PHYSICAL REVIEW C VOLUME 54, NUMBER 5 NOVEMBER 1996

Relativistic Thomas-Fermi description of collective modes in droplets of nuclear matter
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Isoscalar collective modes in a relativistic meson-nucleon system are investigated in the framework of the
time-dependent Thomas-Fermi method. The energies of the collective modes are determined by solving con-
sistently the dispersion relations and the boundary conditions. The energy weighted sum rule satisfied by the
models considered allows the identification of the giant resonances. The percentage of the energy weighted
sum rule exhausted by the collective modes is in agreement with experimental data, but the agreement with the
energy of the modes depends on the model considgs&h56-28136)02311-4

PACS numbd(s): 21.10.Re, 21.60.Jz, 21.65E

[. INTRODUCTION nuclear fluid-dynamical model has recently been applied
with success to the description of temperature effects in col-
Renormalizable relativistic quantum field theories of had-lective excitations of finite nucldi20].
ronic degrees of freedom, called quantum hadrodynamics In [9] (which is a generalization of the works presented in
(QHD), have been studied for some tirfie 2]. At the level [7,8]) isovector and isoscalar collective modes were calcu-
of the mean-field theor¢yMFT) and one-loop approximation, lated in the Walecka model, by introducing local hydrody-
these models have proven to be a powerful tool for describnamic variables to describe the nucleon fluids with the as-
ing the bulk properties of nuclear matter. The binding energysumption of irrotational flow and in the limit of large masses
of nuclear matter in MFT arises from a strong cancellationfor the vector mesons. As suggested[8], we lift these
between repulsive vector and attractive scalar potentialgestrictions and in this work we calculate the isoscalar col-
Such potentials are comparable to those suggested by Dirdective modes in therw models in the framework of the
phenomenology3,4], Brueckner calculationgt], and finite-  time-dependent Thomas-Fermi method.
density QCD sum rulefs]. Therefore, it is not obvious that In Sec. Il we extend the formalism developed[i8,19
QHD would be able to reproduce the spectrum of finite nuto the nonlineair» model. Collective modes are described
clei, involving energies of the order of tens of MeV. How- by allowing the meson fields and the nucleon densities to
ever, it has been shown that it can realistically describe deracquire a time dependence. The nucleon motion modifies the
sities, single-particle energies and the spectrum of collectiveource terms in the meson field equations producing corre-
excitations of finite systemid,2,6—9. sponding time-dependent changes in the meson fields. Since
Collective modes of a relativistic many-body system arethe nucleon dynamics is in turn specified by the meson fields,
characterized as poles of the meson propagator. However, gollective modes of nuclear motion arise naturally in this
the one-loop approximation, the meson propagators alsapproach. In Sec. Ill we derive the equations of motion,
have poles at spacelike momenta, which arise from polarizasoundary conditions, and orthogonality relations that the
tion effects of the Dirac sed0—13. While the existence of normal modes must satisfy. The dispersion relations, which
these poles does not rule out meson-nucleon field theories aslved consistently with the boundary conditions, determine
useful descriptions of nuclear systems at Igwit may re-  the eigenvalues, are presented in Sec. IV. In this section the
strict the range of validity of several approximations to thesesum rule satisfied by the model is also given. In the Walecka
theories. To avoid this problem, in this work we will study model we identify two rather collective monopole modes at
collective excitations of finite nuclear systems in a semiclas28 MeV and 35 MeV. These large values are expected since
sical approximation to the linear and nonlinea® models.  the isoscalar monopole excitation is a compression mode
In [14,15 a semiclassical approximation to the Waleckaand, therefore, its energy is related to the compressibility of
model(or linearocw mode) was introduced to study collec- nuclear mattef21], which is known to be too low in the
tive modes in nuclear matter at zero and finite temperature. MValecka model. In the nonlinear model, using a set of pa-
was found that the results obtained are compatible with mirameters which gives an incompressibiliky=200 MeV, we
croscopic calculations of the meson propagafdfs17. We  get one very collective monopole mode at 19 MeV, which is
want to generalize this semiclassical approach to the descrifin better agreement with the experimental data. For the other
tion of collective modes of finite nuclei by using a nuclear multipolarities, we also observe that in the Walecka model
fluid-dynamical model[18,19, which incorporates mono- the most collective states come at higher energies than the
pole and quadrupole distortions of the Fermi surface. Thiexperimentally observed giant resonances. In the Walecka
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model our lowest modes coincide with the modes obtained
by [9]. However, these modes only carry a small percentage
of the energy weighted sum rule and therefore should not be
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d3 -9,V
j(x,t)=4f %gf(x,p,t)%. (2.8

identified with the giant resonances. Finally, in Sec. V we Using the Vlasov equation, Eq2.4), it can be easily
give our numerical results and conclusions for both the Waghown that the four-current satisfies the continuity equation,

lecka model and the nonlinearw model.

