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Approximate treatment of electron Coulomb distortion in quasielastic„e,e8… reactions
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In this paper we address the adequacy of various approximate methods of including Coulomb distortion
effects in (e,e8) reactions by comparing to an exact treatment using Dirac-Coulomb distorted waves. In
particular, we examine approximate methods and analyses of (e,e8) reactions developed by Trainiet al.using
a high energy approximation of the distorted waves and phase shifts due to Lenz and Rosenfelder. This
approximation has been used in the separation of longitudinal and transverse structure functions in a number o
(e,e8) experiments including the newly published208Pb(e,e8) data from Saclay. We find that the assumptions
used by Traini and others are not valid for typical (e,e8) experiments on medium and heavy nuclei, and hence
the extracted structure functions based on this formalism are not reliable. We describe an improved approxi-
mation which is also based on the high energy approximation of Lenz and Rosenfelder and the analyses o
Knoll and compare our results to the Saclay data. At each step of our analyses we compare our approximate
results to the exact distorted wave results and can therefore quantify the errors made by our approximations
We find that for light nuclei, we can get an excellent treatment of Coulomb distortion effects on (e,e8)
reactions just by using a good approximation to the distorted waves, but for medium and heavy nuclei simple
additionalad hoc factors need to be included. We describe an explicit procedure for using our approximate
analyses to extract so-called longitudinal and transverse structure functions from (e,e8) reactions in the
quasielastic region.@S0556-2813~96!01711-6#

PACS number~s!: 25.30.Fj, 25.70.Bc
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I. INTRODUCTION

Medium and high energy electron scattering has lo
been acknowledged as a useful tool in the investigation
nuclear structure and nuclear properties, especially in
quasielastic region. In the plane-wave Born approximati
~PWBA!, where electrons are described as Dirac pla
waves, the cross section for inclusive quasielastic (e,e8) pro-
cesses can be written simply as

d2s

dVedv
5sMFqm

4

q4
SL~q,w!1S tan2 ue

2
2
qm
2

2q2DST~q,w!G , ~1!

whereqm
25v22q2 is the four-momentum transfer,sM is the

Mott cross section given by sM5(a/2E)2 @cos2(u
/2)/sin4(u/2)], andSL andST are the longitudinal and trans-
verse structure functions which depend only on the mome
tum transferq and the energy transferv. By keeping the
momentum and energy transfers fixed while varying th
electron energyE and scattering angleue , it is possible to
extract the two structure functions with two measuremen
However, when the electron wave functions are not Dir
plane waves, but rather are distorted by the static Coulo
field of the target nucleus, such a simple formulation
given in Eq. ~1! is no longer possible and, in general, th
cross section does not separate into the sum of longitudi
and transverse structure functions with coefficients whi
only depend on the electron kinematics. Clearly the size
the Coulomb distortion effects depends on the charge of
target nucleus and on the energy of the electrons. In gene
Coulomb effects are not too large near the peaks of cro
sections, but can have greatly magnified effects when o
54-2813/96/54~5!/2515~10!/$10.00
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extracts ‘‘structure functions’’ by subtracting one cross sec
tion from another. For example, in a recent distorted wav
calculation@1# of 16O(e,e8p) in the quasielastic region, we
found Coulomb effects on the extracted spectroscopic facto
to be approximately 3%, while the effects on the extracte
fourth structure function was approximately 15%.

However, some sort of extraction of structure functions
albeit approximate, is still very appealing since structur
functions are sensitive to different aspects of the underlyin
knockout process or the final state interaction. Furthermor
(e,e8) reactions in the quasielastic region are particularly
appealing in that the cross section is the sum of many knoc
out processes and some of the various Coulomb effects m
be partially averaged out. In fact, this is the case. A rathe
simple approximation known as the effective momentum ap
proximation ~EMA! where the electron momentapi , f are
modified by the value of the Coulomb potential at the cente
of the nucleus goes quite far in reproducing the Coulom
distortion effects for light nuclei. However, the EMA for
heavy nuclei does not adequately reproduce the DWB
cross section in the quasielastic region.

During the past decade, (e,e8) cross sections have been
measured@2–4# for a number of nuclei in the quasielastic
region and either plane wave or EMA was used to extrac
longitudinal and transverse structure functions. These e
tracted structure functions were compared to the prediction
of a simple Fermi-gas model, and in some cases, there a
peared to be large suppression~up to about 40%! of the
longitudinal structure functions. There were also disagree
ments with the extracted transverse structure functions an
the predictions of the Fermi-gas model, but these were e
pected since exchange currents, pion production, and oth
2515 © 1996 The American Physical Society



d

ace

r-

on

for
e-

-

e
in
he

e-
s
ic
rge

of
us

e

2516 54K. S. KIM, L. E. WRIGHT, YANHE JIN, AND D. W. KOSIK
processes that are primarily induced by transverse phot
were not included in the Fermi-gas model. It should be not
that the Fermi-gas model is a rather crude description o
nucleus. In particular, the shape of the structure functions
fixed momentum transfer plotted as a function of ener
transfer is not well described. On the other hand, we fou
that a ‘‘single-particle’’ relativistic model using relativistic
Hartree wave functions coupled with the full DWBA trea
ment of Coulomb distortion for the electrons was in goo
agreement with the measured cross sections in the quasie
tic region for 40Ca @5# and in reasonably good agreement fo
238U. Furthermore, the longitudinal structure function ex
tracted for 40Ca was well produced in magnitude and sha
by this model@6#.

