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In this paper we address the adequacy of various approximate methods of including Coulomb distortion
effects in @,e') reactions by comparing to an exact treatment using Dirac-Coulomb distorted waves. In
particular, we examine approximate methods and analyses &f)(reactions developed by Traigt al. using
a high energy approximation of the distorted waves and phase shifts due to Lenz and Rosenfelder. This
approximation has been used in the separation of longitudinal and transverse structure functions in a number of
(e,e’) experiments including the newly publishé¥Pb(e,e’) data from Saclay. We find that the assumptions
used by Traini and others are not valid for typical€’) experiments on medium and heavy nuclei, and hence
the extracted structure functions based on this formalism are not reliable. We describe an improved approxi-
mation which is also based on the high energy approximation of Lenz and Rosenfelder and the analyses of
Knoll and compare our results to the Saclay data. At each step of our analyses we compare our approximate
results to the exact distorted wave results and can therefore quantify the errors made by our approximations.
We find that for light nuclei, we can get an excellent treatment of Coulomb distortion effects,ef) (
reactions just by using a good approximation to the distorted waves, but for medium and heavy nuclei simple
additionalad hocfactors need to be included. We describe an explicit procedure for using our approximate
analyses to extract so-called longitudinal and transverse structure functions déef) (eactions in the
guasielastic regior{.50556-281®6)01711-4

PACS numbdrs): 25.30.Fj, 25.70.Bc

[. INTRODUCTION extracts “structure functions” by subtracting one cross sec-
tion from another. For example, in a recent distorted wave
Medium and high energy electron scattering has longalculation[1] of *®O(e,e’p) in the quasielastic region, we
been acknowledged as a useful tool in the investigation ofound Coulomb effects on the extracted spectroscopic factors
nuclear structure and nuclear properties, especially in they be approximately 3%, while the effects on the extracted
quasielastic region. In the plane-wave Born approximatiorfourth structure function was approximately 15%.
(PWBA), where electrons are described as Dirac plane However, some sort of extraction of structure functions,
waves, the cross section for inclusive quasielastie’() pro-  albeit approximate, is still very appealing since structure
cesses can be written simply as functions are sensitive to different aspects of the underlying
knockout process or the final state interaction. Furthermore,
(e,e’) reactions in the quasielastic region are particularly
(1) a e o0 )
ppealing in that the cross section is the sum of many knock
out processes and some of the various Coulomb effects may
whereqi:a)z—q2 is the four-momentum transfes,, isthe  be partially averaged out. In fact, this is the case. A rather
Mott cross section given by oy=(a/2E)?[cog(#  simple approximation known as the effective momentum ap-
12)/sirf(6/2)], andS, and Sy are the longitudinal and trans- proximation (EMA) where the electron momentgd, ¢ are
verse structure functions which depend only on the momenmodified by the value of the Coulomb potential at the center
tum transferq and the energy transfen. By keeping the of the nucleus goes quite far in reproducing the Coulomb
momentum and energy transfers fixed while varying thedistortion effects for light nuclei. However, the EMA for
electron energyE and scattering anglé,, it is possible to heavy nuclei does not adequately reproduce the DWBA
extract the two structure functions with two measurementscross section in the quasielastic region.
However, when the electron wave functions are not Dirac During the past decadeg’) cross sections have been
plane waves, but rather are distorted by the static Coulommeasured2-4] for a number of nuclei in the quasielastic
field of the target nucleus, such a simple formulation agegion and either plane wave or EMA was used to extract
given in Eq.(1) is no longer possible and, in general, the longitudinal and transverse structure functions. These ex-
cross section does not separate into the sum of longitudinatacted structure functions were compared to the predictions
and transverse structure functions with coefficients whichof a simple Fermi-gas model, and in some cases, there ap-
only depend on the electron kinematics. Clearly the size opeared to be large suppressiup to about 40% of the
the Coulomb distortion effects depends on the charge of thbongitudinal structure functions. There were also disagree-
target nucleus and on the energy of the electrons. In generahents with the extracted transverse structure functions and
Coulomb effects are not too large near the peaks of crosthe predictions of the Fermi-gas model, but these were ex-
sections, but can have greatly magnified effects when onpected since exchange currents, pion production, and other
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processes that are primarily induced by transverse photonghere
were not included in the Fermi-gas model. It should be noted

that the Fermi-gas model is a rather crude description of a
nucleus. In particular, the shape of the structure functions at
fixed momentum transfer plotted as a function of energy o ) o
transfer is not well described. On the other hand, we foun(‘f_md the electron current_ is given in terms of the initial and
that a “single-particle” relativistic model using relativistic 1@l electron wave functions by

Hartree wave functions coupled with the full DWBA treat- . —

ment of Coulomb distortion for the electrons was in good Ju(Te) = ¥i(re) Vuthire). &)

a_lgreer_nent letoh the meas_ured Cross sections in the quasieI%r scattering processes this current extends over all space
tic region for “Ca[5] and in r(_aasgnably good agreement forand thus the integral in Eq2) is not straightforward.
. Furthermore, the longitudinal structure function ex- o proposed 10] a way of replacing the integral in Eq.

