitative connection between bo
models on the one quark loop level, we will discuss th
renormalization procedure in thes model for finite cutoffL.
The NJL model then emerges as a particular case of
sigma model ifL is chosen such thatZM50,2 whereZM is
the wave function renormalization constant for the meson

1The ghost eliminated sigma model will be called the KL~for
Källén-Lehmann! model from now on. We note that, besides simpl
ignoring the effect of the Dirac sea@5,6#, there exist also other
possibilities to avoid the Landau ghost, for example, the meth
proposed in@13#, or the use of a sufficiently low momentum cutoff
like in the NJL model. The connection to this second possibili
will be discussed in detail in later sections.
2In this case the original meson-quark Lagrangian does not

volve derivatives of the meson fields~F!, in which case these fields
can be eliminated immediately due to the Euler-Lagrange equatio
]L/]F50. There exist many investigations on this equivalence
compositeness conditionZM50, see for example,@21,22#. Our in-
terest here is somewhat different: We consider the cutoffL as a
physical parameter characterizing the effective theory, and the c
dition ZM50 is imposed onL for fixed renormalized coupling con-
stants.
2636 © 1996 The American Physical Society
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54 2637BARYONS AS SOLITONIC SOLUTIONS OF THE . . .
This particular cutoffLc also characterizes the onset of th
Landau ghost, that is, forL.Lc the ghost subtraction mus
be performed to obtain the physical KL model. The seco
purpose of this paper is to present self-consistent soliton
lutions in the KL model and to compare them to those of t
NJL model. As a first step, we will restrict our numeric
investigations to the case where the meson fields are
stricted to the chiral circle, but simple arguments~see Sec.
III ! strongly indicate that stable solutions exist also witho
this fixation. We will also restrict our discussion to th
Hedgehog configuration, leaving the projection onto physi
baryon states and the calculation of observables for fut
work.

II. EFFECTIVE MESONIC ACTION
AND VACUUM INSTABILITY

In this section we discuss the effective mesonic action a
its behavior for large and small soliton sizes in thes model.
The ghost subtraction will be introduced to stabilize t
vacuum, and the connection to the NJL model will be est
lished.

A. Effective action in the s model

If the parametersm2~,0! andl2, which characterize the
shape of the ‘‘Mexican hat’’ potential in the linears model
@4#, are expressed by the ‘‘physical’’ parametersms andmp ,
the Euclidean Lagrangian takes the form3 L5LF1LM1LSB
with LF5c̄(2 i ]”1MU)c, and

LM5
v2

2
@~]mU !~]mU

1!1 1
4 ~ms

22mp
2 !~U1U21!2

1mp
2 ~U1U21!#. ~2.1!

Here c is the flavor SU~2! quark field,
U5(1/v)~s1ig5p•t! is the chiral field,v is the vacuum
expectation value ofs, andM5gv is the effective~constitu-
ent! quark mass. The termLSB5cs breaks the chiral sym-
metry explicitly. If we renormalize the pion propagator
zero momentum, as will be done below, then@23# c5vmp

2

andv5 f p , wheremp and f p are defined at zero momentum
The parameters of the model areg ~or M !, ms , mp and the
ultraviolet cutoffL, which can be left finite or eventually
sent to infinity. After introducing a chemical potential whic
is adjusted to give aB51 state@17#, and integrating out the
quark fields in the generating functional, we obtain the f
lowing effective mesonic action@7,17#:

G5ḠF1c.t.1GM1GSB1Gval

[Gvac1Gval. ~2.2!

3In Euclidean metric,xm5xm5~t,r ! with t5ix0, 0,t,T, and
gm5gm5~ib,g!. We also use the notation
Tr A[NC*d4x tr^xuAux&, whereNC53 and tr refers to the Dirac
and isospin indices. The fermionic determinant is assumed to
regularized in some scheme. To avoid the explicit reference t
particular regularization scheme, we employ the symbolic notat
in Eq. ~2.3!.
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Here

ḠF52 1
2 Tr ln~11GV! ~2.3!

is the unrenormalized quark vacuum loop contribution wit
G5(2]21M2)21, and

V5 iM ]”U1M2~U1U21!. ~2.4!

The mesonic parts are given byGM5*d4xLM ,
GSB5*d4xLSB, and the valence quark partGval is given, for
example, in@17#.

The counter terms~c.t.! in Eq. ~2.2! are determined such
that in a derivative expansion of the renormalized fermio
loop contributionGF5ḠF1c.t. no terms of the same form as
those already present inGM appear. In particular, this means
that the quark loop should give no contributions quadratic
the meson fields and their derivatives, which corresponds
the choice of the renormalization pointm r

250 for the meson
masses and wave functions. The counterterms therefore ta
the form

c.t.5 1
2 Tr GV2 1

4 Tr G
2V2. ~2.5!

For later developments, we give the explicit forms of th
counterterms as obtained in a continuous plane wave bas

1
2 Tr GV5

v2

2
dmp

2 E d4x~U1U21!, ~2.6!

2 1
4 Tr G

2V25
v2

2
~ZM21!E d4x@~]mU !~]mU

1!

1M2~U1U21!2#, ~2.7!

where we have defined

dmp
258NCg

2F̄1 , ZM5124NCg
2F̄2 ~2.8!

with4

F̄n5E
reg

d4k

~2p!4
1

~k21M2!n
~n51,2!. ~2.9!

