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Statistical kinetic approach to nuclear liquid-gas phase transition
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Statistic approach based on the kinetics of a first-order phase transition is proposed for the descripti
multifragmentation phenomenon. We start from the thermalized gaslike system of nucleons and calcula
fragmentation yields according to classical nucleation theory. The fragmentation distributions are derived
the steady-state solution of a Fokker-Planck equation for the distribution function. Curvature energy
Coulomb energy in the form provided by the Wigner-Seitz approximation are included into the fragm
formation energy. The fit to experimental data is performed. It is shown that the Coulomb interaction may
to the deviation of the fragmentation yields from the power-law dependence. This prediction may be ver
experimentally in heavy-ion central collisions at the energies about 40A MeV. @S0556-2813~96!00111-2#

PACS number~s!: 25.70.Pq, 05.70.Fh, 21.10.Sf, 21.65.1f
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I. INTRODUCTION

Although the search for the quark-hadron phase transit
remains the most attractive goal of the experiments plann
in high energy physics, the liquid-gas phase transition
nuclear matter at intermediate energies still represents a c
lenge for both experimentalists and theoreticians. T
power-law falloff of the fragment mass distribution in proto
induced reactions observed by the Purdue-Fermilab Colla
ration @1# inspired the interest to macroscopic models bas
on the Fisher theory of condensation@2#. The possibility of
the liquid-gas phase transition in a thermally equilibrate
nuclear matter and applicability of the nucleation theory
nuclear reactions were discussed in many papers~see, e.g.,
@3–7#, and references therein!.

Since more and more experimental results have be
available for the analysis, their interpretation as a critic
phenomenon has been revised. It was mentioned in@4–6#
that, in spite of the characteristic power-law dependence
the fragment mass distribution, different nuclear system
with different excitation energies cannot hit the critical poin
accidentally. Therefore, the expanding hot fireball may
quenched into the metastable or unstable regions of nuc
matter where the phase transition of first order should ta
place. When the density of the system is low enough, s
0.3 or 0.5 of the normal nuclear densityr0, the system
breaks into the fragments. Thus, the fragment distributi
should contain the information about the disintegration tem
perature of the system. The problem of calculating the fra
ment distribution corresponding to given temperature a
density of the system plays an essential role for the d
analysis.

With a purely thermodynamic approach, the probabili
for cluster formation of sizeA is given by

Y~A!5Y0A
2texp~aA2bA2/3!, ~1!

containing the bulk and surface free energiesa andb, and
critical exponentt connected with the curvature energy@2#.
A fit of the fragment size distributions with expression~1! is
used to determine the critical temperature of the system
5413/96/54~5!/2493~6!/$10.00
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which surface tension vanishes@8#, and the fragment distri-
bution is purely determined by the power lawA2t.

This approach has a serious drawback. Namely, it is base
heavily on the thermodynamic theory which is limited to the
stage before the actual phase transition@9#. To treat the prob-
lem correctly one has to perform a kinetic analysis for the
development of clusters of the new phase. One of the po
sible solutions is proposed in@10# where the bulk, surface,
and curvature~or Fisher! terms are presented in the forma-
tion energy of nuclear clusters. The kinetic approach predic
the falloff for light fragments~which may be approximated
by a simple power law! together with a kind of plateau for
the yield of heavy fragments. On the other hand, it is no
obvious that the fragment distribution would be the same
after the Coulomb energy is taken into account. The mai
aim of the present paper is to verify how the inclusion of the
Coulomb energy affects the behavior of the distribution
function of clusters.

This paper is organized as follows. In Sec. II we derive
the nucleation rates for the fragments of different size
~masses!. Coulomb and Fisher terms are taken into accoun
in the formation energy of clusters. The clusterization Cou
lomb energy is calculated within the Wigner-Seitz approxi-
mation which is described in details in@11#. The expressions
derived for the cluster distributions are used in Sec. III to fi
the fragment charge distributions observed in experiment
The results are discussed in Conclusions.