40, i i
tracted for”‘Ca was well produced in magnitude and shapey) y 5 series of differential operators by using the transfor-
by this model[6]. mation

More recently, Jourdafi7] has examined the world data
set for inclusive quasielastic scattering éfC, “°Ca, and o~ ,
6Fe at momentum transfers of 300, 380, and 570 MeV/ Tf V(r—r)f(r)dr'=e9"'V(—-q'+1V)e 9 'f(r) (4
and has evaluated the Coulomb sum rule. No evidence o
suppression is found for the highesgtvalue (570 MeVk)  between the functionV(r—r’) and its Fourier transform
where the sum rule is most model independent. Jourdan uséﬂ(qf), Applying this result to Eq(2) and making a Taylor

our Coulomb corrections in arriving at this conclusion. Thus,series expansion, we obtain the following series expansion
on the basis of our direct comparison with the measuredor the potential:

cross sections of%Ca, and of Jourdan’s results, the pub-

elw‘l‘efl"

G(re,r)=m
e

lished analyse$8] for 2°Pb(e,e’) which claim up to 50% 41 q'%+V?

suppression of the longitudinal structure function is surpris- Aur)= q'2— w? 1+ q'2— w?

ing. However, the approximate treatment of Coulomb distor-

tion used in the analysis is not accurate, and leads to doubts q'2+V?)? .

about the extracted structure functions. As a separate matter, q'2— o? toeiu(). ®

we question the nuclear model used in making the claim of
suppression. Note that while the momentum variabig is arbitrary, the
In this paper we investigate the possibility of including choice affects the convergence of the series. In particular, for
Coulomb distortion effects ing,e’) reactions in the quasi- the case of Dirac plane waves for the electron the only de-
elastic region for medium and heavy nuclei in an approxi-pendence of the electron current onis simply €'9°" and
mate way. We have an advantage as compared to previoehoosingq’ =q results in the vanishing of all the terms ex-
workers in that we have an exact treatment of the static Coweept the first, and Eq(5) reduces to the well-known
lomb distortion of the target nucleus via a distorted waveMadller potential,
Born approximationDWBA) calculation to which we can 4
compare[9]. In Sec. Il we will discuss various approxima- o aTm — QT e g
tions that permit a “plane-wave-like” approach to the treat- Aur)= q2—w2u(pf)7“u(pi)eq =a,e",
ment of Coulomb distortion and compare the approximate
results to the exact DWBA results in a step by step way. Wevhereu is the familiar Dirac plane-wave spinor.
obtain an approximate potential due to the electron current As a test of this approximate procedure for calculating the
which describes Coulomb distortion quite well. In Sec. IlI, potential, we calculated the electron charge distribution in
we apply this potential with further approximations to the the presence of the static Coulomb potential arising from the
particular case of inclusive quasielastic processes. Finally wground-state charge distribution 6f%Pb using the partial
compare our calculations to the Saclay d&pfor the inclu-  wave solutions of the Dirac equation and evaluated the ze-
sive reaction?*®Pb(e,e’). roth, zeroth plus first, and zeroth plus first and second terms
In addition, we give an explicit procedure for extracting in Eq. (5). Using these potentials we calculated the inelastic
longitudinal and transverse structure functions from inclu-scattering cross section induced by a surface nuclear charge
sive cross section data in the quasielastic region from metransition density
dium and heavy nuclei, and make some general conclusions.

if :i _ M 2
pn(1)=p22 8N =Ry YL (1), (6)

Il. APPROXIMATIONS . . _
whereR, is the nuclear radius. The ground-state density of

A. Approximation of the electron potential the nucleus was described by a Fermi distribution of radius
The four-potential arising from the electron currgptis ~ R=6.65 fm and total chargé=82. The cross sections were
simply given in terms of the retarded Green’s function by calculated at initial energ§; =400 MeV and final energy
E:=300 MeV with energy transfes%o=100 MeV. In agree-
B . ment with Knoll [10], we found that the first and second
AM(r)_J G(re,nju(re)dre, @) correction terms are sufficient to fill up the minima and the
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contribution of the second correction term was less than Xs
2% for momentum transfeq= 350 MeVkt. We conclude W)= Ei+m( ipr (10
that this high momentum approximation provides an alterna- i(r= 2E; P e