More recently, Jourdan@7# has examined the world data
set for inclusive quasielastic scattering on12C, 40Ca, and
56Fe at momentum transfers of 300, 380, and 570 MeVc,
and has evaluated the Coulomb sum rule. No evidence
suppression is found for the highestq value ~570 MeV/c)
where the sum rule is most model independent. Jourdan u
our Coulomb corrections in arriving at this conclusion. Thu
on the basis of our direct comparison with the measur
cross sections of40Ca, and of Jourdan’s results, the pub
lished analyses@8# for 208Pb(e,e8) which claim up to 50%
suppression of the longitudinal structure function is surpr
ing. However, the approximate treatment of Coulomb disto
tion used in the analysis is not accurate, and leads to dou
about the extracted structure functions. As a separate ma
we question the nuclear model used in making the claim
suppression.

In this paper we investigate the possibility of includin
Coulomb distortion effects in (e,e8) reactions in the quasi-
elastic region for medium and heavy nuclei in an approx
mate way. We have an advantage as compared to prev
workers in that we have an exact treatment of the static C
lomb distortion of the target nucleus via a distorted wa
Born approximation~DWBA! calculation to which we can
compare@9#. In Sec. II we will discuss various approxima
tions that permit a ‘‘plane-wave-like’’ approach to the trea
ment of Coulomb distortion and compare the approxima
results to the exact DWBA results in a step by step way. W
obtain an approximate potential due to the electron curr
which describes Coulomb distortion quite well. In Sec. II
we apply this potential with further approximations to th
particular case of inclusive quasielastic processes. Finally
compare our calculations to the Saclay data@8# for the inclu-
sive reaction208Pb(e,e8).

In addition, we give an explicit procedure for extractin
longitudinal and transverse structure functions from incl
sive cross section data in the quasielastic region from m
dium and heavy nuclei, and make some general conclusio

II. APPROXIMATIONS

A. Approximation of the electron potential

The four-potential arising from the electron currentj m is
simply given in terms of the retarded Green’s function by

Am~r !5E G~re ,r ! j m~re!dre , ~2!
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where

G~re ,r !5
eıvure2r u

ure2r u

and the electron current is given in terms of the initial an
final electron wave functions by

j m~re!5c̄ f~re!gmc i~re!. ~3!

For scattering processes this current extends over all sp
and thus the integral in Eq.~2! is not straightforward.

Knoll proposed@10# a way of replacing the integral in Eq.
~2! by a series of differential operators by using the transfo
mation

E V~r2r 8! f ~r 8!dr 85eıq8•rṼ~2q81ı“ !e2ıq8•r f ~r ! ~4!

between the functionV(r2r 8) and its Fourier transform
Ṽ(q8). Applying this result to Eq.~2! and making a Taylor
series expansion, we obtain the following series expansi
for the potential:

Am~r !5
4p

q822v2 F11S q821¹2

q822v2D
1S q821¹2

q822v2D 21••• G j m~r !. ~5!

Note that while the momentum variableq8 is arbitrary, the
choice affects the convergence of the series. In particular,
the case of Dirac plane waves for the electron the only d
pendence of the electron current onr is simply eıq•r and
choosingq85q results in the vanishing of all the terms ex
cept the first, and Eq.~5! reduces to the well-known
Mo” ller potential,

Am~r !5
4p

q22v2 ū~pf !gmu~pi !e
ıq•r5ame

ıq•r,

whereu is the familiar Dirac plane-wave spinor.
As a test of this approximate procedure for calculating th

potential, we calculated the electron charge distribution
the presence of the static Coulomb potential arising from t
ground-state charge distribution of208Pb using the partial
wave solutions of the Dirac equation and evaluated the z
roth, zeroth plus first, and zeroth plus first and second term
in Eq. ~5!. Using these potentials we calculated the inelast
scattering cross section induced by a surface nuclear cha
transition density

rn
i f ~r !5

1

Rn
2 d~r2Rn!YL

M~ r̂ !, ~6!

whereRn is the nuclear radius. The ground-state density
the nucleus was described by a Fermi distribution of radi
R56.65 fm and total chargeZ582. The cross sections were
calculated at initial energyEi5400 MeV and final energy
Ef5300 MeV with energy transferv5100 MeV. In agree-
ment with Knoll @10#, we found that the first and second
correction terms are sufficient to fill up the minima and th
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54 2517APPROXIMATE TREATMENT OF ELECTRON COULOMB . . .
contribution of the second correction term was less th
2% for momentum transferq> 350 MeV/c. We conclude
that this high momentum approximation provides an alter
tive procedure for calculating the potential arising from i
elastic electron scattering processes. However, this proce
does require the numerical solution of the Dirac equat
using partial waves which does take some computatio
time. One advantage, however, is that the radial functi
only have to be calculated out to about three times
nuclear radius.