Il. FLUID-DYNAMICAL MODEL

In a classical approximation to the nonlineaw model
[22,23 the energy of a nuclear system is given[liy]

d3xd®p
E=4J’ By (PP g,V)?
+(M—gs0) %1%+ g, Vo}

1
+fd3x

b c
Z(112 . 2 2y, =~ 3, " 4
2(H0+V0' Vo+mgo )+30' +40'

1
+5 J d*X[ 1§, — 20Ty, ;Vo+ V- WV,
—g;ViaV;+mi(V2- V)], (2.1

where the distribution functiorf,(x,p,t), is restricted by the
requirements

d3xd®p
N=4f Wf(x,p,t), (2.2
f2(x,p,t) = f(x,p,t)=0, (2.3

and its time evolution is described by the Vlasov equation

of ~
—pHfn=o, (2.4

where h=/(p—g,V)*+(M—g.0)*+9,Vo=€+9,V, is
the classical one-body Hamiltonian afigl denote the Pois-
son brackets.

The time evolution of the fields is given by

P*a 2 2 2 3
-z ~Viotmio=geps(x,t)—ba*—co”, (2.53
672V0 2 2 d (9V0
W_V V0+mUV0=gva(x,t)+ﬁ 7+VV y
(2.5b
AV, ) _ d [V,
W_V Vi+mUVi=gvji(x,t)+5 7+VV ,
|
(2.50
with
—4f e M=~ 950 2.6
pS(X!t)_ W (vavt) € ) ( )
(xt)=4j d°p f(x,p,t) (2.7
p(X, (2—77)5 P L), .

and that the components of the vector field are related
through[14]
a,Vk=0. (2.9
Therefore, the second term on the right-hand side of Egs.
(2.5b and(2.509 vanishes.
In our calculations we will assume that the density of a

spherical nucleus in the ground state is constant inside the
nucleus and zero outside, and is given by

d3
pol)=4 [ 5ostoxp) 210

with

fo(x,p)=O[PE(r) —p7l, (2.1
wherepg(r)=pe®[Ry—r], pg is the nuclear matter Fermi
momentum, andR, is the nuclear radius. The ground-state
distribution functionf is determined by the particle number
A and by the minimization of the energy and the equilibrium
nuclear matter density,, is calculated from Eqg2.11) and

(2.10:
po(r)=peO[Ry—r].

Giant resonances manifest themselves as small amplitude
highly collective modes. Therefore, they are described at the
microscopic level by the random phase approximatRRA)
equations. In the classical limit, these equations are obtained
by the linearization of the Vlasov equation. In this context
we begin by expanding the distribution function around its
equilibrium valuef 4(x,p):

1
f(x,p,t)=To(x,p) +{S,fo} + E{S’{S’fo}}"' RF
(2.12

where S(x,p,t) is a generating function which describes
small deviations from equilibrium.

In its more general form, the distribution function,
f(x,p,t), should include static as well as dynamic deforma-
tions of the nuclear system. For this reason we decompose
the infinitesimal generato®(x,p,t) into a time-even and a
time-odd part

S(x,p,t)=P(x,p,t) + Q(x,p,t), (2.13a
Q(X,p,t)=Q(X,—p,t), (2.13h
P(x,p,t)=—P(x,—p,t). (2.139

The time-even generatoQ(x,p,t), takes into account the
dynamic deformations. The static deformations are described
by the time-even distribution function, which includes the
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fields responsible for the deformations of the Fermi surface. The introduction of the generat@(x,p,t) destroys the

In the present approach, it is expressed in terms of the timdime reflexion invariance of the equilibrium distribution

odd generatoP(x,p,t) function. It will allow for the appearance of transverse flow
[24] in the nucleus. The simplest choice which includes this

1 possibility is given by[19]
fE(Xipvt):fO(va)+{P1f0}+ E{PI{P1f0}}+ e

1

1 Q(Xipit):w(xvt)_l_Eplpjd)lj(xvt)i (21@
=0 )\_hO(X’p)_W(Xat)_Epiijij(Xat) : .

wherey(x,t) and ¢;;(x,t) are, respectively, scalar and sym-

(2.14 metrical tensor fields.
The time evolution of the generat& and the field fluc-

The scalar fieldW(x,t), is related to the deformations which tuations are determined by the appropriate Lagrangian. For
preserve the spherical form of the Fermi surface. The tens@mall deviations from equilibrium it is enough to consider
field, x;j(x,t), introduces deformations in the Fermi sphere.the quadratic Lagrangian
Hopefully, the scalar and tensor fields will provide an ad-

3 3
equate description of the monopole and quadrupode defor- L@=02 d pd;(fO{S,S}+f d3xII S
mations of the Fermi sphere. In Eq2.14, ho(x,p) (2m) 7
=p?+M*2(x) +g,V5(x), with M* (x) =M — gsoo(X), and _
ao(x) andV5(x) are, respectively, the equilibrium values of +f d3I1y, 6V, —E®. (2.17
the fieldso and Vy. The Fermi momentum is related 1o
through Using the ansatz equatio(2.12), (2.14 and(2.16, decom-
posing the boson fields into a statiground-statg contribu-
PE(r)+M*2(x)+g,VI(X) = e +9,VI(X). tion and a small time-dependent increment and imposing the

(2.15 barion number conservation, we get

2
P p . PZpo Sij Sij
J' (2m) O{S S} jd X€p| —2 a W+ FFXH Y+ ¢|| a (le 3 ka)(¢|] _¢ )}
B
Prer €rPo FPFPO X pFPo pFPo
E?)= f d { — W2+ ——Wy;i+ w Vit (2”+x2 Toe, (V¥ Vi + 20109, by) + 5o (49, i ik
2p
+Voii- Vo + 2V i - Vi + 40, bij Ik by + 4x i 9 bik) +J d*x| (gsM* 80— g, Vo) 2FW > Xu)

