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Elastic and inelastic scattering data of 1.37 Gearticles on*?C and **#2444Ea are analyzed within the
framework of the Glauber theory. Collective excitations to one-phonon levels are treated using the Tassie
model. The effect of the coupling between the elastic and inelastic channels is considered. It is shown that a
phase variation of the nucleon-nucleon elastic scattering amplitude leads to a large increase in the calculated
differential cross section. The presence of a phase variation leads to a substantial improvement.
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I. INTRODUCTION i.e., for theA+B— A* +B* scattering process, is given by
[8,9,11

Many experimental data and theorigls2] have already
been accumulated about the collision of a low- energy 1) — [ gpeid-s
(E,=< 150 MeV) « particle and a nucleus. f(Q) (Q) €

In a-nucleus collisions at intermediate andﬁmghle%ergies
Bonin et al. measured the elastic scattering i n, TP N - -
and ?%®Pb and studied optical potentials with conventional Xf dxdyy () g (V)T tha, (X) i, (¥). 2.
Woods-Saxon(WS) shapes[3]. The elastic and inelastic
scattering OniZC of « particles to the lowest 2 37, and  whereH(q) is the correction factor for the center of mass
0" levels of *C is measured by Chaumeaexal. at an [8], k is the momentum of the incident particle systepris

energy of 1.37 Ge\4]. In 1977, Alkhazowvet al. measured h felf is the i d
the elastic and inelastic scattering cross sectiong glar- (€ momentum transferh is the impact parameter, an

ticles on Ca isotopes at 1.37 GeV using the Saturnes Syn#Af(X) ¥, (y) and ¥a, (x) s, (y) are the final and the initial
chrotron at Saclay5]. They analyzed the data using the states of the target and the incident particle system, respec-

Glauber mode[6].
ively. x stands forx1~ . ~xA, and the coordlnatg may be
In fact, the Glauber model has been extremely SucceSSf"(‘gefined in the same manner:

in describing high-energy hadron-nucleus scattering data fo

a variety of hadronic projectiles and targgf$. Moreover, it B
has b_een extended to includ.e composifce projectiles at high d;(:l‘[ d;ﬁ, df/: H d)7a-
energies. For composite particle scattering on a nucleus, the i=1 a=1
multiple scattering picture is clearly less well founded than
in the case of proton-nucleus scattering. The total profile functiod” is given by
The basic theoretical concepts of the Glauber model of A B
composite-particle scattering were developed many years L. .
ago[8,9]. However, the aim of the present paper is to report =1- H 1;[ [1-Tiu(b+si—a,)], (2.2

on an analysis of 1.37 Ge¥ particle scattering ot’C and

Ca isotopes which is based on a semiphenomenological a
proach[10—12. The nuclear excitation is described in termsevheres, anda are the projections of the particle coordinate

of the collective model under the adiabatic approximationxi andy,, on the plane perpendicular to respectively, and
[13]. The long-range correlation described by the coupling of"; ,(b) is the two-body profile function. The relation be-

the elastic to thécollective) inelastic channels can be treated tween this function and the two-body scattering amplitude is
based on this approach.

The problem is formulated in Sec. Il and the results of the . 1 SRS
calculation are presented and discussed in Sec. IIl. Liq(b)= WJ dge ' (a). 2.3
Il. FORMULATION

In a high-energy collision, if the spin effect is neglected, we
According to Glauber's theory, the multiple scatteringcan use the conventional high-energy parametrization of
amplitude between the composite particle systémendB, f.,(q) [10],
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- ik
fla(@)= g-o(1-iee 7,

(2.9
T

where o is the total cross section of nucleon-nucle®N)

scattering, and is the ratio of the real to the imaginary part

of the forward amplitude. Typicallya is taken to be com-
plex:
a=p>+iv?, (2.9
which gives a simple phase variation of tNeN amplitude,
linear ing?(or in t=—%2qg?).
In the following we apply Eq(2.1) to study the elastic
and inelastic scattering of 1.37 Ge¥ particles from collec-

tive nuclei. Under the adiabatic approximation, Benatrix
may be written as

Sii(b)= f Yk (X1 Xa) g (Y1 -Ye)