We also applied this procedure to various approxim
solutions of the Dirac equation and noted that the first- a
second-order terms were not well controlled if one appro
mates the electron current. Clearly one should not appr
mate a function and then differentiate it. In the followin
when we examine approximate electron wave functions,
hence approximate electron currents, we will only use
zeroth term in Eq.~5!, but will be sensitive to the choice o
q8.

B. High energy wave function approximation

The incoming Coulomb distorted electron scattering wa
function that satisfies appropriate boundary conditions for
electron with spinsi can be expressed in the form of a parti
wave sum by@11#

C i
si~r !54pAEi1m

2Ei
(
k,m

3eidki lC m2si
l

si
1/2

m
j Yl

m2si* ~ p̂i !ck
m~r !, ~7!

where the spinorck
m is an eigenstate with angular momentu

quantum numbersk andm given explicitly by

ck
m~r !5F f k~r !xk

m~ r̂ !

igk~r !x2k
m ~ r̂ !

G , ~8!

where the spin-angle functions are

xk
m~ r̂ !5(

s
Cm2s
l

sm
1/2

m
j Yl

m2s~ r̂ !xs . ~9!

The Dirac quantum numberk determines the angular mo
mentum labels for bothl and j . Note that if we ignore the
mass of the electron~valid for scattering angles away from
extreme forward and backward angles!, the electron helicity
is a good quantum number, and we only require positivek
solutions. The radial functionsf k and gk and their corre-
sponding phase factorsdk are obtained by numerically solv
ing the Dirac radial equation for a finite spherically symme
ric nuclear charge distribution. The outgoing distorted wa
function c f

sf is found from Eq.~7! by making the replace-
ments (idk→2 idk), (si→sf), (Ei→Ef), and (pi→pf).
Note that by setting the phasesdk to zero and replacingf k
and gk by the spherical Bessel functionsj l(pr) and
sgn(k) j l̄ (pr), wherel̄5 l (2k), the partial wave sum in Eq
~8! can be summed to give the Dirac plane-wave solution
an
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C i~r !5AEi1m

2Ei
S xs

s•p

E1m
xs
D eip•r, ~10!

where the electron spin label has been suppressed. Thus, o
way of obtaining a plane-wave-like Coulomb distorted wave
function is to approximate the radial functionsf k andgk by
spherical Bessel functions, and to approximate the scatterin
phase shifts by an operator that can be pulled out of th
partial wave sum. Using these two ideas, Lenz and Rosen
felder@12# obtained an approximate scattering wave function
for high energy electrons which includes Coulomb distortion
for a finite nucleus in an approximate way more than 20
years ago.

In the high energy limit with good helicity (E@me), the
approximate wave function of Lenz and Rosenfelder@12#,
and Knoll @10# can be written as

C~6 !~r !5h~r !e6ıd~J2!eıp•rh~r !up ~11!

whereup is the Dirac plane-wave spinor and

h~r !5
1

prE0
r

@p2V~r 8!#dr81 correction term. ~12!

Lenz and Rosenfelder approximated the dependence of th
phases on the operatorJ2 by d(J2)5d1/21b(J223/4) where
b depends on the Coulomb potential. This particular approxi
mation for the phase shifts is not necessary since any fun
tion of the operatorJ2 still allows the partial wave sum to be
carried out. Lenz and Rosenfelder claimed that this equatio
is valid for (uV(r )u/p)!1 andj11/2!pR. The second con-
dition being primarily determined by the expression used fo
the phase shifts.

The approximate radial functions are given by spherica
Bessel functions with modified argument,

f k~r !5
x

pr
j l~x!,

~13!

gk~r !5
x

pr
sgn~k! j l̄ ~x!,

wherex5p8(r )r and

p8~r !5p2
1

r E0
r

V~r !dr1
D

r
, ~14!

whereV(r ) is the spherically symmetric Coulomb potential
of the target nucleus andD is a correction term in the argu-
ment of orderk2/(pr)2 and is normally neglected.