If the counterterms~2.6! and ~2.7! are added to the me-
sonic action, we obtain

G5ḠF1
v2

2 E d4x$ZM~]mU !~]mU
1!1 1

4 @ms
22mp

2

14M2~ZM21!#~U1U21!2

1~mp
21dmp

2 !~U1U21!%1GSB1Gval

5Gvac1Gval. ~2.10!

As expected, the counterterms~2.5! give rise to a factorZM
in the kinetic term, and the masses are replaced according
ma

2→ma
21dma

2 ~a5s,p! with dmp
2 given in Eq.~2.8!, and

dms
22dmp

254M2(ZM21). One can easily confirm that

be
o a
ion 4Here, and in the following, the notation reg indicates that th
loop integral is regularized in some scheme.
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these countertermsZM , dmp
2 anddms

2 are just those which
follow from the one quark-loop self-energies of the meso

For the numerical evaluation of the total energyE
5(1/T)G, to be discussed in Sec. III, it is, however, mo
appropriate to add the counterterms~2.5! to the unrenormal-
ized quark loop rather than to the mesonic terms, i.e.,
evaluate the renormalized quark loop contributi
GF5ḠF1c.t. in one common basis. We will use the basis
Kahana and Ripka@27#. The resulting form of the vacuum
energy in this basis is given in@7,14# and will not be repro-
duced here.

B. Behavior for large and small sizes

Let us now discuss the behavior of the vacuum part~Gvac!
of Eq. ~2.10! for large and small sized localized meson field
To simplify the discussion, in this subsection we will refer
the chiral symmetric (c5mp50) nonlinear ~nl! model,5
s.

e

to
n
of

s.
o

wheres21p25v2. This leaves only the kinetic term~Gkin! in
the mesonic part of Eq.~2.10!:

Gnl,vac5ḠF1ZMGkin5GF1Gkin . ~2.11!

GF5ḠF1~ZM21!Gkin . ~2.12!

We assume for the moment that the fields depend only
the dimensionless variablex5r /R whereR characterizes the
spatial extension of the fields. ThenGkin}R, see Eq.~2.20!
below. The behavior of the quark loop term is most easi
seen by expanding Eq.~2.3! in powers ofV, which leads to
an expansion in terms ofn-point functions. The general ex-
pression is given in Appendix A, and for the nonlinea
model, where only the first term of Eq.~2.4! contributes, it
reduces to6
1

T
GF5NC(

n52

`

R32n
~21!n

2n E d3t1
~2p!3

•••
d3tn21

~2p!3
tr@V1~ t1!•••V1~ tn!#~ F̄n~Q1 ,...,Qn21!uQi5~0,ti /R!2dn2F̄2). ~2.13!

Here t is the dimensionless momentum variable corresponding tox ~i.e., t5pR!, andtn[2~t11•••1tn21!.

V1~ t!5gg•t@s~ t!1 ip~ t!•tg5# ~2.14!

is the Fourier transform of the first term in Eq.~2.4! with s~x![s~x!2v the shifted field, and the unrenormalizedn-point
functions are defined by

F̄n~Q1 ,...,Qn21!5E
reg

d4K

~2p!4
1

@K21M2#@~K1Q1!
21M2#•••@~K1Q11•••1Qn21!

21M2#
. ~2.15!
tic
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la-
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The subtraction term in Eq.~2.13! is due to the wave func-
tion renormalization in Eq.~2.12!, see Eqs.~2.8! and ~2.20!
below. We will denote the renormalized two-point functio
by

F2~Q!5F̄2~Q!2F̄2 . ~2.16!

The highern-point functions are finite and not changed b
renormalization, i.e.,Fn5F̄n for n.2.

The behavior for largeR is determined by the long wave-
length behavior of then-point functions in Eq.~2.13!. Since
F2(Q) of Eq. ~2.16!}Q2 asQ→0, the leading terms of the
renormalized quark loop~n52 and 4! go as 1/R. This leaves
Gkin}R as the leading term, reflecting our choicem r

250 for
the renormalization point.

The behavior for smallR, on the other hand, is deter
mined by the short wavelength behavior of then-point func-
tions. In general, this depends on the regularization pro
dure, but for the case ofL5` we have from the Weinberg
theorem@24# F2(Q)→2~1/16p2!ln(Q2/M2) asQ2→`, and
for n.2, Fn(lQ1 ,...,lQn)}l422n asl→`. Therefore, for
L5` then52 term in Eq.~2.13! behaves asaM2R ln(MR)
with a.0, while the higher terms go asRn21 ~n>4!. Since

5The general case is discussed in Appendix A.
n

y

-

ce-

the n52 term becomes negative and overshoots the kine
term ~Gkin}R! for smallR, the energy of the nontranslationa
invariant vacuum characterized by small sized meson co
figurations can become lower than the energy of the trans
tional invariant vacuum.

If the regulator is kept finite, we can discuss the two term
ḠF andZMGkin in Eq. ~2.11! separately. Since the unrenor-
malized two-point functionF̄2(Q) of ~2.15! vanishes for
largeQ as 1/Q2, at least in any regularization scheme whic
allows a dispersion representation for the two-point functio
ḠF gives terms of orderR

3 or higher. Therefore the leading
term in Eq.~2.11! goes asZMR. It follows that the transla-
tional invariant vacuum is stable ifZM.0, but if ZM,0 the
vacuum instability occurs.~The caseL5` discussed above
can be considered as a limiting case whereZM52`.!

