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Baryons as solitonic solutions of the chiral sigma model
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Self-consistent solitonic solutions with baryon number one are obtained in the chiral quark sigma model.
The translational invariant vacuum is stabilized by a Landau ghost subtraction procedure based on the require-
ment of the K#ién-Lehmann(KL ) representation for the meson propagators. The connection of this ghost free
model (KL model) to the more popular Nambu-Jona-LasinidlJL) model is discussed in detail.
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[. INTRODUCTION tently to hadron physics. Based on the working hypothesis
that this difficulty is not inherent to the model itself but to
The development of effective models of QCD and theirthe approximation scheme usédop expansiojy a method
application to the structure of hadrons is an important andvas proposed to construct a ghost free model within the loop
active field in contemporary medium energy physics. In mosexpansiorf11]. The essence of this approach, which is based
of these models, mesonic degrees of freedom, in particulaen the work of Redmond and Bogoliubet al. [12], is the
pions, play an important role. This is based on the observaconstruction of meson propagators which satisfy théea
tion that, in the limit of a large number of colors, QCD Lehmann(KL) representation. In practice this amounts to the
reduces to an effective theory of mesons described by aBrescription to subtract the ghost pole term from the
effective action in terms of these variablg. Since this Schwinger-Dyson propagators, which should be regarded as
effective action reflects the underlying quark dynamics, it isforming part of the definition of the approximation ué_elay _
natural to base effective models on a Lagrangian with quargonsmermg the vacuum part of the effective mesonic action

and meson fields, and to integrate out the quark fields. Thigﬁr “X‘?d mesonic profiles, it. has been shown (epeﬁﬂﬂ
guark-meson theory should properly incorporate the chir at this method can be applied successfully to finite solitons.

symmetry and its spontaneous breakdown, which are impor-e k::?sr?r?tizggitgass 2{2%;35?” applied to assess higher loop ef-
tant features of low energy QCD. One of the first models off Y )

L . S The purpose of the present paper is twofold: First, we
Fh's kind, _the Fnedberg-Lee mod@,:}] in its simplest form, wish to establish the connection of the KL model discussed
involved just the isoscalar-scalar sigma meson.

In order Qhove to the more popular Nambu-Jona-Las{iNdL) model

incorporate chiral symmetry, one is naturally led to the linear15_»q. g establish a quantitative connection between both
sigma model which in addition includes the pion as a Gold-

) X models on the one quark loop level, we will discuss the
stone bosoii4]. The nucleon, which emerges as a soliton of oo rmalization procedure in tkemodel for finite cutoffA.
the meson field equations, was investigated in the mean field,o NI model then emerges as a particular case of the
approximation to this mod€]5]. First calculations, which sigma model ifA is chosen such that, =072 whereZ,, is

neglected the contribution of the quark Dirac sea to the efye \aye function renormalization constant for the mesons.
fective action, were actually quite succesdfi.

If one attempts to include the effects due to the Dirac sea,———
it is natural to consider the fields and parameters of the linear
sigma model, e.g.; the pion mass, as the “physicéti The ghost eliminated sigma model will be called the Kbr
“dressed”) ones and to follow the standard renormalizationalén-Lehmanimodel from now on. We note that, besides simply
treatment. It has been shown, however, that the renormalizddnering the effect of the Dirac se,6], there exist also other
tion procedure in the framework of the loop expansion lead@0ssibilities to avoid the Landau ghost, for example, the method
to an instability of the translational invariant vacuiimg]. ~ ProPosed irl13], or the use of a sufficiently low momentum cutoff

That is, the energy of the vacuufwithout any valence I|k_e in the NJL m_odel. T_hg connectlo_n to this second possibility
will be discussed in detail in later sections.

q_uark$ can be lowered without bounds by_mcreaSl_ng the 2In this case the original meson-quark Lagrangian does not in-
high momentum components of the meson fields. This proby|ye gerivatives of the meson field®), in which case these fields
lem, which is common to all renormalized asymptotically ¢ pe eliminated immediately due to the Euler-Lagrange equations
nonfree theorieg9], can be traced back to an unphysical 52/sp=0. There exist many investigations on this equivalence or
Tachyon pole(the so called Landau ghgsof the meson  compositeness conditiofy,, =0, see for exampld21,22. Our in-
propagatorg10]. Since, contrary to quantum electrodynam- terest here is somewhat different: We consider the cutois a

ics, in hadronic effective field theories this ghost pole occurghysical parameter characterizing the effective theory, and the con-
usually at rather low energies of the order of the baryon massition z,,=0 is imposed om for fixed renormalized coupling con-
(=1 GeV), the model as it stands cannot be applied consisstants.
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This particular cutoffA, also characterizes the onset of the Here
Landau ghost, that is, fok>A, the ghost subtraction must

be performed to obtain the physical KL model. The second
purpose of this paper is to present self-consistent soliton s
lutions in the KL model and to compare them to those of th
NJL model. As a first step, we will restrict our numerical
investigations to the case where the meson fields are re- V=iMU+MZ U U-1). (2.4
stricted to the chiral circle, but simple argumefgge Sec.

lll) strongly indicate that stable solutions exist also without The mesonic parts are given by =/d*xLy,
this fixation. We will also restrict our discussion to the I'sg=/d*xLsg, and the valence quark pdrt, is given, for
Hedgehog configuration, leaving the projection onto physicabxample, in[17].

baryon states and the calculation of observables for future The counter termsgc.t.) in Eq. (2.2) are determined such