To avoid having anr -dependent momentum, Traini
et al. @14# made the further approximation that
p8(r )>p8(0)5p2V(0) whereV(0) is the static Coulomb
potential evaluated at the origin. This approximation of the
radial wave function leads to what is known as the effective
momentum approximation~EMA!. An approximation to the
radial wave function where we keep ther dependence in the
momentum but still neglectD will be referred to as the local
effective momentum approximation~LEMA !. In looking at
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these approximate wave functions, one should keep in m
that it is the spatial region around the nuclear surface
contributes most significantly to electron-induced transitio
That is, partial waves with angular momenta of orderpR
whereR is the nuclear radius play a large role in the tran
tion amplitude. Thus, the approximation that the angular m
mentum is significantly less thanpr is not valid. With this
point in mind, we sought anad hocapproximation for the
correctionD. We found that the following expression de
scribes the radial wave function at larger radial distan
quite well:

D~aZ,E,k2!52aZS 16kE D 25ak2.

The parametera52aZ(16/E)2 where the number 16 is
given in MeV and was determined by comparing to the ex
distorted radial wave function. We will label this cas
LEMA 1 D. Note that we have chosen the parametrizat
of D so that it containsk2 which can be expressed in term
of the operatorJ2 so that we will still be able to sum th
partial wave series.

To investigate these approximations we compare the
dial wave functions calculated using EMA, LEMA, an
LEMA 1 D to the exact Coulomb distorted waves~DW! for
various angular momentum states for electron scatte
from 208Pb. The radius of208Pb is approximately 6.5 fm
Figures 1 and 2 show the comparison between three app
mate radial wave functions and the exact distorted ra
wave function for different energies (E5200 MeV, 400
MeV, and 600 MeV! and differentk values (k55 and
k515). The EMA wave function is acceptable at small r
dial distances, particularly much less than the nuclear rad
but at larger radii the approximate radial wave function
shifted too much to the left indicating the potentialV(0) at
the origin is too large. The LEMA wave function is a muc
better approximation to the exact wave function than EM

FIG. 1. Radial wave functions in208Pb fork55. The top is for
energyE5200 MeV, the middle for energyE5400 MeV and the
bottom for energyE5600 MeV. The solid line is the exact DW
wave function while the dash-dotted line is LEMA1D, the dashed
line is LEMA and the dotted line is EMA.
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for medium and high energies out to radii beyond the nucle
radius, but at lower energies~less than 250 MeV! it also
deviates significantly from the DW result. The wave functio
with the LEMA 1D correction agrees with the distorted on
almost perfectly above 400 MeV.

At the lower energy this wave function is a bit to the righ
of the distorted wave function, but the discrepancy is acce
ably small. Our conclusion is that LEMA is much better tha
EMA and may be acceptable for some reactions. The a
proximation LEMA1 D furnishes quite a good description
of the distorted wave radial functions out to several nucle
radii.

The other important ingredient in Coulomb distortio
considerations are the phase shiftsdk . In order to sum the
partial wave series in Eq.~7!, the phase shifts in Eq.~11!
were expressed as a function of the total angular moment
operatorJ2. The eigenvalues for this operator arej ( j11)
when operating on the partial waves, so the question is h
well are the exact phase shifts reproduced by the express
@10#

d j5d1/21bS j ~ j11!2
3

4D5d1/21b@k221#, ~15!

where we used the relationj5uku21/2. For a uniform
charge distribution of radiusR,

d1/25ZaS 432 ln2pRD1b ~16!

and

b52
3Za

4p~0!82R2 . ~17!

We investigated thisk2 approximation for the phase shifts
for the Coulomb potential with208Pb and 400 MeV elec-
trons. The phase shifts are in good agreement with the ex
phase shifts for smallk values, but for largek values, the
approximate phase shifts are much too large in magnitu

FIG. 2. Radial wave functions in208Pb fork515. The same as
Fig. 1.
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The breakdown of the approximation occurs fork'pR as
expected. However, as noted earlier, it is these orbitals t
play a dominant role in electron induced reactions from t
nucleus. In order to avoid this violation, we assume that t
approximate phase shifts contain ak4 term expressed as

dk5a01a2k
21a4k

4

5b01b2S j ~ j11!2
3

4D1b4S j ~ j11!2
3

4D
2

, ~18!

whereb05a01a21a4, b25a212a4, andb45a4. Unfortu-
nately, we do not have a simple analytical expression for t
coefficients, soa0, a2, anda4 are fitted to the exact phase
shifts calculated with a distorted wave code. As is evident
Fig. 3, including thek4 terms leads to a much better descrip
tion of the exact phases.

Clearly higher powers ofk2 could also be included if
needed. Of course, using the description of the phases gi
in Eq. ~18! rather than the one in Eq.~15! requires calcula-
tion of the exact Coulomb phases for both the incoming a
outgoing electron energy and then determining the coe
cientsan by a fitting procedure. However, the solution fo
the phases is straightforward and very rapid for modern co
puters, so this poses no real practical problem.