2

gvPO p
oV djy+ FF)(&]% + 20, ¢ij)

+
€F

1 3 2 2 2 2 1 3 2
+§f d3X[T12+ Vo Vo + (mi+Amd)(Sa) ]+§f d3x[ 113, — 211y, 3;6Vq

+VV;- VoV, —a,6V;d;8V;+ (mZ+AmZ) (V)2 —m3( Vo) 2]+ f d3- 8R(gspsodo—g,podVo). (2.19

The surface integrals in the above equations take into ac-. ) ) Pe
count possible surface displacements parametrized by a vecll,— V280 +(m;+AmZ) do= —gM* <TW+ > Xii |
tor field, SR(x). Our choice of the even distribution function (3.1b
allows explicitly for this effect. In Eq. (2.19,
Am2=g2(dpso/IM*)+ 2bao+3cas and AmZ=g?p,/ e .
avi:l_lv__
lIl. EQUATIONS OF MOTION, BOUNDARY '
CONDITIONS, AND ORTHOGONALITY RELATIONS

The equations of motion and boundary conditions tha15V V28V, +(m +Am; b) Vi
specify the dynamics of the fields are obtained from Eg.

(2.17) through the Euler-Lagrange equations. We get g 02
v F
So=TI (3.13 ST lo Gt o(didiit 204 |, (3.1

3oV, (3.10
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Pr [H Pso
~V25Vo+mZ Vo= gvep(—zW+ 5 x..). b+ E¢ii+guavo—gsp=250|,:%=o. (3.2f)
3.1 o )
9 In order to ensure that the current density is not singular at
. pF pE ) p4 ) the surface, the following boundary condition also has to be
W+ 6X|| 3 2V y+ 30 Z(V ¢||+20(9 d)lj) imposed[19]:
X Pl r=r,=O- 3.3
g p? Ir=Fo
324V (3.19 | - |
3 In Eq. (3.28, £is a vector Lagrange multiplier that takes into
5 . account the restrictiof3.3).
b+ de) —Wa oF Pe 9,Vo—g M—éo We look for normal-mode solutions where all the fields
L 6 XiT| B0V Is €F ' oscillate harmonically in time. This means that the fields
(3.19 are described by a superposition of the real parts
, of {HKM wm)gvon‘ﬁm),5000,5V00,va)|5Rm)
. PR PE - Pr () & (n) it
s 0¢kk i §¢ij:W5ij+E(ka5ij+2Xij) i i xij texp ', Where all the quantities within the
braces are only functions of. This normal-mode analysis
M* leads to the RPA coupled equations for the eigenmodes:
9| 9.0Vo s ’5")' S ™M =T1{", (349
(3-”‘) — 280 = V255 + (mZ+ AmZ) 50"
2 2
W+ oYKk 5ij+§){ij (V i+ 26,9 l/f)+ __gsM*(_pQEW(n)+ 5 Do im ) (3.4D

P

+ —_—
35¢2

1,
EV ikt I P
+ V2 + 6;9; bkt 20 Iy

+2ajak¢ki}. (3.1i)

It is worth mentioning that Eqg3.1a—(3.1i) are valid only

in the interior of the nucleus. Therefore, we replaze,

eg, andpg in these equations by their equilibrium values. At

— 5v<“>—H — 3,6V, (3.40

- 028V;M—V2sV"V + (m?+ Amﬁ) svim

g _2
=—E:”po(ai¢<”> o7 ¢<”>+2a;¢§j”)>), (3.49
F
— w26V = V25V + m2svyY

— (2p¢ Po
——€FGU(7VV(")+ > X.(.n)> (3.49

the surface, the variational fields satisfy the following bound-

ary conditions:

Xk( 980+ 9spsoOR) |1 =r, =0 , (3.2a
X (9 SV;— 36V |y =, =0 (3.2b
X N+ Vit 9, podR)| -, =0 (3.29
PE
Xk dpt 75(bii + 20 diw) + 9y OV F EF5Rk> =0,
.
(3.20
pF
Xk 5Rk5” +—((?kl//5” + 3O+ 9; Yoy + —F

1
X\ 31k 6ij + ;b Sk + 91 i S+ 9 by 5jk+§f9k¢|| Sij

+ i+ 9; bik Tt 9 dijk

9,
+6=F(5Vk5ij+5vi5jk

+ 6V bix) — (& Ojkt & i) =0, (3.20

r=Ry

pF EE ELIE
w4 = (n)) 2m 4 T (y2 M
( 6 EF V df 30;'2:'(V ¢II

+2,9; ¢\ )+%Ea ovi,
(3.41)
-,
PE pF
M*
—1 g6V —gs—080'" |,
€F
(3.49
—ondlV= X" (i#]), (3.4h

2 [
wnx!” =—a o+ — — — (V2" + 0,0, b + 200k i)

F

+20;0\7) +g—;(ai SVIV+a,6Vi™)  (i#]). (3.4)
F
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It is clear form EQq.(3.4h that x;; and ¢;; are canonically ~This is the same relation as obtained 1®9]. This should be

conjugate fields. expected since the meson fields, which are the new ingredi-
The solutions of the above equations satisfy the followingents in the model used here, do not couple to the solution of
orthogonality relation kind 1.