Te=— 1 Trin(1+GV) (2.3

95 the unrenormalized qguark vacuum loop contribution with
G=(-#+M?»1 and

work. that in a derivative expansion of the renormalized fermion
loop contributionl’=T"g+c.t. no terms of the same form as
Il. EEEECTIVE MESONIC ACTION those already present I, appear. In particular, this means

AND VACUUM INSTABILITY that the quark loop should give no contributions quadratic in

the meson fields and their derivatives, which corresponds to
In this section we discuss the effective mesonic action anthe choice of the renormalization poip£=0 for the meson
its behavior for large and small soliton sizes in thenodel.  masses and wave functions. The counterterms therefore take
The ghost subtraction will be introduced to stabilize thethe form

acuum, and the connection to the NJL model will be estab-
vacu ! w ct=1TrGV—1iTr G232 (2.5
lished.
_ o For later developments, we give the explicit forms of the
A. Effective action in the o model counterterms as obtained in a continuous plane wave basis:
If the parameterg.%(<0) and\?, which characterize the )
shape of the “Mexican hat” potential in the linearmodel I TrGv= v 5m2f d*x(UTU—1), (2.6)
[4], are expressed by the “physical” parametargandm,_, 2 7

the Euclidean Lagrangian takes the =L+ Ly + L

with L= g(—ib+MU)y, and 2

R sz2=% (zM—l)f d*%([(9,U)(2,U")
2

_U + 1 2 2 + 2
Lu=~ [(9,U)(3,U7)+ z(mz—m7)(UTU—-1) +M3(UtU-1)2], 2.7
+mi(Utu-1)]. (2.1  where we have defined
2 _ 2 _ 2
Here ¢ is the flavor SW2) quark field, om;=8Ncg°F,, Zy=1-4NcgF; (2.8

U=(1v)(o+iysm-7) is the chiral field,v is the vacuum
expectation value of, andM =gu is the effectivg(constitu-
end quark mass. The termigg=co breaks the chiral sym- . d4k 1
metry explicitly. If we renormalize the pion propagator at Fn:f vy = (nN=1,2). (2.9
zero momentum, as will be done below, tH@8] c=vm?2 reg (2m)" (K*+ M%)

andv=f_, wherem_andf , are defined at zero momentum.
The parameters of the model aggor M), m,, m_ and the
ultraviolet cutoff A, which can be left finite or eventually
sent to infinity. After introducing a chemical potential which 2
is adjusted to give 8=1 state[17], and integrating out the =T+ - f d4X{ZM(3MU)(&MU+)+ i mi—m?

with*

If the countertermg2.6) and (2.7) are added to the me-
sonic action, we obtain

quark fields in the generating functional, we obtain the fol- 7T
lowing effective mesonic actiofi7,17]: +AM(Zy—1)](UTU—1)2
[ =T+ c.t+y+ s+ Tog +(m2+8m2) (U U~ 1)+ gty
=IactTvar (2.2 =IyactTvar (2.10

As expected, the countertern(®&5) give rise to a factoz,,

in the kinetic term, and the masses are replaced according to
m2—m2+ ém? (a=0,7) with ém2 given in Eq.(2.8), and
om2—ésm2=4M?(Z,,—1). One can easily confirm that

3In Euclidean metricx,, =x*=(7r) with =ix% 0<7<T, and
Y,=Y=@{8,7). We also use the notation
Tr A=Ncfd*x tr(x|A|x), whereNc=3 and tr refers to the Dirac
and isospin indices. The fermionic determinant is assumed to be
regularized in some scheme. To avoid the explicit reference to a
particular regularization scheme, we employ the symbolic notation “Here, and in the following, the notation reg indicates that the
in Eq. (2.3. loop integral is regularized in some scheme.
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these counterterm®,,, sm2 and m2 are just those which whereo?+#*=v2. This leaves only the kinetic terfl’;,) in
follow from the one quark-loop self-energies of the mesonsthe mesonic part of Eq2.10):
For the numerical evaluation of the total ener@y _
=(1/mI, to be discussed in Sec. lll, it is, however, more Fivacc e+ Zulin=Te+ T'yin - (2.1)
appropriate to add the counterterfi@sb) to the unrenormal-
ized quark loop rather than to the mesonic terms, i.e., to
evaluate the renormalized quark loop contribution
I'e=Tg+c.t. in one common basis. We will use the basis of
Kahana and Ripk&27]. The resulting form of the vacuum We assume for the moment that the fields depend only on
energy in this basis is given {i7,14] and will not be repro- the dimensionless variable=r/R whereR characterizes the
duced here. spatial extension of the fields. Théh;, <R, see Eq.(2.20
below. The behavior of the quark loop term is most easily
B. Behavior for large and small sizes seen by expanding Eq2.3) in powers ofV, which leads to
Let us now discuss the behavior of the vacuum (By)  an expansion in terms of-point functions. The general ex-
of Eq.(2.10 for large and small sized localized meson fields.pression is given in Appendix A, and for the nonlinear
To simplify the discussion, in this subsection we will refer to model, where only the first term of EqR.4) contributes, it
the chiral symmetric ¢=m_=0) nonlinear (nl) model®  reduces t®

Pe=Te+(Zy—1D)kin- (212

©

1

- 2 3-n (_1)“ d3t1 dstn_l b e
T 1ﬂF—Ncnzz R on 2md 2n)? t{Va(ty) - Va(t) J(Fa(Q1,---Qn-1)l o = (04, /Ry~ Fn2F2)- 213