We have calculated various multipoles of the scalar p
tential in the partial wave formalism and confirmed that th
approximate radial function and the approximate phases
in close agreement with the exact potential. These two a
proximations permit the summation of the partial wave seri
of Eq. ~7! so that the electron wave function for incoming o
outgoing waves can be written as

C~6 !~r !5
p8~r !

p
e6 id~J2!ei [11D/„p8~r !r …]p8~r !•rup . ~19!

The operatorJ2 is the square of the total angular momentu
operator (J5L1S), and previous workers@13,14# have
made a power series expansion of the phase term and app
successive terms to the plane-wave-like part of the wa

FIG. 3. Comparison of the exact andd(k2) fits to the phases in
208Pb for the energyE5400 MeV andkmax535. The diamonds are
the exact phases and the dashed line is thek2 fit to the phases and
the solid line includes thek4 term in the fit.
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function. The problem with this procedure is that the phase
shifts are greater than one fork values of importance and
this series is very slowly converging. It is straightforward to
check that keeping only the first three terms in the exponen
tial expansion leads to significant errors. We choose not t
make this expansion, but to approximateJ2 by the orbital
angular momentum squaredL2 and further to replaceL2 by
its classical value@r3p(r )8#2. Clearly we are neglecting the
spin dependence of the phase shifts by this classical approx
mation, but since the processes we are interested in are dom
nated by angular momentum values around 10 or more, w
expect the spin dependence to be negligible. We confirme
this estimate by comparisons of our partial wave calculation
of (e,e8p) where the full spin dependence is included to a
three-dimensional numerical integration using the classica
approximation. In like manner, we also replace thek2 depen-
dence inD by @r3p(r )8#2. Finally, the approximate Cou-
lomb distorted wave function of Eq.~19! with theD correc-
tion is given explicitly by@15#

C~6 !~r !5
p8~r !

p
e6 id$[ r3p8~r !] 2%eia[ p̂8~r !• r̂][ r3p8~r !] 2

3eip8~r !•rup . ~20!

with d$@r3p8(r )#2%5b01b2@r3p8(r )#21b4@r3p8(r )#4.
Using this wave function and the first term of Eq.~5! we
obtain the following four-potential, which includes in an ap-
proximate way, the Coulomb distortion of the target nucleus

Am~r !5
4p

4pipfsin
4~ue /2!

ei „d i $[ r3pi8~r !] 2%1d f $[ r3pf8~r !] 2%…

3ei ~D i2D f !eiq8~r !•rūfg
mui ~21!

where

D5a@r3p8~r !#2@ r̂ • p̂8~r !#

and

q8~r !5p8 i~r !2p8 f~r !.

The approximate potential of Eq.~21! is similar to the plane-
wave result except for the phase factors and the radial de
pendence in the momentum transfer. Unfortunately, the spa
tial dependence in the phase factors makes a multipole d
composition of this potential impractical. However, since it
is an analytical function it is straightforward to calculate in-
teraction matrix elements by performing the three-
dimensional integration overr numerically.

III. APPLICATION TO THE INCLUSIVE PROCESS

For the inclusive cross section (e,e8), the longitudinal
and transverse structure functions in Eq.~1! are bilinear
products of the Fourier transform of the components of the
nuclear transition current density integrated over outgoing
nucleon angles. Furthermore, it is the Dirac structure of th
Mo” ller potential which leads to the cross section containing
one term with only longitudinal components of the current
and a second containing only transverse components. How
ever, the Dirac structure of the approximate potential in Eq
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~21! is the same as the plane-wave result. Therefore, e
with Coulomb distribution included, albeit in an approxima
way, the separation of the cross section into a longitudin
term and a transverse term persists. Explicitly, the struct
functions for knocking out nucleons from a shell with angu
lar momentumj b are given by

SL~q,v!5 (
mbsP

rP

2~2 j b11!
E uN0u2dVP , ~22!

ST~q,v!5 (
mbsP

rP

2~2 j b11!
E ~ uNxu21uNyu2!dVP , ~23!

where the nucleon density of statesrP5pEp /(2p)2, the z
axis is taken to be alongq, andmb andsP are thez compo-
nents of the angular momentum of the bound and continu
state particles. The Fourier transfer of the nuclear curr
Jm(r ) is simply,

Nm5E Jm~r !eıq•rd3r . ~24!

The continuity equation has been used to eliminate thez
component (Nz) via the equationNz52(v/q)N0. Note that
when we use the approximate electron four-potential alo
with current conservation to eliminate thez component of
the current we run into a problem since the momentum tra
fer q8 depends onr both in magnitude and direction. In
addition, the phase factors depend onr . To avoid generating
additional terms we assume the direction ofq8(r ) is along
the asymptotic momentum transferq which defines
the ẑ axis, and neglect the dependence onr in the phases
and in q8(r ), when taking the divergence ofN. With this
further approximation, current conservation implie
vN01q8(r )•N50. Using the approximate potential of Eq
~21!, the cross section for the inclusive reaction (e,e8) can
be written as

d2s

dVedv
5sMFqm

4

q4
SL~q8,w!1S tan2 ue

2
2
qm
2

2q2DST~q8,w!G
~25!

and the transform of the transition nuclear current eleme
which appears inSL andST are given by

N05E S qm8 ~r !

qm
D 2S q

q8~r !
D 2eid f $[ r3pi8~r !] 2%eid f $[ r3pf8~r !] 2%

3ei ~D i2D f !eiq8~r !•rJ0~r !d
3r , ~26!