For solutions of kind 2, we still havesR;],=0, since,

2p¢ pZ pZ from Eq.(3.23, the vector fieldSR is directly related to the
f dxer — (WARES g)(i(im) P+ E(ﬁi(in) scalar field 5o. However, the vector field§sV;], and
[TIy ], are coupled to the tensor fields. We get
2 1
PEPo Sij Sij
+l—o(xi(jm)—§x|($))(¢i(jn)—§ ﬁ'&) Gy(ky)
[oVil= PeI;i[ #ij 12
59,
| @B (M) 3y TT(M s\/(M)
f d XHO. oo +J d XHVi 5VI Gv(kZ)—z 5 .
=5 PEKS(VXD)iji(Kar) Yo,  (4.6)
E'Z:' 9y
+ | g3 5R<m>—( 4 IF (.n))
f pol V7 15 % where
— 8. (3.5 _
gva
Ck==— 7 2 (4.7)
IV. DISPERSION RELATIONS AND SUM RULES GF(w” m, )
A. Dispersion relations and m¥?=m2+Am?2. Using the solutions of kind 2 in the
The electric modes are described by the same kind oformal mode equations we get
solutlons as constructed [19], i.e., by two kinds of trans- 3252 2, 257
verse fields 2 2PE) 5 5 o 9uKaPEPO
o~ ——=|(o—k;—m;9)=—=—, (4.9
Ter S5e€r

[pij]i={(di9;— 5ijV2)|2_[(9i(V><|)j+(91(V><|)i]

—[L(VXDi (VXD + (VXD (VXD 1}Hi(ker) Yo, which give us two different solutions fcb_é. Forg,=0, one
of the solutions is exactly the same which is obtainefdL8i.
(4.1) This solution is now modified and a new solution appears,
due to the coupling between the vector meson field and the
[dij1=[ai(VXDj+d;(VXDilji(kar)Yio, (4.2 fields introduced to describe the nuclear deformations.
The longitudinal solutions|[ ¢;;]s, couple to all other

and by one longitudinal tensor field fields and give
Sii [#]13="f(ka)ji(ksr) Yo, (4.9a
[¢ij]3:(5i51_%Vz)h(ksr)\ﬁo- 4.3 ? S
o[ ¥l3
=— 0, 4.9p
The advantage of using the above combination of the four (Wl Gos(k3) (490
linearly independent angular tensor functionsd;Yo, o
6ij Y10, (Xidj+X%;31) Y0, and x;x;Y)o, is that all solutions 29;M* pge .
given above are traceless. In particular, the transverse fields [60]13= = K—m?) [W]s=0a(k3)ji(Ksr) Yo,
also verify the relations noTs s (4.90
dil¢ij11=0 and 4;9;[ ¢;;]>=0. (4.4 20, €rPr _
[5Vo]3=m[w]3=Vo(k3)J|(k3r)Y|o,
For each multipolarity, all scalar fields are proportional to noms v (4.99
j1(kr)Y,q, and the vector fields are combinations of two lin- '
early independent vector functionss[j,(kr)Y,q] and G.(ka) 252K2
(Vx1)iji(kr)Y,o. Using these combinations in EqR&.49— [6V,]5= o(Ks (f(kg)_ b) ailii(kar)Yiol,
(3.4i) it is straightforward to show that the transverse solu- v 15
tions do not couple to the scalar fields, and one has (4.99
[60]12=[6Vol12=[W]1 2= [#]12=[11,]1,=0. For solu-
tions of kind 1, the vector fields are also zero: Xjdi 603
[6Vi]1=[Ily ]1=[6R;]1=0 and the dispersion relation for X[ 6Ri]3=— — ' (4.91)
. . ! . L OsPs0 | ,_g
this particular solution is given by 0
— plus the corresponding solutions to the canonically conju-
wﬁzpf':zki_ (4.5  9ated fields. In the above equations we have introduced the

Tep functions
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(0 2pek[1+G, (k) 1Gos(k)
15{3efw’— ek [1+G,(K)]Gos(K)} |
(4.10
and
o= 1 20 [ giet  gim*?
0s 7726_F wﬁ_kz—mg wﬁ—kz—mgz '
(4.11

with G, (k) defined in Eq(4.7), andm§2=m§+Am§.
The dispersion relation obeyed by these solutions is

S5eZw?  9K3
seted| 8- 2 it me
Pr
X
o[ G- P ik mivoi-me
2pe 9
-2 [ s S gt 16 me
F

—gIM* (i —K5—m?)]. (4.12
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To avoid zero-frequency modes linked to the surface mo-
tion, we introduce in the model a surface energy which, in a
classical approximation, is given by

E(sﬁ)p:;%]g['(' +1)—2]f d¥-sR6R-n, (417

whereog,,is the surface tension coefficient. This term does
not alter the equations of motion and, therefore, the disper-
sion relations. It only changes the boundary condition Eq.
(3.2f) to

[ Pso
. . S
b+ Eéf’ii +9,0Vo— gsﬁ oo

Osup

- 2Ropo[l(l +1)—2]A- 8R|,_r,=0. (4.19

Using the general solutions in the boundary conditions Eqgs.
(3.29—(3.28, Eqg. (3.3, and Eq.(4.18 we get the Egs.