Heret is the dimensionless momentum variable corresponding(i@., t=pR), andt,=—(t;+---+t,_1).
Vi()=gy-t[s(t) +im(t) 7ys] (2.14

is the Fourier transform of the first term in E@.4) with s(x)=0d(x)—v the shifted field, and the unrenormalizaeboint
functions are defined by

— B d*K 1
Fa(Qu-- Qn-)= freg (2m) [KEFMZ[(K+ Q)2+ M2 [(K+Qu+ -+ Qn_ )2+ M7’

(2.19

The subtraction term in Eq2.13 is due to the wave func- the n=2 term becomes negative and overshoots the kinetic
tion renormalization in Eq(2.12, see Eqgs(2.9) and(2.20  term(I'y;,><R) for smallR, the energy of the nontranslational
below. We will denote the renormalized two-point function invariant vacuum characterized by small sized meson con-
by figurations can become lower than the energy of the transla-
tional invariant vacuum.
—E (O —FE. __If the regulator is kept finite, we can discuss the two terms
Fo(Q)=FaQ)~F. (218 e andZyly, in Eq. (2.11)_separately. Since the unrenor-
malized two-point functionF,(Q) of (2.15 vanishes for
largeQ as 1Q?2 at least in any regularization scheme which
allows a dispersion representation for the two-point function,

. . . ) . I': gives terms of ordeR® or higher. Therefore the leading
length behavior of th@-point functions in Eq(2.13. Since term in Eq.(2.11) goes aZyR. It follows that the transla-

F5(Q) of Eq. (2.16xQ? asQ—0, the leading terms of the ional invariant vacuum is stable #,>0, but if Z,,<0 the
renormalized quark loom=2 and 4 go as 1R. This leaves \acyum instability occurs(The caseA=c discussed above
I'in*R as the leading term, reflecting our choigé=0 for  can be considered as a limiting case whge=—0°.)

the renormalization point. Summarizing the above discussion, the vacuum part of

The behavior for smalR, on the other hand, is deter- the effective actior(2.11) in the chiral symmetric nonlinear
mined by the short wavelength behavior of thgoint func-  model behaves as

tions. In general, this depends on the regularization proce-

The highern-point functions are finite and not changed by
renormalization, i.e.F,=F, for n>2.
The behavior for larg® is determined by the long wave-

dure, but for the case ok=% we have from the Weinberg Loivac=Thin+ O(1/R)  (large R), (2.1
theorem[24] F»(Q)——(1/167°)In(Q*M?) as Q*—x, and T nivac— ZuTkin+ O(R3)  (small R A<x), (2.18
for n>2, F,(AQy,... AQ,)*x\*"2" as\—ox. Therefore, for '

A= then=2 term in Eq.(2.13 behaves aaM?R In(MR) Iyivac— @R IN(MR)+O(R)  (small R,A =),

with &>0, while the higher terms go &~ ! (n=4). Since (2.19

SWwe will use capital(smal) letters for EuclideanMinkowski)
SThe general case is discussed in Appendix A. four-momenta.
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FIG. 1. The inverse SD pion propagator with,=0, g=4 for FIG. 2. The vacuum energy in the two-point approximation

EuclideanQ?2. The numbers at the solid lines show the values of [E=(LM)I'7\ad calculated using the exponential hedgehog pro-

A/M, whereA is the cutoff introduced in the dispersion integral. files and the SD propagator shown in Fig. 1 in unitshfas a

The case\/M =3.82 corresponds to the NJL model. The dotted linefunction of MR. The numbers at the solid lines show the same
refers to—G ;1= Q?, corresponding to\/M =2. values ofA/M as in Fig. 1, and the cas&/M =3.82 corresponds to

the NJL model. The dotted line shows the kinetic energy, corre-
. 717 2 . .
with &>0 andT;, given by sponding to—G . "=Q*“ in Fig. 1.
1 R d3t regularizatiorY, in which the dispersion integral fd?2 is cut
7 Tin=7 f 53 t2[s(t)s(—t)+ m(t) - mw(—1)]. off at the invariant mass?=A2. Figure 1 shows the inverse
(2m) (2.20 pion propagator fog=4 (M =372 MeV) and various values
' of A, and Fig. 2 shows the corresponding behaviour of the

vacuum energy2.21 in the two-point approximation. Here

In order to see the connection between the vacuum inst%e use the hedgehog fields with winding number one:
bility and the Landau ghost in the meson propagators morfJ:exp[iF-a-G)(r)yS] with the exponential profile®(r)=

clearly, we will introduce the two-point approximati¢fas], : .

N ) ; . —mexp(—r/R). The relation between the sign &,, the
Yvh|ch2|slobt?|ntiq by keep_mg ?nly tmﬁ.:itgml] 'g thetthuiatrk d Landau ghost and the vacuum instability can be clearly seen
.oop( 13. In this approximation, which includes the lead- in these figures. In particular, there exists a “critical” cutoff
ing terms both for small and for large, the vacuum effec- A, where Z,,=0. (In the present calculation /M =3.82,

tive action becomes which corresponds to an equivalent three-momentum cutoff
of 605 MeV) In this case, the pion propagat@r,(Q) does