A 4
—I1 5 s s

<ol 05 3, [V i+
hvi=t a=1

A 4
X ha(Xg- - Xp) g, (Y1 - 'gs)i[[l dx; Hl dYe-

(2.6

At high energy, it is convenient to use the probability density

to describe the state, i.e.,

4
v, e,= L1 p(yo)- 2.7

LIU, ZHANG, YANG, SHEN, AND ROBSON 54

1

Sfo(b)=<C,f T omikT

4

X f dq’dyp(y)e "9 (0§, (g’

C,0>.
(2.10

Let the form factorS,(q) of « particles be

Su(q)= f dyp(y)e @Y (2.11)

The S matrix between arw particle and the target nucleus
can be rewritten as

Sfo(b)
1 ~ -]
=<c,f‘ 1‘%] dq'dyS,(y')fa_ne 9P C,o>
(2.12
and
. _q12 _n!2
S,(q")=D;ex W)—Dzexr{ﬂg—),
D1:3k—331 DzZac—kis, (2.13
(k;—ckj) (k3—ckj)

wherec,k; ,k, are parameterfl4], k’ is the momentum of
the projectile, andy’ is the momentum transfer of the pro-

jectile.

The correction factor for the center of mass is generally
calculated 8] as follows:

fi1_.(q) is called the scattering amplitude operator. Under

the operation ofl_t(q) the ground statge, 0) transits to the
collective excited statge,f). Equation(2.6) may be written
as

4 .4
sfo<b>=<c,fH 11 p<y1>d9aexp(ﬁ—'2 di’dz)
a=1 Va=1 JD

o).

XV(r—x+Y,) (2.9

Then the profile function can be expressed by the scatterin

operatorfl,t(ﬁ) profile function as
_| R . N
F-p(b)=1-ex EfDdxsz(r—x)

=2wik’qu’eilq Pay@), (29

particles and the nucleus. Substituting Eq(2.9) into Eq.
(2.9 yields

12 2
H(q)=exp[ éq [<rAl>/A1+<rA2)/AZ] ., (2.19

where(r2)'2 is the rms radius of the nucleus
We consider a nucleus with a set of quadrupole and octu-

pole vibrations. According to Glauber theofyl,t)(ﬁ’) is
given by[6]

~ - Ik, P : ’
f(l—t)(q,):Zf d?b’e'd P 5, —e'xolPV] (2.15

Eet us first concentrate ggpy(b), which, as we will see later,
describes all the main features of high-energy small-angle
scattering for intermediate and heavy mass nuclei. For future
convenience we writgq(b) in the form

A . .
XO(b’): 27Tk’f dzqeiq‘b fla(q)F(q) (21@

and
whereV(r —x) is the interaction potential between the free

ﬁ(q)zf el9 T 5 (r)dr. 217
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Let us now be more specific and assume that the nuclevhereN, is the transition strength parameter. Then
under consideration could be described by the Tassie hydro-
dynamical mode[15], so that the density operator is of the

form Xo(b’)zXoo(b’)‘F% xim(B)[AL+Al ], (2.20
ﬁ(r)=p0(r)+§ pL(D[bLmYim(Q)+bl Y ()], and
(2.18
A ©
wherep,(r) is the ground state density; , andb, ,, are the Xoo(b")= WJ’O jo(ab)fi(a)Fo(a)ada,  (2.2D)

one-phonon creation and annihilation operators, respectively,

and Y (Q) are the spherical harmonics. Further, the tran- _ _

sition densityp, (r) is given by hereA_y=b.ue™?, Aly=b/ye ™¢, and the new opera-
tors A_y and A],, satisfy the same commutation rules as
b_w andb/,, . A further hypothesi€’ =0 [7] is introduced,

d
_ L-1 -
LD =N pol1), (2.19 so thatY|y, has a very simple representation and

0 for L—M=odd

b) = Af2L+1\2[(L—m)l(L+M)1] (= 22
X =Y M T e ), M@ @FL@ada for L-M=even, 22
[
FL<q>=4wf°°jL(qr>pL<r>r2dr. (223 XD = Xad )Xol D, 239
0
1' '
Substituting Eq.(2.15 into Eq. (2.12 and integrating for ch(b’):?% Xtm(b'). (2.3