II. THEORY OF A FIRST-ORDER PHASE TRANSITION

We will keep the aforementioned scenario of a firebal
evolution as a working hypothesis. Modification does con
cern the stage of a gas-liquid phase transition, where th
kinetics of cluster evolution comes into play. Our analysis is
based on the classical nucleation theory developed for th
first-order phase transition processes by Becker and Do¨ring
@12#, and Zeldovich@13#. For the sake of simplicity the as-
sumptions concerning the first-order phase transition can b
stated in this way:~i! creation of the spherical clusters of
new phase within the initially homogeneous medium is con
sidered; ~ii ! the evaporation-condensation process is th
2493 © 1996 The American Physical Society
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2494 54LARISSA V. BRAVINA AND EUGENE E. ZABRODIN
mechanism by which the clusters of the new phase lose
gain particles. This is one of the possible realizations of t
Markov process@14#. In contrast to the nuclear fragmenta
tion model with the binary scheme of cluster fusion an
splitting @15#, the classical nucleation theory assumes that
arbitrary cluster changes its size due to the attachment t
~or the loss by it! of the smallest single-particle cluster@9#.
~iii ! The characteristic time of the evaporation-condensat
process is much less than the lifetime of the metastable st
tev!t relax.

Practically all microscopic models like the Copenhage
model@11#, Berlin model@16#, GEMINI model @17#, as well
as BUU calculations@18# assume a time delay of abou
100–200 fm/c that is required for the fragmentation of a
expanded nuclear system.

~iv! No effects connected with the finite size of the syste
are taken into account.

A. Equilibrium distributions

According to the thermodynamic theory of fluctuation
the equilibrium distribution of clusters of the new phas
f 0(R) is given by the Boltzmann distribution

f 0~R!5I 0expS 2
DF~R!

T D , ~2!

whereDF(R) is the free energy associated with the form
tion of cluster of sizeR, and I 0 is a preexponential factor.
The above relation can be written in the following form

f 0~R!5I 0expH F4p

3
R3Dp24pR2s2tT lnA

2
3

5

Z2e2

R S 12
R

Rcell
D G1TJ ~3!

containing the bulk, surface, curvature~or Fisher!, and Cou-
lomb terms in the formation energy. The exponent represe
the Myers-Swiatecki formula for a spherical nucleus@19#
generalized to the case of nonzero temperature. If the C
lomb energy is neglected the equilibrium distribution of frag
ments would be the same as given by Eq.~1!. HereDp is the
difference between the pressure inside and outside the c
ter,s is the surface tension,A is the mass number, andZ is
the charge of the cluster of radiusR5r 0A

1/3, r 0 is the baryon
radius, andRcell is the radius of the cell on which the cluste
is embedded. It is implied in the Wigner-Seitz approximatio
that the whole volume of the system consists of the ind
vidual noninteracting cells containing one cluster in the ce
ter. Therefore, to calculate the change in the Coulomb ene
due to the cluster formation one has to subtract the ba
ground Coulomb energy of the uniformly charged sphere
radiusRcell from the Coulomb energy of the charged cluste
Since the Coulomb energy of the uniformly charged sphe
of radiusR and chargeZ is (3/5)(Z2e2/R), the extra Cou-
lomb energy of an individual cell has the form given by E
~3!. In terms of the baryon density inside the clusterrL and
average baryon density of the systemr the ratioR/Rcell may
be written as@11#
or
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R

Rcell
5F ~Z0 /A0!r

~Z/A!rL
G1/3, ~4!

whereA0 and Z0 are the total mass number and the tota
charge of the system, respectively. We will use the empirica
formula @20# connecting charge numberZ to mass number
A,

Z5
A

1.9810.015A2/3, ~5!

in our further calculations. It is convenient to define the equi
librium distribution function for clusters of arbitrary sizes
f 0(R) via the equilibrium distribution function for clusters of
critical size f 0(Rc):

f 0~R!5 f 0~Rc!expF2
DF~R!2DF~Rc!