. h - L . X
tive procedure for calculating the potential arising from in- E+m~”®
elastic electron scattering processes. However, this procedur

does require the numerical solution of the Dirac equationwehere the electron spin label has been suppressed. Thus, one

using partial waves which does take some computationaﬁjay of obtaining a plane-wave-like Coulomb distorted wave

time. One advantage, however, is that the radial function ncti(_)n s t0 approximate the radial funct_ioh,s andg, by .
only have to be calculated out to about three times theC.pherlcal _Bessel functions, and to approximate the scattering
nuclear radius phase shifts by an operator that can be pulled out of the

We also applied this procedure to various approximat artial wave sum. Using thes_e two |deas,.Lenz and Rogen-
solutions of the Dirac equation and noted that the first- an elder[12] obtained an approximate scattering wave function

second-order terms were not well controlled if one approxi-or high energy electrons which includes Coulomb distortion

mates the electron current. Clearly one should not approxif-or a finite nucleus in an approximate way more than 20

mate a function and then differentiate it. In the following ye?rst:g%.. h limit with d helicitve> th
when we examine approximate electron wave functions, and h the ![g energfy m:.' Wi f EOO eéur\}/ K n;e% €
hence approximate electron currents, we will only use théPProximate wave function of Lenz and Rosen elptez],

zeroth term in Eq(5), but will be sensitive to the choice of and Knoll[10] can be written as

q’. )y — +15(3%) aip-
P )(r)—n(r)e 16( )elpfn(r)up (12)

B. High energy wave function approximation whereu, is the Dirac plane-wave spinor and

The incoming Coulomb distorted electron scattering wave 1 (r _
function that satisfies appropriate boundary conditions for an n(r)= af [p—V(r')]dr'+ correction term. (12)
electron with spirs; can be expressed in the form of a partial 0

wave sum by 11] Lenz and Rosenfelder approximated the dependence of the

5 phases on the operatdt by 5(J%) = &;,+ b(J*>—3/4) where
Psi(r)= iFm b depends on the Coulomb potential. This particular approxi-
S(r)=4m ?2 2P b p : parti pp
i K mation for the phase shifts is not necessary since any func-
tion of the operatod? still allows the partial wave sum to be
carried out. Lenz and Rosenfelder claimed that this equation
is valid for (|V(r)|/p)<1 andj+ 1/2<pR. The second con-

where the spinog“ is an eigenstate with angular momentum dition being primarily determined by the expression used for

quantum numbers and u given explicitly by the phase shifts. _ _ _ _
The approximate radial functions are given by spherical

Bessel functions with modified argument,

xe%'C, o ALY B)vk(n, (@)

—Si S

() = f () xi(r) @
K | o\ X
19 (r)x% (1) fK(r):ah(X)’
where the spin-angle functions are (13
X
. 9,.(r)=—sgr(x)j(x),
XD=Z €l 221 Y. ©) pr=

wherex=p’(r)r and

The Dirac quantum numbet determines the angular mo- 1(r A

mentum labels for both and j. Note that if we ignore the p'(r)=p— ?f v(ndr+—,
mass of the electrofvalid for scattering angles away from 0

extreme forward and backward anglethe electron helicity

is a good quantum number, and we only require posikve
solutions. The radial function§, and g, and their corre-

sponding phase facto;, are obtained by numerically solv- To avoid having anr-dependent momentum, Traini
ing the Dirac radial equation for a finite spherically symmet-o; 4| [14] made the further approximation that
ric nuclear charge distribution. The outgoing distorted Wavep’(r)zp’(O)z p—V(0) whereV(0) is the static Coulomb

function ¢ is found from Eq.(7) by making the replace- potential evaluated at the origin. This approximation of the
ments (5,——id,), (si—sf), (E—Es), and @i—ps). radial wave function leads to what is known as the effective
Note that by setting the phasés to zero and replacing, ~ momentum approximatiofEMA). An approximation to the
and g, by the spherical Bessel functiong(pr) and radial wave function where we keep thelependence in the
sgn(x)j(pr), wherel =I(— «), the partial wave sum in Eq. momentum but still negleck will be referred to as the local
(8) can be summed to give the Dirac plane-wave solution, effective momentum approximatioftEMA). In looking at

(14)

whereV(r) is the spherically symmetric Coulomb potential
of the target nucleus amfl is a correction term in the argu-
ment of orderx?/(pr)? and is normally neglected.
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FIG. 1. Radial wave functions if’®b for k=5. The top is for
energyE=200 MeV, the middle for energig =400 MeV and the
bottom for energyE=600 MeV. The solid line is the exact DW
wave function while the dash-dotted line is LEMA\, the dashed
line is LEMA and the dotted line is EMA.