There are four solutions of kind 3, two more than the numbega1a)—(A1h) given in the Appendix. The eigenvalues are

of this kind of solutions found if19]. This should be ex-

determined by solving consistently the dispersion relation

pected since, besides the vector meson field, the scalar mgguations(4.5), (4.8), and(4.12), subjected to the boundary

son field also couples to the longitudinal solut[a; . It is
easy to show that foy,=0 andg,=0 one recovers the two
solutions of[19].

Therefore, the Walecka model leads to the appearance of

7 different values fok for a fixed frequencyw, in contrast
with the model of{ 19], which gives only four different val-
ues.

There is still a fourth kind of solution for the tensor fields,
which can be chosen to be

[ bijla=[xijla= 6i;F(r) Yo, (4.13
coupled to the scalar fields
I
[(Wla=[¢]s=— 7F(r)Y|0, (4.14
and to the meson fields
[00]4=[6Vola=[6Vi]4=0, (4.19

where F(r) is an arbitrary function. This solution is not
trivial because of the boundary condition E§.3).

conditions.

B. Sum rules

Sum rules can be regarded as a test to the validity of a
particular nuclear model. Suppose that a nucleus is excited
from its ground statd0) to an excited statén), with an
energyE,, due to interactions with an external field. One
can define momenta, weighted in energy, of the excitation
strength distribution

=2 (Ea—Eo)(n[O[0)? (419

whereO is the one-body Hermitian operator, responsible for
the excitation. In the above expressidw0,£1,+2,...
and|n) stands for a set of eigenstates of the Hamiltonian of
the system. A sum rule is obtained when it is possible to
relate a momentum with a known quantity.

The energy weighted sum rul&WSR), m,, is obtained
through the calculation of the expectation value of a double

The general solution, for each normal mode, is a lineagommutator

combination of the eight particular solutions:

2
¢§jm>=c1[¢i,-<klr>]1+gl Conl #ij (Kanl) 12

4
+r121 Canl #ij(Kan) I3+ Cal ij(r)]s, (4.16

with similar expressions for the other fields.

~ 1 ~ ~
m; =2 (Ey—Eo)(n|0|0)|?=5(0][O,[H,01]|0).
(4.20

In the present problem, the general solution for the varia-
tional fields is given by the real part of
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iW(”)(x) TABLE I. Energies and fractions of the energy weighted sum
. rule for different multipolarities and different sets of parameters.
i 6™ (x)
V(%) i ! !
i SRM(x) hw; (MeV) my (%) hw; (MeV) my (%)
imrox) | t 0; 28.56 14.06 37.27 8.55
‘P(X,t)Zg nl i | © e, (420 of 35.50 27.46 46.12 30.34
('I'” 04 50.95 2.30 61.59 2.13
éij (X) 0; 68.25 1.32 81.14 0.25
() (op 71.29 5.94 86.73 8.59
1M (x) 0q 88.51 0.58 98.92 0.71
o (X 0; 105.11 1.07 13351 3.22
sVIV(x) (0 107.87 2.57
- , _— 2 10.03 4.67 11.90 1.46
where the coefficienta,, are determined by the initial con- 21+ 20.15 45.32 28.07 4251
ditions. In order to derive the EWSR for the electric modes_ %
we consider the following initial condition: 23 28.32 0.78 33.77 512
9 ’ 2 35.32 3.95 39.94 0.48
27 35.82 0.31 42.33 4.64
$(x,00=D(x), (4228 - 49.35 0.52 59.72 0.35
27 64.20 1.93 75.59 0.96
$ij(%,0)= xij (x,00=W(x,0) = 6R(x,00= 6V(x,0)= 60 (x,00 25 69.91 0.10
=6Vo(x,0=11,(x,0 =11y (x,00=0, (4.22 3, 12.93 11.42 15.86 0.32
3; 14.44 1.09 17.77 571
. . ' * 32.84 35.48 42.14 35.24
with D(x) to be specified. We then expand the fleldssi
3, 37.20 0.70 44.95 4.09
o(x,0)==,a,¢M(x), where, from the orthogonality rela- 5 4503 3.90 5108 ~ 00
tion, Eq.(3.5), we get 6 ' : : '
3; 57.55 0.64 68.89 0.53
2€erPE pZ 47 18.06 13.41 22.35 0.69
an=f dSXT VV(”)+gxi(i") D(x) a4 20.46 1.37 24.93 7.21
43 43.94 16.44 54.32 10.32
— 4; 45.91 14.54 57.52 20.27
. SR(M 4
+p°f d%- SRTD(x). (4.23 47 48.84 2.05 62.47 11.42
47 54.83 3.47 73.41 0.11
The coefficients,, are related to the expectation value of the 47 65.46 0.68 77.68 0.64

transition operatora,=\2(n|O|0). Therefore, the EWSR

can be written as )
(1) 95=122.88,

my=2 |a,|?w,=2E?, (4.24 g2=169.49,
n
. e Pe=1.3 fm %,
and, for the initial condition given in Eq4.22), the EWSR
reads M*/M=0.522,
_ .
> |an|2wn:f d*x2%D.vD. (4.25 (1) gs=91.64,
n EF
g%=136.20,
V. NUMERICAL RESULTS —_ ,
pe=1.42 fm -,

A. Walecka model

Settingb=c=0 in Eq. (2.1) we recover the Walecka M*/M=0.556,
model. We have performed our calculations with two differ-
ent sets of the mean-field values of the parameters in thehereM =938 MeV andM* is the effective mass. The ef-
Walecka model: fective mass and the Fermi momentum indicated for each set
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TABLE Il. Comparison between the energies and fractions of the energy weighted sum rule obtained in
the present work for the Walecka model,[R0], and experimental da{26].