1 R d3t : 2
1@ = f t2rs(t)s( —t) + 7(t) - 7( —t not vanish forQ“—o but rather goes to a constdisee Eq.
T hvac 2 | (27)3 [s()S(=O+ (1) m(~1)] (2.23 and Fig. 1, and the vacuum energy goes RS for
_6-%Q) smallR [see Eq(2.18 and Fig. 2.
x[# , (2.21)
Q=(0t/R) C. Ghost subtraction
where If 'the pilon self—energy in Eq(.2.22; satisfies a dispersion
relation with a cut starting from M “, standard arguments
_ — 11,12 lead to the following dispersion representation of the
=Q?+49g°NcQ%F2(Q) (2.22

is the inverse Euclidean Schwinger-Dys(8D) propagator "This regularization scheme is explained in Appendix B. It is
of the pion in the one-quark-loop approximation. It behavesquivalent to the three-momentum cutoff scheme if the loop mo-
asQ? for small momenta, and &&,Q? [or —Q? In(Q%/M?) mentum is cut off in a particular frame where the three-momentum
in the case ofA=0¢] for large momenta: of the meson is zero, and the result is generalized to an arbitrary
frame[26].
80ur notation is such that the propagators for Euclidean and
as Q2—>0 (Q2—>oc)_ Minkowski momenta are related by,,(Q)EG,,(q)|qz:,Qz. We
also note that for finité\ there may be branch points or poles above
(2.23 4M? in the dispersion integral in Eq2.24, i.e., the region of
integration in Eq.(2.24 may split into several ones separated by
Therefore, ifZy,, <0 there must exist an Euclidean pole regions withy=0, where the effect of the cut is effectively replaced
(Landau ghost[11]. To illustrate the behavior of the pion by a A-dependent Minkowski pole with positive residue, cf. the
propagator for various values df, we use the dispersion discussion given below.

Q(—GH(Q%))—1
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[

x(0?)
G'n'(q)_ q2+i€+J4M2 q2—0'2+i6 do

Zy

FOA A

(2.29

with x(¢®)=0. The last term is the Landau ghost term with
ghost massv; and residueZ<0. Z, can be expressed as
[see Eq(2.23)]

[

f 2)((0'2)d0'2+ O(A-AyZy. (229
aM

We can use these expressions to discuss the behavior
the pion propagator shown in Fig. (A more formal discus-
sion is presented in Appendix BIn the region A>A.,
where the Landau ghost exists, both the ghost and
the residueZ, increase in magnitude without limits as we
approach\, from above(A—A.+0). In this limit Z,, of Eq.
(2.25 goes to zero and the ghost term in Eg.24 goes
to the (finite) g-independent valueZ,/M é i.e., the in-
verse Euclidean propagator becomes flat@Sr—c:

11
Zu T

Zg

w2
Mg A=A

l Zg
m 5z
A—Ag+o 97T Mg

(2.26

2

with u?>0. On the other hand, in the regidn<A., where

no Landau ghost exists, there must be a singularity in the

integral (2.25 as we approach. from below (A—A.—0),
sinceZ,, vanishes in this limit. In Appendix B it is shown
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FIG. 3. The inverse KL pion propagator with_=0, g=4 for
EuclideanQ?. The numbers at the solid lines show the values of
AIM. The solid line with A/IM=3.82 corresponds to the limit
A—A.+0. The dashed line shows the NJL result and is identical to
the corresponding line in Fig. 1. The dotted line is the same as in
Fig. 1.

tions at zero momentum as the SD propagator, the behavior
(2.17 of the vacuum effective action for large is un-
changed, while for smalR the behavior is governed by a

new wave function renormalization constagy :

1_‘nl,vac—d_‘kin'i' O(1/R) (large R), (2.30

1—‘nl,vacH’le—‘kin"'O(R?‘) (small R), (2.3)

that this is due to a Minkowski pole term which replaces the

cut for o®>A2 That is, x(¢?) consists of a smooth part
O(A2-?)xo(0®) with x, given by Eq.(B5), and a pole part
O(A;—A)Z,8(c®—M ) with M,>A, Z,>0. In the limit
A—>A5—0, both M, and Z, diverge, but the pole term
Z/(q

ghost term, Eq(2.26).

The ghost subtraction consists_in replacing the SD propa-

gator (2.24 by the KL propagatoiG(q) which satisfies a
KL representation and is related to the SD propagator by

Zy

Go(0)=G4(@) ~O(A~A0) 7.

(2.27)

The recipe of 11] to construct the newghost fre¢ effective

—M3+i€) goes to the same finite constant as the

with

lim [—G.(Q)]Q?

Q2o

1
Zy

=1+J’ x(o?)do?.
am?2

SinceZy,=0, it is clear that the ghost subtraction leads to a
stable translational invariant vacuum. We note thatAeroo
Zy, is finite while Zy, diverges. In this casgy = —1/Z, due
to Eq.(2.29.
We note, however, that the ghost subtraction inevitably

(2.32

action is as follows: Take that part of the effective actionintroduces a discontinuity a§ is varied across\. : Accord-
which is quadratic in the meson fields, and replace its coefing to Eq.(2.26), the ghost term subtracted in E@.27), and
ficient, which is the inverse SD propagator, by the inversgherefore alsosT" of Eq. (2.29, does not vanish for

KL propagator. This prescription, which i#ot restricted to
the two-point approximation, gives the following effective
action:

T=I+T, (2.29

1 1 d3q
T 5F—§f W[S(q)s(—q)ww(q)-w(—q)]

X[~G; Q)+ G %Q) o= (0q) (2.29

This expression is valid also for the linear mofief]. Since

A—A.+0, while for A—A,—0 the ghost subtraction term is
zero by definition. That is, the “old” theory foA=A_ is
reproduced by the “new’(ghost subtractedtheory in the
limit A—A.—0, but not in the limitA—A;+0. The physical
meaning of this will be discussed in the next subsection.
The KL pion propagator and the vacuum ene;gggy in the
two-point approximation of the KL mogeﬂ(ll'l')l“n?va
which is obtained by replacing ;(Q)—G . *(Q) in Eq.
(2.21), are shown forA> A, by the solid lines in Figs. 3 and
4 for the same hedgehog profiles as before. The NAd
=3.82 in Fig. 3 refers to the limih—A +0. If A is in-
creased to infinity, the inverse propagator varies smoothly

the KL propagator satisfies the same renormalization condibetween the two solid lines shown in this figure, i.e., after the
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E/M