T G , ~6!

f 0~Rc!5I 0expF2
DF~Rc!

T G . ~7!

The critical radiusRc can be found from the relation

]@DF~R!#

]R
50. ~8!

Clusters of critical radii are in metastable equilibrium,
smaller clusters are shrinking, and larger clusters are grow
ing. By virtue of the scaling parameterl5(4ps/T)1/2Rc ,
introduced in@21#, reduced radiusr5R/Rc , and new dimen-
sionless parameterg53e2Rc

5/5Tr0
6 we have

f 0~R!5 f 0~Rc!expF S 2
1

2
gd1

5

12
g1

2

3
l21t D ~r 321!G

3expH 2l2~r 221!2 3t lnr

2
g

4
@r 5212d~r 621!#J , ~9!

where

f 0~Rc!5I 0expF2
1

2
gd1

5

12
g2

1

3
l21t

2 3t ln
Rc

r 0
1

g

4
~d21!G , ~10!

and d5(r/rL)
1/3. The other parameters are the nucleon ra

dius r 051.17 fm and critical exponentt52.2.

B. Clusterization kinetics

Under the assumption of the evaporation-condensatio
mechanism of the cluster evolution mentioned above, th
growth of the clusters may be described by a Fokker-Planc
equation@9,13#

] f

]t
52

]J

]R
, J5Cf2B

] f

]R
, ~11!
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whereJ is the flux in size space, andC andB are the size
drift and size diffusion coefficients. The flux in size space
J, is absent for the equilibrium distribution given byf 0(R).
So, one may find the relation between the coefficientsC and
B

C5B~R!
]

]R F2
DF~R!

T G . ~12!

The nonequilibrium, steady-state general solution of Eq.~10!
corresponding to a continuous phase transition (J5 const!
reads

f ~R!

f 0~Rc!
52JE dz

B~z! f 0~z!
1const. ~13!

Combining this result with the boundary conditions

lim
R→0

f ~R!

f 0~R!
51 and lim

R→`

f ~R!

f 0~R!
50, ~14!
,
we get

f ~R!

f 0~R!
5JE

R

` dz

B~z! f 0~z!
, ~15!

J215E
0

` dz

B~z! f 0~z!
. ~16!

In terms of the critical radiusRc , reduced radiusr , and
dynamical prefactork5(d/dt)ln(R2Rc), introduced by
Langer@22#, the drift coefficientC may be rewritten in the
following form @21#:

C5
kRc

r 2
~r21!. ~17!

Substitution of Eqs.~13! and~16! into Eq. ~11! gives for the
cluster size diffusion coefficient
B~R!5
kRc

2

r $@~3/2!gdr 313t#~r 21r11!2~5/4!gr 3~r11!12l2r 2%
. ~18!

Finally, the distribution function of clusters of the new phase is given by

f C~R!5 f 0
C~Rc!r

23texpS gd

4
2

g

6
2t1

1

3
l2DexpFgd

4
r 62

g

4
r 51S 2

gd

2
1

5

12
g1

2

3
l21t D r 32l2r 2G Int@r ,`#

Int@0,̀ #
,

Int@a,b#5E
a

b

z3t11F S 32 gdz313t D ~z21z11!2
5

4
gz3~z11!12l2z2G

3expF2
gd

4
z61

g

4
z52S 2

gd

2
1

5

12
g1

2

3
l21t D z31l2z2Gdz. ~19!