I Walecka model [20] Experimental 26]
ho, (MeV)  my(%)/m;(1)  my(%) ho, (MeV) my(%) hw; (MeV) my (%)

OI 28.56 25.23 14.06 15.87 95.15 13.9 100

0, 35.50 49.28 27.46 18.95 2.26

0; 50.95 4.14 2.30 28.14 0.03

0, 68.25 2.37 1.32 36.83 0.03

0; 71.29 10.66 5.94 41.29 1.46

0q 88.51 1.03 0.58

Total 99.99 55.72 98.98

21+ 10.03 7.67 4.56 3.73 30.90 4.09 15

25 20.15 76.99 45.79 11.70 64.19 13:90.3 70.0

2;’ 28.32 1.29 0.77 17.45 2.17

2 35.32 6.35 3.78 20.54 1.10

2 35.82 0.53 0.31 21.12 1.00

2g 49.35 0.88 0.52 27.30 0.06

25 64.20 3.15 1.87

2; 69.91 0.17 0.10

24 87.43 0.29 0.17

Total 99.88 59.46 99.32

35 12.93 18.74 11.43 2.92 34.10 2.61 33

3, 14.44 1.71 1.04 8.43 0.29

35 32.84 58.70 35.79 18.53 43.44 1840.8 36

3, 37.20 1.15 0.70 22.80 10.88 2118 0.8 27

35 45.03 6.06 3.69 26.87 5.18

36 57.55 1.05 0.64

3; 78.43 2.96 1.81

35 82.04 3.10 1.89

3q 95.87 0.46 0.28

Total 100.00 61.00 97.64

47 18.06 23.10 13.06 451 34.10 4.32

43 20.46 2.35 1.33 12.26 2.05 1200.3 10+ 3

43 43.94 29.21 16.51 23.36 22.39

4;{ 45.91 25.77 14.57 27.64 8.86

45+ 48.84 3.62 2.05 29.67 17.10

4;{ 54.83 5.81 3.28 33.45 8.45

47+ 65.46 1.20 0.68 35.38 4.18

Total 100.00 56.52 97.13
correspond to the values at which saturation of nuclear mat- r?Yoo, 1=0, (5.13
ter is obtained with an energy per nucleBAN= —15.75 D(x)= (y |=2
MeV, usingmg=550 MeV andm,=783 MeV. We take the 1or = (5.1p

surface tension from the liquid drop modg5], namely
o= 1.017 MeV/f?. Using, instead, the surface tension

calculated for the linear Walecka model witt, =550 MeV Table | shows the energies of the normal modes together
in a Thomas-Fermi approacf23], og,=1.8 MeV/fm?,  with the corresponding percentage of the exhausted energy
would only give rise to very small changes in the results, lessveighted sum ruléEWSR), for the two sets given above and
than 0.2%. We begin with a nucleus with=208. The radius for different multipolarities. The EWSR is fragmented over
R, is obtained from the value gbr corresponding to the the whole range of energies and only the nuclear modes
chosen set of parameters. which exhaust more than 0.1% of the sum rule are given.
For the excitation operator introduced in H4.223 we  The distribution of the EWSR between the nuclear modes
will use and the mesonic modeenergies larger than the meson
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TABLE lll. Energies and fractions of the energy weighted sum
rule for the quadrupole modes in the Walecka model for a nucleus
with A=40.

[ hw; (MeV) m, (%)
27 17.09 8.92
25 36.89 83.58
23 51.45 1.57
2 62.02 0.62
27 64.15 4.70
28 90.77 0.03
27 93.04 0.59

In Table Il we give for set | and fot"™=0%,2%,37,4"

the energy of the normal modes with energy below 100 MeV
(first column and the corresponding percentage of the en-
ergy weighted sum ruléEWSR) (third column. In the sec-
ond column we present a renormalized percentage of the
EWSR, renormalizing the strength distributed among states
with energy below 130 MeV to 1. The renormalizing factor
is my(1)=0.56, 0.60, 0.61, 0.56, respectively, for0, 2, 3,

shown that in infinite nuclear matter and for small momen-4. This is done so that we can compare more easily the
tum transfer about 62% of the EWSR is exhausted by theesults obtained in the present work with previous results
continuum nuclear modes and about 38% by the vector mesbtained in a nonrelativistic fluid-dynamical modi20] (col-

son modes. For instance, for=2" and for set I, we find a umns 4 and band experimental dat@olumns 6 and 7[26].
vector meson mode dtw;=984.56 MeV which exhausts Looking at the modes with energy below 100 MeV, we may
27.30% of the EWSR. The other mesonic modes are not ashnmediately conclude that there is a certain correspondence
collective as this one and are distributed over a large range dfetween the states obtained in the present approach and the
energies. This pattern is reproduced for the two sets of pasnes of[20], if we identify the states by the percentage of the
rameters and for all multipolarities. The EWSR is fulfilled exhausted EWSR. However, the corresponding states come,
considering all the nuclear and mesonic modes. In nonrelan the present relativistic approach, at higher energies. For
tivistic calculations using the same nuclear fluid-dynamicalinstance, the quadrupole low lying mode and giant resonance
model used hergl8—20, the mesonic modes are not presentcome, respectively, at 10 and 20 MeV and exaust 8% and
and, therefore, the EWSR is distributed only through the77% of the EWSR while the experimental modes come at 4
nuclear modes. From this table we can see that for set Il thand 11 MeV and exhaust 15% and 70% of the EWSR. An-
collective modes come at a slightly higher energy than in sebther possible way of identifying the modes is done by com-

| and that the strength is more concentrated at higher eneparing the current transition densit2.8) and the transition

gies.
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line) in arbitrary units for thd "=2* E=20.15 MeV mode.

