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We extend the mean-field approximation to relativistic quantum hadrodynamics to include pairing in nuc
matter. This approach permits a simultaneous description of the energy gap in the single-particle spectrum
of the saturation point of nuclear matter. The mean field associated with the pairing correlations has l
scalar and vector components that cancel each other resulting in a gap parameter that agrees with the res
nonrelativistic calculations.@S0556-2813~96!03110-X#
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I. INTRODUCTION

The traditional nonrelativistic description of pairing co
relations in nuclear physics is made in accordance with
BCS model and has been successful in accounting for m
nuclear phenomena@1–10#. It is a simple way of improving
the independent-particle approach to the shell model by
troducing the short-range correlations associated with
pairing of nucleons in the nuclear medium and respons
for the superfluid phase of the nucleus. Similarly, the lon
range correlations associated with collective phenomen
nuclei are well described by the nonrelativistic random ph
approximation~RPA! @11#.

On the other hand, it is well known that the nonrelativis
approaches using realistic two-body interactions are not a
to account for basic phenomena, such as the spin-orbit
of the nucleon-nucleus interaction and the saturation prop
ties of nuclear matter@12–20#. These properties can be we
described by a relativistic formulation@21–25# and the suc-
cess of the mean-field approach to quantum hadrodynam
~QHD! initially developed by Walecka and collaborato
@15,26–30#, suggests that an enlarged version of the rela
istic mean-field approach could also be considered to
count for the residual correlations between nucleons. Whi
consistent relativistic formulation of RPA based on t
mean-field approximation to QHD has already been dev
oped@31# the same is not true with respect to the descript
of pairing correlations. To the best of our knowledge, only
partial attempt toward a relativistic description of pairing h
been performed until now in the work of Kucharek and Ri
@32#. The present work goes in the direction of developing
consistent relativistic description of the Hartree-Foc
Bogoliubov ~HFB! approximation to QHD.

Our formulation @33# uses the algebraic method deve
oped by Gorkov@34# for the description of superconductivit
in metals. In the mean-field approximation to QHD the effe
of the NN interaction on the single-particle propagator
described in terms of the nucleon self-energiesS and D,
whereD is the the pairing field. In this way, the fieldS
represents the vacuum expectation value of the various
5413/96/54~5!/2385~14!/$10.00
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son fields exchanged in theNN interaction and describes the
long-range particle-hole correlations between the nucleon
while D describes the short-range correlations that resu
from the exchange of these mesons@26,35,36#.

We consider the simplest meson exchange model for th
NN interactions in which the mesons propagate freely. Th
values of the coupling constants and of the rest masses of t
mesons are adjusted to give the saturation point of nucle
matter, with a binding energy per nucleon of215.75 MeV,
for a Fermi momentumkF of 1.35 fm21 @30,37#. This de-
fines the usual effective theory for theNN interactions and
for the approximate mean fieldsS andD @36,38#.

The description of pairing correlations in the BCS mode
@39–41# requires the consideration of the time-reversed bary
onic states. Here we modify the usual QHD Lagrangian b
introducing an operatorcA, related through time reversal to
the fermion field operator,c. The fermion propagator in the
HFB approximation is expressed in terms ofG5^T(cc̄)&
and G̃5^T(cAcA)&, as well as the anomalous propagators
F5^T(ccA)& andF̃5^T(cAc̄)&, associated with the corre-
lated propagation of the nucleons in the nuclear medium, du
to the pairing correlations.

The self-consistency equations are obtained from th
Schwinger-Dyson equations for the self-energiesS andD.
As an alternative procedure one can also formulate the mod
by using relativistic Bogoliubov coefficients, in analogy to
the nonrelativistic ones@37,42#.

The results of these two equivalent algebraic formulation
can be compared with calculations of nuclear matter in th
literature, in terms of the explicit self-consistency equation
for S andD or in terms of the numerical results for the mean
fields and the binding energy per nucleon as a function of th
baryon density and momentum@2–4,28,30,32,43#. We obtain
a simultaneous description of nuclear matter saturation an
of the gap parameter, compatible with traditional nonrelativ
istic calculations for pairing in nuclear matter@3,4,6#.

To obtain numerical results, we make an additional ap
proximation by eliminating the divergent contributions of the
negative-energy states of the Dirac sea, analogous to t
2385 © 1996 The American Physical Society
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truncation used in the Hartree or Hartree-Fock~HF! approxi-
mations to QHD@30#.

We note that the truncation of the negative-energy sp
trum can be performed at several points in the calculation.
particular, it is possible to truncate the spectrum at the H
level ~‘‘no sea’’ approximation!, before including the effects
of pairing, or at the HFB level~truncation approximation!,
where both mean field and pairing effects have been ta
into account. As the pairing fields are relatively small whe
compared to the self-energy fields, one might expect the d
ferences to be small. Nonetheless, we find that the pair
fields in the ‘‘no sea’’ approximation are much larger tha
those in the truncation approximation and behave differen
as a function of the baryon density.

This paper is organized as follows. In Sec. II we prese
the model Lagrangians and deduce the self-consistent me
field equations forS andD. In Sec. III we give the explicit
expressions for these equations, for the energy density
the baryon density. We then introduce the additional trunc
tion approximation and present the numerical results. In S
IV, we redefine the model in terms of the Bogoliubov coe
ficients and present the results of the ‘‘no sea’’ approxim
tion. We conclude that the truncation approximation is
better agreement with nonrelativistic results than the ‘‘n
sea’’ one. Our findings are summarized in Sec. V.

II. THE MEAN-FIELD EQUATIONS FOR S AND D

In this section we present the Lagrangian of the mod
and the covariant equations for the mean-field energiesS
andD. We use the conventions of Itzykson and Zuber@44#,

such that foram5(a0,aW ) andbm5(b0,bW ), the scalar product

is given byamb
m5a0b02aW •bW .

We designate byc(x),f(x),Vm(x),pW (x),rW m(x) the field
operators at the pointx associated to the nucleons and m
sonss, v, p, and r, respectively. The quantum number
(Jp,T) for each meson with spinJ, intrinsic parityp, and
isospinT are

s~01,0!, v~12,0!, p~02,1!, r~12,1!.

We designate the effective meson-nucleon coupling co
stants bygs ,gv ,gp , andgr , and the respective bare masse
by ms ,mv ,mp , andmr . The nucleon bare mass isM and
we assume in the present model that the nucleons and
sons are pointlike. These assumptions are typical of the s
plest meson-exchange models of nuclear structure.