Summarizing the above discussion, the vacuum part
the effective action~2.11! in the chiral symmetric nonlinear
model behaves as

Gnl,vac→Gkin1O~1/R! ~ large R!, ~2.17!

Gnl,vac→ZMGkin1O~R3! ~small R,L,`!, ~2.18!

Gnl,vac→aR ln~MR!1O~R! ~small R,L5`!,
~2.19!

6We will use capital~small! letters for Euclidean~Minkowski!
four-momenta.
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with a.0 andGkin given by

1

T
Gkin5

R

2 E d3t

~2p!3
t2@s~ t!s~2t!1p~ t!•p~2t!#.

~2.20!

In order to see the connection between the vacuum ins
bility and the Landau ghost in the meson propagators mo
clearly, we will introduce the two-point approximation@25#,
which is obtained by keeping only then52 term in the quark
loop ~2.13!. In this approximation, which includes the lead
ing terms both for small and for largeR, the vacuum effec-
tive action becomes

1

T
Gnl,vac

~2! 5
R

2 E d3t

~2p!3
t2@s~ t!s~2t!1p~ t!•p~2t!#

3F2Gp
21~Q!

Q2 G
Q5~0,t/R!

, ~2.21!

where

2Gp
21~Q!5ZMQ

214g2NCQ
2F̄2~Q!

5Q214g2NCQ
2F2~Q! ~2.22!

is the inverse Euclidean Schwinger-Dyson~SD! propagator
of the pion in the one-quark-loop approximation. It behave
asQ2 for small momenta, and asZMQ

2 @or 2Q2 ln(Q2/M2)
in the case ofL5`# for large momenta:

Q2~2Gp~Q2!!→1 S 1

ZM
D as Q2→0 ~Q2→`!.

~2.23!

Therefore, ifZM,0 there must exist an Euclidean pole
~Landau ghost! @11#. To illustrate the behavior of the pion
propagator for various values ofL, we use the dispersion

FIG. 1. The inverse SD pion propagator withmp50, g54 for
EuclideanQ2. The numbers at the solid lines show the values o
L/M , whereL is the cutoff introduced in the dispersion integral
The caseL/M53.82 corresponds to the NJL model. The dotted lin
refers to2Gp

215Q2, corresponding toL/M52.
ta-
re

-

s

regularization,7 in which the dispersion integral forF̄2 is cut
off at the invariant masss25L2. Figure 1 shows the inverse
pion propagator forg54 ~M5372 MeV! and various values
of L, and Fig. 2 shows the corresponding behaviour of
vacuum energy~2.21! in the two-point approximation. Here
we use the hedgehog fields with winding number on
U5exp@i r̂•tQ(r )g5# with the exponential profileQ(r )5
2p exp~2r /R!. The relation between the sign ofZM , the
Landau ghost and the vacuum instability can be clearly s
in these figures. In particular, there exists a ‘‘critical’’ cuto
Lc whereZM50. ~In the present calculationLc/M53.82,
which corresponds to an equivalent three-momentum cu
of 605 MeV.! In this case, the pion propagatorGp(Q) does
not vanish forQ2→` but rather goes to a constant@see Eq.
~2.23! and Fig. 1#, and the vacuum energy goes asR3 for
smallR @see Eq.~2.18! and Fig. 2#.

C. Ghost subtraction

If the pion self-energy in Eq.~2.22! satisfies a dispersion
relation with a cut starting from 4M2, standard arguments
@11,12# lead to the following dispersion representation of t
SD propagator:8

7This regularization scheme is explained in Appendix B. It
equivalent to the three-momentum cutoff scheme if the loop m
mentum is cut off in a particular frame where the three-moment
of the meson is zero, and the result is generalized to an arbit
frame @26#.
8Our notation is such that the propagators for Euclidean a

Minkowski momenta are related byGp(Q)[Gp(q)uq252Q2. We
also note that for finiteL there may be branch points or poles abo
4M2 in the dispersion integral in Eq.~2.24!, i.e., the region of
integration in Eq.~2.24! may split into several ones separated b
regions withx50, where the effect of the cut is effectively replace
by a L-dependent Minkowski pole with positive residue, cf. th
discussion given below.

f
.
e

FIG. 2. The vacuum energy in the two-point approximatio
@E5(1/T)Gnl,vac

~2! # calculated using the exponential hedgehog p
files and the SD propagator shown in Fig. 1 in units ofM as a
function of MR. The numbers at the solid lines show the sam
values ofL/M as in Fig. 1, and the caseL/M53.82 corresponds to
the NJL model. The dotted line shows the kinetic energy, cor
sponding to2Gp

215Q2 in Fig. 1.
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Gp~q!5
1

q21 i e
1E

4M2

` x~s2!

q22s21 i e
ds2

1Q~L2Lc!
Zg

q21Mg
2 ~2.24!

with x~s2!>0. The last term is the Landau ghost term wi
ghost massMg and residueZg,0. ZM can be expressed a
@see Eq.~2.23!#

1

ZM
511E

4M2

`

x~s2!ds21Q~L2Lc!Zg . ~2.25!