FIG. 2. Radial wave functions iR®®Pb for x=15. The same as
Fig. 1.

for medium and high energies out to radii beyond the nuclear
radius, but at lower energiedess than 250 MeYit also

these approximate wave functions, one should keep in mingc_aviates significantly from f[he DW resul_t. The wave function
that it is the spatial region around the nuclear surface tha\fvlIth thte LEfMAtl +Abcorri%tgor|:/la?/rees with the distorted one
contributes most significantly to electron-induced transitions& MOSt PEriectly above ~ ev. L . .
That is, partial waves with angular momenta of orgd® AL th? lower energy thls'wave f“”C“OT‘ is a bit to '.[he right
whereR is the nuclear radius play a large role in the transi-Of the distorted wave fu_nctl_on, but the d|§crepancy Is accept-
tion amplitude. Thus, the approximation that the angular mo%?%sgnﬂl'g:; %%ngg;%r:alzlgh?;:‘Egﬂn':‘ésr?aﬁgg:tt?h?i%
is signifi ly | h i lid. With thi L : ; e
mentum is significantly less thapr is not valid. With this proximation LEMA + A furnishes quite a good description

point in mind, we sought aad hocapproximation for the of the distorted wave radial functions out to several nuclear
correctionA. We found that the following expression de- gadii

scribes the radial wave function at larger radial distance The other important ingredient in Coulomb distortion

quite well: considerations are the phase shifts. In order to sum the
16\ 2 partial wave series in E(7), the phase shifts in Eq11)
A(aZ,E,k?)=— az(? =ax?. were expressed as a function of the total angular momentum

operatorJ?. The eigenvalues for this operator &g+ 1)
when operating on the partial waves, so the question is how

— 2 H
The parametea=—aZ(16/E)" where the number 16 is ell are the exact phase shifts reproduced by the expression

given in MeV and was determined by comparing to the exac

distorted radial wave function. We will label this case 10]

LEMA + A. Note that we have chosen the parametrization 3

of A so that it contains<® which can be expressed in terms 6;= Oyt b(j(j +1)— Z) =81t b[k?—1], (15
of the operatorJ? so that we will still be able to sum the

partial wave series. where we used the relatiop=|«|—1/2. For a uniform

To investigate these approximations we compare the racharge distribution of radiug,
dial wave functions calculated using EMA, LEMA, and
LEMA + A to the exact Coulomb distorted wav@3Ww) for 4
various angular momentum states for electron scattering 51,2=Za(§—ln2pR
from 2%%Pb. The radius o%%Pb is approximately 6.5 fm.
Figures 1 and 2 show the comparison between three approxind
mate radial wave functions and the exact distorted radial

+b (16

wave function for different energiesE&200 MeV, 400 b 3Za 1
MeV, and 600 MeV and differentx values =5 and ~ 4p(0)'?R?* (7

x=15). The EMA wave function is acceptable at small ra-

dial distances, particularly much less than the nuclear radius)/e investigated this<> approximation for the phase shifts
but at larger radii the approximate radial wave function isfor the Coulomb potential wittP°%Pb and 400 MeV elec-
shifted too much to the left indicating the potentifl0) at  trons. The phase shifts are in good agreement with the exact
the origin is too large. The LEMA wave function is a much phase shifts for smalk values, but for largec values, the
better approximation to the exact wave function than EMAapproximate phase shifts are much too large in magnitude.
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) L A B S function. The problem with this procedure is that the phase
I ] shifts are greater than one far values of importance and
this series is very slowly converging. It is straightforward to
] check that keeping only the first three terms in the exponen-
4 tial expansion leads to significant errors. We choose not to
make this expansion, but to approximake by the orbital
angular momentum squaréd and further to replace? by
its classical valugr X p(r)’]%. Clearly we are neglecting the
spin dependence of the phase shifts by this classical approxi-
mation, but since the processes we are interested in are domi-
nated by angular momentum values around 10 or more, we
] expect the spin dependence to be negligible. We confirmed
I \ ] this estimate by comparisons of our partial wave calculation
25, . . —_— of (e,e’p) where the full spin dependence is included to a
0 500 1000 1500 three-dimensional numerical integration using the classical
approximation. In like manner, we also replace ifedepen-
dence inA by [rxp(r)’]?. Finally, the approximate Cou-
FIG. 3. Comparison of the exact a@f«?) fits to the phases in  lomb distorted wave function of E419) with the A correc-
29%p for the energfE =400 MeV andx .= 35. The diamonds are tjon is given explicitly by[15]
the exact phases and the dashed line is«théit to the phases and
the solid line includes the* term in the fit.