The Lagrangian density is given by

L5L01Lint , ~1!

whereL0 is the free Lagrangian density
c-
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L0~x!5c̄~x!@ i ]”2M #c~x!1
1

2
@]mf~x!]mf~x!2ms

2f2~x!#

1
1

2
mv
2Vm~x!Vm~x!2

1

4
FmnF

mn

1
1

2
@]mpW ~x!]mpW ~x!2mp

2pW 2~x!#

1
1

2
mr
2rW m~x!•rW m~x!2

1

4
GW mn•GW

mn, ~2!

with vector field tensors

Fmn5]mVn2]nVm ,

GW mn5]mrW n2]nrW m , ~3!

and the interaction terms are

Lint~x!52gsc̄~x!f~x!c~x!2gvc̄~x!gmV
m~x!c~x!

2
gp

2M
c̄~x!g5gmtWc~x!•]mpW ~x!

2
1

2
grc̄~x!gmtW•rW m~x!c~x!. ~4!

We also characterize theNN interactions in nuclear mat-
ter by an effective single-particle Lagrangian,Leff , given in
terms of the self-energiesS andD. In particular, the defini-
tion of D uses correlated pairs of single-particle states w
opposite momenta and spin, in agreement with the origi
idea of Cooper@39#. Following Gorkov @34# we introduce
such pairs by using a modified form of the time-revers
states, which we designate bycA. If we designate the time-
reversal operator byT, the time-reversed conjugate of th
field c, c (T ), is given by@44#

c~T !~x!5Tc~x!T215Bc̄T~ x̃ !5g0Bc* ~ x̃ !, ~5!

where

x̃5~2t,xW !, B5g5C, ~6!

andC is the charge conjugation operator. Then we defi
cA as

cA~x!5B^ t2c
~T !~ x̃ !5Ac̄T~x!, ~7!

whereA5B^ t2 and

t25S 0 2 i

i 0 D
is a Pauli matrix operating in the isospin space. We use
following ansatz for the effective single-particle Lagrangia
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E dtLeff5E d4xd4yH c̄~x!@ i ]”2M1g0m#d~x2y!c~y!

2c̄~x!S~x2y!c~y!1
1

2
c̄~x!D~x2y!cA~y!

1
1

2
cA~x!D̄~x2y!c~y!J , ~8!

whered(x2y) is a four-dimensional Diracd function and
m is the chemical potential to be used as a Lagrange mu
plier to fix the average number of particles.

The symmetries of the effective mean-field Lagrangia
lti-

n

under transposition, Hermitian conjugation, and the e
change of dummy variables,x and y, yield the following
properties of the mean fields:

D~x!52ATDT~2x!A† and D̄~x!52AD̄T~2x!A* ,
~9!

and

S~x!5g0S
†~2x!g0 and D~x!5g0D̄

†~2x!g0 . ~10!

We can put the effective LagrangianLeff in a more sym-
metrical form by noting that
E d4xd4yc̄~x!@~ i ]”2M01g0m!d~x2y!2S~x2y!#c~y! ~11!

5E d4xd4ycA~x!@~ i ]”1M02g0m!d~x2y!1SA~x2y!#cA~y!, ~12!

where

SA~x!5AST~2x!A†. ~13!

The effective Lagrangian can then be rewritten in matrix form as

E dtLeff5
1

2E d4xd4x8@ c̄~x!,c̄A~x!#

3S ~ i ]”2M1mg0!d~x2x8!2S~x2x8! D~x2x8!

D̄~x2x8! ~ i ]”1M2mg0!d~x2x8!1SA~x2x8!
D S c~x8!

cA~x8!
D ,

which immediately yields the following coupled equations of motion for the fieldsc andcA:

E d4yS ~ i ]”2M1g0m!d~x2y!2S~x2y! D~x2y!

D̄~x2y! ~ i ]”1M2g0m!d~x2y!1SA~x2y!
D S c~y!

cA~y!
D 50. ~14!
-

-

la-
ed

e

Defining the generalized baryon field operator as

C~x!5S c~x!

cA~x!
D ,

one obtains a generalized baryon~quasiparticle! propagator

S~x2y!5SG~x2y! F~x2y!

F̃~x2y! G̃~x2y!
D

52 i K S c~x!

cA~x!D „c̄ ~y!,c̄A~y!…L , ~15!

where, by ^•••&, we mean the time-ordered expectatio
value in the interacting nuclear matter ground sta

^ 0̃ uT(•••)u 0̃&. We assume that the stateu 0̃& contains only
nucleons interacting in nuclear matter through the exchan
of virtual mesons and contains no real mesons. We also

sume thatu 0̃& is symmetric under rotations and translation
n
te,

ge
as-

s,

so that the propagatorS depends only on the difference be
tween the end points of propagation.

We observe thatG(x2y) is the usual baryon propagator
while G̃(x2y) describes the propagation of baryons in time
reversed states. The off-diagonal terms ofS(x2y) describe
the propagation of correlated baryons and are just the re
tivistic generalizations of the anomalous propagators defin
by Gorkov @34#.

The propagator in momentum space satisfies

S k”2M1g0m2S~k! D~k!

D̄~k! k”1M2g0m1SA~k!
D

3SG~k! F~k!

F̃~k! G̃~k!
D 5S 1 0

0 1 D . ~16!

To derive the mean-field equations, we first rewrite th
interaction terms of the Lagrangian densityLint , using the
compact notation@32,33#
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Lint~x!52(
j

c̄~x!G ja~x!f j
a~x!c~x!, ~17!

where the Greek lettersa,b, . . . represent any indices ne
essary for the correct description of the meson propaga
and coupling~Lorentz indices, isospin, etc.!. The index j
indicates the mesons of the model:s, v, p, andr and the
G j (x) designate the respective vertices of the meson-nuc
coupling, given in Table I.

We then rewrite the meson fieldsf j in terms of their
sources as

f j
a~x!5 i E d4yDj

ab~x2y!c̄~y!G jb~y!c~y!, ~18!

where2 iD j
ab(x2y) is the free Feynman propagator of m

son j .
Substituting Eq.~18! into Eq. ~17!, we have

E dtLint52 i(
j
E d4xd4yc̄~x!G ja~x!c~x!

