
PHYSICAL REVIEW C NOVEMBER 1996VOLUME 54, NUMBER 5
Double-folding interaction for 6He 1 a scattering

D. Baye, L. Desorgher,* D. Guillain, and D. Herschkowitz
Physique Nucle´aire Théorique et Physique Mathe´matique, Code Postal 229, Universite´ Libre de Bruxelles, B 1050 Brussels, Belgium

~Received 2 May 1996!

In order to prepare the analysis of planned elastic-scattering experiments with a low-energy radioactive
6He beam on ana target, we determine a theoretical interaction between these nuclei. A double-folding
potential is obtained from a realistic6He density derived from a microscopic three-cluster model. Special
attention is paid to the6He-halo description. The resulting potential displays an unusual long tail which might
have observable effects on the elastic cross sections. The parity dependence of the optical potential related to
the elastic transfer of the halo neutrons is discussed qualitatively.@S0556-2813~96!05811-6#

PACS number~s!: 25.60.Bx, 21.60.Gx, 24.10.Ht, 25.55.Ci
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I. INTRODUCTION

With the advent of low-energy radioactive nuclear beam
new collisions are, or will soon become, available for elast
scattering studies@1#. They provide new types of confronta
tions between theory and experiment, which allow the exp
ration of the isospin degree of freedom in collisions.
particular interest is the development of low-energy6He
beams which offers a new way of exploring halo properti
Indeed, 6He is the simplest nucleus exhibiting an anom
lously large matter radius@2#. This property is indicative of
the existence of a neutron halo@3#, i.e., of a region of space
where loosely bound neutrons have a significant probab
of presence at a large distance from the other nucleons. U
now the halo properties have been mostly explored in hi
energy collisions@4,5# with, however, the noticeable excep
tion of delayedb-decay modes@6#. Low-energy elastic scat-
tering should reveal new aspects of the6He two-neutron
halo. The long tail of the nuclear density should have obse
able consequences on the cross sections, even in the vic
of the Coulomb barrier.

Among several possible candidates, the6He 1 a colli-
sion which is being planned at Louvain-la-Neuve is partic
larly interesting. Two possible striking physical effects w
deserve attention: an unusually long range of the nucle
nucleus potential and a rather strong parity effect cor
sponding to the elastic transfer@7,1# of the halo neutrons.
Both effects are a direct consequence of the halo existe
and should provide a new insight into its properties. Ho
ever, the low intensity of the available6He beam, when
compared with stable-beam intensities, will lead to relativ
large error bars on the measured cross sections because
lack of statistics. The first measurements will most likely n
allow accurate phase-shift analyses in spite of the low nu
ber of contributing partial waves. They may even not allo
an unambiguous optical-model fit. However, they will b
invaluable for the validation or invalidation of model calcu
lations of the6He wave function and of the6He 1 a scat-
tering.

*Present address: Paul Scherrer Institute, CH-5232 Villigen, S
zerland.
540556-2813/96/54~5!/2563~7!/$10.00
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The aim of the present work is to prepare the search fo
6He 1 a interaction by calculating a double-folding ap
proximation of its real part. In this model,6He is described
in a realistic way but antisymmetrization effects between
colliding nuclei are neglected. The resulting real potent
should provide a good starting point for a fit of a phenom
enological potential to the expected data. In addition, the
of the double-folding potential will provide a test of futur
fully microscopic calculations of6He 1 a scattering. In-
deed, the microscopic cluster model@8,9# is very efficient in
explaining the scattering of light ions. Its application
6He1 a scattering should lead to a quite realistic evaluati
of its phase shifts and cross sections. However, such ca
lations face several difficulties, because of the complica
microscopic treatment of the6He wave function@10–12#
and of the low binding energy of6He ~0.975 MeV! which
may render single-channel approaches insufficient. The
fects of the antisymmetrization between the6He anda nu-
clei become negligible at large distances and the effec
potentials of a fully microscopic model tend towards
double-folding interaction@13#.

