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Statistical kinetic approach to nuclear liquid-gas phase transition
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Statistic approach based on the kinetics of a first-order phase transition is proposed for the description of
multifragmentation phenomenon. We start from the thermalized gaslike system of nucleons and calculate the
fragmentation yields according to classical nucleation theory. The fragmentation distributions are derived from
the steady-state solution of a Fokker-Planck equation for the distribution function. Curvature energy and
Coulomb energy in the form provided by the Wigner-Seitz approximation are included into the fragment
formation energy. The fit to experimental data is performed. It is shown that the Coulomb interaction may lead
to the deviation of the fragmentation yields from the power-law dependence. This prediction may be verified
experimentally in heavy-ion central collisions at the energies abotMéV. [S0556-28136)00111-3

PACS numbgs): 25.70.Pq, 05.70.Fh, 21.10.Sf, 21.65.

[. INTRODUCTION which surface tension vanishg8], and the fragment distri-
bution is purely determined by the power la\v ™.

Although the search for the quark-hadron phase transition This approach has a serious drawback. Namely, it is based
remains the most attractive goal of the experiments plannelleavily on the thermodynamic theory which is limited to the
in high energy physics, the liquid-gas phase transition irstage before the actual phase transifi®h To treat the prob-
nuclear matter at intermediate energies still represents a chdeém correctly one has to perform a kinetic analysis for the
lenge for both experimentalists and theoreticians. Thealevelopment of clusters of the new phase. One of the pos-
power-law falloff of the fragment mass distribution in proton sible solutions is proposed i10] where the bulk, surface,
induced reactions observed by the Purdue-Fermilab Collaband curvaturgor Fishej terms are presented in the forma-
ration [1] inspired the interest to macroscopic models basedion energy of nuclear clusters. The kinetic approach predicts
on the Fisher theory of condensatif?]. The possibility of the falloff for light fragments(which may be approximated
the liguid-gas phase transition in a thermally equilibratedby a simple power layvtogether with a kind of plateau for
nuclear matter and applicability of the nucleation theory tothe yield of heavy fragments. On the other hand, it is not
nuclear reactions were discussed in many pafegs, e.g., obvious that the fragment distribution would be the same
[3-7], and references thergin after the Coulomb energy is taken into account. The main

Since more and more experimental results have beeaim of the present paper is to verify how the inclusion of the
available for the analysis, their interpretation as a criticalCoulomb energy affects the behavior of the distribution
phenomenon has been revised. It was mentionegtirt]  function of clusters.
that, in spite of the characteristic power-law dependence of This paper is organized as follows. In Sec. Il we derive
the fragment mass distribution, different nuclear systemshe nucleation rates for the fragments of different sizes
with different excitation energies cannot hit the critical point (masses Coulomb and Fisher terms are taken into account
accidentally. Therefore, the expanding hot fireball may ben the formation energy of clusters. The clusterization Cou-
guenched into the metastable or unstable regions of nucletwsmb energy is calculated within the Wigner-Seitz approxi-
matter where the phase transition of first order should takenation which is described in details [ihl]. The expressions
place. When the density of the system is low enough, sayderived for the cluster distributions are used in Sec. Ill to fit
0.3 or 0.5 of the normal nuclear densipy, the system the fragment charge distributions observed in experiments.
breaks into the fragments. Thus, the fragment distributionThe results are discussed in Conclusions.
should contain the information about the disintegration tem-
perature of the system. The problem of calculating the frag-
ment distribution corresponding to given temperature and Il. THEORY OF A FIRST-ORDER PHASE TRANSITION
density of the system plays an essential role for the data we will keep the aforementioned scenario of a fireball

analysis. evolution as a working hypothesis. Modification does con-
With a purely thermodynamic approach, the probabilitycern the stage of a gas-liquid phase transition, where the
for cluster formation of sizé is given by kinetics of cluster evolution comes into play. Our analysis is
based on the classical nucleation theory developed for the
Y(A)=YoA "expaA—bA?3), (1)  first-order phase transition processes by Becker aningo

[12], and Zeldovich[13]. For the sake of simplicity the as-
containing the bulk and surface free energieandb, and  sumptions concerning the first-order phase transition can be
critical exponentr connected with the curvature ener@. stated in this way{i) creation of the spherical clusters of
A fit of the fragment size distributions with expressidn is  new phase within the initially homogeneous medium is con-
used to determine the critical temperature of the system atidered; (i) the evaporation-condensation process is the

0556-2813/96/54)/24936)/$10.00 54 2493 © 1996 The American Physical Society



2494 LARISSA V. BRAVINA AND EUGENE E. ZABRODIN 54

mechanism by which the clusters of the new phase lose or R 13

gain particles. This is one of the possible realizations of the R~
Markov procesg14]. In contrast to the nuclear fragmenta- cell

tion model W|th the binal’y SCheme Of C|ustel’ fusion andwhereAO and ZO are the tota' mass number and the tota|
splitting [15], the classical nucleation theory assumes that agnharge of the system, respectively. We will use the empirical

(or the loss by it of the smallest single-particle clustgd].