density (2.7) for these two modes with the ones [&0]. In
Figs. 1 and 2 we plof, , j_, jqv (arbitrary unitg defined
by the equations

J(D=] (Y 11100 +j ()Y -10(£2),
V() =ja(r)Yo.

The function jy, is related to the transition densityp

(p=—V-j). For the 10.03 MeV mods,. andj_ have op-
osite signs angly,, is close to zero, characteristic of a surface
mode. These are typical properties of a low lying mode. For
the 20.15 MeV modej, andj_ have the same sign and

j div comes diferent from zero far'Ry>0.5. This behavior is
closer to the behavior expected from a giant resonance. We
conclude the identification we have done is correct.

We note that our modes with the lowest energy have en-
ergies similar to the ones obtained[B1, however, these are
not the states that exhaust the largest percentage of the
EWSR and, therefore, they should not be identified with the
giant resonances. The breathing mode comes at a very high
energy, but this was expected owing to the high incompress-
ibility of the model.
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TABLE IV. Comparison between the energies and fractions of TABLE V. Same as Table IV for set IV of parameters.
the energy weighted sum rule obtained in the present work in the
nonlinear mode[with set Ill of parametepsand experimental data 1" Nonlinear model Experiment§6]
from [26].
hw; (MeV) m, (%) ho; (MeV) m, (%)
1" Nonlinear model ExperimentP6] o; 21.48 7759 13.9 100
ho; (MeV)  my(%) ho; (MeV) m(%) 0z 24.36 11.81
oF 19.46 87.70 13.9 100 O% 3857 Lot
i ) ) ) 04 53.27 1.81
02 21.99 4.65 ¢ 56.51 4.05
O3 34.12 0.92 0; 68.32 0.54
0, 46.35 1.18
05+ 51.07 3.47 Zf 5.55 40.26 4.09 15
og 59.05 0.20 2; 13.87 51.42 10.9= 0.3 70.0
0F 71.30 0.40 25 22.92 3.77
Oy 77.79 1.43 2 28.68 1.41
n 2; 31.33 0.31
2l+ 4.75 38.35 4.09 15 Zér 37.04 0.10
2%r 13.03 53.67 10.9- 0.3 70.0 23 51.59 1.32
23 20.93 5.18 27 53.14 0.40
24 23.67 0.48 28 62.24 0.10
25 21.71 0.39 24 67.47 0.13
2g 45.07 0.50
27 47.63 0.72 3 2.99 42.86 2.61 33
2; 56.41 0.15 35 24.47 37.40 18.4- 0.8 36
2;“ 70.59 0.13 33 30.21 14.43 21.8- 0.8 27
27 74.40 0.20 3, 36.86 0.18
24 78.70 0.16 3 38.15 1.39
36 58.78 0.50
35 2.31 40.81 2.61 33 3; 63.88 1.97
35 22.08 35.41 18.4- 0.8 36 35 72.04 0.60
33 27.65 18.90 21.8- 0.8 27
3, 32.70 1.03 47 5.90 43.03 4.32
3 34.00 0.38 4; 17.81 1.00 12.6 0.3 10+ 3
3 50.94 0.23 43 31.97 18.18
3; 57.27 1.50 47 38.75 29.70
35 58.52 0.10 4 42.64 3.27
3y 63.90 0.11 4; 46.88 0.46
30 65.56 0.50 43 57.64 0.07
35 76.38 0.09 4z 65.30 0.39
4; 74.47 2.35
41+ 4.64 41.10 4.32
43 15.81 1.16 12.6¢ 0.3 10+ 3
45 28.33 16.96 EWSR(second colump for set I. From this table we can see
4y 35.21 27.98 that we obtain a distribution in the quadrupole modes which
a; 37.96 8.36 is compatible with the MFT distribution given in Fig. 8 of
4; 43.76 0.56 [27]. The comparison has to be made with the MFT calcula-
4t 50.96 0.11 tion of [27] since in our classical approach we also do not
a4 56.43 0.14 consider the effect of the vacuum polarization.
44 66.43 1.85 From the a_bove results we conclude that the reIativis_tic
45, 74.61 1.39 Thomas-Fermi method used here provides results compatible

with other works[9,27].