!
V() ()= we:i6{[rxp'(r)]z}eia[ﬁ%r)~‘r1[rxn/<r>12

The breakdown of the approximation occurs fer=pR as P

expected. However, as noted earlier, it is these orbitals that xelP'(0ry (20)

play a dominant role in electron induced reactions from the

nucleus. In order to avoid this violation, we assume that thavith  8{[rXp’(r)]2}=bgo+b,[rxp’(r)]12+b,[rxp’(r)]*

approximate phase shifts containc& term expressed as Using this wave function and the first term of E&) we
obtain the following four-potential, which includes in an ap-

8= ag+ak?+auk* proximate way, the Coulomb distortion of the target nucleus
=by+b,|j(j+1) 3 +bylj(j+1) 3)2 (19 AH _ am P(S{Ir < p! (D12} + 8{[r < pi (]2
- - Iy 1 = 1 i f
0z 4) 74 4 (r) 4p,prsint(6,12) '

wherebg=ag+a,+ay, b,=a,+2a,, andb,=a,. Unfortu- Xei<ArAf>eiq’<r)»ru—Wnui (21)
nately, we do not have a simple analytical expression for the
coefficients, sa,, a,, anda, are fitted to the exact phase where
shifts calculated with a distorted wave code. As is evident in , oo a
Fig. 3, including thex* terms leads to a much better descrip- A=a[rxp"(n]ir-p'(r)]
tion of the exact phases.
Clearly higher powers of? could also be included if
needed. Of course, using the description of the phases given q'(r)=p"i(r)—p's(r).
in Eqg. (18) rather than the one in Eq15) requires calcula-
tion of the exact Coulomb phases for both the incoming andrhe approximate potential of E€R1) is similar to the plane-
outgoing electron energy and then determining the coeffiwave result except for the phase factors and the radial de-
cientsa, by a fitting procedure. However, the solution for pendence in the momentum transfer. Unfortunately, the spa-
the phases is straightforward and very rapid for modern comtial dependence in the phase factors makes a multipole de-
puters, so this poses no real practical problem. composition of this potential impractical. However, since it
We have calculated various multipoles of the scalar pois an analytical function it is straightforward to calculate in-
tential in the partial wave formalism and confirmed that theteraction matrix elements by performing the three-
approximate radial function and the approximate phases amimensional integration over numerically.
in close agreement with the exact potential. These two ap-

and

proximations permit the summation of the partial wave series || APPLICATION TO THE INCLUSIVE PROCESS
of Eq. (7) so that the electron wave function for incoming or
outgoing waves can be written as For the inclusive cross sectiore,g’), the longitudinal

and transverse structure functions in Hd) are bilinear
()= p’(r) eri5(32)ei[1+A/(p’<r>r)]P’<f>-fup, 19 products of the Fourier transform of the components of the
p nuclear transition current density integrated over outgoing
nucleon angles. Furthermore, it is the Dirac structure of the
The operatod? is the square of the total angular momentumMa@ller potential which leads to the cross section containing
operator J=L+9S), and previous workerg§13,14 have one term with only longitudinal components of the current
made a power series expansion of the phase term and appliedd a second containing only transverse components. How-
successive terms to the plane-wave-like part of the wavever, the Dirac structure of the approximate potential in Eq.
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(21) is the same as the plane-wave result. Therefore, evephase factors§ andA) in Egs.(26) and(27) but retain the
with Coulomb distribution included, albeit in an approximater dependence in’. This returns us to the approximation we
way, the separation of the cross section into a longitudinatall LEMA. For light to medium nuclei this approximation is
term and a transverse term persists. Explicitly, the structurén good agreement with the full DWBA result regarding the
functions for knocking out nucleons from a shell with angu-shape as a function of energy transfer, but has a small dis-
lar momentumj,, are given by crepancy in magnitude. The magnitude is corrected with an
overall factor off p/ (0)/p;]? in the cross section. However,
for heavier nuclei, we noticed that LEMA with the magni-
tude factor was a very good approximation to the DWBA
results for large electron scattering angle where the trans-
pp verse term dominates, but deviated significantly for forward

Sia.w)= 2 mj (INJ?+|Ny[®dQp, (23)  electron angles where the longitudinal term has a significant

FbSp L contribution. Thus it appears that the phase factors play a
significant role in the longitudinal term for large Coulomb
distortion.

pp
S.(q,0)= >, mj INo|?dQp, (22)

HpSp

where the nucleon density of statﬁs=pEp/(27T)2, thez
axis is taken to be along, andu,, andsp are thez compo-

nents of the angular momentum of the bound and continuum We algo noticed that for forvyard glectron angles_th_e low
state particles. The Fourier transfer of the nuclear currenfn€r9y side of the DWBA quasielastic peak looks similar to
J#(r) is simply, the plane-wave result. Thus, it appears that in the longitudi-

nal term the phase factors are partially cancelling the effect

of the effective momentumy’(r) on the loww side of the
N”=f J¥(r)e'srdr. (24  quasielastic peak. We examined a number of sinapldoc