The main ingredient we need is an accurate density
6He. Although accurate nonmicroscopic models ex
@14,15#, we choose to calculate it in a microscopic thre
cluster model for which a minimal number of assumptions
required. This model which was first applied to6He @16#
also provided useful information on the14Be @17#, 17B @18#,
and 17Ne @19# halo nuclei or candidate halo nuclei. It i
based on a large linear combination of three-cluster ba
states projected on the total angular momentum and on
ity. The microscopic6He wave function of Ref.@16# proved
useful in analyzing the delayedb decay of 6He @20# and
dissociation cross sections of this nucleus@21# but better ap-
proximations based on different variants of the microsco
cluster model are now available@10–12# ~an attempt to get
rid of the cluster assumption can be found in Ref.@22#!. In
the present work, the6He wave function of Ref.@16# is
improved and used to calculate a realistic6He density.

Section II is devoted to a summary of the three-clus
model and a description of the basis choice. The obtain
energy and radius are discussed. The corresponding de
is calculated in Sec. III. In Sec. IV, a double-folding6He1
a interaction is determined and the importance of the pa

wit-
2563 © 1996 The American Physical Society



on
-

i-

ts
-
r

2564 54BAYE, DESORGHER, GUILLAIN, AND HERSCHKOWITZ
component of the optical potential is estimated. Concludi
remarks are presented in Sec. V.

II. MICROSCOPIC THREE-CLUSTER
6He WAVE FUNCTION

The 6He nucleus is assumed to be described by thr
clusters, i.e., ana cluster made of two protons and two neu
trons in 0s harmonic-oscillator orbitals, and two single
neutron clusters. Basis states differ by the relative locatio
of these clusters. After proper projection of such basis sta
on good quantum numbers, this basis is employed in a va
tional calculation with the microscopic Hamiltonian

H5(
i51

6

Ti1 (
i. j51

6

Vi j . ~1!

In this expression,Ti is the kinetic energy of nucleoni with
coordinater i , andVi j is an effective nucleon-nucleon inter
action which involves central and spin-orbit terms. The Co
lomb interaction is neglected as it only affects the intern
energy of thea cluster and not the relative motions of th
three clusters.

The intrinsic three-cluster basis functions are defined a

FSMS
~r ,R!5 AFa~2 1

3R!@Fn~
2
3R1 1

2 r ! ^ Fn~
2
3R

2 1
2 r !#

SMS, ~2!

whereA is the antisymmetrization projector over the si
nucleons. The Slater determinantFa(X) involves four 0s
harmonic-oscillator orbitals centered atX. Each function
Fn(X) represents a neutron in a 0s oscillator orbital centered
atX with spin 1/2. They share the same oscillator parame
b with Fa . The generator coordinater is a geometrical pa-
rameter which defines the relative locations of the neutr
clusters while the generator coordinateR defines the location
of the center of mass~c.m.! of the neutron clusters with
respect to the center of thea cluster~see Fig. 1!. In Eq. ~2!,
the neutron spins are coupled to the total spinSwith projec-
tion MS .

The nonorthogonal basis functions of the model are o
tained by projecting the intrinsic functions~2! on the total
angular momentumJ50 and on positive parity. We choose
the z axis along the line joining thea center and a neutron
center, and thex axis in the plane of the three centers. In th
model space, the action of the parity operatorP on an in-
trinsic state is equivalent to a rotation by an angle ofp
around they axis,

FIG. 1. Schematic definition of the generator coordinatesr , R,
andu.
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PFSMS
~r ,R!5exp~2 ipLy!FSMS

~r , R!5FSMS
~2r ,2R!.

~3!

Denoting byPK
LMp the projector on parityp and on the total

orbital momentumL, one obtains

~PK
LMpFSMS

!~r ,R,u!

5
1

2E @DKM
L! ~V!1p~21!L2KD2KM

L! ~V!#

3FSMS
~rV ,RV!dV, ~4!

whereV represents the three Euler anglesa, b, andg, and
u is the angle betweenr andR. The notationsrV andRV

correspond to generator coordinates undergoing a rotati
V. Because of parity projection, not all values of the body
fixed projectionK are useful. ForL50, only K50 and
p51 are possible. ForL51 andp51, components with
K50 vanish while components withK511 andK521
are identical. The numberK can therefore be omitted and,
after couplingL andS, one obtains two types of 01 basis
states,

F0
01

~r ,R,u!5E F00~rV ,RV!dV ~5!

and

F1
01

~r ,R,u!5~2A3!21(
MS

~21!MS11

3E @D12MS

1! ~V!1D212MS

1! ~V!#

3F1MS
~rV ,RV!dV, ~6!

according to the valueS of the total intrinsic spin. In the
following, we shall collectively denote the generator coord
nates (r ,R) by l and (r ,R,u) by l.

