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Isoscalar collective modes in a relativistic meson-nucleon system are investigated in the framework of the
time-dependent Thomas-Fermi method. The energies of the collective modes are determined by solving con
sistently the dispersion relations and the boundary conditions. The energy weighted sum rule satisfied by th
models considered allows the identification of the giant resonances. The percentage of the energy weighte
sum rule exhausted by the collective modes is in agreement with experimental data, but the agreement with th
energy of the modes depends on the model considered.@S0556-2813~96!02311-4#
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I. INTRODUCTION

Renormalizable relativistic quantum field theories of ha
ronic degrees of freedom, called quantum hadrodynam
~QHD!, have been studied for some time@1,2#. At the level
of the mean-field theory~MFT! and one-loop approximation,
these models have proven to be a powerful tool for descr
ing the bulk properties of nuclear matter. The binding ener
of nuclear matter in MFT arises from a strong cancellatio
between repulsive vector and attractive scalar potentia
Such potentials are comparable to those suggested by D
phenomenology@3,4#, Brueckner calculations@4#, and finite-
density QCD sum rules@5#. Therefore, it is not obvious that
QHD would be able to reproduce the spectrum of finite n
clei, involving energies of the order of tens of MeV. How
ever, it has been shown that it can realistically describe d
sities, single-particle energies and the spectrum of collect
excitations of finite systems@1,2,6–9#.

Collective modes of a relativistic many-body system a
characterized as poles of the meson propagator. Howeve
the one-loop approximation, the meson propagators a
have poles at spacelike momenta, which arise from polari
tion effects of the Dirac sea@10–13#. While the existence of
these poles does not rule out meson-nucleon field theorie
useful descriptions of nuclear systems at lowq, it may re-
strict the range of validity of several approximations to the
theories. To avoid this problem, in this work we will stud
collective excitations of finite nuclear systems in a semicla
sical approximation to the linear and nonlinearsv models.

In @14,15# a semiclassical approximation to the Waleck
model~or linearsv model! was introduced to study collec-
tive modes in nuclear matter at zero and finite temperature
was found that the results obtained are compatible with m
croscopic calculations of the meson propagators@16,17#. We
want to generalize this semiclassical approach to the desc
tion of collective modes of finite nuclei by using a nuclea
fluid-dynamical model@18,19#, which incorporates mono-
pole and quadrupole distortions of the Fermi surface. T
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nuclear fluid-dynamical model has recently been applie
with success to the description of temperature effects in co
lective excitations of finite nuclei@20#.

In @9# ~which is a generalization of the works presented i
@7,8#! isovector and isoscalar collective modes were calc
lated in the Walecka model, by introducing local hydrody
namic variables to describe the nucleon fluids with the a
sumption of irrotational flow and in the limit of large masse
for the vector mesons. As suggested in@9#, we lift these
restrictions and in this work we calculate the isoscalar co
lective modes in thesv models in the framework of the
time-dependent Thomas-Fermi method.

In Sec. II we extend the formalism developed in@18,19#
to the nonlinearsv model. Collective modes are described
by allowing the meson fields and the nucleon densities
acquire a time dependence. The nucleon motion modifies t
source terms in the meson field equations producing corr
sponding time-dependent changes in the meson fields. Sin
the nucleon dynamics is in turn specified by the meson field
collective modes of nuclear motion arise naturally in thi
approach. In Sec. III we derive the equations of motion
boundary conditions, and orthogonality relations that th
normal modes must satisfy. The dispersion relations, whic
solved consistently with the boundary conditions, determin
the eigenvalues, are presented in Sec. IV. In this section t
sum rule satisfied by the model is also given. In the Waleck
model we identify two rather collective monopole modes a
28 MeV and 35 MeV. These large values are expected sin
the isoscalar monopole excitation is a compression mo
and, therefore, its energy is related to the compressibility
nuclear matter@21#, which is known to be too low in the
Walecka model. In the nonlinear model, using a set of p
rameters which gives an incompressibilityK5200 MeV, we
get one very collective monopole mode at 19 MeV, which i
in better agreement with the experimental data. For the oth
multipolarities, we also observe that in the Walecka mod
the most collective states come at higher energies than
experimentally observed giant resonances. In the Walec
2525 © 1996 The American Physical Society
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2526 54C. da PROVIDÊNCIA et al.
model our lowest modes coincide with the modes obtain
by @9#. However, these modes only carry a small percent
of the energy weighted sum rule and therefore should no
identified with the giant resonances. Finally, in Sec. V w
give our numerical results and conclusions for both the W
lecka model and the nonlinearsv model.

II. FLUID-DYNAMICAL MODEL

In a classical approximation to the nonlinearsv model
@22,23# the energy of a nuclear system is given by@14#

E54E d3xd3p

~2p!3
f ~x,p,t !$@~p2gvV!2

1~M2gss!2#1/21gvV0%

1E d3xF12 ~Ps
21¹s•¹s1ms

2s2!1
b

3
s31

c

4
s4G

1
1

2E d3x@PVi
2 2 2PVi

] iV01¹Vi•¹Vi

2] jVi] iVj1mv
2~V22V0

2!#, ~2.1!

where the distribution function,f (x,p,t), is restricted by the
requirements

N54E d3xd3p

~2p!3
f ~x,p,t !, ~2.2!

f 2~x,p,t !2 f ~x,p,t !50 , ~2.3!

and its time evolution is described by the Vlasov equatio

] f

]t
1$ f ,h%50, ~2.4!

where h5A(p2gvV)
21(M2gss)

21gvV05e1gvV0 is
the classical one-body Hamiltonian and$,% denote the Pois-
son brackets.

The time evolution of the fields is given by

]2s

]t2
2¹2s1ms

2s5gsrs~x,t !2bs22cs3, ~2.5a!

]2V0

]t2
2¹2V01mv

2V05gvrB~x,t !1
]

]t S ]V0

]t
1¹•VD ,

~2.5b!