(i) The characteristic time of the evaporation-condensation '

(Zo/Ao)p

ZIA)pe @

process is much less than the lifetime of the metastable state, A

’Tev< Trelz-,.lx- ) . . Z= 1.98+ 001%2 ’ (5)
Practically all microscopic models like the Copenhagen

model[11], Berlin model[16], GEMINI model[17], as well  in our further calculations. It is convenient to define the equi-

as BUU calculationd18] assume a time delay of about librium distribution function for clusters of arbitrary sizes
100-200 fmé that is required for the fragmentation of an f,(R) via the equilibrium distribution function for clusters of
expanded nuclear system. critical sizefy(Ry):

(iv) No effects connected with the finite size of the system

are taken into account. AF(R)—AF(R,)
fo(R)=fo(Rc)expg — T ; (6)
A. Equilibrium distributions AF(R,)
. . . fo(R) =loexpg — . (7)
According to the thermodynamic theory of fluctuations T
the equilibrium distribution of clusters of the new phase
fo(R) is given by the Boltzmann distribution The critical radiusR, can be found from the relation
AF(R)) I[AF(R)]
fO( R)=I oexp{ T , (2) T =0. (8)

Clusters of critical radii are in metastable equilibrium,
smaller clusters are shrinking, and larger clusters are grow-
ing. By virtue of the scaling parametar=(47o/T)Y?R.,
introduced i 21], reduced radius=R/R., and new dimen-
sionless parametey=3e’R3/5Tr5 we have

where AF(R) is the free energy associated with the forma-
tion of cluster of sizeR, andl, is a preexponential factor.
The above relation can be written in the following form

4
fo(R)=1gex ?R3Ap—47TR20— 7T InA 1 5 9
fO(R):fO(RC)exp[( — 5ot 1—2y+§)\2+ T (r3—1)}

3 22e2(1 R )H @

5 R Reen | T xexq’ —\%(r?-=1)— 37 Inr
containing the bulk, surface, curvatui@ Fishej, and Cou- y
lomb terms in the formation energy. The exponent represents _Z[rS_ 1—68(r8— 1)]] , (9)
the Myers-Swiatecki formula for a spherical nuclgu$]

generalized to the case of nonzero temperature. If the COlﬁhere
lomb energy is neglected the equilibrium distribution of frag-

ments would be the same as given by HEq. HereAp is the 1 5 1
difference between the pressure inside and outside the clus- fO(RC)zloex;{ - §y5+1—2y— §A2+ T
ter, o is the surface tensiom is the mass number, ar#tlis

the charge of the cluster of radiBs=r,A'S r, is the baryon R. v
radius, andR. is the radius of the cell on which the cluster — 37 Inr— + Z(&— 1), (10
is embedded. It is implied in the Wigner-Seitz approximation 0

that the w_hoIe vqlume of the system consists o_f the indi-yp g 5=(p/p)3. The other parameters are the nucleon ra-
vidual noninteracting cells containing one cluster in the Cen'diusrozl.ﬂ fm and critical exponent=2.2.

ter. Therefore, to calculate the change in the Coulomb energy
due to the cluster formation one has to subtract the back-
ground Coulomb energy of the uniformly charged sphere of
radiusR.e from the Coulomb energy of the charged cluster. Under the assumption of the evaporation-condensation
Since the Coulomb energy of the uniformly charged spherenechanism of the cluster evolution mentioned above, the
of radiusR and chargeZ is (3/5)(Z%€?/R), the extra Cou- growth of the clusters may be described by a Fokker-Planck
lomb energy of an individual cell has the form given by Eq. equation[9,13]

(3). In terms of the baryon density inside the clustgrand

average baryon density of the systerthe ratioR/Re may of 9J J=Cf—B of

B. Clusterization kinetics

be written ag11] . 9R’ IR’ (1)
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whereJ is the flux in size space, ard andB are the size we get
drift and size diffusion coefficients. The flux in size space,