The general trial wave function is written as

C01
5C0

01
1C1

01
, ~7!

with

CS
01

5(
n

Cn
SFS

01

~ln!, ~8!

where the sum runs over different selected se
ln[(r i ,Rj ,uk) of generator coordinates. The variational co
efficients are determined by solving the system of linea
equations

(
S

(
n

^FS8
01

~ln8!uH2EuFS
01

~ln!&Cn
S50. ~9!

The matrix elements appearing in Eq.~9! can be obtained
with standard projection techniques@23#. They involve a
triple integration over the Euler angles. For an operatorO
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54 2565DOUBLE-FOLDING INTERACTION FOR6He1a SCATTERING
which does not couple different spin values, the Wigne
Eckart theorem in spin space and the definitions~5! and ~6!
provide

^FS8
01

~l8!uOuFS
01

~l!&

5dSS8E f S~V!^FSMS
~l8!uOuFSMS

~lV!&dV,

~10!

with MS arbitrary, and

f 05
1
2 , ~11!

f 15
1
2 (
M ,M8561

DMM8
1!

~V!5cosacosg2sinasingcosb.

~12!

The intrinsic matrix element in Eq.~10! is calculated analyti-
cally ~or could be calculated numerically! with Slater-
determinant techniques@23#. For the spin-orbit term of the
nuclear force, an expression similar to Eq.~10! but involving
several matrix elements, between different spin states, is a
established.

The angular integration in Eq.~10! is performed numeri-
cally with a triple Gauss quadrature@24#. For thea and g
angles, the Gauss-Fourier method, i.e., equally spaced m
points @25#, is employed with 12–24 points. Forb, the
Gauss-Legendre quadrature with 24 points is used. The t
number of integration points can be reduced by a factor o
because the cluster centers belong to a same plane.

In an early microscopic calculation of6He with the
present model@16,20#, the number of setsln was restricted
and their selection was rather empirical. The fact that t
halo was not well enough described at large distances
peared in a study of theb-delayed deuteron decay of6He
@20#. This process is sensitive to the halo behavior up
distances larger than 10 fm. Other observables such as
sociation cross sections were described in a satisfactory w
@21#. In the present work, we adopt the stochastic selection
generator coordinates proposed in Ref.@26# and first applied
to microscopic descriptions of halo nuclei in Ref.@11#. No-
tice that the definitions of generator coordinates are differe
in both models. In Ref.@11#, the stochastic approach is ap
plied to widths of Gaussian basis functions describing t
relative motions of the halo neutrons and of thea cluster. A
similar procedure has been adopted in the present case. T
letsln of generator coordinates are selected randomly~with
some weight functions forr i andRj ) and tested in the basis
When they satisfy an energy-improvement criterion, they a
kept in the basis. Otherwise, a new triplet is tested. At so
stages, we have reconsidered the marginal utility of ea
basis state in order to remove redundancies. It occurred
accepted triplets had, after a significant enlargement of
basis, a weak influence on the final results. Such triplets w
dropped.

The calculation is performed with the Minnesota intera
tion @27,13# including a spin-orbit term. The central part o
this interaction reads

V5@VR1 1
2 ~11Ps!Vt1

1
2 ~12Ps!Vs#

3@ 1
2u2 1

2 ~22u!PsPt#, ~13!
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whereVR , Vt , and Vs are the repulsive-core, triplet, and
singlet Gaussian form factors, respectively. The exchan
parameteru is kept free while the zero-range spin-orbi
strengthS0540 MeV fm5 @28# (Jl in the notations of Ref.
@13#! is fixed with thea1n system. The harmonic-oscillator
parameterb51.28 fm is selected, which corresponds to th
minimum energy225.58 MeV of thea cluster with the
Minnesota interaction. A basis of 65 functions is constructe
with the stochastic technique described above. In order
save computer time, the basis-state selection was app
with the central part of the interaction only. The spin-orb
term was added when the basis was obtained.