NT5E eid i $[ r3pi8~r !] 2%eid f $[ r3pf8~r !] 2%

3ei ~D i2D f !eıq8~r !•rJT~r !d
3r . ~27!

As noted earlier, a multipole expansion of the approx
mate potential is not practical, and since the inclusive re
tion (e,e8) requires a sum over all occupied neutron an
proton shells, numerical integration is very time consumin
In order to have a more practical procedure we choose
make additional approximations. First, we neglect all of th
ven
te
al
ure
-

um
ent

ng
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s
.

nts
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d
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e

phase factors (d andD) in Eqs.~26! and ~27! but retain the
r dependence inq8. This returns us to the approximation we
call LEMA. For light to medium nuclei this approximation is
in good agreement with the full DWBA result regarding the
shape as a function of energy transfer, but has a small d
crepancy in magnitude. The magnitude is corrected with a
overall factor of@pi8(0)/pi #

2 in the cross section. However,
for heavier nuclei, we noticed that LEMA with the magni-
tude factor was a very good approximation to the DWBA
results for large electron scattering angle where the tran
verse term dominates, but deviated significantly for forwar
electron angles where the longitudinal term has a significa
contribution. Thus it appears that the phase factors play
significant role in the longitudinal term for large Coulomb
distortion.

We also noticed that for forward electron angles the low
energy side of the DWBA quasielastic peak looks similar to
the plane-wave result. Thus, it appears that in the longitud
nal term the phase factors are partially cancelling the effe
of the effective momentumq8(r ) on the lowv side of the
quasielastic peak. We examined a number of simplead hoc
modifications to the longitudinal term as described by
LEMA and the magnitude factor in order to reproduce the
DWBA forward angle results for (e,e8) reactions on208Pb
in the quasielastic region. Based on a number of trials w
propose the following ‘‘Fourier’’ transform for the charge
component of the current:

N0
LEMA85S pi8~0!

pi
D E eiq9~r !•rJ0~r !d

3r , ~28!

where @pi8(0)/pi # is the magnitude enhancement and
q9(r )5pi9(r )2pf9(r ), p9(r )5p2(l/r )*0

r V(r 8)dr8 and the
factorl, which depends on the energy transferv, is given by
l5(v/v0)

2 with v05q2/1.4M . Clearly for smallv, q9 ap-
proaches the asymptotic value, while forv past the quasi-
elastic peak which is located approximately atv0 in the
cross section, the effective momentum differs significantl
from the asymptotic value. We have tested thisad hocpre-
scription for 0.3<v/v0<2.0 for a range of energies and
nuclei and find excellent agreement with the DWBA result
The transverse ‘‘Fourier’’ transform only contains the nor-
malization factor and is given by

NT
LEMA85S pi8~0!

pi
D E eiq8~r !•rJT~r !d

3r . ~29!

We will refer to the cross section for the inclusive reaction
calculated with these two structure functions as th

LEMA 8 result. ClearlyN0
LEMA8 and NT

LEMA8 represent a
modified Fourier transform of the nuclear transition current
The approximation known as the EMA replacesq8(r ) with
q8(0) wherever it appears in Eq.~26! and Eq.~27! for N0
andNT and the phases are neglected as usual. We find th
for light nuclei the EMA is adequate, but it leads to large
errors for nuclei as heavy as208Pb.

In our analyses of quasielastic scattering, we use relati
istic bound and continuum single-particle wave functions
For the inclusive reaction we use continuum solutions for th
outgoing, but unobserved, nucleons which are in the sam
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Hartree potential as the bound state orbitals@5#. This choice
ensures charge conservation and gauge invariance. Thus
this relativistic single-particle model the nuclear current m
trix element is

Jm~r !5eC̄PĴ
mCb , ~30!

where we use the free nucleon current operator

Ĵm5F1g
m1F2

imT

2mN
smnqn , ~31!

wheremT is the nucleon anomalous magnetic moment~for
proton mT51.793 and for neutronmT521.91). The form
factor F1 and F2 are related to the electric and magnet
form factorsGE andGM by

GE5F11
mTqm

2

4M2 F2 , ~32!

GM5F11mTF2 . ~33!

We choose the standard result@16#

GE5GM /~mT11!5~12qm
2 /0.71!22, ~34!

where in this formulaqm
2 is in units of GeV2.