We can use these expressions to discuss the behavio
the pion propagator shown in Fig. 1.~A more formal discus-
sion is presented in Appendix B.! In the regionL.Lc ,
where the Landau ghost exists, both the ghost massMg and
the residueZg increase in magnitude without limits as w
approachLc from above~L→Lc10!. In this limit ZM of Eq.
~2.25! goes to zero and the ghost term in Eq.~2.24! goes
to the ~finite! q-independent valueZg/M g

2, i.e., the in-
verse Euclidean propagator becomes flat forQ2→`:

lim
L→Lc10

Zg
q21Mg

2 5
Zg
Mg

2U
L5Lc

[2
1

m2 ~2.26!

with m2.0. On the other hand, in the regionL,Lc , where
no Landau ghost exists, there must be a singularity in
integral ~2.25! as we approachLc from below ~L→Lc20!,
sinceZM vanishes in this limit. In Appendix B it is shown
that this is due to a Minkowski pole term which replaces t
cut for s2.L2. That is, x~s2! consists of a smooth par
Q~L22s2!x0~s

2! with x0 given by Eq.~B5!, and a pole part
Q(Lc2L)Zpd(s

22M p
2) with Mp.L, Zp.0. In the limit

L→Lc20, both Mp and Zp diverge, but the pole term
Zp/(q

22M p
21 i e) goes to the same finite constant as t

ghost term, Eq.~2.26!.
The ghost subtraction consists in replacing the SD pro

gator ~2.24! by the KL propagatorG̃p(q) which satisfies a
KL representation and is related to the SD propagator by

G̃p~q!5Gp~q!2Q~L2Lc!
Zg

q21Mg
2 . ~2.27!

The recipe of@11# to construct the new~ghost free! effective
action is as follows: Take that part of the effective acti
which is quadratic in the meson fields, and replace its co
ficient, which is the inverse SD propagator, by the inve
KL propagator. This prescription, which isnot restricted to
the two-point approximation, gives the following effectiv
action:

G̃5G1dG, ~2.28!

1

T
dG5

1

2 E d3q

~2p!3
@s~q!s~2q!1p~q!•p~2q!#

3@2G̃p
21~Q!1Gp

21~Q!#Q5~0,q! ~2.29!

This expression is valid also for the linear model@14#. Since
the KL propagator satisfies the same renormalization con
th
s
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tions at zero momentum as the SD propagator, the beha
~2.17! of the vacuum effective action for largeR is un-
changed, while for smallR the behavior is governed by a
new wave function renormalization constantZ̃M :

G̃nl,vac→Gkin1O~1/R! ~ large R!, ~2.30!

G̃nl,vac→Z̃MGkin1O~R3! ~small R!, ~2.31!

with

1

Z̃M
5 lim

Q2→`

@2G̃p~Q!#Q2

511E
4M2

`

x~s2!ds2. ~2.32!

SinceZ̃M>0, it is clear that the ghost subtraction leads to
stable translational invariant vacuum. We note that forL5`
Z̃M is finite whileZM diverges. In this caseZ̃M521/Zg due
to Eq. ~2.25!.

We note, however, that the ghost subtraction inevita
introduces a discontinuity asL is varied acrossLc : Accord-
ing to Eq.~2.26!, the ghost term subtracted in Eq.~2.27!, and
therefore alsod G of Eq. ~2.29!, does not vanish for
L→Lc10, while forL→Lc20 the ghost subtraction term i
zero by definition. That is, the ‘‘old’’ theory forL5Lc is
reproduced by the ‘‘new’’~ghost subtracted! theory in the
limit L→Lc20, but not in the limitL→Lc10. The physical
meaning of this will be discussed in the next subsection.

The KL pion propagator and the vacuum energy in t
two-point approximation of the KL model@(1/T)G̃ nl,vac

~2! #
which is obtained by replacingG p

21(Q)→G̃ p
21(Q) in Eq.

~2.21!, are shown forL.Lc by the solid lines in Figs. 3 and
4 for the same hedgehog profiles as before. The lineL/M
53.82 in Fig. 3 refers to the limitL→Lc10. If L is in-
creased to infinity, the inverse propagator varies smoot
between the two solid lines shown in this figure, i.e., after t

FIG. 3. The inverse KL pion propagator withmp50, g54 for
EuclideanQ2. The numbers at the solid lines show the values
L/M . The solid line withL/M53.82 corresponds to the limit
L→Lc10. The dashed line shows the NJL result and is identica
the corresponding line in Fig. 1. The dotted line is the same as
Fig. 1.
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54 2641BARYONS AS SOLITONIC SOLUTIONS OF THE . . .
ghost subtraction the cutoff dependence is very weak in
regionL.Lc . The dashed line labeled by NJL refers to th
limit L→Lc20 and is the same as the corresponding line
Fig. 1. For the vacuum energy shown in Fig. 4, the cuto
dependence in the regionL.Lc cannot be resolved on this
scale, and therefore we show only the result forL5`. The
dashed line is again the same as the NJL line of Fig. 2.

D. Connection to the NJL model

If we choosems
254M21mp

2 andL5Lc in the linears
model, the vacuum part~2.10! becomes9

GvacuL5Lc ,ms
254M21m

p
25ḠF1

v2

2
~mp

21dmp
2 !