J, is absent for the equilibrium distribution given lhy(R). @: fmi (15)
So, one may find the relation between the coeffici€hand fo(R) R B(2)fo(2)
B
© dz
B a[ AF(R) J—1=f . (16)
C=B(R) | ~——— (12 0 B(2)fo(2)

The nonequilibrium, steady-state general solution of (6.  In terms of the critical radius}., reduced radiug, and
corresponding to a continuous phase transitida (cons) dynamical prefactor «=(d/dt)In(R—R;), introduced by

reads Langer[22], the drift coefficientC may be rewritten in the
f(R) dz following form [21]:
———=—-J| =———+const. 13
im0~ Bt 13 <Re
C= -z (r=1). 17
Combining this result with the boundary conditions
lim m: 1 and lim f(_R):o, (14)  Substitution of Eqs(13) and(16) into Eq.(11) gives for the
r—0 fo(R) R T0(R) cluster size diffusion coefficient
KR(Z:
B(R) = B2 yor3+ (17 r+ 1)~ (51 7 (1 + 1) + 28717 (18
Finally, the distribution function of clusters of the new phase is given by
é 1 é 5 5 2 Int[r,o0]
C(R)=f€ —3r Yoy _LZ\2 Yo e Y5 [_Y0 2“2 3_y\2,2
f*(R)=f5(R)r ex;{ 776 7-+3)\ )exp{ 7 r 4r +< 5 +12'y+3)\ +7|r°—=N\°r n{0ee]’
b 3 5
Int[a,b]=f PAKRES Ey&z3+37 (22+z+1)—2723(z+1)+2hzzz
a
— 75 6 Y 5_ | _ 75 S 2 2 3 2,2
xex;{ 424—42 2+12'y+3)\ +71|z2°+\°Z°|dz. (29

For the Fisher droplet model without Coulomb interactions @8) reduces td10]

2
fF(R):fg(Rc)r—%xp[

2 A
N2 - BN P SIS
73)\)r AT 3 T

f 23 7(22+ z+ 1)+ 2N 222 exp — [ 7+ (2/3)\ ]2+ \2Z%}dz

X , (20)
f B3 0(2+ z+ 1)+ 20222 exp[— [ 7+ (2/3)N\2]2+\2Z%}dz
0

and for the classical case with bare bulk and surface terms in the cluster free energy one[2hfains

® 2
f z3ex;< —§)\Zz3+)\222)dz
r

2 \?
fIUR)=fE(Ry)exp SA2r3—a2r2+ — : (22)
3 3 o 2
J’ ZPexpg — =A\2Z2+\?%Z%|dz
0 3
|
C. Simulation results T2_T2\54
C
o(T)=o0y Zi72| (22
The distribution functions given by Eq§18)—(20) with c

the critical temperaturd.=20.69 MeV[4] and mass of the \yhere 47r25y=18 MeV. Densities of the liquid and gas-

critical clusterA.=16 andA.=36 are shown in Fig. 1. To eous phases are determined as the end points of a Maxwell
calculate the surface tension we used the approximation preonstruction in a §,V) plot of the nuclear equation of state
posed in[11] [7].
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T=16Mev . FIG. 2. The charge distribution of all fragments 37fU(0.96A
o 20 40 60 0 20 40 60 GeV) + emulsion. Data are taken frof3]. The solid, dashed, and
A A dash-dotted lines represent the results of a fit to form@as(clas-

sic), (20) (Fishen, and(18) (Coulomb, respectively.
FIG. 1. The steady-state distribution functions of clusters of the
new phaséo(R)/l, given by Eq.(19) (Coulomh dash-dotted line  changing of the falloff of fragment distribution from the
Eq. (20) (Fisher, dashed ling and Eq.(21) (classic full line) for  simple power law to more complex dependence.
three different temperatures of the system, 4, 8, and 16 MeV, re-
spectively. The critical temperature T§=20.69 MeV, and masses

of the critical nuclei ared,=16 (a)—(c) and A= 36 (d)—(f), corre- IIl. ANALYSIS OF THE CHARGE DISTRIBUTIONS
pr;f‘;'”g'y- Dotted lines itd)—(f) represent the simple power law ¢ 5y ailable experimental data on the fragment distribu-

tion are usually restricted to the light fragment production
region. One of the most important predictions of the ap-
In the vicinity of critical point the distributions corre- proach presented above is the existence of the nonvanishing