Comparing microscopic calculations of the literature wit
the present one is rather difficult because the model assum
tions are usually different. In particular, comparing rad
when the binding energies are not close to each other
meaningless since the tail of the wave function contributes
the radius. In Ref.@10#, the calculation involves spin-orbit
and tensor interactions, a distortion of thea cluster, and a
3H 1 3H configuration. That work shows that the3H 1
3H channel introduces a significant improvement but th
a1n1n variational basis for the halo description is mor
restricted than in other microscopic calculations. A compa
son with the present work is made impossible by thea clus-
ter distortion which requires rather different conditions fo
the force. The model of Refs.@11# and@12# is much closer to
the present one, except for the lack of spin-orbit interactio
The main difference between both models lies in the ba
choice which allows more freedom for the configuratio
choices in the quoted references with an additional intern
angular momentum between thea cluster and a neutron (Y
states! or between the neutrons (T states!, but a much sim-
pler technique of calculation in the present work. Therefo
we first switch the spin-orbit interaction off and choos
u51.14 as in Ref.@11# ~the oscillator parameter and the
central force are then identical!. The stochastic technique for
the choice of parameters is also similar. The binding ener
we obtain~0.53 MeV! is significantly less good than the bes
result of that work~1.02 MeV!. Convergence is much slower
with the present basis. It is comparable to, but slightly bett
than, the result obtained with theT basis functions of Varga
et al. ~0.40 MeV!. The members of the other family of basis
functions in Ref.@11# (Y functions! are very efficient to
speed up convergence. Such functions have no equivalen
the present model.

We now turn to the calculation with the spin-orbit inter
action. We obtain the reasonable valueu50.96 in order to
reproduce the experimental binding energy~0.98 MeV!. An
S51 component contributes by about 2.53 MeV. This mea
that the binding would not be ensured without spin-orb
force. The corresponding matter radius is 2.23 fm. Th
S51 probability is 17.4%, i.e., close to the value 16% ob
tained in the three-particle nonmicroscopic model of Re
@15# with an effectivea1n interaction and with the same
Minnesota interaction between the halo neutrons.

III. MATTER DENSITY OF 6He

In order to calculate a double-folding interaction, on
needs a matter density for6He. This density at locationr is
given by
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r~r !5K C01U(
j51

6

d~r j2Rc.m.2r !UC01L , ~14!

whereRc.m.5
1
6( j rj is the c.m. coordinate of the six nucle

ons. Rotation invariance entails thatr only depends on the
norm of r . The standard normalization

4pE
0

`

r~r !r 2dr56 ~15!

to the mass number is applied.
In principle, Eq.~14! is valid for wave functions which do

not depend onRc.m.. However, the intrinsic basis functions
~2! present the factorization property

FSMS
~r ,R!5fc.m.f int~r ,R!, ~16!

wherefc.m. is a Gaussian function depending only on th
c.m. coordinateRc.m.. The fact thatfc.m. does not depend on
the generator coordinates results from the way they are
fined in Eq.~2!. Because of this factorization property, th
density formula~14! is also valid for the present wave func
tions in spite of their spurious c.m. dependence. There
mains, however, a drawback: The operator in Eq.~14! is not
a one-body operator. Therefore, a direct calculation of t
density is not convenient. The matrix element~14! can be
calculated in momentum space with the following procedu
The Fourier transform of the matrix element of the one-bo
operator( jd(r j2r ) is factorizable into a simple c.m. facto
and the Fourier transform ofr(r ). This oscillator-strength
matrix element is easily calculated and the spurious c.
component is simply eliminated with a division. The densi
is then obtained with an inverse Fourier transform. As a
ready observed in Ref.@29#, the final expression forr(r ) can
be formally expressed as a function of an effective one-bo
operator as

r~r !5K C01U(
j51

6

Oeff~r j ,r !UC01L . ~17!