dg, noticing A_ 4y|0)=0 and(0|A],,=0, we get

The first term in Eq(2.30 is the so-called optical limit result
and depends only on the ground state density of the target.
The second terny.,(b) describes the effect of coupling the
elastic with the(one-phonohinelastic channels on the elas-
_|1_ Y , ' ! aixoob') tic phase in which the target nucleus makes a virtual transi-
_[1 f b"db’ll (bb Hf b’ db’ e/ tion to an excited state and then decays back to the ground

state. TheS matrix from the ground stat@o phonon to the

4

1 21 ' 7iqa’~l;'\ ~!
1_m d<q’'S,(q')e fa-o(q’)

X ex _EE Y2 (b’)+i2 Yim(b)AT excited state {l phonon$ is
2LM LM “ LM LM \
4 (L)(p) = irA A |
HY xLM<b'>ALM).n(bb') , @24 S <N 2, Gl (D) -] °>’ (232
LM
where "A’O(b)=f b'db’exn®). 1 (bb"), (233
Il (bb')=2D k% Kib=—b"_2p,k2e Kob-b"% (225
Then theS matrix for elastic scattering is Xl(b):f b’db’ e (®y| (bb')( _igj XLm(b'))AIM :
Soolb)=[a(b) + T(b)]*, (2.26 (239

To specify the state of a phonon we must also give its total

n(n—1)/2
T(b)=t"(b) exD( -> Xfm(b')” , (2.27  angular momenturh and theZ componenM. We thus have
LM

Si5(b)=(0|b_0(b)A],,|0)=eM¢f510(b), (2.39
t(b)=f b'db’l11 (bb’)elxn®"), (2.29
O(b)z(—4+12'/io—12Zg+4'/Kg)f b’ db’efxn(")

a(b)=f b’db’ll (bb’), (2.29 X[ —ixm(b) 1 (bb'). (2.36
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given by Alberi et al. [16] and which were found to give
FIG. 1. Elastic scattering of 1.37 Ge¥ particles from several satisfactory results for the elasticd scattering at the inci-

Ca isotopes. Solid curves show thé#0 calculated result. Dashed dent deuteron laboratory momentum 1.75 GeVFhe pa-
curve (for “°Ca only shows they?=0 calculated result. rameter values are

lll. RESULTS AND DISCUSSION opp=27 mb, p5,=0.44 (GeVic) 2, €,,=0.6,

In this section the results of a calculation for 1.37 GeV
a particle scattering on?C and 424444 are presented

and compared to experiment. The main inputs needed in they the calculations we have used the average values of the
calculations are th&lN Scatterlng amplltude and the grOUnd neutron and proton parameters in tN& Scattering amp"-

state and transition densities. tude. However, it has been verified that the predictions of the
For theNN parameters we take the values at 344 MeV asaverage parameter values are not significantly different from

the nonaveraged ones. The parameteteads to an overall

op=34 mb, f,=2.0 (GeVIc) %, enp=0.

10°T phase factore17°9*2 which cannot be obtained directly
from NN scattering measurements. It will be treated as a free
2C(a,@)'2C parameter irN-N collisions[10]. It will be fixed in nuclear
10} collisions and hence will be independent of the nuclei in-
volved in the collision, provided that the kinetic energies per
o 1} nucleon are the same in all cases. Thus the same value of
= ¥? will be used in describing all nucleus-nucleus measure-
510-1 ments at a given kinetic energy per nucleon. We take
S8 2 -2
v°=10.5 (GeV/c)™ <.
1074
The nuclear density is represented by the Fermi distribu-
10-° tion as follows:
A 1 PO S WUPH W 1 ) A i
30 60 90 120 150 180 210 240

po(r)=pol(L+e~¢"2),
8c.m. (deg)
The density parameters dfC and 4°4?444€a used in the
FIG. 2. Elastic scattering of 1.37 Ge particles on*’C. The  calculations are given in Table I.
solid curves shows the?# 0 calculated result. Dashed curves show  The strength parametéM, in Eqg. (2.19 can be deter-
the y2=0 calculated results. mined from the strength of EL transitions
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10 TABLE |. Parameters used in the calculations.