3Dj
ab~x2y!c̄~y!G jb~y!c~y!. ~19!

Following Gorkov @34#, we then obtain the mean-fiel
contribution of this interaction term by replacing each of t
possible pairs of fermion fields by its vacuum expectat
value,

E dt~L int!eff5
1

2(j E d4xd4yDj
ab~x2y!

3$2c̄ ~x!G ja~x!c~x!^ c̄~y!G jb~y!c~y!&

12c̄ ~x!G ja~x!^c~x!c̄~y!&G jb~y!c~y!

2 c̄ ~x!G ja~x!^c~x!cT~y!&G jb
T ~y!c̄T~y!

2cT~x!G ja
T ~x!^ c̄T~x!c̄~y!&G jb~y!c~y!%,

~20!

where^•••& is again the time-ordered expectation value
the interacting nuclear-matter ground state.

We note that the first term in this expression is a dir
Hartree one, the second a Fock exchange one, while the
two, after using the definition ofcA to replace the transpose
c ’s, can be recognized as pairing terms. Comparing th
mean-field contributions to those of the effective quasipa
cle Lagrangian, we can express the self-energy and pa
fields in terms of the two-fermion vacuum expectation valu
as

TABLE I. Vertices of the meson-nucleon couplings used in t
model.

j s v r p ~p.v.!

G ja ~gs! ~gvgm! ~
1
2grgmtW! S gp

2M
g5gm]mtWD
-
tion
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S~x2y!52d~x2y!(
j

G ja~x!E d4zDj
ab~x2z!

3^ c̄~z!G jb~z!c~z!&2(
j

G ja~x!Dab~x2y!

3^c~x!c̄~y!&G jb~y!, ~21!

and

D~x2y!52(
j

G ja~x!Dj
ab~x2y!^c~x!c̄A~y!&AGb

T~y!A†,

~22!

where the equation forD̄(x2y) can be obtained using the
Hermiticity condition of Eq.~10!. These expressions become
self-consistency equations when we evaluate the expectat
values by using their relationship to the generalized bary
propagator, Eq.~15!, which is itself a function of the mean
fields. We find

S~x2y!

5d~x2y!(
j

G ja~x!E d4zDj
ab~x2z!Tr@G jb~z!G~z2z!#

2(
j

G ja~x!Dab~x2y!G~x2y!G jb~y!, ~23!

and

D~x2y!52(
j

G ja~x!Dj
ab~x2y!F~x2y!AG jb

T ~y!A†.

~24!

The equations forS andD in momentum space are ob-
tained by Fourier transforming the above expressions, givi

S~k!5(
j

G ja~0!Dj
ab~0!E d4q

~2p!4
Tr@G jb~0!G~q!#eiq

001

2(
j
E d4q

~2p!4
G ja~q!Dj

ab~q!G~k2q!G jb~2q!,

~25!

and

D~k!52(
j
E d4q

~2p!4
G ja~q!Dj

ab~q!F~k2q!

3AG jb
T ~2q!A†, ~26!

respectively.
These expressions are the self-consistency equations

the HFB approximation when we solve them simultaneous
with the Dyson equation~16! for the generalized baryon
propagator,S(k).

III. THE RELATIVISTIC HFB APPROXIMATION

To obtain explicit equations forS andD, we first intro-
duce the symmetries of nuclear matter, which permit impo
tant simplifications in the structure of the mean fields. W
assume nuclear matter to be invariant under rotations, tra

he
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lations, and parity transformations and to have total isos
zero. We also restrict our attention to1S0 pairing. We can
then reduce the form of the model mean fields@30,33#, in the
nuclear matter rest frame, to the following:

S~k!5Ss~ ukW u,k0,rB!2g0S0~ ukW u,k0,rB!

1gW •kWSv~ ukW u,k0,rB!,

and

D~k!5@Ds~ ukW u,k0,rB!2g0D0~ ukW u,k0,rB!

2 ig0gW •kWDT~ ukW u,k0,rB!# ^ tW•n̂. ~27!

Although each of the terms in the expression forD could, in
principle, be an independent isovector, we have simplifi
pin

ed

the isospin dependence to an overall factor oftW•n̂, where the
unit vectorn̂ is arbitrary in direction. Note that this form o
the pairing field reduces to the standard one, contain
proton-proton and neutron-neutron pairing fields, wh

tW•n̂5t2. The isospin symmetry of nuclear matter, howeve
allows one to choose arbitrarily the direction in isospin spa
of the pairing fieldD(k) without changing its1S0 form.

We rewrite the generalized propagator as

S~k!5~v2H̃!21S g0 0

0 g0
D , ~28!

wherev5k0 is the quasinucleon energy and, from Eq.~19!,
wing
~v2H̃!5S g0„gmk
m2M1g0m2S~k!1 i e… g0D

D†g0 g0„gmk
m1M2g0m1SA~k!2 i e…D . ~29!

The symmetries ofH̃ imply that its eigenvalues are degenerate in spin and isospin. Direct calculation gives the follo
expression for the determinant of the inverse ofS(k):

det@S~k!21#5 det@v2H̃#5@~v22a!22b2#4, ~30!

where we have defined

a5EF
!21k!21M!21uDsu21uD0u21uDTu2,

and

b52A@Re~DTD0* !#21@EF
!M!1 Re~DsD0* !#21@EF

!k!1 Im~DsDT* !#21uM!DT1 ik!D0u2, ~31!
e

-

l,
-

in which the asterisk (*) indicating complex conjugatio
should not be confused with the ‘‘star’’ (!) that indicates
physical quantities modified by the self-energy. The latter a
the effective mass of the nucleon in the nuclear matter

M!5M1Ss~k!, ~32!

the effective ‘‘Fermi’’ energy

EF
!5S0~k!1m,

and the effective linear momentum

k!5@11Sv~k!#ukW u. ~33!

The 16 roots of the equation

det@v2H̃#50 ~34!

reduce to four independent solutions given by6Aa6b,
which are degenerate in the spin and the isospin quant
numbers.

We integrate in the upper half plane of the baryon ener
in Eqs.~25! and ~26! to select the contributions correspond
n

re

um

gy
-

ing, in the zero-pairing limit, to the occupied states in th
Fermi and Dirac seas. The contributing poles are

v252Aa1b and v152Aa2b, ~35!

which reduce in the zero-pairing limit and for baryon mo
menta below the Fermi level,kF , to the usual HF-values
@30#

v252Ek
!2EF

! and v15Ek
!2EF

! , ~36!

where

Ek
!5Ak!21M!2. ~37!