]2Vi

]t2
2¹2Vi1mv

2Vi5gv j i~x,t !1
]

]xi
S ]V0

]t
1¹•VD ,

~2.5c!

with

rs~x,t !54E d3p

~2p!3
f ~x,p,t !

M2gss

e
, ~2.6!

rB~x,t !54E d3p

~2p!3
f ~x,p,t !, ~2.7!
ed
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j ~x,t !54E d3p

~2p!3
f ~x,p,t !

p2gvV

e
. ~2.8!

Using the Vlasov equation, Eq.~2.4!, it can be easily
shown that the four-current satisfies the continuity equatio
and that the components of the vector field are relat
through@14#

]mV
m50. ~2.9!

Therefore, the second term on the right-hand side of Eq
~2.5b! and ~2.5c! vanishes.

In our calculations we will assume that the density of
spherical nucleus in the ground state is constant inside
nucleus and zero outside, and is given by

r0~r !54E d3p

~2p!3
f 0~x,p! ~2.10!

with

f 0~x,p!5Q@pF
2~r !2p2#, ~2.11!

wherepF(r )5 p̄FQ@R02r #, p̄F is the nuclear matter Fermi
momentum, andR0 is the nuclear radius. The ground-stat
distribution functionf 0 is determined by the particle number
A and by the minimization of the energy and the equilibrium
nuclear matter density,r̄0, is calculated from Eqs.~2.11! and
~2.10!:

r0~r !5 r̄0Q@R02r #.

Giant resonances manifest themselves as small amplitu
highly collective modes. Therefore, they are described at t
microscopic level by the random phase approximation~RPA!
equations. In the classical limit, these equations are obtain
by the linearization of the Vlasov equation. In this contex
we begin by expanding the distribution function around it
equilibrium valuef 0(x,p):

f ~x,p,t !5 f 0~x,p!1$S, f 0%1
1

2
$S,$S, f 0%%1•••,

~2.12!

where S(x,p,t) is a generating function which describes
small deviations from equilibrium.

In its more general form, the distribution function
f (x,p,t), should include static as well as dynamic deforma
tions of the nuclear system. For this reason we decompo
the infinitesimal generatorS(x,p,t) into a time-even and a
time-odd part

S~x,p,t !5P~x,p,t !1Q~x,p,t !, ~2.13a!

Q~x,p,t !5Q~x,2p,t !, ~2.13b!

P~x,p,t !52P~x,2p,t !. ~2.13c!

The time-even generator,Q(x,p,t), takes into account the
dynamic deformations. The static deformations are describ
by the time-even distribution function, which includes th
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fields responsible for the deformations of the Fermi surfa
In the present approach, it is expressed in terms of the ti
odd generatorP(x,p,t)

f E~x,p,t !5 f 0~x,p!1$P, f 0%1
1

2
$P,$P, f 0%%1•••

5QS l2h0~x,p!2W~x,t !2
1

2
pipjx i j ~x,t ! D .

~2.14!

The scalar field,W(x,t), is related to the deformations whic
preserve the spherical form of the Fermi surface. The ten
field, x i j (x,t), introduces deformations in the Fermi sphe
Hopefully, the scalar and tensor fields will provide an a
equate description of the monopole and quadrupode de
mations of the Fermi sphere. In Eq.~2.14!, h0(x,p)
5Ap21M* 2(x)1gvV0

0(x), with M* (x)5M2gss0(x), and
s0(x) andV0

0(x) are, respectively, the equilibrium values
the fieldss andV0. The Fermi momentum is related tol
through

l5ApF2~r !1M* 2~x!1gvV0
0~x!5eF1gvV0

0~x!.
~2.15!
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The introduction of the generatorQ(x,p,t) destroys the
time reflexion invariance of the equilibrium distributio
function. It will allow for the appearance of transverse flo
@24# in the nucleus. The simplest choice which includes th
possibility is given by@19#

Q~x,p,t !5c~x,t !1
1

2
pipjf i j ~x,t !, ~2.16!

wherec(x,t) andf i j (x,t) are, respectively, scalar and sym
metrical tensor fields.

The time evolution of the generatorS and the field fluc-
tuations are determined by the appropriate Lagrangian.
small deviations from equilibrium it is enough to consid
the quadratic Lagrangian

L ~2!52E d3pd3x

~2p!3
f 0$S,Ṡ%1E d3xPsdṡ

1E d3xPVi
dV̇i2E~2!. ~2.17!

Using the ansatz equations~2.12!, ~2.14! and~2.16!, decom-
posing the boson fields into a static~ground-state! contribu-
tion and a small time-dependent increment and imposing
barion number conservation, we get
2E d3pd3x

~2p!3
f 0$S,Ṡ%5E d3xeFF2pFp2 SW1

pF
2

6
x i i D S ċ1

pF
2

6
ḟ i i D 1

pF
2r0
10 S x i j2

d i j
3

xkkD S ḟ i j2
d i j
3

ḟkkD G
1E dS•dRr̄0S ċ1

p̄F
2

10
ḟ i i D , ~2.18!

E~2!5E d3xFpFeF
p2 W21

eFr0
2

Wx i i1
r0
2eF

¹c•¹c1
eFpF

2r0
20 S x i i

2

2
1x i j

2 D 1
pF
2r0
10eF

~¹c•¹f i i12] ic] jf i j !1
pF
4r0

280eF
~4] jf i i ]kf jk

1¹f i i •¹f j j12¹f i j •¹f i j14] if i j ]kfk j14]kf i j ] jf ik!G1E d3xF ~gsM* ds2gveFdV0!S 2pFp2 W1
r0
2

x i i D
1
gvr0
eF

dVj S ] jc1
pF
2

10
~] jf i i12] if i j ! D G1

1

2E d3x@Ps
21¹ds•¹ds1~ms

21Dms
2!~ds!2#1

1

2E d3x@PVi
2 22PVi

] idV0

1¹dVi•¹dVi2] jdVi] idVj1~mv
21Dmv

2!~dV!22mv
2~dV0!