In Fig. 4, we compare various approximations to th
DWBA result as a function of the energy transferv for two
cases, incident electron energyEi5310 MeV, scattering
angle ue5143° and Ei5485 MeV, scattering angle
ue560° data sets. The dotted line is the PWBA result, th
diamonds are the DWBA result, the dash-dotted line is t
EMA result, and the solid line is the LEMA8 result. We
notice that the EMA result is always lower than the DWBA
result although the peak position is approximately in th
right place. This lack of agreement with the EMA is not to
surprising based on our previous examination of the wa
function. Replacing the average value of the Coulomb pote
tial between the origin and the positionr by the value at the
origin is too large an error forr near the nuclear surface

FIG. 4. The differential cross section for208Pb(e,e8) at two
different electron energies and scattering angles. The dotted lin
the PWBA result, the diamonds are the DWBA result, the das
dotted line is the EMA result, and the solid line is the LEMA8
result.
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where most of the interaction takes place. Since the EMA
such a bad approximation to the full DWBA result, it should
not be used as a basis for including the Coulomb phase term
in (e,e8) or (e,e8p) reactions. Over the whole region, the
LEMA 8 result is in excellent agreement with the DWBA
result apart from the extreme wings of the quasielastic pea
The difference around the peak is less than 2% and side pa
are about 5%.

We illustrate our approximations for other kinematics by
calculating the cross section at fixed momentum transfe
q5425 MeV/c with three different electron scattering angles
(ue560°, 90°, and 143°) as shown Fig. 5. The EMA resul
is always lower than the DWBA and the LEMA8 results and
is shifted toward large energy transfer by about 10 MeV
LEMA 8 again reproduces the DWBA cross sections quit
well.

IV. SEPARATION PROCEDURE AND STRUCTURE
FUNCTIONS

Since the LEMA8 cross section for (e,e8) has the same
structure as the plane-wave result, a Rosenbluth-type sepa
tion can be used to extract a longitudinal and a transvers
contribution even in the presence of large Coulomb distor
tions. In fact, experimental evidence for this was given in
one of the early papers on quasielastic scattering@4# where
cross section measurements on238U at three different elec-
tron scattering angles, but with the same energy and mome
tum transfer, fell on a straight line when a Rosenbluth plo
was made. Our LEMA8 approximation gives a theoretical
explanation for this observation. Of course the separate
structure functions are no longer bilinear products of th
simple Fourier transforms of the current components inte
grated over outgoing nucleon directions. Inclusion of Cou
lomb distortion within LEMA8 results in anr -dependent
Fourier momentum variable which differs for the longitudi-
nal and transverse case. We have only been able to che
LEMA 8 for our particular model of the quasielastic process
so we cannot prove that it applies to other models. Howeve
based on previous work we know our model describe

is
h-

FIG. 5. The differential cross section for208Pb at constant mo-
mentum transferq5425 MeV/c, but three different electron scat-
tering angles.
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(e,e8p) and (e,e8) quite well in the quasielastic region an
its treatment of the spatial dependence in the nuclear ch
and current is very realistic. Thus we believe that the C
lomb corrections that we calculate will be appropriate
any realistic nuclear model. We conclude that LEMA8 is a
good approximation for the inclusive cross section (e,e8) in
the quasielastic region.

To illustrate the ‘‘Rosenbluth’’ separation we writ
S5SL1xST whereS is the total structure function given b

S5S qqm
D 4 1

sM

d2s

dVedv
~35!

andx5@ tan2(ue /2)2qm
2 /2q2#/(qm

4 /q4).
In Fig. 6, we compare the structure functions extrac

using our calculations of (e,e8) on 208Pb using various treat
ments of Coulomb distortion for a momentum transfer
q5425 MeV/c and three different values of energy trans
around the peak of the cross section. In each case we fi
very good fit to a straight line. Furthermore, we see that
intercept and slope extracted using the full DWBA a
LEMA 8 calculations agree within 2% in all cases. The EM
and plane wave~PWBA! results clearly are in disagreeme
with the DWBA results.

Given this result there are several ways to analyze exp
mental (e,e8) data. If one has a model for the process un
investigation, one can calculate ther -dependent Fourie
transforms of Eqs.~28! and ~29! and compare to the exper
mentally measured cross section. Or, one could mak
Rosenbluth separation to obtain the LEMA8 structure func-
tions as a function of energy transferv and asymptotic mo-
mentum transferq. Although these structure function
clearly have some dependence on electron energy and
tering angle in addition to their dependence onq andv, in
our model of the quasielastic process this dependence is
very strong and we recommend that in comparing a theo

FIG. 6. Rosenbluth separation plot of the cross section
208Pb atq5425 MeV/c. The solid line is the DWBA result, the
dashed line is for the LEMA8, the dotted line is for the PWBA, and
the dash-dotted line is for the EMA. The unit of the total structu
function is MeV21.
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cal model with the extracted LEMA8 structure functions that
electron energies and angles in the same range as used in
experiment be used.