modifications to the longitudinal term as described by
The continuity equation has been used to eliminate zhe LEMA and the magnitude factor in order to reproduce the
component K,) via the equatiomN,= — (w/q)N,. Note that DWBA forward angle results forge’) reactions on***Pb
when we use the approximate electron four-potential alond the quasielastic region. Based on a number of trials we
with current conservation to eliminate tizecomponent of ~Propose the following “Fourier” transform for the charge
the current we run into a problem since the momentum transcomponent of the current:
fer q' depends omrr both in magnitude and direction. In ,
addition, the phase factors dependroffo avoid generating NLEMA' _ pi (0) f iq'(r)-r d3
additional terms we assume the directiongd{r) is along 0 a i € o(r)a,
the asymptotic momentum transfeq which defines
the z axis, and neglect the dependencerom the phases where [p/(0)/p;] is the magnitude enhancement and
and ing’(r), when taking the divergence ®. With this  q"(r)=p/(r)—pf(r), p"(r)=p—(\/r)fiV(r')dr’ and the
further approximation, current conservation impliesfactor), which depends on the energy transferis given by
wNo+q'(r)-N=0. Using the approximate potential of EQ. \ = (w/wg)? with wy=q?%/1.4M. Clearly for smallw, " ap-
(21), the cross section for the inclusive reactiang() can  proaches the asymptotic value, while ferpast the quasi-
be written as elastic peak which is located approximately @ in the
cross section, the effective momentum differs significantly

(28)

d?c Qi e Q,ZL from the as i '
_ A / Ye _ / ymptotic value. We have tested thishocpre-
dQdw M q* Su(a'.w)+| tar? 2 ﬁz Sr(a’,w) scription for 0.3<w/wy=2.0 for a range of energies and

(25 nuclei and find excellent agreement with the DWBA result.

» The transverse “Fourier” transform only contains the nor-
and the transform of the transition nuclear current elementg, gjization factor and is given by

which appears irs_. andS; are given by

4 2 2 ! p{(o) P .
No:j (q“(r)> (_q ) ol X! (1% gl 8{[rxpf (012} N1 :<—i fe'q 1 3e(r)dr. (29)
q. / \a’(r)
Xei(Ai—Af)eiq’(r)~rJO(r)d3r (26) We will refer to the cross section for the inclusive reaction

calculated with these two structure functions as the

LEMA ' result. ClearlyN5EA" and N-EMA" represent a
modified Fourier transform of the nuclear transition current.
The approximation known as the EMA replaaggr) with
x el (Ai=40ed" (013 (r)d3r. (270  q'(0) wherever it appears in Eq26) and Eq.(27) for Ng
andN; and the phases are neglected as usual. We find that
As noted earlier, a multipole expansion of the approxi-for light nuclei the EMA is adequate, but it leads to large
mate potential is not practical, and since the inclusive reacerrors for nuclei as heavy &8%Pb.
tion (e,e’) requires a sum over all occupied neutron and In our analyses of quasielastic scattering, we use relativ-
proton shells, numerical integration is very time consumingistic bound and continuum single-particle wave functions.
In order to have a more practical procedure we choose t&or the inclusive reaction we use continuum solutions for the
make additional approximations. First, we neglect all of theoutgoing, but unobserved, nucleons which are in the same

NTZJ i L] (1N 2oyl P} (1112}
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_FIG. 4. The differential cross section fdP%Pb(e,e’) at wo T T T e o
different electron energies and scattering angles. The dotted line is @ (MeV)

the PWBA result, the diamonds are the DWBA result, the dash- ] ) )
dotted line is the EMA result and the solid line is the LEMA FIG. 5. The differential cross section féf%b at constant mo-

result. mentum transfeg=425 MeVLk, but three different electron scat-
tering angles.

Hartree potential as the bound state orbiféls This choice i ) . )
ensures charge conservation and gauge invariance. Thus, Y{1€ré most of the interaction takes place. Since the EMA is
this relativistic single-particle model the nuclear current ma-Such a bad approximation to the full DWBA result, it should

trix element is not be used as a basis for including the Coulomb phase terms
. in (e,e’) or (e,e’'p) reactions. Over the whole region, the
\]M(r):eqip:j#l[lb, (30) LEMA ' result is in excellent agreement with the DWBA
result apart from the extreme wings of the quasielastic peak.
where we use the free nucleon current operator The difference around the peak is less than 2% and side parts

are about 5%.

We illustrate our approximations for other kinematics by
calculating the cross section at fixed momentum transfer
g=425 MeVck with three different electron scattering angles
where w1 is the nucleon anomalous magnetic moméot  (6,=60°, 90°, and 143°) as shown Fig. 5. The EMA result
proton ut=1.793 and for neutropur=—1.91). The form is always lower than the DWBA and the LEMAesults and
factor Fy and F, are related to the electric and magneticis shifted toward large energy transfer by about 10 MeV.