3E d4x~U1U21!2cE d4xs.

~2.33!

To see that this is just the effective action in the NJ
model, it is convenient to return to the Lagrangian corr
sponding to Eq.~2.33!, which has the form

L~NJL!5LF1
v2

2
m2~U1U21!2

mm2

g
s, ~2.34!

where we defined the quantitiesm2 andm by

m25mp
21dmp

2 , ~2.35!

9BesidesZM50, this choice leads to a vanishing renormalizatio
constant for the mesonic interactions@21,22# characterized by the
coupling constantl2: Zl5114M2(ZM21)/(ms

22mp
2 )50. It also

leads to the relationl252g2 ~reduction of couplings@22#!. We also
notice that by including higher orders in 1/NC , the sigma mass in
the NJL model becomes considerably smaller than 2M @22#.

FIG. 4. The vacuum energy in the two-point approximatio
@E5(1/T)G̃vac

~2! # calculated using the exponential hedgehog profil
and the KL propagator shown in Fig. 3 in units ofM as a function
of MR. The cutoff dependence forL.Lc is too weak to be dis-
played on the scale used in this figure, and we show only the re
for L/M5` by the solid line. The dashed line shows the NJL resu
and is identical to the corresponding line in Fig. 2. The dotted lin
shows the kinetic energy as in Fig. 2.
the
e
in
ff

L
e-

m

M
m25mp

2⇒m5
M

11dmp
2 /mp

2 .

@Remember thatc5vmp
2 , M5gv, anddmp

2 is given by Eq.
~2.8!.# The Euler-Lagrange equations give immediatel
s52(g/m2)c̄c1m/g, p52i (g/m2)c̄tg5c, and inserting
these relations back into Eq.~2.34! one obtains the well-
known NJL Lagrangian@16# with the four Fermi coupling
constantG5g2/2m2 and the currentu,d quark massm. We
therefore observe the following relation between the effe
tive actions in thes model and the NJL model on the one-
quark-loop level:

G~NJL!5GuL5Lc ,ms
25m

p
214M2. ~2.36!

If we impose the conditions21p25v2 and consider the
chiral symmetric case, the whole discussion of Sec. II B ca
be applied to the NJL model by takingL5Lc ~ZM50!. In
particular, Eqs.~2.17!–~2.23! for ZM50 show that, due to
the normalization conditions, thes model ~for any L! and
the NJL model are equivalent for large sizes, but differ fo
small sizes. In particular, once we perform the ghost subtra
tion in thes model, we expect from Eq.~2.31! that the NJL
model gives lower soliton energies than the KL model, a
least for small solitons.

The above discussion shows that for smallR the NJL
soliton is very soft with respect to changes inR: Since
ZM50, its energy varies asR3. In terms of the pion propa-
gator, this means that the propagator in the NJL model do
not vanish for largeQ2 but goes to a constant, see Eq.~2.23!
and Fig. 1, and this constant was given in Eq.~2.26! in terms
of the limiting values of the ghost mass and residue. If w
approach the NJL model from above~L→Lc10!, this con-
stant is just subtracted in our KL propagator~2.27!. That is,
our KL propagator in the limitL→Lc10 behaves as 1/Q2

and has a finiteZM ~cf. the curveL/M53.82 in Fig. 3!. In
order to understand the physical meaning of this relation,

Gp
~NJL!~q!5Gp~q!uL5Lc

5G̃p~q!uL5Lc102
1

m2 , ~2.37!

between the KL propagator and the NJL propagator, we r
call the connection betweenGp

~NJL! and theqq̄ t-matrix ~see
Fig. 5! in the NJL model:

n

n
es

sult
lt
e

FIG. 5. Graphical representation of theqq̄ t matrix in the NJL
model.
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ta~q!5
2iG

112GP̄a~q!

[ ig@ iGa
~NJL!~q!# ig ~a5s,p!. ~2.38!

Here G is the four Fermi coupling constant, and
P̄a(q) is the bare bubble graph given by
P̄p(q)524NCq

2F̄2(q)28NcF̄1 , P̄s(q)524NC(q
2

24M2)F̄2(q)28NcF̄1 . Using the parametersg andm2, the
NJL propagators can be rewritten into a form which als
follows directly from Eq.~2.34!:

Ga
~NJL!~q!5

21

m21g2P̄a~q!

[
21

ma
21g2Pa~q!

@Pa~q![P̄a~q!2P̄a~0!#.

~2.39!

with mp
25(m/M )m2, ms

25mp
214M2 on account of Eq.

~2.8! for ZM50, and the definition ofm2 in Eq. ~2.35!.
Since the bare loop graphsP̄a(q) in a regularized model

vanish for largeQ2, we see from Eq.~2.39! that the Euclid-
ean propagators for largeQ2 go to21/m252G/2g. This just
expresses the obvious fact that at short distance only the
term in Fig. 5 contributes. We therefore see that the gh
parameters of thes model in the limitL→Lc10 are related
to the four-Fermi coupling constant by Eq.~2.26!. Moreover,
from Eq. ~2.37! it follows that our KL propagator~2.27! in
the NJL limit ~L→Lc10! reproduces theqq̄ exchange chain
graphs starting from the second diagram of Fig. 5. It is qu
clear also intuitively that only theseqq̄ exchange diagrams
correspond to the physical meson exchange described by
KL propagator G̃p , and that the first diagram of Fig. 5
should rather be interpreted as an interaction term peculia
the NJL model, rather than part of a meson exchange p
cess.