2#1E dS•dR~gsr̄s0ds2gvr̄0dV0!. ~2.19!
The surface integrals in the above equations take into
count possible surface displacements parametrized by a v
tor field,dR(x). Our choice of the even distribution function
allows explicitly for this effect. In Eq. ~2.19!,
Dms

25gs
2(]rs0 /]M* )12bs013cs0

2 andDmv
25gv

2r0 /eF .

III. EQUATIONS OF MOTION, BOUNDARY
CONDITIONS, AND ORTHOGONALITY RELATIONS

The equations of motion and boundary conditions th
specify the dynamics of the fields are obtained from E
~2.17! through the Euler-Lagrange equations. We get

dṡ5Ps , ~3.1a!
ac-
ec-

at
q.

Ṗs2¹2ds1~ms
21Dms

2!ds52gsM* S 2pFp2 W1
r0
2

x i i D ,
~3.1b!

dV̇i5PVi
2] idV0 , ~3.1c!

dV̈i2¹2dVi1~mv
21Dmv

2!dVi

52
gv
eF

r0S ] ic1
pF
2

10
~] if j j12] jf i j ! D , ~3.1d!
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dV̈02¹2dV01mv
2dV052gveFS 2pFp2 W1

r0
2

x i i D ,
~3.1e!

Ẇ1
pF
2

6
ẋ i i5

pF
2

3eF
2 ¹2c1

pF
4

30eF
2 ~¹2f i i12] i] jf i j !

1
gvpF

2

3eF
2 ] idVi , ~3.1f!

ċ1
pF
2

6
ḟ i i5W1

pF
2

6
x i i2S gvdV02gs

M*

eF
ds D ,

~3.1g!

S ċ1
pF
2

10
ḟkkD d i j1

pF
2

5
ḟ i j5Wd i j1

pF
2

10
~xkkd i j12x i j !

2d i j S gvdV02gs
M*

eF
ds D ,

~3.1h!

S Ẇ1
pF
2

10
ẋkkD d i j1

pF
2

5
ẋ i j5

pF
2

5eF
2 ~¹2cd i j12] i] jc!1

gvpF
2

5eF
2

3~]kdVkd i j1] idVj1] jdVi !

1
pF
4

35eF
2 Fd i j S 12¹2fkk1]k] lfklD

1¹2f i j1] i] jfkk12] i]kfk j

12] j]kfkiG . ~3.1i!

It is worth mentioning that Eqs.~3.1a!–~3.1i! are valid only
in the interior of the nucleus. Therefore, we replacepF ,
eF , andr0 in these equations by their equilibrium values. A
the surface, the variational fields satisfy the following bound
ary conditions:

xk~]kds1gsr̄s0dRk!ur5R0
50 , ~3.2a!

xk~]kdVi2] idVk!ur5R0
50 , ~3.2b!

xk~]kdV01dV̇k1gvr̄0dRk!ur5R0
50 , ~3.2c!

xkS ]kc1
p̄F
2

10
~]kf i i12] if ik!1gvdVk1 ēFdṘkDU

r5R0

50 ,

~3.2d!

xkFdṘkd i j1
1

ēF
~]kcd i j1] icd jk1] jcd ik!1

p̄F
2

7ēF

3S ] lfkld i j1] jf l ld ik1] lf l jd ik1] lf l id jk1
1

2
]kf l ld i j

1]kf i j1] jf ik1] if jkD 1
gv
ēF

~dVkd i j1dVid jk

1dVjd ik!2~j id jk1j jd ik!GU
r5R0

50, ~3.2e!
t
-

ċ1
p̄F
2

10
ḟ i i1gvdV02gs

r̄s0
r̄0

dsur5R0
50 . ~3.2f!

In order to ensure that the current density is not singular
the surface, the following boundary condition also has to b
imposed@19#:

xkfk jur5R0
50. ~3.3!

In Eq. ~3.2e!, j is a vector Lagrange multiplier that takes into
account the restriction~3.3!.

We look for normal-mode solutions where all the field
oscillate harmonically in time. This means that the field
are described by a superposition of the real par
of $Ps

(n) ,c (n),dV(n),f i j
(n) ,ids (n),idV0

(n) ,iW(n),idR(n),
iPV

(n) ,ix i j
(n)%exp2ivnt, where all the quantities within the

braces are only functions ofx. This normal-mode analysis
leads to the RPA coupled equations for the eigenmodes:

vnds~n!5Ps
~n! , ~3.4a!

2vn
2ds~n!2¹2ds~n!1~ms

21Dms
2!ds~n!

52gsM* S 2p̄Fp2 W
~n!1

r̄0
2

x i i
~n!D , ~3.4b!

2vndVi
~n!5PVi

~n!2] idV0
~n!, ~3.4c!

2vn
2dVi

~n!2¹2dVi
~n!1~mv

21Dmv
2!dVi

~n!

52
gv

ēF
r̄0S ] ic

~n!1
p̄F
2

10
~] if j j

~n!12] jf i j
~n!! D , ~3.4d!

2vn
2dV0

~n!2¹2dV0
~n!1mv

2dV0
~n!

52 ēFgvS 2p̄Fp2 W
~n!1

r̄0
2

x i i
~n!D , ~3.4e!

vnSW~n!1
p̄F
2

6
x i i

~n!D 5
p̄F
2

3ēF
2 ¹2c~n!1

p̄F
4

30ēF
2 ~¹2f i i

~n!

12] i] jf i j
~n!!1

gvp̄F
2

3ēF
2 ] idVi

~n! ,

~3.4f!

2vnS c~n!1
p̄F
2

6
f i i

~n!D 5W~n!1
p̄F
2

6
x i i

~n!

2S gvdV0
~n!2gs

M*

ēF
ds~n!D ,

~3.4g!

2vnf i j
~n!5x i j

~n! ~ iÞ j !, ~3.4h!

vnx i j
~n!5

2

ēF
2

] i] jc
~n!1

p̄F
2

7ēF
2 ~¹2f i j

~n!1] i] jfkk
~n!12] i]kfk j

~n!