:]M: Fl‘y#"‘ Fz

it
My

nv,
o d,, (31

form factorsGg and Gy, by LEMA ' again reproduces the DWBA cross sections quite

well.
MTqi
Ce=Fitgmz e (32 IV. SEPARATION PROCEDURE AND STRUCTURE
FUNCTIONS
Gu=F1+urFs. (33 : .
Since the LEMA cross section for€,e’) has the same

We choose the standard resls] structure as the plane-wave result, a Rosenbluth-type separa-

tion can be used to extract a longitudinal and a transverse
Ge=Gu/(u7+ 1)=(1—qi/0.7])‘2, (39 contribution even in the presence of large Coulomb distor-

tions. In fact, experimental evidence for this was given in

where in this formulaqi is in units of Ge\2. one of the early papers on quasielastic scattef#jgvhere

In Fig. 4, we compare various approximations to thecross section measurements o1U at three different elec-
DWBA result as a function of the energy transterfor two  tron scattering angles, but with the same energy and momen-
cases, incident electron enerdy=310 MeV, scattering tum transfer, fell on a straight line when a Rosenbluth plot
angle 6,=143° and E;=485 MeV, scattering angle was made. Our LEMA approximation gives a theoretical
0.=60° data sets. The dotted line is the PWBA result, theexplanation for this observation. Of course the separated
diamonds are the DWBA result, the dash-dotted line is thestructure functions are no longer bilinear products of the
EMA result, and the solid line is the LEMAresult. We  simple Fourier transforms of the current components inte-
notice that the EMA result is always lower than the DWBA grated over outgoing nucleon directions. Inclusion of Cou-
result although the peak position is approximately in thelomb distortion within LEMA’ results in anr-dependent
right place. This lack of agreement with the EMA is not too Fourier momentum variable which differs for the longitudi-
surprising based on our previous examination of the waveal and transverse case. We have only been able to check
function. Replacing the average value of the Coulomb potentEMA ' for our particular model of the quasielastic process,
tial between the origin and the positiorby the value at the so we cannot prove that it applies to other models. However,
origin is too large an error for near the nuclear surface based on previous work we know our model describes
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FIG. 7. The differential cross section f6?Pb(e,e’). The solid

] ) ] ] ) line is the LEMA’ result and the dotted line shows the longitudinal
(e,e'p) and (e,e’) quite well in the quasielastic region and contribution. The data are frofi8].

its treatment of the spatial dependence in the nuclear charge
and current is very realistic. Thus we believe that the Coucal model with the extracted LEMAstructure functions that
lomb corrections that we calculate will be appropriate forelectron energies and angles in the same range as used in the
any realistic nuclear model. We conclude that LEM& a  experiment be used.
good approximation for the inclusive cross sectieng() in Lacking a model for the process being measured, one
the quasielastic region. could take a simple model with suitable geometry and calcu-
To illustrate the “Rosenbluth” separation we write |ate the ratio of the cross section calculated with PWBA to
S=S_+xS; whereS is the total structure function given by one calculated with LEMA and renormalize the measured
cross section data by multiplying by this ratio. The resulting
49 @ pseudo-PWBA *“data” could then be separated by a Rosen-
Sz(ﬂ) -~ T (35) bluth procedure and would produce structure functions in
4./ om dQedo terms of the Fourier transforms of the current components.
Clearly this procedure introduces some error if the model
amounts of longitudinal and transverse contributions are not
andx=_[tanz(0e/2)—qi/Zqz]/(qi/q“). _ close to the amounts in the process being measured since
In Fig. 6, we compare the structure functions extracteq gpa ’ treats them somewhat differently. However, this

using our calculations ofg(e’) on ?%%Pb using various treat- gitterence is not too large and seems to be the best one can
ments of Coulomb distortion for a momentum transfer Ofdo.

q=425 MeVk and three different values of energy transfer  rinajly one could assume that the theoretical model has
around the peak of the cross section. In each case we findige correct kinematics and spatial dependence, but that the
very good fit to a straight line. Furthermore, we see that thgnagnitude of the longitudinal and/or transverse portions of

intercept and slope extracted using the full DWBA andihe model is not correct. That is, one could use the model to
LEMA " calculations agree within 2% in all cases. The EMA cajcylate the longitudinal and transverse contributions to the
and plane wav¢PWBA) results clearly are in disagreement cross section and then multiply each by a scale factor to be

with the DWBA resullts. determined by making a least squares fit to the cross section
Given this result there are several ways to analyze experigaia.