FIG. 5. Graphical representation of thg t matrix in the NJL
model.

m , M

, , o M AT M=M=y om2/m2’

FIG. 4. The vacuum energy in the two-point approximation

[E=(1fl')1“\(,%)c] calculated using the exponential hedgehog profiles 2 5.

and the KL propagator shown in Fig. 3 in units Mf as a function [Remember that=vm?7, M=gu, anq omz is given by Eq.

of MR. The cutoff dependence fok>A, is too weak to be dis- (2.8.] The_Euler-Lagrange equations give immediately

played on the scale used in this figure, and we show only the result="—(9/ ) Y+ m/g, mw=—i(g/u?)Yrysiy, and inserting

for A/M = by the solid line. The dashed line shows the NJL resultthese relations back into E¢2.34 one obtains the well-

and is identical to the corresponding line in Fig. 2. The dotted lineknown NJL Lagrangiai16] with the four Fermi coupling

shows the kinetic energy as in Fig. 2. constaniG=g%/2u? and the currenti,d quark massn. We
therefore observe the following relation between the effec-

ghost subtraction the cutoff dependence is very weak in théve actions in thes model and the NJL model on the one-

regionA>A.. The dashed line labeled by NJL refers to thequark-loop level:

limit A—A.—0 and is the same as the corresponding line in

Fig. 1. For the vacuum energy shown in Fig. 4, the cutoff rNIL —

dependence in the regioh>A. cannot be resolved on this

scale, and therefore we show only the result Acr>. The ) N 5 )
dashed line is again the same as the NJL line of Fig. 2. If we impose the condition”+m*=v* and consider the

chiral symmetric case, the whole discussion of Sec. Il B can
be applied to the NJL model by taking=A. (Zy=0). In

) s 5 ) ) particular, Eqs(2.17—(2.23 for Z,,=0 show that, due to

If we choosem;=4M“+m7 andA=A. in the linearc  the normalization conditions, the model (for any A) and

1—‘lA:AC,mizmi+4M2- (2.36

D. Connection to the NJL model

model, the vacuum paf®.10 become$ the NJL model are equivalent for large sizes, but differ for
2 small sizes. In particular, once we perform the ghost subtrac-
Toadacn m2eamzem? =Te+ = (M2+ 5m2) tion in the = model, we expect from Eq2.31) that the NJL
¢ ™ 2 model gives lower soliton energies than the KL model, at
least for small solitons.
XJ d4x(u+u—1)—cJ d*xo. The above discussion shows that for smRllthe NJL

soliton is very soft with respect to changes R Since
(2.33 Zy =0, its energy varies aR>. In terms of the pion propa-
o ] o gator, this means that the propagator in the NJL model does
To see that this is just the effective action in the NJL hot vanish for large)? but goes to a constant, see E2.23
model, it is convenient to return to the Lagrangian corre-gng Fig. 1, and this constant was given in E2j26) in terms
sponding to Eq(2.33, which has the form of the limiting values of the ghost mass and residue. If we
. mu? approach the NJL model from aboya—A.+0), this con-
LNY=r 4 — p2(UtU-1)—- — 0o, (2.39  stantis just subtracted in our KL propagat@r27. That is,
2 g our KL propagator in the limiA—A,+0 behaves as @?
and has a finity, (cf. the curveA/M=3.82 in Fig. 3. In

where we defined the quantities andm by order to understand the physical meaning of this relation,

w?=m2+ sm2, (2.35
GM(A)=Go(A)|x=1,

~ 1
9BesidesZM =0, this choice leads to a vanishing renormalization = Gw(q)|A=Ac+0— —, (2.37
constant for the mesonic interactiofisl,22 characterized by the H
coupling constank? Z, =1+4M?(Zy,—1)/(m2—m2)=0. It also
leads to the relation?=2g? (reduction of coupling§22]). We also ~ between the KL propagator and the NJL propagator, we re-
notice that by including higher orders inNi¢, the sigma mass in  call the connection betweefBS'T“") and theqq t-matrix (see
the NJL model becomes considerably smaller thh [22]. Fig. 5 in the NJL model:



2642 WOLFGANG BENTZ, JOSEF HARTMANN, AND FRIEDRICH BECK 54

t(q)= 2iG I B L e a e e
0 26T i A
=ig[icM(q)lig (a=o,m). (2.39 o= s ]
Here G is the four Fermi coupling constant, and -7 T i
IM.(g) is the bare bubble graph given by 5 - // 1
I1(9) ==4Ncq’Fo(q) — 8NcFy, I1,(q)=—4Nc(q? I 7 e
—4M?)F,(q) —8N.F;,. Using the parameterg and 1, the I 7 - N
NJL propagators can be rewritten into a form which also [ 7 ]
follows directly from Eq.(2.34: ok -7 ]
-1 RN RN RN IFPIVIN SR S
G(aNJL)(q): _ 0 0.5 1 113M 2 2.5 3
p?+g°T,(q)
_ _ _ FIG. 6. The soliton energy calculated using the exponential
=————— [1l(q)=1,(q) —IL(0)]. hedgehog profiles in units dfl as a functionMR. The two lines
m;,+ 9711, (q) starting fromE/M =0 show the vacuum energy, and the two lines

(2.39 starting fromE/M =3 show the total energy including the valence
) quark energy. The solid lines refer to the KL model wikk-, and
with mi=(m/M),u2, m§=mf_,fr4M220_n account of Eq. the dashed lines to the NJL model.
(2.8 for Zy, =0, and the definition of.“ in Eqg. (2.35.