While in [9] only the lowest modes were determined, we

have found all the modes that exhaust a significant fraction B. Nonlinear oe» model

of the corresponding EWSRwvhich we also derived Fur- In the Walecka model the equilibrium properties of
thermore, we have shown that the lowest modes are not theuclear matterE/N andpr completely determine the param-
most collective ones. eters of the mode(for a fixed value ofmg and m,), and,

For a nucleus withA=40 we give, in Table lll, the en- therefore, the nuclear incompressibility and the nucleon ef-
ergy of the quadrupole modéfirst column, with energies fective mass at the saturation. The introduction of two new
below 100 MeV, and the renormalized percentage of theparametersh andc, in the nonlinear model allows one to fit
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the values of the effective mass and incompressibility, in(jv) g2=121.81,
addition topg andE/N. We are aware that a negative value

for c is formally not acceptable because it generates an en- 95= 128.97,
ergy spectrum with no lower bouri@8]. However, since a 5
negativec is phenomenologically favordd,29-31, we fol- 10°0/Mg¢=3.895,

low the conventional point of view and allowto be a free
parameter. Fixing the equilibrium properties of nuclear mat-

ter at as=11 MeV,
Pr=1.33 fm*, which, for mg=595 MeV andm,= 783 MeV, gives
Pe=1.33 fm %,

10°c/gi=—5.162,

M*/M=0.75,

M*/M=0.65,
K=200 MeV,
K=200 MeV,

E/N=—-15.75 MeV, E/N=—15.75 MeV.

we get[23], for mg=545 MeV andm,=783 MeV, the setof In Tables IV and V we have only presented the nuclear
parameters |lI: modes which exhaust more than 0.05% of the sum rule.
Comparing the results in Tables IV and V we conclude that
() g§=81.54, the energy of the normal modes increases with a decreasing
M*. Of course we still have a better agreement with experi-
5 mental data as compared to the Walecka mddiable II),
g,=85.51, owing to the smaller incompressibility of the nonlinear
model.
10°n/Mgi=8.821, From the present results we conclude that the isoscalar
collective modes of the nuclei can be well described in a
4 relativistic meson-nucleon system in the framework of the
10°c/gg=—10.056, time-dependent Thomas-Fermi method. We have basically
limited our analysis to large nuclei because we have taken
a;=11 MeV, for the ground-state of the nucleus a Slater determinant de-
rived from a square well instead of the self-consistent ground
state. We believe, however, that for large nuclei such as the
208pp nucleus this is a good approximation which allows us
to obtain analytical expressions for the equations of motion
eand the boundary conditions.

whereas=4m(R§/A?¥ o, is the surface energy calculated
in the TA:° approach 23].

The energies of the normal modeésith energies below
80 MeV) together with the corresponding percentage of th
renormalized EWSR, foA= 208, are shown in Table IV for
different multipolarities. Comparing these results with Table
Il we see that the agreement with experimental data is much This work was partially supported by CNPq, JNICT, and
better in the case of the nonlinear model. Funda@o Calouste Gulbenkian. M.N. acknowledges the

One can argue that we have used a very high value fowarm hospitality and congenial atmosphere provided by the
M*, since many studies in the literature seem to agree on théentro de Fsica Téeaica of the University of Coimbra during
necessity of a smaller nucleon effective mg829-32. In her stay in Portugal. X.V. acknowledges the support from the
Table V we present the results obtained for the set of paranBGICYT (Spain under Grants Nos. PB92/0761 and HP92-
eters IV: 035.
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Using the general solutions in the boundary conditions E8}29—(3.29, Eq. (3.3), and Eq.(4.18 we get the following
equations:

2 4
[2= 11+ D))(rdr+ ey (kar) + 3 [2101+1) = 2r 8= 2= KGorJean]i(Kant )+ 25 (1= 1)Canfi(Kanl) |-, =0
(Ala)

2 4
2
[+ DE2= 1+ D)esji(kar) + 2 210+ 1)(rdr = Dani(Kenr) + 2 1(14+1) =275 = ZK5or|Canji(Kanl)

+12¢,F(r)|r=r,=0, (Alb)
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- I(1+1) _ 2 ) ,
2/ kiro(ré,—1)+6(rd,+1)— 5 ro, clj,(klr)—znz,l [6(rd,+1)+2Kk5,r“—3l(1+1)]Conj (Konr)
4
32, (1o =2)Canji(Kanl)]1=r,=0, (Alc)
2 2
|(|+1)[k§r2(|r(9r—1)+3rar+12—3|(|+1)]c1j|(|<1r)+n§=)1 [(1+1) gkgnr2+6rﬁr—12 Coni 1 (Kon)
‘I3
+ 2, |5 KGar 29 3(=3rd, 101+ 1) = K5r?) | Canji(Kanf )=, =0, (Ald)
2
2, Gy(kan)Kzor *Canji(kan)r=p, =0, (Ale)
2 4 — o N
@G, (Kai) . G, (Ksi) 2peks; JuPo )
> — o pEkG I (1 + 1o (Kair) + 2 | Vo(Kgi) = ————| f(kg)) ——5— | = ——=0(kgi) |1 9;Caiji(Kai)|r-r
=1 59, i=1 g 15 JsPso °

% PERS 4
2“1+ D[1+ Gy (ke Jeai(kar) = 2

5 4

JsPs
CaF (N =gr,= —ZE wnf(ks) =0, Vo(ks) + STSOU(ksi)_
0 wnPE

=1 Po

2pZk3;
[1+G,(ksi) ]| f(ks)— 5

=0, (Alf)

EpWp

rﬂrcsijl(ksifﬂr:RO:O,
OsPso

(Alg)

Osup

ALY +1)_2]0(k3i)l9r]Csij|(k3ir)|r=R0=01
9sPopPsoRo
(Alh)

with the functionso (k) andVy(k) defined in Eqs(4.99 and(4.99).
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