12] j]kfki
~n!!1

gv

ēF
2 ~] idVj

~n!1] jdVi
~n!! ~ iÞ j !. ~3.4i!
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It is clear form Eq.~3.4h! that x i j andf i j are canonically
conjugate fields.

The solutions of the above equations satisfy the followi
orthogonality relation

E d3xeFF2pFp2 SW~m!1
pF
2

6
x i i

~m!D S c~n!1
pF
2

6
f i i

~n!D
1
pF
2r0
10 S x i j

~m!2
d i j
3

xkk
~m!D S f i j

~n!2
d i j
3

fkk
~n!D G

2E d3xPs
~n!ds~m!1E d3xPVi

~m!dVi
~n!

1E dS•dR~m!r̄0S c~n!1
p̄F
2

10
f i i

~n!D
52dmn . ~3.5!

IV. DISPERSION RELATIONS AND SUM RULES

A. Dispersion relations

The electric modes are described by the same kind
solutions as constructed in@19#, i.e., by two kinds of trans-
verse fields

@f i j #15$~] i] j2d i j¹
2!l 22@] i~¹3 l! j1] j~¹3 l! i #

2@~¹3 l! i~¹3 l! j1~¹3 l! j~¹3 l! i #% j l~k1r !Yl0 ,

~4.1!

@f i j #25@] i~¹3 l! j1] j~¹3 l! i # j l~k2r !Yl0 , ~4.2!

and by one longitudinal tensor field

@f i j #35S ] i] j2
d i j
3

¹2D j l~k3r !Yl0 . ~4.3!

The advantage of using the above combination of the f
linearly independent angular tensor functions,] i] jYl0,
d i j Yl0, (xi] j1xj] i)Yl0, and xixjYl0, is that all solutions
given above are traceless. In particular, the transverse fi
also verify the relations

] i@f i j #150 and ] i] j@f i j #250 . ~4.4!

For each multipolarity, all scalar fields are proportional
j l(kr)Yl0, and the vector fields are combinations of two li
early independent vector functions:] i@ j l(kr)Yl0# and
(¹3 l) i j l(kr)Yl0. Using these combinations in Eqs.~3.4a!–
~3.4i! it is straightforward to show that the transverse so
tions do not couple to the scalar fields, and one h
@ds#1,25@dV0#1,25@W#1,25@c#1,25@Ps#1,250. For solu-
tions of kind 1, the vector fields are also zer
@dVi #15@PVi

#15@dRi #150 and the dispersion relation fo
this particular solution is given by

vn
25

p̄F
2

7ēF
2 k1

2 . ~4.5!
g

of

ur

lds

to
-

u-
as

:

This is the same relation as obtained in@19#. This should be
expected since the meson fields, which are the new ingre
ents in the model used here, do not couple to the solution
kind 1.

For solutions of kind 2, we still have@dRi #250, since,
from Eq. ~3.2a!, the vector fielddR is directly related to the
scalar field ds. However, the vector fields@dVi #2 and
@PVi

#2 are coupled to the tensor fields. We get

@dVi #25
Gv~k2!

5gv
p̄F
2] j@f i j #2

52
Gv~k2!

5gv
p̄F
2k2

2~¹3 l! i j l~k2r !Yl0 , ~4.6!

where

Gv~k!5
gvr̄0

ēF~vn
22k22mv*

2!
, ~4.7!

andmv*
25mv

21Dmv
2 . Using the solutions of kind 2 in the

normal mode equations we get

S vn
22

3k2
2p̄F

2

7ēF
2 D ~vn

22k2
22mv*

2!5
gv
2k2

2p̄F
2 r̄0

5ēF
3 , ~4.8!

which give us two different solutions fork2
2 . Forgv50, one

of the solutions is exactly the same which is obtained in@19#.
This solution is now modified and a new solution appear
due to the coupling between the vector meson field and
fields introduced to describe the nuclear deformations.

The longitudinal solutions,@f i j #3, couple to all other
fields and give

@c#35 f ~k3! j l~k3r !Yl0 , ~4.9a!

@W#352
vn@c#3
G0s~k3!

, ~4.9b!

@ds#35
2gsM* p̄F

p2~vn
22k3

22ms*
2!

@W#35s~k3! j l~k3r !Yl0 ,

~4.9c!

@dV0#35
2gvēFp̄F

p2~vn
22k3

22mv
2!

@W#35V0~k3! j l~k3r !Yl0 ,

~4.9d!

@dVi #35
Gv~k3!

gv
S f ~k3!2

2p̄F
2k3

2

15 D ] i@ j l~k3r !Yl0#,

~4.9e!

xi@dRi #352
xi] i@ds#3

gsr̄s0
U
r5R0

, ~4.9f!

plus the corresponding solutions to the canonically conj
gated fields. In the above equations we have introduced
functions
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f ~k!52
2p̄F

4k4@11Gv~k!#G0s~k!

15$3ēF
2vn

22 p̄F
2k2@11Gv~k!#G0s~k!%

,

~4.10!

and

G0s~k!512
2p̄F

p2ēF
S gv

2ēF
2

vn
22k22mv

2 2
gs
2M* 2

vn
22k22ms*

2D ,
~4.11!

with Gv(k) defined in Eq.~4.7!, andms*
25ms

21Dms
2.

The dispersion relation obeyed by these solutions is

3ēF
2vn

2S 5ēF
2vn

2

p̄F
2

2
9k3

2

7 D ~vn
22k3

22mv*
2!~vn

22k3
22ms*

2!

59S ēF
2vn

2k3
22

p̄F
2k3

4

7 D ~vn
22k3

22mv
2!~vn

22k3
22ms*

2!

2
2p̄F

p2ēF
S 5ēF

2vn
2k3

22
9

7
p̄F
2k3

4D @gv
2ēF

2~vn
22k3

22ms*
2!

2gs
2M* 2~vn

22k3
22mv

2!#. ~4.12!

There are four solutions of kind 3, two more than the num
of this kind of solutions found in@19#. This should be ex-
pected since, besides the vector meson field, the scalar
son field also couples to the longitudinal solution@f i j #3. It is
easy to show that forgs50 andgv50 one recovers the two
solutions of@19#.