Summarizing, after ghost subtraction we have from E
~2.29! the following relation between the effective actions i
the KL and the NJL model:

G~NJL!5G̃uL5Lc10, m
s
25m

p
214M2

1
T

2 E d3q

~2p!3
@s~q!s~2q!1p~q!•p~2q!#

3@2Gp
~NJL!21

~Q!1G̃p
21~Q!uL5Lc10#Q5~0,q! ,

~2.40!

which replaces Eq.~2.36!. Here the propagatorsG̃p and
Gp

~NJL! are related by Eq.~2.37!. The physical content of Eq.
~2.40!, which holds also in the linear model, is simple: Th
NJL model has an additional attractive point interactio
~21/m2! in the two-point function, while all higher-order
Green’s functions are the same. This additional attractio
given by the second term in Eq.~2.40!, reduces the results
shown by the upper solid line in Fig. 3 and the solid line i
Fig. 4 to the NJL results shown by the dashed lines in the
figures.
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III. NUMERICAL RESULTS

In this section we will discuss numerical results for the
soliton energies and meson profiles obtained in the K
model and compare them with those obtained in previou
work in the NJL model. Throughout this section we will
refer to the chiral symmetric nonlinear model, i.e.,mp50
and s21p25v2. For the KL model, we will also restrict
ourselves to the caseL5`. The effective action for the KL
model is then given by the vacuum part@Eq. ~2.11!#, the
valence part and the ghost subtraction part~2.29!. The ferm-
ion loopGF5ḠF1c.t. @see Eqs.~2.3! and~2.5!# is evaluated
using a finite and discrete basis as explained in Sec. II A.
the NJL model, the vacuum part is simply the unrenorma
ized quark loop. To simplify comparisons with previous cal
culations for the NJL model in the literature@17#, we will use
the proper time regularization scheme. We will mainly refe
to the caseg54, corresponding to a constituent quark mas
M5g fp5372 MeV.

First we discuss the results obtained for one-parame
profiles. Figure 6 shows the soliton energy as a function
the sizeR calculated with the exponential Hedgehog profile
in the KL model and in the NJL model. For each case, w
show the vacuum energy and the total energy including th
valence quark contribution. The vacuum energy in the K
model raises asZ̃MR for small R @see Eq.~2.31!#, with
Z̃M50.65 in our calculation. The total energy at the mini
mum atR.0.53 fm is about 4M51488 MeV. Since the
vacuum energy in the NJL model is characterized byZM50
and raises asR3 for smallR, the energy in the NJL model
has to lie below the KL result for small sizes. From the figur
we see, however, that this holds also for medium sizes. F
very large sizes, both models just reproduce the kinetic e
ergy, see Eq.~2.30!. The energy in the NJL model at the
minimum R.0.53 fm is about 3.3M51228 MeV. As we
explained in detail in Sec. III, this difference of about 0.7M
5260 MeV can be attributed to the attractive contactqq̄
interaction term~the first diagram in Fig. 5!, which is absent
in the KL model, see Eq.~2.40!. Comparing Fig. 6 to Fig. 4,

FIG. 6. The soliton energy calculated using the exponenti
hedgehog profiles in units ofM as a functionMR. The two lines
starting fromE/M50 show the vacuum energy, and the two lines
starting fromE/M53 show the total energy including the valence
quark energy. The solid lines refer to the KL model withL5`, and
the dashed lines to the NJL model.
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we see that the small size approximation is quite accurate
to RM.1, but for larger sizes the vacuum energy is unde
estimated.

Next we discuss the results for self-consistent profiles.
calculate the chiral angleQ(r ) self-consistently, we write it
as the sum of the exponential profileQ052p exp~2r /R!
plus perturbation termsanr

n exp~2r /bn! (n51,...,N), and
treatR, an andbn as variational parameters. The actual ca
culation was performed withN57–10, i.e., 15–21 param-
eters. The stability of the solution was checked by changi
the starting values of these parameters, as well as by incre
ing N. For the NJL model our numerical procedure repro
duced the results obtained by other authors.

The resulting self-consistent meson fields for the KL an
the NJL model are shown in Fig. 7. Although the fields in th
KL model are similar to those in the NJL model, we note th
in the NJL model they are somewhat more localized. T
fact that the fields in the KL model tend to avoid curvature
can readily be understood from Eq.~2.21!, which shows that
in the KL model the high momentum components of th
fields are weighted byZ̃MQ

2, while in the NJL model they
are weighted by a constant.

The results for the soliton energies in the KL and NJ
models are shown in Table I for the coupling constantsg54
and 5. We see that the valence quark energies are ra
similar in the KL and NJL model, which reflects the similar

TABLE I. The soliton ~hedgehog! energies~in MeV! obtained
in the KL model and the NJL model for the couplingsg54 and 5.
The results are split into the valence quark contribution and t
vacuum contribution.

g Eval Evac Etot

KL model
4 639 845 1484
5 439 1064 1503

NJL model
4 628 586 1214
5 457 740 1197

FIG. 7. The self-consistents andp fields obtained in the KL
model ~solid lines! and the NJL model~dashed lines!.
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ity of the self-consistent fields. The vacuum energies in th
KL model are much larger than in the NJL model. Again w
note that this is due to the additional attractiveqq̄ contact
interaction in the NJL model represented by the first diagra
in Fig. 5 or the second term in Eq.~2.40!.