Since the bare loop graphs,(q) in a regularized model . NUMERICAL RESULTS
vanish for largeQ?, we see from Eq(2.39 that the Euclid- ] . L )
ean propagators for larg@? go to —1/u?=—G/2g. This just In this section we will discuss numerical results for the

expresses the obvious fact that at short distance only the fir§Pliton energies and meson profiles obtained in the KL
term in Fig. 5 contributes. We therefore see that the ghosiodel and compare them with those obtained in previous
parameters of the- model in the limitA—A.+0 are related Work in the NJL model. Throughout this section we will
to the four-Fermi coupling constant by E@.26. Moreover, ~ Tefer to the chiral symmetric nonlinear model, i.en,=0
from Eq. (2.37) it follows that our KL propagatof2.27 in  and o*+#*=v? For the KL model, we will also restrict
the NJL limit (A—A.+0) reproduces thgq exchange chain ourselvgs to the'casﬁzoo. The effective action for the KL
graphs starting from the second diagram of Fig. 5. It is quitenodel is then given by the vacuum p4fg. (2.11)], the
clear also intuitively that only thesgq exchange diagrams Vvalence part and the ghost subtraction (gar29. The ferm-
correspond to the physical meson exchange described by tfi@h loopI'e=T'r+c.t. [see Eqs(2.3) and(2.9)] is evaluated

KL propagatorG., and that the first diagram of Fig. 5 using a finite and discrete basis as explained in Sec. Il A. In

should rather be interpreted as an interaction term peculiar tg‘e NJL model, the vacuum part is simply the unrenormal-

the NJL model, rather than part of a meson exchange prd—zed quark loop. To simplify comparisons with previous cal-

cess culations for the NJL model in the literatur&?7], we will use
Summarizing, after ghost subtraction we have from Eqthe proper time regularization scheme. We will mainly refer

(2.29 the following relation between the effective actions in to the caseg=4, corresponding to a constituent quark mass

. M=gf_ =372 MeV.
the KL and the NJL model: First we discuss the results obtained for one-parameter

profiles. Figure 6 shows the soliton energy as a function of
the sizeR calculated with the exponential Hedgehog profiles
T d3q in the KL model and in the NJL model. For each case, we
+ > J 23 [s(a)s(—q)+a(q) - =(—0q)] show the vacuum energy and the total energy including the
(2m) valence quark contribution. The vacuum energy in the KL
~(NIDL =_1 model raises a¥ZyR for small R [see Eq.(2.31)], with
X[=G7 (Q+G,(Qlr-ac+olo-0a- Zu=0.65 in our calculation. The total energy at the mini-
(2.40 mum at R=0.53 fm is about M=1488 MeV. Since the
_ vacuum energy in the NJL model is characterizedzly=0
which replaces Eq(2.36. Here the propagator&._ and and raises aR® for small R, the energy in the NJL model
G(,L“") are related by Eq2.37). The physical content of Eq. has to lie below the KL result for small sizes. From the figure
(2.40, which holds also in the linear model, is simple: The we see, however, that this holds also for medium sizes. For
NJL model has an additional attractive point interactionvery large sizes, both models just reproduce the kinetic en-
(—1/u?) in the two-point function, while all higher-order ergy, see Eq(2.30. The energy in the NJL model at the
Green’s functions are the same. This additional attractionminimum R=0.53 fm is about 3.81=1228 MeV. As we
given by the second term in E¢2.40, reduces the results explained in detail in Sec. lIl, this difference of about .7
shown by the upper solid line in Fig. 3 and the solid line in =260 MeV can be attributed to the attractive contgct
Fig. 4 to the NJL results shown by the dashed lines in thesateraction term(the first diagram in Fig. b which is absent
figures. in the KL model, see Eq2.40. Comparing Fig. 6 to Fig. 4,

TMD=T() ) Lo, m2em2+am
c o T
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10 —— = ———— ity of the self-consistent fields. The vacuum energies in the
i L 1 KL model are much larger than in the NJL model. Again we
p i note that this is due to the additional attractiygq contact
interaction in the NJL model represented by the first diagram
in Fig. 5 or the second term in E€R.40.

Let us compare these results to the two-point approxima-
tion discussed in Sec. Il and to calculations where the Dirac
sea has been neglectf]:'° As we can expect from Fig. 4,
the effect of the Dirac sea in the two-point approximation to
the KL model gives only a very small attraction. Indeed, a
self-consistent calculation within the two-point approxima-
tion leads to results which are very similar to those @ff
The hedgehog energies are 1280 M@\08 Me\) for g=4
4 (g=>5), compared to the value 1115 MeV [#] obtained for
g=>5.28. The mean meson fields obtained in the two-point
approximation are also very similar to thosd 6f, and show
a larger spatial extension than those of Fig. 7. As we have
seen earlier, however, the full quark loop deviates from the
two-point approximation forRM>1, where it gives a
strongly repulsive contribution. This leads to considerably

) o ) higher hedgehog energies and to narrower mean fields in the
we see that the small size approximation is quite accurate Ug,|| calculation.