To calculate the baryon density, we use the definition@30#

rB5^ 0̃ uc̄~x!g0c~x!u 0̃&52 i Tr@g0G~x2x1!#. ~38!

The baryon energy density, relative to the chemical potentia
is given by theT̂00 component of the energy-momentum ten
sor. We thus have
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Ĥ5T̂001mN̂52L81mN̂1
]L8

]~] tc!
] tc1

]L8

]~] tc
A!

] tc
A

1(
j

]L8

]~] tf j
a!

] tf j
a, ~39!

whereN̂ is

N̂5c̄~x!g0c~x!. ~40!

If one neglects the retardation terms in Eq.~39!, which are
associated with the time derivatives of the meson fields, th
the ground state expectation value ofĤ can be shown to be

e5^Ĥ&5
i

2
lim
y→x1

Tr@~ igW •]W2M !G~x2y!

1~ igW •]W1M !G̃~x2y!]2
i

4E d4y Tr@S~x2y!

3G~y2x!2D̄~x2y!F~y2x!2D~x2y!F̃~y2x!

2SA~x2y!G̃~y2x!], ~41!

which can be written in momentum space as

e52
i

2E d4k

~2p!4
Tr$@S~k!12~gW •kW1M !#G~k!

2 Re@D̄~k!F~k!#%. ~42!

In the limit of zero pairing, the above expressions redu
to the usual results of the HF approximation to QHD.

A. The truncation method

From previous QHD calculations, one knows that the n
glect of terms associated with the polev2 gives good results
within the relativistic HF approximation@26–30#. Thus one
can expect that the same procedure could be success
applied to the HFB approximation.

We define thetruncation approximationto the present
HFB model as the elimination of the terms associated w
v2 in the self-consistency equations, Eqs.~25! and~26!. We
shall also assume that the meson masses are fixed and
the coupling constants are adjusted to give the nuclear ma
saturation point: a binding energy per nucleon
BE/A;215.75 MeV at a Fermi momentum ofkF;1.35
fm21 @30,37#.

1. Numerical results with the truncation approximation

In our numerical evaluations, the masses of the mes
have been fixed at the values usually adopted in the literat
and given in Table II@28,30#. We shall designate the variou
forms of theNN interaction used through explicit indication
of the mesons considered in the model.

The coupling constants for the mesonss andv are ad-
justed in the diverse cases. The coupling constant for
pion is fixed at its empirical value ofgp

25181.0. The value
of ther meson coupling constant is not fixed in the literatu
@21,22,28,32,38,45#, so we have used two arbitrary values
en

ce

e-

fully

ith

that
tter
of

ons
ure
s

the

re
.

One of them~A! is close to the value adopted in Ref.@13#
and the other~B! is nearly twice this value and is close to the
values adopted in the Bonn potentials@22,24,45#. The two
values are

A:gr
2525.4,

gr
2

4p
52.04

and

B:gr
2553.7,

gr
2

4p
54.28. ~43!

The values for the constantsgs
2 and gv

2 for the (s, v, p,
r) model and for the (s, v) model are given in Table III for
both the HFB approximation and the HF approximation. I
both cases the values ofgs

2 and gv
2 are adjusted to fit the

saturation point of nuclear matter. We present only results
which the retardation terms in the self-consistency equatio
have been neglected. Results including the retardation ter
are very similar to those shown.

We have introduced, as an additional parameter, a cut
at ukW u5L in the baryon momentum integrals of the self
consistency equations. Such a cutoff is used in many~but not
all! nonrelativistic HFB calculations. Here it might be justi-
fied as a crude approximation to the nucleon-meson vert
form factors that our calculations donot contain.

The values of the components of the self-energy,S, as a
function of the baryon density for the various models of th
NN interaction are very close to the corresponding values
the Hartree-Fock approximation and show almost no vari
tion for increasing values of the cutoff,L. The functional
dependence of the componentsSs , S0, andSv of the self-
energy with the baryon density for a given cutoff,L, is al-
most identical to that of the Hartree-Fock results. The valu
of the componentSv calculated with interactions which in-
clude the pion are more strongly density dependent th
those which do not include it, particularly at high baryon
densities, whileSs andS0 are less model dependent. This
result is also found in the HF case@13#.

Numerical results for the binding energy per nucleon
BE/A, are shown in Fig. 1 as a function of the Fermi mo
mentum,kF , for the (s, v) and (s, v, p, r2A) models.
The binding energy per nucleon,BE/A, of the HFB results
are almost identical to the HF ones. The HFB binding energ
presents differences with respect to the HF binding ener
only for low baryon densities.

The variation in the magnitude of the pairing fields,D, for
the various types ofNN interactions, is quite expressive. To
analyze the results forD, we use the gap parameter,DG ,
which is given in Eq.~54! of the next section,

DG5D0

M!

Ek
! 2Ds1 iDT

k!ukW u
Ek

! .

This form of the gap parameter results from a comparison
the present results with the nonrelativistic ones, as will b
explained in Sec. IV. Note that the gap parameter is a res
of the partial cancellation between the principal componen
of the pairing field,Ds andD0.
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The values of the maximum of the gap paramete
DGmax, for several values of the cutoff are given in Table IV
Values between 2.4 MeV and 3.1 MeV are obtained f
DGmax for a cutoff of 506 MeV/c and a Fermi momenta of
kF; 0.7 fm21. For a cutoff of 410 MeV/c, one obtains
slightly larger maxima forDG , between 2.4 MeV and 4.1
MeV in the same density interval. The results forL5 506
MeV/c, in the (s, v, p, r2A) and (s, v) models, are in
agreement with the values obtained with nonrelativistic ca
culations, which estimate a maximum value ofDG in nuclear
matter between 2.5 MeV and 3.0 MeV forkF between 0.7
fm21 and 0.8 fm21 @2–4#. For L5 410 MeV/c, just the
(s, v, p, r2A) model and, forL5 716 MeV/c, just the
(s, v, p, r2B) model are in accordance with nonrelativis
tic calculations.

We thus conclude that, for the models considered, it
possible to find a cutoff between 400 MeV/c and 700 MeV/
c such that the maximum ofDG in nuclear matter is between
the limits indicated by the nonrelativistic calculations.