Let us compare these results to the two-point approxim
tion discussed in Sec. II and to calculations where the Dir
sea has been neglected@6#:10 As we can expect from Fig. 4,
the effect of the Dirac sea in the two-point approximation t
the KL model gives only a very small attraction. Indeed,
self-consistent calculation within the two-point approxima
tion leads to results which are very similar to those of@6#:
The hedgehog energies are 1280 MeV~1108 MeV! for g54
~g55!, compared to the value 1115 MeV of@6# obtained for
g55.28. The mean meson fields obtained in the two-poi
approximation are also very similar to those of@6#, and show
a larger spatial extension than those of Fig. 7. As we ha
seen earlier, however, the full quark loop deviates from th
two-point approximation forRM.1, where it gives a
strongly repulsive contribution. This leads to considerab
higher hedgehog energies and to narrower mean fields in
full calculation.

The fact that the soliton energies in the KL model ar
considerably larger than the average mass of the nucleon
the delta seems to indicate that the restriction of the fields
the chiral circle is not justified, and for quantitative purpose
it is therefore important to perform the calculations in th
linear model. For the linear NJL model it is well known tha
there exist no stable solitonic solutions@18,19#. It has actu-
ally been shown numerically in@19# that in the limit of small
sizes ~R→0! and deep fields~U→`!, but with URa kept
fixed, the unrenormalized fermion loopḠF and also the total
energy in the NJL model go to zero for 1,a,3/2. It has
already been pointed out@28# that a repulsive term of fourth
order in the fields can cure this instability, since this term
goes to infinity asR324a in the above limit.11 Besides such a
term, which is present in the linear KL model with variable
strength characterized byms

2 , the KL model in the small size
limit also contains the meson kinetic term, which goes a
Z̃MR

122a and therefore also avoids the collapse. One ca
therefore expect that stable solitonic solutions exist in th
linear KL model.

IV. SUMMARY AND CONCLUSIONS

In this paper we investigated solitonic solutions with
baryon number 1 in the chirals model. It is well known that
after renormalization this model suffers from an instability o
the translational invariant vacuum if the cutoff exceeds som
critical value, and that this instability is due to an unphysica
tachyon pole~Landau ghost! in the meson propagators. To
cure this instability, while remaining in the one-loop ap

10The calculations of@6# are performed in the linear model, but
since a rather larges mass is used, the deviations from the chira
circle are small.
11Also other methods to cure the instability of the linear NJL

model have been proposed: The instanton induced 6-fermi inter
tion @18#, a regularization scheme for the~constrained! baryon num-
ber @29#, and vector mesons@30#.
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proximation, we have introduced the KL model, in which, b
construction, the meson propagators satisfy the KL repres
tation and are free of the Landau ghost. Our work serves
purposes: First, to clarify the connection of the KL model
the NJL model, and, second, to present solitonic solution
the KL model for the case where the meson fields are on
chiral circle ~nonlinear model!. We can summarize the re
sults as follows.

First, the NJL and KL models are equivalent for lon
meson wavelengths~large sizes!, but differ for short meson
wavelengths~small sizes!. For small sizes, the effective ac
tion ~energy! in the originals model is dominated by the
kinetic energy of the unrenormalized meson fields, wh
behaves asZMq

2 with uqu some momentum characteristic fo
the Fourier components of the fields. Since the bosoni
NJL model has no explicit mesonic kinetic term in the effe
tive action, it is characterized byZM50. One can, however
choose the cutoff in thes model such thatZM50, and then
the NJL model is simply a particular case of thes model
with the cutoffL5Lc ~and sigma massms

254M21mp
2 !. In

thes model, however,ZM can become negative, which lead
to the Landau ghost and the vacuum instability discus
above. In this case, which happens forL.Lc , one has to
introduce a ghost subtraction term into the effective acti
i.e., one must employ the KL model. As we have shown
detail, this ghost subtraction term survives even in the N
limit L→Lc10, in which case it removes the short rang
part of theqq̄ interaction~the first diagram in Fig. 5!. The
difference between the NJL and the KL model is then th
the former includes this pointlikeqq̄ interaction and the lat-
ter does not. We have noted that by subtracting this con
interaction one effectively obtains a kinetic term}Z̃MR for
small solitons withZ̃M.0. This term is expected to avoid th
collapse observed in the linear NJL model for small siz
and deep fields. For large soliton sizes, the two models
y
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two
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s in
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still equivalent to each other due to the imposed renorm
ization conditions. We also pointed out that, once the gho
is subtracted, the cutoff dependence in the nonlinear K
model is rather weak, and therefore we limited our self co
sistent calculations to the caseL5`.