Therefore, the Walecka model leads to the appearanc
7 different values fork for a fixed frequencyv, in contrast
with the model of@19#, which gives only four different val-
ues.

There is still a fourth kind of solution for the tensor field
which can be chosen to be

@f i j #45@x i j #45d i j F~r !Yl0 , ~4.13!

coupled to the scalar fields

@W#45@c#452
p̄F
2

2
F~r !Yl0 , ~4.14!

and to the meson fields

@ds#45@dV0#45@dVi #450 , ~4.15!

where F(r ) is an arbitrary function. This solution is no
trivial because of the boundary condition Eq.~3.3!.

The general solution, for each normal mode, is a line
combination of the eight particular solutions:

f i j
~m!5c1@f i j ~k1r !#11 (

n51

2

c2n@f i j ~k2nr !#2

1 (
n51

4

c3n@f i j ~k3nr !#31c4@f i j ~r !#4 , ~4.16!

with similar expressions for the other fields.
er

me-

of

,

t

ar

To avoid zero-frequency modes linked to the surface m
tion, we introduce in the model a surface energy which, in
classical approximation, is given by

Esup
~2!5

ssup

2R0
2 @ l ~ l11!22#E dS•dRdR•n̂, ~4.17!

wheressup is the surface tension coefficient. This term doe
not alter the equations of motion and, therefore, the dispe
sion relations. It only changes the boundary condition E
~3.2f! to

ċ1
p̄F
2

10
ḟ i i1gvdV02gs

r̄s0
r̄0

ds

2
ssup

2R0
2r̄0

@ l ~ l11!22#n̂•dRur5R0
50 . ~4.18!

Using the general solutions in the boundary conditions Eq
~3.2a!–~3.2e!, Eq. ~3.3!, and Eq. ~4.18! we get the Eqs.
~A1a!–~A1h! given in the Appendix. The eigenvalues are
determined by solving consistently the dispersion relatio
equations~4.5!, ~4.8!, and~4.12!, subjected to the boundary
conditions.

B. Sum rules

Sum rules can be regarded as a test to the validity of
particular nuclear model. Suppose that a nucleus is excit
from its ground stateu0& to an excited stateun&, with an
energyEn , due to interactions with an external field. One
can define momenta, weighted in energy, of the excitatio
strength distribution

mk5(
n

~En2E0!
ku^nuÔu0&u2, ~4.19!

whereÔ is the one-body Hermitian operator, responsible fo
the excitation. In the above expression,k50,61,62, . . .
and un& stands for a set of eigenstates of the Hamiltonian
the system. A sum rule is obtained when it is possible
relate a momentum with a known quantity.

The energy weighted sum rule~EWSR!, m1, is obtained
through the calculation of the expectation value of a doub
commutator

m15(
n

~En2E0!u^nuÔu0&u25
1

2
^0u@Ô,@H,Ô##u0&.

~4.20!

In the present problem, the general solution for the vari
tional fields is given by the real part of
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C~x,t !5(
n

an1
iW~n!~x!

ids~n!~x!

idV0
~n!~x!

idR~n!~x!

iPv
~n!~x!

ix i j
~n!~x!

f i j
~n!~x!

c~n!~x!

Ps
~n!~x!

dV~n!~x!

2 e2 ivnt, ~4.21!

where the coefficientsan are determined by the initial con
ditions. In order to derive the EWSR for the electric mod
we consider the following initial condition:

c~x,0!5D~x!, ~4.22a!

f i j ~x,0!5x i j ~x,0!5W~x,0!5dR~x,0!5dV~x,0!5ds~x,0!

5dV0~x,0!5Ps~x,0!5PVi
~x,0!50 , ~4.22b!

with D(x) to be specified. We then expand the fiel
c(x,0), Ps(x,0), f i j (x,0), and dV(x,0) as
w(x,0)5(nanw

(n)(x), where, from the orthogonality rela
tion, Eq. ~3.5!, we get

an5E d3x
2eFpF

p2 SW~n!1
pF
2

6
x i i

~n!DD~x!

1 r̄0E dS•dR~n!D~x!. ~4.23!

The coefficientsan are related to the expectation value of th
transition operator,an5A2^nuÔu0&. Therefore, the EWSR
can be written as

m15(
n

uanu2vn52E~2!, ~4.24!

and, for the initial condition given in Eq.~4.22!, the EWSR
reads

(
n

uanu2vn5E d3x
r̄0

ēF
¹D•¹D. ~4.25!

V. NUMERICAL RESULTS

A. Walecka model

Setting b5c50 in Eq. ~2.1! we recover the Walecka
model. We have performed our calculations with two diffe
ent sets of the mean-field values of the parameters in
Walecka model:
-
es

ds

-

e

r-
the

~ I! gs
25122.88,

gv
25169.49,

p̄F51.3 fm21,

M* /M50.522,

~ II ! gs
2591.64,

gv
25136.20,

p̄F51.42 fm21,

M* /M50.556,

whereM5938 MeV andM* is the effective mass. The ef-
fective mass and the Fermi momentum indicated for each s

TABLE I. Energies and fractions of the energy weighted sum
rule for different multipolarities and different sets of parameters.

l i
p I II

\v i ~MeV! m1(%) \v i ~MeV! m1(%)