w

-\ 40¢, Ca (@.a)C'a 3 Nuclei C'(fm) a’(fm) (r?)? Refs. B(E2) [19] B(E3) [20]

- ot ] (fm)* (fm)®
10'%: \ i = a 1.696 [17]

- 3 (3.73MeV) 5 2c 2320 0420 2472[18] 415 610.8

- ] “°Ca  3.661 0.594 3.490 [5] 96 20400
10 { | “Ca  3.627 0.641 3.540 [5] 420 9100

3 v E “Ca 3655 0.625 3.550 [5] 470 5600

- E “Ca  3.837 0.550 3.580 [5] 84 8300
100< 42C(l +.

not as good as for the Ca isotopes, yet it is very satisfying to
find that the height of the first maximum and the positions of
the minima are predicted fairly accurately. As a matter of
fact the present calculations provide considerable improve-
ment over the RP model resuffg,13] and we are unaware of
any realistic parameter-free calculation which accounts for
the data so well.

The results for the 2[a(1.37 GeV+C],

3 [a(1.37 GeVH+'C] and the 2[«(1.37 GeV)
+4244¢Ca], 3 [a(1.37 GeV}+%Ca] angular distributions
are shown in Figs. 3 and 4, respectively, as solid curves. Itis
seen that the data are fairly well reproduced except
3 [a(1.37 GeVH*C]in Fig. 3.

Next we study the effect of including the long-range cor-
relationy?=0; i.e., the coupling between the elastic and the
low-lying inelastic channels is dominantly collective. This is
achieved by evaluating., as given by Eq(2.31) only for
the 2" and 3~ states and substituting it in Eq&.26) and
lf_ (2.39. The result is shown by the dashed curves in Figs.
\Tz 1-4. The situation seems to improve in two respects: First,
the theoretical cross sections are now closer to the experi-
mental results for the Ca isotopes and at smaller angles for
12C; second, the positions of the calculated second and third

FIG. 4. The differential cross section for thé and 3~ excited minima are now very close to the positions of the corre-
states in***>*Ca. The solid curves show the#0 calculated re- sponding experimental minima. However, the calculated
sult. Dashed curves show thé=0 calculated result. large-angle cross sections are low for tH€. The effect of
the coupling on the inelastic cross sectigmt shown is
found to be small.

In summary, the essential feature of the presently pro-

posed method is the use of a phase variation of the nucleon-
Much less is known about the neutron transition matrix elenucleon elastic scattering amplitude which agrees with the

mentB(™. In the case oN=2Z nuclei *C and “**>**4€a,  empirical amplitude at lovg’s at the appropriate energy, and
the neutron and proton transition densities are assumed to lits largeq behavior is left adjustable in terms of one free
identical. Thus, the strength parameters of neutrons and prgarameter. This amplitude, when calibrated“88a for 1.37
tons are equal. The parameters used in the calculations a@eV a scattering, not only reproduces the data on the other

listed in Table I. Ca isotopes very nicely but also gives a fairly good account
Using the parameters above, we calculate the elastic of the °C data.

42444€4a scattering at 1.37 GeV. The results are shown by The effect of the phase variation is to eliminate minima or
the solid curves in Fig. 1. It is seen that the data are veryo make them shallower and to generally increase cross sec-
nicely reproduced. Thus the value ¢f that fits the*®Ca  tions even at the momentum transfers where no minima
data nicely accounts equally well for the data on the neigheriginally occurred 19,2Q.
boring nuclei. This implies that the effectinN amplitude Franco and Yin have suggested that the phase oNthe
nearly saturates at the energy under consideration. N scattering amplitude should vary with the momentum
Our most important result is presented in Fig. 2; experitransfer. So far the physical origin of this phase variation has
mental data are compared to our calculation for the elastiaot yet been settled. This phase modifies the ratio of the real
a-12C scattering at 1.37 GeV. The data are fairly well repro-part to the imaginary part of the forward amplitude and
duced. Although the agreement with the data in this case imakes the diffraction pattern shallower.
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