The results for the components of the fieldD, as a func-
tion of the Fermi momentumkF , are shown in Fig. 2. One
notes that the various components ofD reach a maximum for
kF' 0.7 fm21, which is a characteristic feature of the de
pendence of the pairing field onkF . Another important fea-
ture appearing in the figures is the relatively small gap p
rameterDG that results from the partial cancellation of th
large components of the pairing field,Ds andD0. The com-
ponentDT is several orders of magnitude smaller than th
others and is not shown.

In Fig. 3, the components of the pairing field as a functio
of the baryon momentum are shown for the (s, v) and (s,

FIG. 1. The binding energy per nucleon as a function of th
baryon density in the truncation approximation using a cutoff
506 MeV/c. The coupling constants have been adjusted to rep
duce the saturation point of nuclear matter.

TABLE II. Values of the masses of the mesons used in th
numerical calculations

Meson s v p r

Mass~MeV! 550 783 138 770
r,
.
or

l-

-

is

-

a-
e

e

n

v, p, r2A) models, forkF50.68 fm21. Note that the gap
parameter,DG , changes sign for a baryon momentum o
about 2 fm21.

In the truncation approximation, the dependence of th
maximum ofDG with the cutoffL shows the same general
trend in the interaction models considered. The magnitude
the components of the fieldD decrease and reach an absolut
minimum for 500 MeV/c <L< 800 MeV/c and then in-
crease forL→`, as shown in Fig. 4. This behavior is more
pronounced in the cases in which the pion is present due
its longer range. ForL→`, the maxima ofDG in the (s,
v, p, r2A) model and in the (s, v) model converge to
well-defined asymptotic values.

IV. THE BOGOLIUBOV-VALATIN TRANSFORMATION

In this section, we reformulate the HFB approximation in
terms of Bogoliubov coefficients. We develop the ‘‘no sea’
approximation@13,32,36# and use it in calculations, which
we then compare to the results obtained in the truncatio
approximation.

The method we present was developed by Bogoliubo
and collaborators@46–48#, and independently by Valatin
@49#, for the description of pairing correlation among fermi-
ons, in the context of the theories of superfluidity and supe
conductivity. It consists of a description of the fieldsS and
D of the HFB approximation in terms of the contributions o
particles and antiparticles that are generalized to allow f
partially occupied single-particle states@50,51#. The method
is based upon a canonical transformation in the Fock spa

e
of
ro-

FIG. 2. The two principal components of the pairing field,Ds

andD0, and the gap parameter,DG , as a function of the baryon
density in the truncation approximation for a cutoff of 506 MeV
c. DG is the gap parameter defined in Eq.~76!.

e

TABLE III. Coupling constants used in the various models.

Model gs
2 gv

2 ~HFB! gv
2 ~HF!

(s, v, p, r2A) 101.814 121.148 121.258
(s, v, p, r2B) 100.731 120.433 120.533
(s, v) 96.392 129.260 129.560
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such that the new operators describe the creation and a
hilation of correlated quasiparticles in the interacting grou
stateu 0̃&. One then defines a mean-field model in which th
nucleons dressed by the fieldsS and D are described by
these new operators. The mean-field approximation is giv
in terms of an approximate ground state that satisfies
equation

alu 0̃&50, ~44!

whereal is the new destruction operator andl designates
the quantum numbers of a one-quasiparticle state in nuc
matter. The Gorkov factorization given in Eq.~20! is a direct
result of the above equation and the Wick theorem@37#.

In the previous section we saw that the single-partic
spectrum of the present model, as well as the se
consistency equations forS andD, are independent of the
nucleon isospin. Therefore, for each type of quasipartic
one can consider the indexl as designating only the momen
tum kW and the spins.

One can identify the contributions of the different types
states in the present model by comparison with the nonre
tivistic case, in which the coefficients of the Bogoliubo
transformation, which we designate byAl andCl , are given
by

AkWs5^ 0̃ uakWsuÑ& and CkWs5^ 0̃ ua
2kW2s
† uM̃ &. ~45!

FIG. 3. The two principal components of the pairing field,Ds

andD0, and the gap parameter,DG , as a function of the baryon
momentum,k, for rB;0.021 fm23, in the truncation approxima-
tion. The two cases correspond toL5 506 MeV/c.
nni-
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e
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Similarly, the Bogoliubov coefficients for the antinucleon
are

BkWs5^ 0̃ ud
2kW2s
† uÑ& and DkWs5^ 0̃ udkWsuM̃ &. ~46!

In these expressions the symbolsal and al
† are the

nucleon annihilation and creation operators, respective
while the symbolsdl anddl

† are the antinucleon ones. All
these operators are associated with the one-particle st
given by the HF approximation, whileuÑ& and uM̃ & are the
intermediate states of nuclear matter with one nucleon mo
or less than the ground state.

Although the ground state does not have a fixed numb
of nucleons, the average number of nucleons is fixed as
mean value of the operatorN̂ given in Eq.~40!. The single-
particle states and energies are given by the eigenvalues
the zero-temperature thermodynamic potential,K̂5Ĥ2mN̂.
The statesu 0̃&, uÑ&, and uM̃ & are eigenstates ofK̂ and the
energy of the quasinucleons is given with respect to t
chemical potential. An explicit realization of the relativistic
HFB ground state can be derived, just as in the nonrelativ
tic case@4,42,52# ~see Appendix A!.

The baryon propagatorsG andF, defined in Eq.~15!, can
be rewritten as functions of the Bogoliubov coefficients in a
expansion over the intermediate states of nuclear mat
classified in accordance with the types of quasiparticle th
contain,

FIG. 4. The maximum gap parameter,DGmax, as a function of
the cutoffL. The curves that saturate at high values of the cuto
were obtained in the truncation approximation while those that e
trapolate the upper bound of the figure were obtained in the ‘‘n
sea’’ approximation.
ous
TABLE IV. The maximum of the gap parameter obtained with the truncation approximation for vari
values of the cutoffL.