Second, the self-consistent meson fields in the KL mod
are quite similar to those in the NJL model. Since the K
model can be thought of as the NJL model without the a
tractive qq̄ point interaction, the soliton masses in the KL
model are considerably larger than those in the NJL mod
~about four times the constituent quark mass!. That is, in the
nonlinear KL model one will not be able to reproduce th
nucleon and the delta masses, and therefore the calculat
should be done in the linear model. On the basis of t
present work, it remains to be seen whether the linear K
model can successfully describe the baryon properties or n
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APPENDIX A: SMALL SIZE EXPANSION
AND TWO-POINT APPROXIMATION

OF THE QUARK LOOP PART

The small size expansion ofGF5ḠF1c.t. @see Eqs.~2.3!
and ~2.5!# corresponds to an expansion in terms ofn-point
functions with vertices described byV of Eq. ~2.4!. If we
express GF5( n52

` (21)n/2n Tr[(GV)n2dn,2G
2V2] in a

plane wave basis, we obtain for time independent mes
fields in the continuum limit
1

T
GF5NC(

n52

`
~21!n

2n E d3q1
~2p!3

•••
d3qn21

~2p!3
tr@V~q1!•••V~qn!#@ F̄n~Q1 ,...,Qn21!uQi5~0,qi !

2dn,2F̄2#, ~A1!

whereV~q! is the three-dimensional Fourier transform ofV~r !, the unrenormalizedn-point functions are given by Eq.~2.15!,
and F̄2 by Eq. ~2.9!. Assuming that the meson fields depend only onx5r /R, and introducingt5qR, we have from Eq.~2.4!

V~q!5R2@V1~ t!1RV2~ t!#[R2V~ t! ~A2!

with V1~t! given in Eq.~2.14!, and

V2~ t!5g2F2vs~ t!1E d3xei t•x@s2~x!1p2~x!#G . ~A3!

In terms of the variablest i , we arrive at Eq.~2.13! with V1~t! replaced byV~t!. @Note that Eq.~2.13! applies to the nonlinear
model whereV250.#

The two-point approximation consists in keeping only then52 term inGF . After adding the mesonic termsGM andGSB,
we obtain
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1

T
Gvac

~2!5
R

2 E d3t

~2p!3
t2H p~ t!•p~2t!F2Gp

21~Q!

Q2 G1s~ t!s~2t!F2Gs
21~Q!

Q2 G J
Q5~0,t/R!

1
R3

2
g2E d3t

~2p!3
@4vs~ t!Ṽ2~2t!

1Ṽ2~ t!Ṽ2~2t!#Fms
22mp

2

4M2 14g2NCF2~Q!G
Q5~0,t/R!

. ~A4!

Here the inverse Euclidean propagators are given by~a5s,p!

2Ga
21~Q!5ma

21ZMQ
214g2NCQ

2F̄2~Q!1da,p16g
2NCM

2F2~Q!

5ma
21Q214g2NCQ

2F2~Q!1da,p16g
2NCM

2F2~Q!. ~A5!
of
In Eq. ~A4!, the contribution from the first term inV2 of
Eq. ~A3! is included in thes propagator, and the rest is
denoted asg2Ṽ2~t!, i.e., Ṽ2~t! is the Fourier transform of
s2~x!1p2~x!.

APPENDIX B: PION PROPAGATOR IN THE DISPERSION
REGULARIZATION SCHEME

The dispersion regularization scheme consists in cutti
off the dispersion integral for the two-point function12 F̄2(q)
in Eq. ~2.22! at L2.4M2:

F̄2~q!5E
4M2

L2 r~s2!ds2

s22q22 i e
,

r~s2!5
1

16p2 A12
4M2

s2 . ~B1!

We have ZM5124g2NCF̄2.0(,0) if L,Lc(L.Lc).
@Here F̄2[F̄2(0).# The pion propagator
Gp(q)5[ZMq

214g2q2NCF̄2(q)]
21 for exact chiral sym-

metry has the pion pole atq250. The other poles are deter
mined from

4g2NCF̄2~q!52ZM . ~B2!

Consider first the caseL,Lc , whereZM.0. Then Eq.
~B2! has a solution forq2[M p

2.L2 with residueZp.0:

12For the formulas in this appendix we use the Minkowski fou
momentumq.
ng

-

4g2NCE
4M2

L2 r~s2!ds2

Mp
22s2 5ZM ,

Zp5F4g2NCMp
2E

4M2

L2 r~s2!ds2

~Mp
22s2!2G21

. ~B3!

We therefore have the following spectral representation
the pion propagator forL,Lc :

Gp~q!5
1

q21 i e
1E

4M2

` x0~s2!

q22s21 i e
ds21

Zp
q22Mp

21 i e
.

~B4!

Here

x0~q
2!5

21

p

Im g2Pp~q!

@q22Reg2Pp~q!#21@ Im g2Pp~q!#2

~B5!

with Pp(q)524q2NC[ F̄2(q)2F̄2]. It is easy to see from
Eq. ~B3! that for L→Lc20 ~ZM→10! we haveM p

2→`,
Zp→` such that the pole term in Eq.~B4! becomes in this
limit

Zp
q22Mp

2→
2Zp
Mp

2 52F4g2NCE
4M2

Lc
2

rds2G21

. ~B6!

As we explained in Sec. II, this limit is just
21/m2522G/g2. Turning now to the caseL.Lc , where
ZM,0, Eq. ~B2! has a solution forq252M g

2,0 with resi-
dueZg,0 ~Landau ghost!. With the replacementsZp→Zg ,
M p

2→2M g
2, the same relations~B3!–~B6! hold, except that

there is noi e in the denominator of the ghost pole term.
r
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