01
1 28.56 14.06 37.27 8.55
02

1 35.50 27.46 46.12 30.34
03

1 50.95 2.30 61.59 2.13
04

1 68.25 1.32 81.14 0.25
05

1 71.29 5.94 86.73 8.59
06

1 88.51 0.58 98.92 0.71
07

1 105.11 1.07 133.51 3.22
08

1 107.87 2.57

21
1 10.03 4.67 11.90 1.46
22

1 20.15 45.32 28.07 42.51
23

1 28.32 0.78 33.77 5.12
24

1 35.32 3.95 39.94 0.48
25

1 35.82 0.31 42.33 4.64
26

1 49.35 0.52 59.72 0.35
27

1 64.20 1.93 75.59 0.96
28

1 69.91 0.10

31
2 12.93 11.42 15.86 0.32
32

2 14.44 1.09 17.77 5.71
33

2 32.84 35.48 42.14 35.24
34

2 37.20 0.70 44.95 4.09
35

2 42.33 0.08 47.65 2.17
36

2 45.03 3.90 51.98 7.00
37

2 57.55 0.64 68.89 0.53

41
1 18.06 13.41 22.35 0.69
42

1 20.46 1.37 24.93 7.21
43

1 43.94 16.44 54.32 10.32
44

1 45.91 14.54 57.52 20.27
45

1 48.84 2.05 62.47 11.42
46

1 54.83 3.47 73.41 0.11
47

1 65.46 0.68 77.68 0.64
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TABLE II. Comparison between the energies and fractions of the energy weighted sum rule obtained in
the present work for the Walecka model, in@20#, and experimental data@26#.

l i
p Walecka model @20# Experimental@26#

\v i ~MeV! m1(%)/m18( l ) m1(%) \v i ~MeV! m1(%) \v i ~MeV! m1(%)

01
1 28.56 25.23 14.06 15.87 95.15 13.9 100
02

1 35.50 49.28 27.46 18.95 2.26
03

1 50.95 4.14 2.30 28.14 0.03
04

1 68.25 2.37 1.32 36.83 0.03
05

1 71.29 10.66 5.94 41.29 1.46
06

1 88.51 1.03 0.58
Total 99.99 55.72 98.98

21
1 10.03 7.67 4.56 3.73 30.90 4.09 15
22

1 20.15 76.99 45.79 11.70 64.19 10.96 0.3 70.0
23

1 28.32 1.29 0.77 17.45 2.17
24

1 35.32 6.35 3.78 20.54 1.10
25

1 35.82 0.53 0.31 21.12 1.00
26

1 49.35 0.88 0.52 27.30 0.06
27

1 64.20 3.15 1.87
28

1 69.91 0.17 0.10
29

1 87.43 0.29 0.17
Total 99.88 59.46 99.32

31
2 12.93 18.74 11.43 2.92 34.10 2.61 33
32

2 14.44 1.71 1.04 8.43 0.29
33

2 32.84 58.70 35.79 18.53 43.44 18.46 0.8 36
34

2 37.20 1.15 0.70 22.80 10.88 21.86 0.8 27
35

2 45.03 6.06 3.69 26.87 5.18
36

2 57.55 1.05 0.64
37

2 78.43 2.96 1.81
38

2 82.04 3.10 1.89
39

2 95.87 0.46 0.28
Total 100.00 61.00 97.64

41
1 18.06 23.10 13.06 4.51 34.10 4.32
42

1 20.46 2.35 1.33 12.26 2.05 12.06 0.3 106 3
43

1 43.94 29.21 16.51 23.36 22.39
44

1 45.91 25.77 14.57 27.64 8.86
45

1 48.84 3.62 2.05 29.67 17.10
46

1 54.83 5.81 3.28 33.45 8.45
47

1 65.46 1.20 0.68 35.38 4.18
Total 100.00 56.52 97.13
er
rgy

r
es
n.
es
correspond to the values at which saturation of nuclear m
ter is obtained with an energy per nucleonE/N5215.75
MeV, usingms5550 MeV andmv5783 MeV. We take the
surface tension from the liquid drop model@25#, namely
ssup51.017 MeV/fm2. Using, instead, the surface tensio
calculated for the linear Walecka model withms5550 MeV
in a Thomas-Fermi approach@23#, ssup51.8 MeV/fm2,
would only give rise to very small changes in the results, l
than 0.2%. We begin with a nucleus withA5208. The radius
R0 is obtained from the value ofp̄F corresponding to the
chosen set of parameters.

For the excitation operator introduced in Eq.~4.22a! we
will use
at-

n

ess

D~x!5H r 2Y00, l50 ,

r lYl0 , l>2 .

~5.1a!

~5.1b!

Table I shows the energies of the normal modes togeth
with the corresponding percentage of the exhausted ene
weighted sum rule~EWSR!, for the two sets given above and
for different multipolarities. The EWSR is fragmented ove
the whole range of energies and only the nuclear mod
which exhaust more than 0.1% of the sum rule are give
The distribution of the EWSR between the nuclear mod
and the mesonic modes~energies larger than the meson



p
d

h

s

eV
n-

the
tes
r

the
lts

ay
nce
d the
e
me,
For
nce
nd
t 4
n-
m-

e
or
d

We

en-

the
he
high
ss-

m
eus

54 2533RELATIVISTIC THOMAS-FERMI DESCRIPTION OF . . .
masses! agrees with the results obtained in@14#, where it is
shown that in infinite nuclear matter and for small mome
tum transfer about 62% of the EWSR is exhausted by t
continuum nuclear modes and about 38% by the vector m
son modes. For instance, forl521 and for set I, we find a
vector meson mode at\wi5984.56 MeV which exhausts
27.30% of the EWSR. The other mesonic modes are not
collective as this one and are distributed over a large range
energies. This pattern is reproduced for the two sets of
rameters and for all multipolarities. The EWSR is fulfille
considering all the nuclear and mesonic modes. In nonre
tivistic calculations using the same nuclear fluid-dynamic
model used here@18–20#, the mesonic modes are not prese
and, therefore, the EWSR is distributed only through t
nuclear modes. From this table we can see that for set II
collective modes come at a slightly higher energy than in
I and that the strength is more concentrated at higher en
gies.

FIG. 1. j1 ~full line!, j2 ~dashed line!, and j div ~dash-dotted
line! in arbitrary units for thelp521 E510.03 MeV mode.