The matrix element~17! can be calculated with the standar
cofactor technique@23# with effective one-body matrix ele-
ments. Letw(r j ,X) be a 0s harmonic oscillator orbital cen-
tered atX such as those appearing in the basis functions~2!.
The effective one-body matrix elements are given as in R
@29# by

^w~r j ,X8!uOeff~r j ,r !uw~ rj ,X!&

5~2/pB3!exp@2~X82X!2/4b2#

3exp$2@4r 21~X81X!2#/4B2% i 0~r uX81Xu/B2!,

~18!

where i 0(x)5sinhx/x andB255b2/6. The factor 5/6 results
from the c.m. elimination.

Since the density operator does not depend on spin,
two-spin components ofC01

contribute separately andr can
be split as

r~r !5r0~r !1r1~r !. ~19!
-
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Using Eqs.~8!, ~10!, and~17!, the spin-S density reads

rS~r !5(
n8

(
n

Cn8
S Cn

SE f S~V!

3K FSMS
~ln8!U(

j51

6

Oeff~r j ,r !UFSMS
~lnV!L dV.

~20!

These partial densities allow one to calculate different o
servables mentioned in Sec. II such as the rms radius. F
example, the spin-1 probability

P~S51!5
2p

3 E
0

`

r1~r !r 2dr ~21!

can be obtained from Eq.~20!. We have checked that these
densities provide the same rms radius andS51 probability
as in Sec. II.

The integrands in expressions~20! are calculated analyti-
cally with the cofactor technique and Eq.~18!. The triple
integration is performed numerically as in Sec. II. The ob
tained densitiesr ~solid lines!, r0 ~dashed lines!, and r1
~dotted lines! are displayed in Fig. 2. Their properties are
better seen with a logarithmic scale. The densityr1 appears
to be essentially proportional tor0 up to r58 fm with a
proportionality factor of about one-fifth, i.e., in agreemen
with P(S51). At larger distances,r0 andr1 behave differ-
ently. In spite of the use of a Gaussian basis, the dens
presents an almost exponential decrease up to values la
than 10 fm. This confirms that the halo is well covered by th
basis functions. We expect the exponential decrease to tra
form into a Gaussian decrease at distances larger than
largest value of the generator coordinateR. This is indeed
the behavior of the calculated density beyond 14 fm. A wea
modulation of the decrease can be observed in Fig. 2 beyo
7 fm. It may indicate irregularities in the way the stochasti
approach has paved the basis space at large distances. I
average asymptotic decrease is fitted with an exponen
exp(2r/a), one obtainsa50.7 fm.

IV. DOUBLE-FOLDING INTERACTION

With the help of the microscopic6He density, we can
now determine a double-folding interaction between two n
clei at a distanceR with

FIG. 2. Microscopic6He densitiesr ~solid lines!, r0 ~dashed
lines!, andr1 ~dotted lines!, in linear and logarithmic scales.
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54 2567DOUBLE-FOLDING INTERACTION FOR6He1a SCATTERING
VDF~R!5E drr~r !E dr 8ra~r 8!VNN~r2r 81R!. ~22!

In order to remain consistent, we employ the same Min
sota nucleon-nucleon interaction as used for the calcula
of the density. In Eq.~22!, the quantity denoted asVNN re-
sults from an average over the spin and isospin degree
freedom, of the interaction defined in Eq.~13!. Because of
the closed shell of thea particle, the result of the spin
isospin part of the calculation is simple and can be summ
rized as

Ps→ 1
2 , Pt→ 1

2 . ~23!

Hence, the interactionVNN in Eq. ~22! reads

VNN~r !5 1
16 @~10u24!VR1~9u26!Vt1~u12!Vs#,

~24!

whereVR , Vt , andVs are defined as in Eq.~13! @27#.
For thea density ra , we choose the density of thea

cluster which constitutes the6He core, i.e.,

ra~r !54~3pb2/4!23/2exp~24r 2/3b2!, ~25!

with b51.28 fm as before. The integral overr 8 in Eq. ~22! is
then easily performed analytically, as well as the integ
over the angular part ofr . The final expression is a one
dimensional integral. For a Gaussian term exp(2r2/n2) of
VNN , the corresponding termvDF of VDF reads

vDF~R!54pE
0

`

r~r !va0~r ,R!r 2dr, ~26!

where

va0~r ,R!54S n2

3

4
b21n2D 3/2

3expS 2
r 21R2

3

4
b21n2D i 0S 2rR

3

4
b21n2D . ~27!