to RM=1, but for larger sizes the vacuum energy is under- The fact that the soliton energies in the KL model are
estimated. , , considerably larger than the average mass of the nucleon and
Next we discuss the results for self-consistent profiles. Tqne delta seems to indicate that the restriction of the fields on
calculate the chiral angl®(r) self-consistently, we write it the chiral circle is not justified, and for quantitative purposes
as the sum of the exponnennal profi@=—m exp(—r/R)  jt is therefore important to perform the calculations in the
plus perturbation terma,r” exp(—r/by) (n=1,...N), and jinear model. For the linear NJL model it is well known that
treatR, a, andb, as variational parameters. The actual cal-ihere exist no stable solitonic solutiof8,19. It has actu-
culation was performed wittN=7-10, i.e., 15-21 param- 4|y heen shown numerically ifiL9] that in the limit of small
eters. The stability of the solution was checked by changm%izes(R_)O) and deep fieldU—), but with UR® kept
the starting values of these parameters, as well as by increaﬁ;ied’ the unrenormalized fermion lodfy and also the total
ing N. For the NJL mgdel our numerical procedure repro-energy in the NJL model go to zero fok<3/2. It has
duced the results obtained by other authors. already been pointed o8] that a repulsive term of fourth

The resulting self-consistent meson fields for the KL andgqer in the fields can cure this instability, since this term
the NJL model are shown in Fig. 7. Although the fields in thegoes to infinity asR® % in the above limit:! Besides such a

KL model are similar to those in the NJL model, we note thatiem which is present in the linear KL model with variable
in the NJL model they are somewhat more localized. Therength characterized g2, the KL model in the small size

o

fact that the fields in the KL model tend to avoid curvaturesjjmit also contains the meson kinetic term. which goes as
can readily be understood from E@.21), which shows that EMRl’Z“ and therefore also avoids the collapse. One can

in the KL model the high momentum components of theiherefore expect that stable solitonic solutions exist in the
fields are weighted by,,Q<, while in the NJL model they |inear KL model.

are weighted by a constant.

The results for the soliton energies in the KL and NJL
models are shown in Table | for the coupling constays! IV. SUMMARY AND CONCLUSIONS
and 5. We see that the valence quark energies are rather
similar in the KL and NJL model, which reflects the similar-

0.5

0.0

-0.5

self-consistent meson fields

-1.0

r[fm]

FIG. 7. The self-consistent and 7 fields obtained in the KL
model (solid lineg and the NJL mode{dashed lines

In this paper we investigated solitonic solutions with
baryon number 1 in the chirat model. It is well known that
after renormalization this model suffers from an instability of
the translational invariant vacuum if the cutoff exceeds some
critical value, and that this instability is due to an unphysical
GEachyon pole(Landau ghostin the meson propagators. To
cure this instability, while remaining in the one-loop ap-

TABLE I. The soliton (hedgehoy energies(in MeV) obtained
in the KL model and the NJL model for the couplings-4 and 5.
The results are split into the valence quark contribution and th
vacuum contribution.

9 Eval Evac Etot

KL model 1%The calculations of6] are performed in the linear model, but
4 639 845 1484 since a rather large- mass is used, the deviations from the chiral
5 439 1064 1503 circle are small.

NJL model HAlso other methods to cure the instability of the linear NJL
4 628 586 1214 model have been proposed: The instanton induced 6-fermi interac-
5 457 740 1197 tion [18], a regularization scheme for tigonstraineglbaryon num-

ber[29], and vector mesons0].
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proximation, we have introduced the KL model, in which, by still equivalent to each other due to the imposed renormal-
construction, the meson propagators satisfy the KL represeiization conditions. We also pointed out that, once the ghost
tation and are free of the Landau ghost. Our work serves twgs subtracted, the cutoff dependence in the nonlinear KL
purposes: First, to clarify the connection of the KL model tomodel is rather weak, and therefore we limited our self con-
the NJL model, and, second, to present solitonic solutions isistent calculations to the cade=c.
the KL model for the case where the meson fields are on the Second, the self-consistent meson fields in the KL model
chiral circle (nonlinear modgl We can summarize the re- are quite similar to those in the NJL model. Since the KL
sults as follows. model can be thought of as the NJL model without the at-
First, the NJL and KL models are equivalent for long tractive qqg point interaction, the soliton masses in the KL
meson wavelength@arge sizey but differ for short meson model are considerably larger than those in the NJL model
wavelengthgsmall sizeg For small sizes, the effective ac- (about four times the constituent quark mag$at is, in the
tion (energy in the original o model is dominated by the nonlinear KL model one will not be able to reproduce the
kinetic energy of the unrenormalized meson fields, whichnucleon and the delta masses, and therefore the calculations
behaves aZy,q? with |g] some momentum characteristic for should be done in the linear model. On the basis of the
the Fourier components of the fields. Since the bosonizegresent work, it remains to be seen whether the linear KL
NJL model has no explicit mesonic kinetic term in the effec-model can successfully describe the baryon properties or not.
tive action, it is characterized 1,,=0. One can, however,
choose the cutoff in the model such thak,,=0, and then ACKNOWLEDGMENTS

the NJL model is simply a particular case of themodel One of the authoréW.B.) wishes to thank Dr. K. Tanaka

with the cutoff A=A, (and sigma mass12=4M?+m?2). In . .
T o ol for helpful discussions. W.B. was supported by the Grant
the o-model, howeverz,y can become negative, which leads , Aid for Scientific Research of the Japanese Ministry of

to the Landau ghost and the vacuum instability discusse@ducation Project No. C-07640383. J.H. was supported by

above. In this case, which happens for-A., one has to )
introduce a ghost subtraction term into the effective actionDeUtSChe Forschungsgemeinschaft under Contract No. BE

i.e., one must employ the KL model. As we have shown in348/11'1’2'