For the Fisher droplet model without Coulomb interactions Eq.~18! reduces to@10#

f F~R!5 f 0
F~Rc!r

23texpF S t1
2

3
l2D r 32l2r 21

l2

3
2t G

3

E
r

`

z3t11@3t~z21z11!12l2z2#exp$2@t1 ~2/3!l2#z31l2z2%dz

E
0

`

z3t11@3t~z21z11!12l2z2#exp$2@t1 ~2/3!l2#z31l2z2%dz

, ~20!

and for the classical case with bare bulk and surface terms in the cluster free energy one obtains@21#

f cl~R!5 f 0
cl~Rc!expS 23l2r 32l2r 21

l2

3 D Er
`

z3expS 2
2

3
l2z31l2z2Ddz

E
0

`

z3expS 2
2

3
l2z31l2z2Ddz . ~21!
ll
C. Simulation results

The distribution functions given by Eqs.~18!–~20! with
the critical temperatureTc520.69 MeV@4# and mass of the
critical clusterAc516 andAc536 are shown in Fig. 1. To
calculate the surface tension we used the approximation p
posed in@11#
ro-

s~T!5s0S Tc22T2

Tc
21T2D

5/4

, ~22!

where 4pr 0
2s0518 MeV. Densities of the liquid and gas-

eous phases are determined as the end points of a Maxwe
construction in a (p,V) plot of the nuclear equation of state
@7#.
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In the vicinity of critical point the distributions corre
sponding to Eqs.~18! and ~19! still exhibit the power-law
falloff for the fragments smaller than the fragments of cri
cal masses, in accordance with the Fisher droplet model.
classic model with bulk and surface energy terms only p
dicts practically the same probabilities for the production
small and big clusters at high temperatures because of
diminishing of the surface tension. The Coulomb term lea
to the shift in the tail part of the distribution function, tha
brings it closer to the classic distribution function. As th
temperature rises, the influence of the Coulomb energy in
free energy expansion on the behavior of the distribut
function seems to become negligibly weak at small values
the critical radius@Figs. 1~c! and 1~f!#. This fact may be
explained by the vanishing of the difference between
baryon density inside the clusters and the average bar
density of the system. As can be easily seen from Eqs.~18!–
~20!, the preexponential polynomial multiplier in the inte
grand Int@a,b# is always positive for the model with bulk
surface, and with or without curvature terms in the drop
free energy~19! and~20!, but it can be negative in presenc
of the Coulomb interaction between the particles~18!. Big
values of critical radius and, therefore,g may force the
change of sign of the polynomial in the interval 0<y<1. In
this case the fragment distribution has a characteri
convex-concave shape@Figs. 1~d! and 1~e!# that is deter-
mined by the temperature and critical radius of the system
the critical radius would be big enough, this implies the rap
falloff in the yield of the light fragments together with th
absence of the medium-size fragments, i.e., no continu
long tail in the fragment distribution@Fig. 1~d!#. Therefore,
the long-range Coulomb forces may be responsible for

FIG. 1. The steady-state distribution functions of clusters of
new phasef 0(R)/I 0 given by Eq.~19! ~Coulomb, dash-dotted line!,
Eq. ~20! ~Fisher, dashed line!, and Eq.~21! ~classic, full line! for
three different temperatures of the system, 4, 8, and 16 MeV,
spectively. The critical temperature isTc520.69 MeV, and masses
of the critical nuclei areAc516 ~a!–~c! andAc536 ~d!–~f!, corre-
spondingly. Dotted lines in~d!–~f! represent the simple power law
A22.2.
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changing of the falloff of fragment distribution from the
simple power law to more complex dependence.

III. ANALYSIS OF THE CHARGE DISTRIBUTIONS

The available experimental data on the fragment distrib
tion are usually restricted to the light fragment productio
region. One of the most important predictions of the ap
proach presented above is the existence of the nonvanish
long tail for the heavy fragment distribution together with the
falloff for the yield of light fragments. Fortunately, event-by-
event experiments based on the nuclear emulsion techniq
provide one the possibilities to identify each charged frag
ment. The projectile fragments can be distinguished from th
target fragments also. It should be stressed here that only
fragmentation events were chosen for the further analysis

Figure 2 shows the charge distribution of all the nonfissil
fragments for 238U projectile at 0.96A GeV induced reac-
tions in nuclear emulsions@23#. The charge distributions of
all the nonfissile fragments for the reaction84Kr1emulsion

he

re-

FIG. 2. The charge distribution of all fragments in238U~0.96A
GeV! 1 emulsion. Data are taken from@23#. The solid, dashed, and
dash-dotted lines represent the results of a fit to formulas~21! ~clas-
sic!, ~20! ~Fisher!, and~18! ~Coulomb!, respectively.