The double-folding potential is then obtained with a nume
cal quadrature.

The resulting potential is displayed in Fig. 3~solid lines!,
where it is compared with thea1a potential of Ref.@30#
~dashed lines! and a double-foldinga1a potential ~dotted
lines! obtained from Eqs.~26! and~25!. Thea1a potentials
have similar shapes but different depths. The double-fold
model with the Minnesota interaction predicts the pheno
enological potential up to some readjustment of its de
which could be estimated by fitting the8Be ground-state
energy. The depth and shape ofVDF for

6He 1 a are gen-
erally consistent with thea1a case. However, because o
e-
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al
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the halo, the influence of the potential extends over a mu
larger distance. The potential can be well approximated by
Woods-Saxon potential fitting its long-range part plus
Gaussian potential for its short-range part,

VDF~R!52VGexp~2R2/aG
2 !

2VS$11exp@~R2RS!/aS#%
21, ~28!

with VG541.20 MeV, aG51.95 fm, VS558.52 MeV,
aS50.725 fm, andRS52.647 fm. The difference between
the numerical potential and its analytical approximation
everywhere smaller than about 0.6 MeV, this upper valu
being only reached or approached near the origin.

In this potential the long-range part should not be affecte
by antisymmetrization effects except for the parity term dis
cussed below. Therefore, we suggest to use it withVG as a
single free parameter in order to correct for antisymmetriz
tion effects. The importance of this correction can be es
mated by looking at the spectroscopic properties of this p
tential. As discussed, e.g., in Ref.@30#, such a deep potential
provides a number of nonphysical solutions which simula
forbidden states of the6He 1 a system, i.e., states of the
relative motion which are not allowed by the Pauli principl
@8,9#. The number of such states can be evaluated analy
cally and is here equal to 2 forl50 and 1, and one for
l52 and 3. Although the potential is not dedicated to a spe
troscopic study of10Be, it offers a fair qualitative description
of its spectrum. The Coulomb interaction defined in Ref.@30#
for the a 1 a system is added to the nuclear potential. I
order to reproduce the10Be ground-state energy, the param
eter of the Gaussian part inVDF(R) is modified into the value
VG546.6 MeV. The depth of the potential~28! is increased
by about 5%. Forl50, the deep potential contains three
bound states. The lowest two states at267.3 and232.8
MeV simulate thel50 forbidden states of the6He 1 a
system. The third state~which is fitted! is interpreted as an
approximation of the10Be ground state at27.43 MeV with

FIG. 3. Double-folding6He 1 a potential ~solid lines! com-
pared with the corresponding double-foldinga 1 a potential~dot-
ted lines!, and with the realistica 1 a potential of Ref.@30#
~dashed lines!.
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2568 54BAYE, DESORGHER, GUILLAIN, AND HERSCHKOWITZ
respect to the6He 1 a threshold. In the same way, afte
eliminating the forbidden states in the other partial wave
one obtains three other ‘‘physical’’ states: an unboundp
state near 0.2 MeV, a boundd state at25.51 MeV, and a
boundg state at21.05 MeV. The simple potential~28! with
a modifiedVG simulates qualitatively a part of the boun
10Be spectrum which displays a 21 state at24.04 MeV and
a 12 state at21.44 MeV. The fact that no bound state i
obtained for thef wave beyond the forbidden state is no
incompatible with a very weakly bound 32 state at20.04
MeV. The suggestion of the existence of a bound 41 state is
more unexpected. We think that a reasonable approxima
of the central part of the6He 1 a interaction can be ob-
tained with a weak readjustment ofVG . A similar treatment
of thea 1 a double-folding potential with the proper num
ber of forbidden states provides a result very close to t
accurate potential of Ref.@30#. However, in the6He 1 a
case, the potential should involve an additional term depe
ing on parity which we now discuss qualitatively.