DGmax

Model L 5 410 MeV/c L 5 506 MeV/c L 5 601 MeV/c L 5 716 MeV/c

(s, v, p, r2A) 2.939 2.802 3.113 3.356
(s, v, p, r2B) 2.404 2.373 2.665 3.072
(s, v) 4.066 3.092 2.402 2.058
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2iGcb5^ 0̃ uT~ccc̄b!u 0̃&

5(
j

@^ 0̃ uccu j &^ j uc̄bu 0̃&u~ tc2tb!2^ 0̃ uc̄bu j &

3^ j uccu 0̃&u~ tb2tc!#,
~47!

iF cb5^ 0̃ uT~cc
Ac̄b!u 0̃&

5(
l

@^ 0̃ ucc
Au l &^ l uc̄bu 0̃&u~ tc2tb!2^ 0̃ uc̄bu l &

3^ l ucc
Au 0̃&u~ tb2tc!#.

The summations over the intermediate states,u j & andu l & , run
over all possible quasiparticles of the model.

To expand the fieldsc andcA in terms of the Fock op-
erators of the nucleons, one can use two orthonormal ba
in the bispinor space,Su andSv , defined by the eigenvectors
of

g0gW •kW1g0M2m1g0S~k!

and g0gW •kW2g0M1m2g0S
A~k!, ~48!

TABLE V. Vectors of the basisSu andSv .

Spin up Spin down

Energy1Ek
! u11v21 u12v22

Energy2Ek
! u21v11 u22v12
ses

respectively. We designate these asSu5$u1l ,u2l% and
Sv5$v1l ,v2l% , with l corresponding to the values of spi
and energy given in Table V. Note that these are the eig
vectors corresponding to the Hartree-Fock mean field al
~no pairing!.

The definition of cA and the equation for the baryo
propagators imply that

v ikWs5Būi2kWs
T

5 f sui2kW2s , i51,2, ~49!

where f s is a phase factor. We can thus take the vectors
the basesSu andSv in Eq. ~48! to be

u1kWs5v12kW2s5hS Ek
!1M!

sW •k!W D xs

and

u2kWs5v22kW2s5hS 2sW •k!W

Ek
!1M!D xs , ~50!

where

k!W5k!k̂5@11Sv~k!#kW , h5
1

A2Ek
!~Ek

!1M!!
, ~51!

andxs represents the Pauli spinor of the baryon state.
We can expand the propagators of Eq.~47! in terms of

these spinors and substitute the latter into the equation t
satisfy@the Fourier transform of Eq.~19!#. After simplifying,
we obtain an explicit equation for the Bogoliubov coeffi
cients
S v1EF
!2Ek

! 0 2DG 2d

0 v1EF
!1Ek

! 2d 2D̃

2DG* 2d v2EF
!1Ek

! 0

2d 2D̃ * 0 v2EF
!2Ek

!

D S Aks

Bks

Cks

Dks

D 50, ~52!
r

the
ide
o

and
mi

nd,

on
alf
along with the normalization condition

uAksu21uBksu21uCksu21uDksu251, ~53!

where the quasiparticle energy,v, is one of the four possible
roots,6Aa6b, and we have defined the following param
eters:

DG~k!5D0

M!

Ek
! 2Ds1 iDT

k!ukW u
Ek

! ,

D̃~k!5D0

M!

Ek
! 1Ds1 iDT

k!ukW u
Ek

! , ~54!

d~k!5 iD0

k!

Ek
! 1DT

M!ukW u
Ek

! .
-

An analysis of these equations shows that fo
v51Aa2b, the values ofuAu2 anduCu2 are similar to soft-
ened step functions of the typeu(k2kF) andu(kF2k), re-
spectively, whileuBu2 and uDu2 take much smaller values.
This solution describes the propagation of particles above
Fermi sea and the propagation of time-reversed holes ins
the Fermi sea. In the solution corresponding t
v52Aa2b, the roles ofuAu2 and uCu2 are reversed. This
describes the propagation of holes inside the Fermi sea
the propagation of time-reversed particles above the Fer
sea.

A similar analysis show that the solutionv51Aa1b,
describes the propagation of time-reversed antiparticles a
finally, the solutionv52Aa1b, describes the propagation
of antiparticles.

In the expressions of the previous section, the integrati
over the baryon energy selects the two poles in the upper h
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TABLE VI. The maximum of the gap parameter obtained with the ‘‘no sea’’ approximation for vari
values of the cutoffL.

DGmax

Model L 5 410 MeV/c L 5 506 MeV/c L 5 601 MeV/c L 5 716 MeV/c

(s, v, p, r2A) 4.825 5.247 7.110 7.821
(s, v, p, r2B) 3.938 4.340 6.011 6.697
(s, v) 5.977 6.184 6.956 7.600
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a

plane and given in Eq.~35!. The terms associated with th
polev2 define the contribution associated with the holes
the Dirac sea, which are those responsible for the div
gences of the model. In the truncation approximation th
divergences were removed by eliminating the terms ass
ated with the polev2 . We can see in Eq.~52! that this
procedure does not eliminate all the contributions associa
with the coefficientsB andD, which correspond to the anti
nucleons of the HF approximation, due to their coupling
the other terms through the componentd of the pairing field.
The importance of these contributions will be analyzed in
next section.

A. The ‘‘no sea’’ approximation

If one neglects the contribution ofd in Eq. ~52!, the co-
efficientsBks andDks are zero for thev1 ~Fermi hole! so-
lution while the coefficientsAks and Cks are zero for the
v2 ~Dirac hole! solution. The truncation approximation the
eliminates the contribution ofBks and Dks together with
v2 . This defines the ‘‘no sea’’ approximation@13,32,36#
that leads to the following reduced form of Eq.~52! for the
Bogoliubov coefficients:

S v1EF
!2Ek

! 2DG

2DG* v2EF
!1Ek

!D S Aks

Cks
D 50, ~55!

with the normalization condition

uAksu21uCksu251 . ~56!

Recall that, in the truncation approximation, the negativ
energy HFB states are discarded. In the ‘‘no sea’’ appro
mation given here, one discards the negative-energy
states, as well as their coupling to the positive-energy o
through the pairing fieldd(k). The ‘‘no sea’’ approximation
thus neglects HF-particle–HF-antiparticle correlations t
are included in the truncation approximation.