FIG. 3. The charge distribution of all fragments in84Kr~1.52A
GeV! 1 emulsion. Data are taken from@24#. The sequence of the
fitting curves is the same as in Fig. 2.
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at 1.52A GeV @24#, and 197Au1emulsion at 10.7A GeV ~pe-
ripheral events only! @25# are shown in Figs. 3 and 4, respe
tively. Curves plotted onto the experimental data are the
sults of the fit to formulas~18!–~20!. Parameters of the fit are
listed in Table I. The absolute normalizationf 0(Rc) is al-
ways taken as a free parameter. Although the curves co
sponding to the fits coincide within a few percent of acc
racy, the temperatures and masses of the critical fragm
are different for the different approximations of a cluster fr
energy. It is easy to see that the classical model predicts
lowest temperature for the splitting system among the th
models. The systems should have different temperature
disintegration, because the temperature of the disassem
fireball depends on the excitation energy of the system
fireball with higher initial excitation energy possesses t
higher temperature when passing the disintegration po
and fit to all three models demonstrates this tendency.

The possible rise in the yield of heavy fragments may
explained by the coalescence of two or more clusters, tha
not included in our model. On the other hand, the relat
enhancement of the heavy fragments may be explained
admixture of the remnants of primordial nuclei broken af
the peripheral collisions. More data on the central collisio
of heavy ions of about the same sizes are needed to s
light on this extremely interesting problem. These data
very important also for the comparison between differe
theoretical models@26#.

The reason why the experimental data can be descr
equally with the three different approximations is the follow
ing. The radius of the critical nucleus and the temperature
the system are correlated. The closer the temperature to
critical one, the larger should be the critical radius, as it c
be seen from Table I. But, since we do not know the vap
saturation in the system, we must take the critical size a
free parameter. In contrast to the approach given by Eq.~1!,
that contains bulk and surface energies as fitting parame
the approach proposed has also two fitting parameters,T and
Ac . From Fig. 1 it follows that the shapes of the distributio
given by Eqs.~18!–~20! are very similar in the region far

FIG. 4. The charge distribution of all projectilelike fragments
197Au~10.7A GeV! 1 emulsion. The number of shower particle
was chosen to be less than 30~peripheral events!. Data are taken
from @25#. The sequence of the fitting curves is the same as in F
2.
-
re-

rre-
u-
nts
e
the
ree
of

bled
A

he
int,

be
t is
ve
by
er
ns
hed
re
nt

bed
-
of
the
an
or
s a

ers,

s

from the critical temperature. Therefore, to distinguish b
tween the approximations one has to know either the dis
sembly temperature of the system or the mass of the criti
nucleus. Unfortunately, both these problems cannot
solved unambiguously. First of all, it is not clear how t
determine the critical nuclei experimentally. Then, th
breakup temperature, that can be estimated from the anal
of data in a different way, is model dependent.

For instance, if one assumes that local thermal and che
cal equilibrium is reached, the temperature of the syste
may be obtained via the double ratios of light isotope pa
varying by one neutron each@27#. The ALADIN Collabora-
tion reported recently@28# results on their studying of frag-
ment distributions coming from Au1Au collisions at 600A
MeV. A temperature scale was derived from observed yie
ratios of He and Li isotopes, and the transition isotopic tem
perature,THeLi , was found to be about 560.2 MeV. Com-
bined charge spectrum measured by the ALADIN detec
systems for the reactions with gold projectiles@29# is shown
in Fig. 5. It looks very similar to the spectra shown in Fig
2–4. Results of the fit to formulas~18!–~20! are listed in
Table I. The corresponding curves are plotted onto the e
perimental data also. Although all three models predict pra

n
s

ig.