Finally, we try to estimate the behavior of the parity
dependent potential component. This term is a direct con
quence of Pauli antisymmetrization@31#. It can also be un-
derstood in an equivalent physical picture as arising from t
elastic transfer of the halo neutrons@7#. Here, the Pauli prin-
ciple applies to the identicala clusters. The order of magni-
tude of the decrease of this term is given by the overlap
two 6He densities separated by a distance 2R/3. Indeed, the
parity term mostly arises from the overlap between an6He
1 a configuration and the same configuration inverte
through the geometrical center of the system@31#. The factor
2/3 is exact in an harmonic-oscillator model but is only in
dicative here@32#. At large distances, the main effect shoul
come from the overlap of the halo parts of the mirror6He
wave functions. If these wave functions can be approxima
at large distances by a product of individual orbitals for th
external neutrons, this overlap is well approximated by
overlap between densities. Although the real halo wave fu
tion is much more complicated than this simple assumptio
we qualitatively expect the asymptotic part of the parity ter
of the nucleus-nucleus potential to roughly decrease as

E r~r !r~ u 2
3R2r u!dr }

R→`

exp~2 2
3R/a!, ~29!

wherea'0.7 fm as obtained from Sec. III. Even with th
uncertainties both ona and on the factor 2/3, one sees th
the characteristic constant of this decrease should be la
thana and maybe as large as 3a/2. The parity term should
decrease more slowly, or at least not faster, than the tai
the potential~28! whereaS is equal to 0.725 fm. Therefore
the parity term might become dominant at some distance a
have observable effects on the elastic cross section at la
angles. However, the parity potential decreases with incre
ing orbital momenta@32# and its effects might be limited to a
rather small energy domain near the Coulomb barrier.
more accurate study of the parity effect may require a mic
scopic wave function for the full6He 1 a system with an-
tisymmetrization over the ten nucleons.
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V. CONCLUSION

In preparation of the analysis of planned elastic-scatterin
experiments of a low-energy radioactive6He beam on an
a target, we have determined a double-folding interaction
between these nuclei with a realistic6He density derived
from a microscopic calculation. This density might be useful
and is available, for calculations of interactions between
6He and other nuclei.
The obtained6He 1 a potential displays an unusually

long tail which should lead to observable effects on the cros
sections. This real potential~with some possible renormal-
ization for which we propose an estimate! should be useful
as a real part of a phenomenological complex optical poten
tial. A similar treatment of the neighboringa 1 a system
provides an excellent approximation of realistic potentials
and suggests that the present results should be useful. A
duction of the number of free parameters in the analysis o
future elastic-scattering cross sections is essential in order
compensate for the limited angular range and accuracy of th
first data. The complete optical potential is indeed expecte
to be rather complicated. Contrary to thea 1 a case, ab-
sorption should play an important role even at low energie
because of the weak binding energy of6He. Moreover, a
parity dependence of the potential due to the elastic transf
of the halo-neutron pair should also complicate the analysi

The existence of a potential tuned on experimental dat
will allow one to make definite predictions on the existence
of observable molecular resonances. Such resonances mi
indeed exist under the form of a loosely bound system mad
of a large6He cluster and ana particle. They should occur
at larger mean distances than for the well-known 01 and
21 molecular resonances of8Be. These exotic objects
should provide useful information on halo properties. If they
exist, the optical potential should provide their locations and
help in detecting them if they are too narrow to make obser
vations easy. An important point here is the possible simu
taneous existence of molecular resonances of both parities

Performing a fully microscopic treatment of this collision
with the resonating-group method~RGM! @8,9# is in prin-
ciple possible but represents an important theoretical and n
merical challenge. Tools for such a calculation can be deve
oped within the existing techniques but the complexity of a
realistic description of the6He wave function will make the
calculation very heavy. The treatment of the opena 1
a1n1n channels should especially raise difficulties. Such a
model calculation is nevertheless worth being attempted b
cause the parameter-free RGM should provide accurate the
retical phase shifts and cross sections, if we can trust e
trapolating thea 1 a case.
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