Lacking a model for the process being measured, o
could take a simple model with suitable geometry and calc
late the ratio of the cross section calculated with PWBA
one calculated with LEMA8 and renormalize the measured
cross section data by multiplying by this ratio. The resultin
pseudo-PWBA ‘‘data’’ could then be separated by a Rose
bluth procedure and would produce structure functions
terms of the Fourier transforms of the current componen
Clearly this procedure introduces some error if the mod
amounts of longitudinal and transverse contributions are n
close to the amounts in the process being measured si
LEMA 8 treats them somewhat differently. However, thi
difference is not too large and seems to be the best one
do.

Finally one could assume that the theoretical model h
the correct kinematics and spatial dependence, but that
magnitude of the longitudinal and/or transverse portions
the model is not correct. That is, one could use the model
calculate the longitudinal and transverse contributions to t
cross section and then multiply each by a scale factor to
determined by making a least squares fit to the cross sec
data.

V. COMPARISON WITH EXPERIMENTAL DATA

In Fig. 7, we compare our theoretical results based on t
relativistic ‘‘single-particle’’ model @5# calculated with
LEMA 8 to the Saclay data@8# for several electron angles
(ue5143°, 90°, 60°, and 35°). The solid line is our mode
result for the cross section while the dotted line shows t
longitudinal contribution to the cross section. Clearly th
longitudinal contribution is quite small except for the for
ward electron scattering angle of 35° where it represen

for

re

FIG. 7. The differential cross section for208Pb(e,e8). The solid
line is the LEMA8 result and the dotted line shows the longitudina
contribution. The data are from@8#.
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slightly over 50% of the cross section. Pion production is n
included in our model, so the behavior at largev is not
expected to agree with the data. Clearly the agreement
tween the data and the calculation is not very good, wh
can be contrasted with quite good agreement between
calculations and the (e,e8) data from Bates on40Ca @6#.
Further, these may be a suggestion of longitudinal supp
sion if coupled with a transverse enhancement.

We selected all of the Saclay data with energy trans
between 100 MeV and 200 MeV which had a clearly defin
quasielastic peak in the cross section~218 data points!, and
used our model with LEMA8 to calculate the longitudina
and transverse contributions to the cross section for e
kinematical point in the data set. We performed a linear le
squares fit by scale factors in front of the longitudinal a
transverse contributions. This fit produced a factor in front
the longitudinal term of 0.69 and in front of the transver
term of 1.25. However, the fit is not very good since t
x2 per data point is 60. The only conclusion we can make
that we do not find a 50% suppression of the longitudin
contribution in 208Pb. Furthermore, it appears to us that t
experimental data do not scale quite correctly. In Fig. 8
show four sets of experimental data along with our mod
Two of the sets are at forward angles with quite similar
nematics and two are at backward angles with similar ki

FIG. 8. The comparison of LEMA8 and Saclay data.
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matics. One of the forward angle data sets falls significa
below our model while the other is above. It would be dif
cult to modify the longitudinal and transverse strength in
model to get such a dramatic shift in behavior. For the lar
angle case, the contribution of the longitudinal terms
negligible and again the kinematics do not vary so mu
between the two cases. The 310 MeV result lies far ab
our calculation while the 262 MeV result is only slight
above our calculation.

VI. CONCLUSION

We have developed a simple way of including Coulom
distortion in the Mo” ller potential for inelastic electron sca
tering from medium and heavy nuclei. In this paper we ha
applied a simplified version of this approximation to (e,e8)
reactions from medium and heavy nuclei in the quasiela
region. The previously used effective momentum approxim
tion ~EMA! disagrees with the distorted wave analysis
nuclei as heavy as208Pb, while the local effective momen
tum approximation with an enhancement factor and anad
hoccorrection to the longitudinal term~LEMA 8) reproduces
the full DWBA calculation very well. Our most importan
finding is that LEMA8 allows the cross section to be sep
rated into a longitudinal and a transverse contribution. Ho
ever, the resulting structure functions depend
r -dependent Fourier transforms of the transition current c
ponents. We recommend several different procedures fo
ing LEMA 8 for the analysis of experimental data includin
one where distortion effects can be applied to the experim
tal data and ‘‘plane-wave’’ structure functions can then
extracted from the corrected data.

We analyzed the quasielastic (e,e8) data from Saclay on
208Pb using a relativistic single-particle model an
LEMA 8. We do not find agreement with the data and eve
we vary the longitudinal and transverse contributions in
model do not agree with the data. This is to be contras
with our excellent agreement@6# with quasielastic data on
40Ca and rough agreement with quasielastic data@4# on
238U. We strongly recommend that additional (e,e8) experi-
ments on medium and heavy nuclei in the quasielastic re
be carried out. The treatment of Coulomb corrections is
longer a serious hindrance to the analysis of such exp
ments.
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