FIG. 5. Combined charge spectrum measured with the ALAD
tracking detectors for reactions with197Au projectiles at 0.6A GeV.
Data are taken from@29# ~hatched area!. The sequence of the fitting
curves is the same as in Fig. 2.

TABLE I. The results of the fit of fragment charge distribution
to expressions~19! ~Coulomb!, ~20! ~Fisher!, and~21! ~classic!. Of
each pair of numbers, the upper one denotes the temperature an
lower one denotes the charge of the critical nucleus.

Approximation 84Kr1Em 238U1Em 197Au1Em 197Au1X
1.52A GeV 0.96A GeV 10.7A GeV 0.6A GeV

Classic T 3.160.2 7.460.1 4.061.4 4.760.1
Zc 5.260.4 13.960.1 6.561.2 9.260.2

Fisher T 6.660.2 11.560.2 8.961.8 9.660.2
Zc 6.860.4 15.761.6 8.860.8 12.460.3

Coulomb T 8.160.6 7.660.4 9.160.8 6.6560.4
Zc 9.860.7 9.660.3 10.961.0 8.760.4
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tically the same yield ratios for the light isotopes, the tem
peratures obtained by fit to Eqs.~18!–~20! differ
considerably from the temperature derived from the calo
curve of nuclei. This is a consequence of the nonequilibriu
process of a first-order phase transition in nuclear ma
which was chosen as an underlying mechanism for the c
densation of hot nucleonic gas. One of the possible ways
verify the validity of the approach proposed is to search f
the characteristic convex-concave shape of the fragm
yield shown in Figs. 1~d! and 1~e!. The experiment may be
performed with the heavy nuclei, like gold or lead, at n
very high energies, say, between 30 and 50 MeV per nucle
of the projectile for the central collisions.

IV. CONCLUSIONS

Under the assumption of a first-order phase transition
the thermalized system of initially unbound nucleons, a ne
method for calculating fragment mass distributions has be
proposed. This approach is based on the steady-state solu
of Fokker-Planck equation describing the evolution of fra
ments of the new phase. To calculate the cluster free ene
the Myers-Swiatecki formula generalized to nonzero tem
peratures is used.

It is shown that the inclusion of the Coulomb energy
the form provided by the Wigner-Seitz approximation do
-
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to
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not affect qualitatively the behavior of the fragment mas
distributions in the vicinity of critical point. At lower tem-
peratures the Coulomb interaction between particles m
lead to the transformation of the shape of fragment distrib
tion from power-law to the more complex convex-concav
shape. This prediction may be tested in an experiment w
the heavy-ion central collisions at not very high excitatio
energies.

We have shown that the fragment charge~mass! distribu-
tions may contain important information about the underly
ing dynamics of the clusterization process in hot nuclea
matter. Although the expressions derived fit to experiment
data quite nicely, more data on the yield of nuclear fragmen
coming from the 4p-geometry detectors are needed to mak
these formulas useful for calculation of the fragment distr
butions.

ACKNOWLEDGMENTS

This work was supported by the Norwegian Researc
Council ~NFR! under Contract No. 100132/432. We would
like to thank J. P. Bondorf, L. P. Csernai, B. Jakobsson, I. N
Mishustin, and Yu. Murin for the helpful suggestions and
comments. We are indebted to the Department of Physic
University of Bergen for the warm and kind hospitality.
C

d

K o
@1# J. E. Finn, S. Agarwal, A. Bujak, J. Chuang, L. J. Gutay, A.
Hirsch, R. W. Minich, N. T. Porile, R. P. Scharenberg, B.
Stringfellow, and F. Turkot, Phys. Rev. Lett.49, 1321~1982!;
R. W. Minich, S. Agarwal, A. Bujak, J. Chuang, J. E. Finn, L
J. Gutay, A. S. Hirsch, N. T. Porile, R. P. Scharenberg, B.
Stringfellow, and F. Turkot, Phys. Lett.118B, 458 ~1982!.