Qet_ail, this ghost_ subtraction term survives even in the NJL APPENDIX A: SMALL SIZE EXPANSION

limit AHAC+_Q, in wh_lch case it removes .the_short range AND TWO-POINT APPROXIMATION

part of theqq interaction(the first diagram in Fig. b The OF THE QUARK LOOP PART

difference between the NJL and the KL model is then that _

the former includes this pointlikgq interaction and the lat- The small size expansion ¢f-=I"+c.t. [see Eqs(2.3

ter does not. We have noted that by subtracting this contaend (2.5)] corresponds to an expansion in termsnepoint
interaction one effectively obtains a kinetic temZ,R for  functions with vertices described By of Eq. (2.4). If we
small solitons withz,,>0. This term is expected to avoid the express I'e=X ;_,(—1)"/2n Tr[(GV)"— 5n12G2V2] in a
collapse observed in the linear NJL model for small sizegplane wave basis, we obtain for time independent meson
and deep fields. For large soliton sizes, the two models arelds in the continuum limit

1 S (—D" [ d% d®gn — —
fFF:Nsz on (271_)13"' (277)31tr[v(ql)"'V(Qn)][Fn(le---’Qn—1)|Qi:(0,qi)_5n,2F2]a (A1)

whereV(q) is the three-dimensional Fourier transform\if ), the unrenormalized-point functions are given by E@2.15),
andF, by Eqg.(2.9). Assuming that the meson fields depend onlyxefr/R, and introducing=qR, we have from Eq(2.4)

V() =R[Vy(1) +RVa(1) ]=R?V(1) (A2)

with V;(t) given in Eq.(2.14), and

V,(t)=g? 2vs(t)+j d3x et s?(x) + @2 (x)]|. (A3)

In terms of the variable, we arrive at Eq(2.13 with V,(t) replaced by (t). [Note that Eq(2.13 applies to the nonlinear
model whereV,=0.]

The two-point approximation consists in keeping only the2 term inT'r. After adding the mesonic ternl§, andI'gg,
we obtain
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1 R d3t -G, Q) -G, Q) R® d3t ~
—r@__ 2 v —t)| — T 7 ) T —q? — _
_I_F\,aC > (277)3t [ar(t) 7( t)[ o2 +s(t)s(—t) Q2 i + 5 gf (277)3[4us(t)V2( t)
Q=(04/R)
-~ ~ mi-m2
VOV~ 0]~z +49?NeF(Q) (A4)
Q=(0/R)
Here the inverse Euclidean propagators are giveldsyo,)
-G, Q) =m’+Zy Q%+ 4g?NcQ?F (Q) + 8, ,169°NcM2F 5(Q)
=m3+Q°+4g°NcQ?F5(Q) + 8, -169°NcM?F5(Q). (A5)
|
In Eq. (A4), the contribution from the first term ¥, of ) A2 p(cd)do?
Eqg. (A3) is included in theo propagator, and the rest is 49 ch 2 MZ—g2 LMo
denoted agy?V,(t), i.e., V,(t) is the Fourier transform of aM P
S%(X)+ 7(X). 5 [ 4o MZJAZ p(6D)do? |1 .
p=|40NcMp | (M2—0%)? (B3)

APPENDIX B: PION PROPAGATOR IN THE DISPERSION
REGULARIZATION SCHEME

The dispersion regularization scheme consists_in cuttin

off the dispersion integral for the two-point functiéiF,(q)
in Eq. (2.22 at AZ>4M?;

- 2 2d 2
Fz(q):fA plo7)do”

4M? O'z—qz—iG'

1 4M
p(o-z): 167T2 1- 0,2 .

(B1)

We have Zy,=1-49>NcF,>0(<0) if A<A(A>A,).
[Here F,=F,(0).] __The pion propagator
G,(q)=[Zy09%+49%9°NcF,(q)] ~* for exact chiral sym-
metry has the pion pole
mined from

Ag2NGF 5(q) = —Zy . (B2)

Consider first the casda<A., whereZ,,>0. Then Eq.
(B2) has a solution fog®=M 5>A? with residuez,>0:

=0. The other poles are deter- I

We therefore have the following spectral representation of

éhe pion propagator foA<A.:

_ * XO(UZ) 5 Zp
G”(Q)_qz-i-ie LM2 q°—o’+ie qZ—Mé-i—ie'
(B4)
Here
(= _+ Im g*I1(q)
Xl = [q?— Re g711 (@) 12+ [Im gznw<q>12(85)

with TT (q) = —4q2NC[F_2(q)—F_2]. It is easy to see from
Eq. (B3) that for A—A,—0 (Zy—+0) we haveM 5—,
Z,—0 such that the pole term in E¢B4) becomes in this
imit

Zp _Zp 4 2N jAg d 2 o (B6)
= - g
M2 M2 9N Ju?”
As we explained in Sec. |Il, this Ilimit is just

—1/u?=—-2G/g?. Turning now to the cas&>A., where
Zu<0, Eq.(B2) has a solution fog?=—M §<0 with resi-
due Z,<0 (Landau ghost With the replacement&,—Z,

12For the formulas in this appendix we use the Minkowski four M f,—>— M é, the same relationd3)—(B6) hold, except that

momentumg.

there is nai e in the denominator of the ghost pole term.
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