FIG. 2. j1 ~full line!, j2 ~dashed line!, and j div ~dash-dotted
line! in arbitrary units for thelp521 E520.15 MeV mode.
n-
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In Table II we give for set I and forlp501,21,32,41

the energy of the normal modes with energy below 100 M
~first column! and the corresponding percentage of the e
ergy weighted sum rule~EWSR! ~third column!. In the sec-
ond column we present a renormalized percentage of
EWSR, renormalizing the strength distributed among sta
with energy below 130 MeV to 1. The renormalizing facto
ism18( l )50.56, 0.60, 0.61, 0.56, respectively, forl50, 2, 3,
4. This is done so that we can compare more easily
results obtained in the present work with previous resu
obtained in a nonrelativistic fluid-dynamical model@20# ~col-
umns 4 and 5! and experimental data~columns 6 and 7! @26#.
Looking at the modes with energy below 100 MeV, we m
immediately conclude that there is a certain corresponde
between the states obtained in the present approach an
ones of@20#, if we identify the states by the percentage of th
exhausted EWSR. However, the corresponding states co
in the present relativistic approach, at higher energies.
instance, the quadrupole low lying mode and giant resona
come, respectively, at 10 and 20 MeV and exaust 8% a
77% of the EWSR while the experimental modes come a
and 11 MeV and exhaust 15% and 70% of the EWSR. A
other possible way of identifying the modes is done by co
paring the current transition density~2.8! and the transition
density~2.7! for these two modes with the ones of@20#. In
Figs. 1 and 2 we plotj1 , j2 , j div ~arbitrary units! defined
by the equations

j ~r !5 j1~r !Y l ,l11,0~V!1 j2~r !Y l ,l21,0~V!,

“• j ~r !5 j div~r !Yl0 .

The function j div is related to the transition densitydr

( ṙ52“• j ). For the 10.03 MeV mode,j1 and j2 have op-
osite signs andj div is close to zero, characteristic of a surfac
mode. These are typical properties of a low lying mode. F
the 20.15 MeV mode,j1 and j2 have the same sign an
j div comes diferent from zero forr /R0.0.5. This behavior is
closer to the behavior expected from a giant resonance.
conclude the identification we have done is correct.

We note that our modes with the lowest energy have
ergies similar to the ones obtained in@9#, however, these are
not the states that exhaust the largest percentage of
EWSR and, therefore, they should not be identified with t
giant resonances. The breathing mode comes at a very
energy, but this was expected owing to the high incompre
ibility of the model.

TABLE III. Energies and fractions of the energy weighted su
rule for the quadrupole modes in the Walecka model for a nucl
with A540.

l i
p \v i ~MeV! m1(%)

21
1 17.09 8.92
22

1 36.89 83.58
23

1 51.45 1.57
24

1 62.02 0.62
25

1 64.15 4.70
26

1 90.77 0.03
27

1 93.04 0.59
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While in @9# only the lowest modes were determined, w
have found all the modes that exhaust a significant fract
of the corresponding EWSR~which we also derived!. Fur-
thermore, we have shown that the lowest modes are not
most collective ones.

For a nucleus withA540 we give, in Table III, the en-
ergy of the quadrupole modes~first column!, with energies
below 100 MeV, and the renormalized percentage of t

TABLE IV. Comparison between the energies and fractions
the energy weighted sum rule obtained in the present work in
nonlinear model~with set III of parameters! and experimental data
from @26#.

l i
p Nonlinear model Experimental@26#

\v i ~MeV! m1(%) \v i ~MeV! m1(%)

01
1 19.46 87.70 13.9 100
02

1 21.99 4.65
03

1 34.12 0.92
04

1 46.35 1.18
05

1 51.07 3.47
06

1 59.05 0.20
07

1 71.30 0.40
08

1 77.79 1.43

21
1 4.75 38.35 4.09 15
22

1 13.03 53.67 10.96 0.3 70.0
23

1 20.93 5.18
24

1 23.67 0.48
25

1 27.71 0.39
26

1 45.07 0.50
27

1 47.63 0.72
28

1 56.41 0.15
29

1 70.59 0.13
210

1 74.40 0.20
211

1 78.70 0.16

31
2 2.31 40.81 2.61 33
32

2 22.08 35.41 18.46 0.8 36
33

2 27.65 18.90 21.86 0.8 27
34

2 32.70 1.03
35

2 34.00 0.38
36

2 50.94 0.23
37

2 57.27 1.50
38

2 58.52 0.10
39

2 63.90 0.11
310

2 65.56 0.50
311

2 76.38 0.09

41
1 4.64 41.10 4.32
42

1 15.81 1.16 12.06 0.3 106 3
43

1 28.33 16.96
44

1 35.21 27.98
45

1 37.96 8.36
46

1 43.76 0.56
47

1 50.96 0.11
48

1 56.43 0.14
49

1 66.43 1.85
410

1 74.61 1.39
e
ion

the

he

EWSR~second column!, for set I. From this table we can see
that we obtain a distribution in the quadrupole modes whic
is compatible with the MFT distribution given in Fig. 8 of
@27#. The comparison has to be made with the MFT calcula
tion of @27# since in our classical approach we also do no
consider the effect of the vacuum polarization.

From the above results we conclude that the relativisti
Thomas-Fermi method used here provides results compatib
with other works@9,27#.

B. Nonlinear sv model

In the Walecka model the equilibrium properties of
nuclear matter:E/N andpF completely determine the param-
eters of the model~for a fixed value ofms andmv), and,
therefore, the nuclear incompressibility and the nucleon e
fective mass at the saturation. The introduction of two new
parameters,b andc, in the nonlinear model allows one to fit

of
the

TABLE V. Same as Table IV for set IV of parameters.

l i
p Nonlinear model Experimental@26#

\v i ~MeV! m1(%) \v i ~MeV! m1(%)