The definition of the pairing fieldd, given in Eq.~54!,
suggests that the ‘‘no sea’’ approximation should be alm
equivalent to the truncation one at small values of the bar
momentumk, for which the coupling termd is essentially
linear ink and small. For large values of the baryon mome
tum, however, the coupling between the positive- a
negative-energy HF states is on the order ofD0(k) and dif-
ferences between the two approximations can be expect

One can obtain a self-consistency equation forDG using
Eq. ~54!, the hypothesis thatBks andDks are zero and the
self-consistency equations for the components ofD in terms
of the Bogoliubov coefficients. WithSv50, one finds
in
er-
se
ci-

ted

to

he

n

e-
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es
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d.

DG'
1

4p2E p2dpv~k,p!
DG

A~EF
!2Ep

!!21uDGu2
, ~57!

where the effective gap potential,v(k,p), is given in Appen-
dix B. The equation forDG is formally identical to the non-
relativistic BCS equation. One can thus identify the param
eterDG with the usual gap parameter of the BCS theory.

If we neglect the retardation terms in the effective ga
potential, Eq.~B1!, the result above becomes identical to th
gap equation obtained by Ring and Kucharek@32# who also
worked in the ‘‘no sea’’ approximation. Nevertheless, we
note that Ring and Kucharek only partially considered th
coupled self-consistency equations forS andD.

The strongest motive for considering the ‘‘no sea’’ ap
proximation lies in the similarity of the algebraic expression
with the nonrelativistic ones. The latter have produced
good description of pairing in nuclear matter@2–4#. The non-
relativistic limit of Eq. ~55! yields

~EF
! !NR5EF

!2M5
kF
2

2M
and VNR5Ss2

Ek
!

M
S0 ~58!

whereVNR is the nonrelativistic nucleon-nucleon interaction
potential @15#. Thus, in this limit, Eq. ~55! corresponds
closely to the original formulations of Gorkov, Bogoliubov,
and Valatin@34,46–49# of the description of pairing correla-
tions.

B. Numerical results of the ‘‘no sea’’ approximation

The results for the differentNN interactions, designated
in accordance with the notation defined in the previous se
tion, are shown in Table VI. They were obtained with a
procedure analogous to the one used in the truncati
method. The meson masses have been fixed at the val
given in Table II and the coupling constants have been a
justed to fit the saturation point of nuclear matter. The value
of the coupling constants obtained for the ‘‘no sea’’ approx
mation are identical to those used in the truncation approx
mation due to the small values of the pairing fieldD at the
saturation point for the differentNN interactions considered.

The values for the components of the self-energyS in the
‘‘no sea’’ approximation are very close to the correspondin
ones obtained with the truncation method. In both approx
mations the results for the self-energy are close to the tho
of the HF approximation.

The results for the components of the pairing field as
function of the baryon density in the ‘‘no sea’’ approxima-
tion are given in Fig. 5 for the (s, v) and the (s, v, p,
r2A) models. One observes a similarity in form with the
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results of the truncation approximation but a difference
magnitude of the resulting gap parameter. The results a
function of the baryon momentum are given in the Fig.
also for the (s, v) and (s, v, p, r2A) models, for
kF50.68 fm21. One again notes a similarity in form but
difference in magnitude when comparing the ‘‘no sea’’ r
sults with the truncation ones.

One observes in Fig. 4 that the maximum value of the g
parameter in the ‘‘no sea’’ approximation is always larg
than that in the truncation approximation. The difference
tween the two values grows as the value of the cutoff
increased. These differences can be explained in terms o
coupling of positive- and negative-energy HF states throu
the pairing fieldd that is neglected in the ‘‘no sea’’ approxi
mation. The contribution of this interaction reduces the v

FIG. 5. Pairing fields as a function of the baryon density in t
‘‘no sea’’ approximation using a cutoff of 506 MeV/c. The dashed
curves correspond to the (s,v,p,r) model while the solid ones
correspond to the (s,v) model.

FIG. 6. The two principal components of the pairing field,Ds

andD0, and the gap parameter,DG , as a function of the baryon
momentum,k, for rB;0.021 fm23, in the ‘‘no sea’’ approxima-
tion. The two cases correspond toL5 506 MeV/c.
in
s a
6,

a
e-

ap
er
be-
is
f the
gh
-
al-

ues of the pairing fields in the truncation approximation be
low those of the ‘‘no sea’’ one. Because the coupling firs
increases and then decreases slowly with the baryon mom
tum @in proportion toD0(k)#, its contribution grows and the
difference between the two approximations increases as
cutoff is raised and higher momentum states are included

The values of the gap parameter obtained in the ‘‘no sea
approximation are systematically larger than nonrelativist
ones, except at values of the cutoffL smaller than 300 MeV/
c. The values of the maxima of the gap parameter in the ‘‘n
sea’’ approximation are all larger than 3.9 MeV. Further
more, these values systematically increase for increasing c
offs, as shown in Fig. 4. We thus conclude that the truncatio
approximation of the previous section provides results in be
ter agreement with the nonrelativistic ones than those of t
‘‘no sea’’ approximation.

The results we have obtained are qualitatively similar t
those of Kucharek and Ring@32#, who also found large val-
ues for the relativistic gap parameter in comparison with th
nonrelativistic ones. Kucharek and Ring also obtained d
creasing values of the gap parameter for decreasing cuto
but the threshold value of the cutoff below which they ob
tained good agreement with the nonrelativistic results wa
L< 700 MeV/c, instead of the 300 MeV/c that we found.

We believe the different threshold cutoffs to be due to th
use of the Hartree approximation by Kucharek and Ring
their evaluation of the self-energyS. The coupling constants
in the Hartree approximation are significantly different from
the values obtained in the HF and the HFB approximation
given in Table II . As the pairing field depends quite strongl
on theNN interaction used, theD field obtained with the
coupling constants of the Hartree approximation can sho
large differences with respect to the results obtained in th
HF or the HFB approximations.

The use of the Hartree or the HF approximation to th
S field is not, strictly speaking, consistent with the pairing
correlations of the HFB approximation. Nonetheless, th
very similar values obtained for the coupling constants an
for the baryon self-energy,S, in the HF and the HFB ap-
proximations, show the HF approximation toS to be an
excellent estimate of its HFB value. The use of the Hartre
approximation toS in a calculation that includes pairing
correlations seems to us to be inadequate, if the same c
pling constants are to be used in the calculation of the se
energy and pairing fields.

V. CONCLUSIONS

In this work we have presented a relativistic formulation
of the HFB approximation. We have used the mean fields
the self-energy,S, and of the pairing correlations,D, to de-
scribe correlated nucleons in nuclear matter at zero tempe
ture. Our formulation followed the algebraic method origi
nally developed by Gorkov@34# for the description of
superconductivity in metals, in agreement with the BC
model @39–41# and with the approach developed by Bogo
liubov et al. @46–48#.