sponding to Eqs(18) and (19) still exhibit the power-law long tail for the heavy fragment distribution together with the
falloff for the fragments smaller than the fragments of criti- falloff for the yield of light fragments. Fortunately, event-by-
cal masses, in accordance with the Fisher droplet model. Thevent experiments based on the nuclear emulsion technique
classic model with bulk and surface energy terms only preprovide one the possibilities to identify each charged frag-
dicts practically the same probabilities for the production ofment. The projectile fragments can be distinguished from the
small and big clusters at high temperatures because of tHarget fragments also. It should be stressed here that only the
diminishing of the surface tension. The Coulomb term lead§ragmentation events were chosen for the further analysis.
to the shift in the tail part of the distribution function, that ~ Figure 2 shows the charge distribution of all the nonfissile
brings it closer to the classic distribution function. As the fragments for?*U projectile at 0.98 GeV induced reac-
temperature rises, the influence of the Coulomb energy in thBons in nuclear emulsion23]. The charge distributions of
free energy expansion on the behavior of the distributiordll the nonfissile fragments for the reacti6fkr+ emulsion
function seems to become negligibly weak at small values of
the critical radius[Figs. 1c) and Xf)]. This fact may be 10— T . 1
explained by the vanishing of the difference between the i) 28 + Em, 0.96A GeV ]
baryon density inside the clusters and the average baryon i ]
density of the system. As can be easily seen from Ex®-— 103 — clossic ]
(20), the preexponential polynomial multiplier in the inte- e Fisher 1
grand Infa,b] is always positive for the model with bulk, i
surface, and with or without curvature terms in the droplet
free energy(19) and(20), but it can be negative in presence
of the Coulomb interaction between the partic(@s). Big
values of critical radius and, therefore, may force the
change of sign of the polynomial in the intervak@<1. In
this case the fragment distribution has a characteristic
convex-concave shapd-igs. 1d) and Xe)] that is deter- . ‘
mined by the temperature and critical radius of the system. If 0 20 40 60
the critical radius would be big enough, this implies the rapid Charge, Z
falloff in the yield of the light fragments together with the
absence of the medium-size fragments, i.e., no continuous FIG. 3. The charge distribution of all fragments §fKr(1.52A
long tail in the fragment distributiofFig. 1(d)]. Therefore, GeV) + emulsion. Data are taken frof24]. The sequence of the
the long-range Coulomb forces may be responsible for thétting curves is the same as in Fig. 2.

L e Coulomb]
2.
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10
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““““““““““ M AARS Raasssmn TABLE I. The results of the fit of fragment charge distributions
AU + Em, 10.7A GeV ] to expression$19) (Coulomb, (20) (Fished, and(21) (classid. Of
] each pair of numbers, the upper one denotes the temperature and the
2' — classic ] lower one denotes the charge of the critical nucleus.
o e Fisher 3 . 4 2 197 197
[ Coulombl Approximation 8Kr+Em Z8UJ+Em ®Au+Em Au+X
> oulomby 1.52A GeV 0.96\ GeV 10.7A GeV 0.6A GeV
> 10 | - Classic T 3.1x0.2 7.4-0.1 4014 4701
0t Z. 52+04 13901 6.5:1.2 9.2:0.2
Fisher T 6.6£0.2 11.5-0.2 8.9:1.8 9.6:£0.2
Z. 68+04 15716 88t08 12.4t0.3
1 E . 1 1 | o
0 20 20 60 80 Coulomb T 81+06 7.6:04 9.1+0.8 6.65:0.4

z 9.8+0.7 9.6:0.3 10.9c1.0 87704

o

Charge, Z

FIG. 4. The charge distribution of all projectilelike fragments in
197Au(10.7A GeV) + emulsion. The number of shower particles from the critical temperature. Therefore, to distinguish be-
was chosen to be less than Qferipheral evenjs Data are taken tween the approximations one has to know either the disas-
from [25]. The sequence of the fitting curves is the same as in Figsembly temperature of the system or the mass of the critical
2. nucleus. Unfortunately, both these problems cannot be
solved unambiguously. First of all, it is not clear how to

at 1.52 GeV[24], and 2’Au+ emulsion at 10.& GeV (pe- determine the critical nuclei experimentally. Then, the
riphéral events or;MZS] are shown in Figs. 3 and 4, respec- breakup temperature, that can be estimated from the analysis
tively. Curves plotted onto the experimental data are the re(-)f I(i?)trair:r;t:ndclgei:‘eg]r:ewaasys'J;?sofhit(?gg:lqﬂg?r;al and chemi-
sults of the fit to formula$18)—(20). Parameters of the fit are T