@2# M. E. Fisher, Physics3, 255 ~1967!.
@3# H. R. Jaqaman, A. Z. Mekjian, and L. Zamick, Phys. Rev.

29, 2067~1984!.
@4# A. L. Goodman, J. I. Kapusta, and A. Z. Mekjian, Phys. Re

C 30, 851 ~1984!.
@5# A. D. Panagiotou, M. W. Curtin, H. Toki, D. K. Scott, and P

J. Siemens, Phys. Rev. Lett.52, 496~1984!; A. D. Panagiotou,
M. W. Curtin, and D. K. Scott, Phys. Rev. C31, 55 ~1985!.

@6# L. P. Csernai and J. I. Kapusta, Phys. Rep.131, 223 ~1986!.
@7# A. R. DeAngelis and A. Z. Mekjian, Phys. Rev. C40, 105

~1989!.
@8# M. L. Gilkes et al., Phys. Rev. Lett.73, 1590~1994!.
@9# E. M. Lifshitz and L. P. Pitaevskii,Physical Kinetics~Perga-

mon, Oxford, 1981!, Chap. 12.
@10# E. E. Zabrodin, Phys. Rev. C52, 2608~1995!.
@11# J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, an

K. Sneppen, Phys. Rep.257, 133 ~1995!; J. P. Bondorf, R.
Donangelo, I. N. Mishustin, C. J. Pethick, H. Schulz, and
Sneppen, Nucl. Phys.A443, 321 ~1985!.

@12# R. Becker and W. Do¨ring, Ann. Phys. ~Leipzig! 24, 719
~1935!.
S.
.

.
C.

C

v.

.

.

@13# Ya. B. Zeldovich, Acta Physicochim.~USSR! 18, 1 ~1943!.
@14# F. P. Kelly, Reversibility and Stochastic Networks~Wiley,

New York, 1979!.
@15# K. C. Chase and A. Z. Mekjian, Phys. Rev. C49, 2164~1994!.
@16# D. H. E. Gross, Prog. Part. Nucl. Phys.30, 155 ~1993!; Nucl.

Phys.A553, 175c~1993!.
@17# R. J. Charityet al., Nucl. Phys.A483, 371 ~1988!.
@18# J. Randrupet al., Prog. Part. Nucl. Phys.30, 117 ~1993!.
@19# W. Myers and V. Swiatecki, Ann. Phys.~N.Y.! 55, 395~1969!.
@20# P. Marmier and E. Sheldon,Physics of Nuclei and Particles

~Academic Press, London, 1969!.
@21# L. V. Bravina and E. E. Zabrodin, Phys. Lett. A202, 61

~1995!.
@22# J. S. Langer, Ann. Phys.~N.Y.! 54, 258 ~1969!.
@23# P. L. Jain, G. Singh, and M. S. El-Nagdy, Phys. Rev. Lett.68,

1656 ~1992!.
@24# P. L. Jain and G. Singh, Phys. Rev. C46, R10 ~1992!.
@25# B. Jakobsson, inMultiparticle Correlations and Nuclear Re-

actions, edited by J. Aichelin and D. Ardouin~World Scien-
tific, Singapore, 1995!, p. 373.

@26# L. V. Bravina and E. E. Zabrodin, Phys. Rev. C54, R464
~1996!.

@27# S. Albergo, S. Costa, E. Costanzo, and A. Rubbino, Nuov
Cimento A89, 1 ~1985!.

@28# J. Pochodzallaet al., Phys. Rev. Lett.75, 1040~1995!.
@29# W. F. J. Müller et al., Report GSI 03-95, 1995.