mental €,e") data. If one has a model for the process under
investigation, one can calculate thedependent Fourier
transforms of Eqs(28) and(29) and compare to the experi-
mentally measured cross section. Or, one could make a In Fig. 7, we compare our theoretical results based on the
Rosenbluth separation to obtain the LEMAtructure func- relativistic “single-particle” model [5] calculated with
tions as a function of energy transferand asymptotic mo- LEMA ' to the Saclay dat&8] for several electron angles
mentum transferq. Although these structure functions (6.=143°, 90°, 60°, and 35°). The solid line is our model
clearly have some dependence on electron energy and scagsult for the cross section while the dotted line shows the
tering angle in addition to their dependencegand w, in  longitudinal contribution to the cross section. Clearly the
our model of the quasielastic process this dependence is ntangitudinal contribution is quite small except for the for-
very strong and we recommend that in comparing a theoretward electron scattering angle of 35° where it represents

V. COMPARISON WITH EXPERIMENTAL DATA
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100 " y " 30 AN Mev' matics. One of the fqrward angle_data sets falls significqn}ly
6.-143° below our model while the other is above. It would be diffi-
cult to modify the longitudinal and transverse strength in our
model to get such a dramatic shift in behavior. For the larger
angle case, the contribution of the longitudinal terms are
negligible and again the kinematics do not vary so much
between the two cases. The 310 MeV result lies far above
our calculation while the 262 MeV result is only slightly
above our calculation.

80
201

601
E=485 MeV
0,=60 ok

401

d’o/dwd(, (nb/sr MeV)

¥ 8 . i . VI. CONCLUSION
E=262 MeV
b f=143° ] We have developed a simple way of including Coulomb
] distortion in the Mder potential for inelastic electron scat-
tering from medium and heavy nuclei. In this paper we have
applied a simplified version of this approximation te¢’)
reactions from medium and heavy nuclei in the quasielastic
] region. The previously used effective momentum approxima-
10f ] tion (EMA) disagrees with the distorted wave analysis for
R nuclei as heavy ag®pPb, while the local effective momen-
o e e hoo s0 50100 1zo poo  es0 tum approximation with an enhancement factor andadn
© (MeV) @ (MeV) hoccorrection to the longitudinal ter. EMA ') reproduces
the full DWBA calculation very well. Our most important
FIG. 8. The comparison of LEMAand Saclay data. finding is that LEMA' allows the cross section to be sepa-
rated into a longitudinal and a transverse contribution. How-
ever, the resulting structure functions depend on
slightly over 50% of the cross section. Pion production is not -dependent Fourier transforms of t_he transition current com-
included in our model, so the behavior at largeis not ponents. We recommend several different procedures for us-

expected to agree with the data. Clearly the agreement pd9 LEMA fpr the analysis of expenmgntal data mcludmg
tween the data and the calculation is not very good, whiclPne where distortion effects can be applled_ to the experimen-
can be contrasted with quite good agreement between oﬁ?ltdatta da?d ptlrz]ine-wavet dst(;mt:ture functions can then be
calculations and thee(e’) data from Bates orf°Ca [6]. ex\;\e/lc € lromd tﬁ correc.el t‘."‘ a data from Sacl
Further, these may be a suggestion of longitudinal suppress, € analyzed the quasielas |e_,(a ) da a from saclay on
sion if coupled with a transverse enhancement. b using a re_Iat|V|st|c smgle—.partlcle model and_
We selected all of the Saclay data with energy transfe}‘EMA - We do npt f!nd agreement with the da}ta qnd even i
between 100 MeV and 200 MeV which had a clearly definedVe vary the longitudinal and transverse contributions in our

quasielastic peak in the cross secti@8 data points and m_odel do not agree with the data_l. This i_s to t_)e contrasted
used our model with LEMA to calculate the longitudinal Wit our excellent agreemeifi6] with quasielastic data on

40 : : :
and transverse contributions to the cross section for eacgg%a and I’OUgT agreement dw;]th qgg_s!ela;tlc, dath on
kinematical point in the data set. We performed a linear least - e strongly recommend that additional,¢') experi-

squares fit by scale factors in front of the longitudinal andMents on medium and heavy nuclei in the quayela;ﬂc region
transverse contributions. This fit produced a factor in front of°€ Carried out. The treatment of Coulomb corrections is no
the longitudinal term of 0.69 and in front of the transverse/ON9er @ serious hindrance to the analysis of such experi-
term of 1.25. However, the fit is not very good since theMents.
x? per data point is 60. The only conclusion we can make is

that we do not find a 50% suppression of the longitudinal
contribution in 2°%Pb. Furthermore, it appears to us that the We thank the Ohio Supercomputer Center in Columbus
experimental data do not scale quite correctly. In Fig. 8 wefor many hours of Cray Y-MP time to develop this calcula-
show four sets of experimental data along with our modeltion and to perform the necessary calculations. This work
Two of the sets are at forward angles with quite similar ki-was supported in part by the U.S. Department of Energy
nematics and two are at backward angles with similar kineunder Grant No. FG02-87ER40370.
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