01
1 21.48 77.59 13.9 100
02

1 24.36 11.81
03

1 38.57 1.61
04

1 53.27 1.81
05

1 56.51 4.05
06

1 68.32 0.54

21
1 5.55 40.26 4.09 15
22

1 13.87 51.42 10.96 0.3 70.0
23

1 22.92 3.77
24

1 28.68 1.41
25

1 31.33 0.31
26

1 37.24 0.10
27

1 51.59 1.32
28

1 53.14 0.40
29

1 62.24 0.10
210

1 67.47 0.13

31
2 2.99 42.86 2.61 33
32

2 24.47 37.40 18.46 0.8 36
33

2 30.21 14.43 21.86 0.8 27
34

2 36.86 0.18
35

2 38.15 1.39
36

2 58.78 0.50
37

2 63.88 1.97
38

2 72.04 0.60

41
1 5.90 43.03 4.32
42

1 17.81 1.00 12.06 0.3 106 3
43

1 31.97 18.18
44

1 38.75 29.70
45

1 42.64 3.27
46

1 46.88 0.46
47

1 57.64 0.07
48

1 65.30 0.39
49

1 74.47 2.35
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the values of the effective mass and incompressibility,
addition topF andE/N. We are aware that a negative val
for c is formally not acceptable because it generates an
ergy spectrum with no lower bound@28#. However, since a
negativec is phenomenologically favored@6,29–31#, we fol-
low the conventional point of view and allowc to be a free
parameter. Fixing the equilibrium properties of nuclear m
ter at

p̄F51.33 fm21,

M* /M50.75,

K5200 MeV,

E/N5215.75 MeV,

we get@23#, forms5545 MeV andmv5783 MeV, the set of
parameters III:

~ III ! gs
2581.54,

gv
2585.51,

103b/Mgs
358.821,

103c/gs
45210.056,

as511 MeV,

whereas54p(R0
2/A2/3)ssup is the surface energy calculate

in the TF\0 approach@23#.
The energies of the normal modes~with energies below

80 MeV! together with the corresponding percentage of
renormalized EWSR, forA5208, are shown in Table IV fo
different multipolarities. Comparing these results with Ta
II we see that the agreement with experimental data is m
better in the case of the nonlinear model.

One can argue that we have used a very high value
M* , since many studies in the literature seem to agree on
necessity of a smaller nucleon effective mass@6,29–32#. In
Table V we present the results obtained for the set of par
eters IV:
in
e
en-

at-

d

the

le
uch

for
the

am-

~ IV ! gs
25121.81,

gv
25128.97,

103b/Mgs
353.895,

103c/gs
4525.162,

as511 MeV,

which, forms5595 MeV andmv5783 MeV, gives

p̄F51.33 fm21,

M* /M50.65,

K5200 MeV,

E/N5215.75 MeV.

In Tables IV and V we have only presented the nucle
modes which exhaust more than 0.05% of the sum ru
Comparing the results in Tables IV and V we conclude th
the energy of the normal modes increases with a decrea
M* . Of course we still have a better agreement with expe
mental data as compared to the Walecka model~Table II!,
owing to the smaller incompressibility of the nonlinea
model.

From the present results we conclude that the isosc
collective modes of the nuclei can be well described in
relativistic meson-nucleon system in the framework of t
time-dependent Thomas-Fermi method. We have basic
limited our analysis to large nuclei because we have ta
for the ground-state of the nucleus a Slater determinant
rived from a square well instead of the self-consistent grou
state. We believe, however, that for large nuclei such as
208Pb nucleus this is a good approximation which allows
to obtain analytical expressions for the equations of mot
and the boundary conditions.
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APPENDIX:

Using the general solutions in the boundary conditions Eqs.~3.2a!–~3.2e!, Eq. ~3.3!, and Eq.~4.18! we get the following
equations:

@22 l ~ l11!#~r ] r11!c1 j l~k1r !1 (
n51

2

@2l ~ l11!22r ] r222k2n
2 r 2#c2nj l~k2nr !1 (

n51

4

~r ] r21!c3nj l~k3nr !ur5R0
50

~A1a!

l ~ l11!@22 l ~ l11!#c1 j l~k1r !1 (
n51

2

2l ~ l11!~r ] r21!c2nj l~k2nr !1 (
n51

4 F l ~ l11!22r ] r2
2

3
k2n
2 r 2Gc3nj l~k3nr !

1r 2c4F~r !ur5R0
50, ~A1b!
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2Fk12r 2~r ] r21!16~r ] r11!2
l ~ l11!

2
r ] r Gc1 j l~k1r !22(

n51

2

@6~r ] r11!12k2n
2 r 223l ~ l11!#c2nj l~k2nr !

13(
n51

4

~r ] r22!c3nj l~k3nr !ur5R0
50, ~A1c!

l ~ l11!@k1
2r 2~r ] r21!13r ] r11223l ~ l11!#c1 j l~k1r !1 (

n51

2

l ~ l11!S 25k2n2 r 216r ] r212D c2nj l~k2nr !

1 (
n51

4 F35 k3n2 r 3] r13~23r ] r1 l ~ l11!2k3n
2 r 2!Gc3nj l~k3nr !ur5R0

50, ~A1d!

(
n51

2

Gv~k2n!k2n
4 r 4c2nj l~k2nr !ur5R0

50, ~A1e!

(
i51

2
vnGv~k2i !

5gv
p̄F
2k2i

2 l ~ l11!c2i j l~k2i r !1(
i51

4 FV0~k3i !2
vnGv~k3i !

gv
S f ~k3i !2

2p̄F
2k3i

2

15 D 2
gvr̄0

gsr̄s0
s~k3i !G r ] rc3i j l~k3i r !ur5R0

50, ~A1f!

(
i51

2 p̄F
2k2i

2

5
l ~ l11!@11Gv~k2i !#c2i j l~k2i r !2(

i51

4 F @11Gv~k3i !#S f ~k3i !2
2p̄F

2k3i
2

15 D 2
ēFvn

gsr̄s0
G r ] rc3i j l~k3i r !ur5R0

50,

~A1g!

c4F~r !ur5R0
5

5

vnp̄F
2(i51

4 Fvnf ~k3i !2gvV0~k3i !1
gsr̄s0

r̄0
s~k3i !2

ssup

gsr̄0r̄s0R0
2 @ l ~ l11!22#s~k3i !] r Gc3i j l~k3i r !ur5R0

50,

~A1h!

with the functionss(k) andV0(k) defined in Eqs.~4.9c! and ~4.9d!.
e
.

.
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