cal equilibrium is reached, the temperature of the system

listed in Table 1. The absolute normalizatidg(R.) is al- nay be obtained via the double ratios of light isotope pairs
ways taken as a free parameter. Although the curves corr Varying by one neutron eadf7]. The ALADIN Collabora-

sponding to the fits coincide within a few percent of accu-,. . ; )
racy, the temperatures and masses of the critical fragmen%) n reported recently28] results on their studying of frag

are different for the different approximations of a cluster freemgi}t %Stte“r?lui?gtsu rceogﬂéglgé f\:\?arz gg’ﬁ‘;g?:giogzsagﬂ?gf ield
energy. It is easy to see that the classical model predicts th'gI L P - o ay
ratios of He and Li isotopes, and the transition isotopic tem-

lowest temperature for the splitting system among the three rature Tye;, Was found to be about50.2 MeV. Com-

models. The systems should have different temperatures of. ed charge spectrum measured by the ALADIN detector

disintegration, because the temperature of the disassembl g : ; o :
fireball depends on the excitation energy of the system. ystems for the reactions with gold projecti{@s)] is shown

. X . L o in Fig. 5. It looks very similar to the spectra shown in Figs.
fireball with higher initial excitation energy possesses the _4. Results of the fit to formula&l8)—(20) are listed in

higher temperature when passing the disintegration pOIn%able I. The corresponding curves are plotted onto the ex-

and fit to all three models demonstrates this tendency. erimental data also. Althouah all three models predict prac-
The possible rise in the yield of heavy fragments may bPe" : ug predict p

explained by the coalescence of two or more clusters, that is

not included in our model. On the other hand, the relative 10 5 : S —— -
enhancement of the heavy fragments may be explained by , AU + X, 600A MeV ]
admixture of the remnants of primordial nuclei broken after :
the peripheral collisions. More data on the central collisions 10 4LEE — classic
of heavy ions of about the same sizes are needed to shed 47 T Fisher
light on this extremely interesting problem. These data are o e Coulomb]
very important also for the comparison between different < 103 L |
the?r:(zﬂrc:;sn;(r)\delfzi]ﬁe experimental data can be described S | N{:Illlllll””'””"”‘""” |
why Xperi [ [ STBLL L i) |
equally with the three different approximations is the follow- 2|
ing. The radius of the critical nucleus and the temperature of 10 ] : i
the system are correlated. The closer the temperature to the 5
critical one, the larger should be the critical radius, as it can ‘ . ‘ .
be seen from Table I. But, since we do not know the vapor 0 20 40 60
saturation in the system, we must take the critical size as a Charge, Z

free parameter. In contrast to the approach given by(Bq.

that contains bulk and surface energies as fitting parameters, FiG. 5. Combined charge spectrum measured with the ALADIN
the approach proposed has also two fitting parameTeas,d  tracking detectors for reactions wiffi’Au projectiles at 0.8 GeV.
A.. From Fig. 1 it follows that the shapes of the distributionsData are taken frorf29] (hatched area The sequence of the fitting
given by Eqgs.(18)—(20) are very similar in the region far curves is the same as in Fig. 2.
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tically the same yield ratios for the light isotopes, the tem-not affect qualitatively the behavior of the fragment mass
peratures obtained by fit to Eqs(18)—(20) differ  distributions in the vicinity of critical point. At lower tem-
considerably from the temperature derived from the calorigeratures the Coulomb interaction between particles may
curve of nuclei. This is a consequence of the nonequilibriumead to the transformation of the shape of fragment distribu-
process of a first-order phase transition in nuclear mattetion from power-law to the more complex convex-concave
which was chosen as an underlying mechanism for the corshape. This prediction may be tested in an experiment with
densation of hot nucleonic gas. One of the possible ways tthe heavy-ion central collisions at not very high excitation
verify the validity of the approach proposed is to search forenergies.

the characteristic convex-concave shape of the fragment We have shown that the fragment chafgeass distribu-
yield shown in Figs. (d) and Xe). The experiment may be tions may contain important information about the underly-
performed with the heavy nuclei, like gold or lead, at noting dynamics of the clusterization process in hot nuclear
very high energies, say, between 30 and 50 MeV per nucleomatter. Although the expressions derived fit to experimental

of the projectile for the central collisions. data quite nicely, more data on the yield of nuclear fragments
coming from the 4r-geometry detectors are needed to make
IV. CONCLUSIONS these formulas useful for calculation of the fragment distri-
butions.

Under the assumption of a first-order phase transition in
the thermalized system of initially unbound nucleons, a new
method for ce_llculating fragment mass distributions has bee_n ACKNOWLEDGMENTS
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