We use a Lagrangian formalism for nucleons interactin
through the exchange of mesons and an effective Lagrang
involving the self-energy and the pairing fields. The corre
lated baryon states are described by a generalized bary

he
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field C5(c,cA) involving the fields associated with two
baryon states that are time-reversal conjugates of one
other. The general equations of motion forC are derived
from the Lagrangians of the model and a generalized bary
propagator is defined involving the usual baryon propagato
of the type^cc̄&, and^cAcA&, as well as anomalous propa-
gators of the typêcAc̄&, and^ccA&. As a consequence, the
self-energy of the generalized baryons also involves the pa
ing field.

The self-consistency equations of the HFB approximatio
to QHD are deduced using simplified algebraic structures f
the fieldsS andD in Lorentz and isospin spaces, in accor
dance with the symmetries of nuclear matter. This permits
explicit definition of the baryon propagators in terms of th
components ofS andD. One finds that the most important
components of these fields are the scalar ones (Ss andDs)
and the vector zero-component ones (S0 and D0), which
take large values. The partial cancellation of these large co
ponents yield the usual nonrelativistic results both for th
nucleon-nucleon potential,VNR5Ss2Ek

!S0 /M
!, and for the

gap parameter of the BCS model,DG5M!D0 /Ek
!2Ds . The

remaining components,Sv and DT , are several orders of
magnitude smaller than the principal ones, while the comp
nentsST andDv are identically zero here.

The self-consistency equations in the HFB approximatio
contain two contributions, corresponding to those of th
Dirac and the Fermi seas. The contributions from th
negative-energy states are divergent, as in the Hartree-F
case, and the numerical calculations have been perform
using two different procedures for the elimination of thes
contributions: the truncation and the ‘‘no sea’’ approxima
tions. In the truncation approximation, the negative-ener
HFB states are discarded. In the ‘‘no sea’’ approximatio
one discards the negative-energy HF states, as well as th
coupling to the positive-energy ones through the pairin
field. The ‘‘no sea’’ approximation thus neglects HF
particle–HF antiparticle correlations that are included in th
truncation approximation.

The relative smallness of the pairing fields obtained
nonrelativistic calculations, when compared to the se
energy fields obtained in mean-field approaches to QH
suggests that the HFB results should consist of the usual
results for the baryon self-energy along with a relative
small value for the fieldD, which should not depend impor-
tantly on the procedure used to evaluate it. Nonetheless,
results obtained in the truncation and the ‘‘no sea’’ approx
mations are quite different and show different behaviors f
increasing values of the cutoff in the baryon momentum i
tegrals.

The pairing fields in the truncation approximation show
an initial decrease with an absolute minimum for 500 MeV
c <L< 800 MeV/c, followed by an increase to an asymp
totic value for increasing cutoffs, while the ‘‘no sea’’ pairing
results are larger and systematically increase with the cuto
The differences in the two results can be understood in ter
of the coupling of the positive- and negative-energy H
states that is neglected in the ‘‘no sea’’ approximation. I
contribution is always negative, reducing the values of th
pairing fields in the truncation approximation below those o
the ‘‘no sea’’ one. Because this coupling tends to increa
an-
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with the momentum, its contribution grows and the differ
ence between the two approximations increases as the cu
is raised and higher momentum states are included.

We have compared the results of these two procedu
with the results of nonrelativistic calculations for the pairin
fields, which show@2–4# a maximum forDG in nuclear mat-
ter of about 3.0 MeV for a Fermi momentumkF;0.8
fm21. This maximum ofDG could only be obtained with the
‘‘no sea’’ approximation by using a value of the momentum
cutoff smaller than 300 MeV/c. Such a cutoff is small in
comparison with the usual values. The values of the cuto
obtained with the truncation approximation are larger and
better agreement with other estimates@22,36,53,54#. As the
derivation of the ‘‘no sea’’ procedure also involves mor
drastic approximations than the truncation one, we conclu
that the truncation approximation is better suited than t
‘‘no sea’’ one for the evalution of the pairing fields within
the HFB approximation.

The total HFB energy per nucleon as a function of th
Fermi momentum is extremely close to the HF one, except
low baryon densities. The functional dependence of the se
energy fieldS on the baryon density is almost independe
of the cutoff and close to the HF results@13,27,28,30#. The
values of the coupling constants for all meson exchang
considered are also very close to the values obtained in
HF evaluations. Thus one can conclude that the HF result
the fieldS would serve as a good approximation to its actu
value in the evaluation of theD field. Such a prescription
would be analogous to the use of the nonrelativistic H
mean-field wave functions in the determination of the singl
particle spectrum using the BCS equations@8–10#.

To summarize, we have obtained two basic results in th
work. First, we have derived a consistent relativistic formu
lation for the HFB approximation to QHD that yields result
in good agreement with the traditional nonrelativistic calcu
lations. Second, we have characterized the truncation
proximation as a better method, in comparison with the ‘‘n
sea’’ procedure, for obtaining approximate results within th
mean-field approximation to QHD.
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APPENDIX A: EXPLICIT DEFINITION
OF THE INTERACTING GROUND STATE

Using the definitions and properties of the Bogoliubo
coefficients of Sec. IV, we assume that the ground state h
the form

u 0̃&5)
l

@ml1nlal
†a2l

† 1ol~al
†d2l

† 2dl
†a2l

† !1pldl
†d2l

†

1qlal
†a2l

† dl
†d2l

† #u0&,

and define the quasiparticle operators as
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al~v2!5A1lal1B1ld2l
† 1C1la2l

† 1D1ldl ,

bl~v2!52C1lal
†2D1ld2l1A1la2l1B1ldl

† ,

gl~v1!5A2lal1B2ld2l
† 1C2la2l

† 1D2ldl ,

dl~v1!52C2lal
†2D2ld2l1A2la2l1B2ldl

† ,

where the indices 1 and 2 refer to the polesv2 and v1

given in Eq. ~35!. Then the usual anticommutation condi
tions,

$al
† ,al%51,

$bl
† ,bl%51,

$gl
† ,gl%51,

and

$dl
† ,dl%51,

with all the other anticommutators being equal to zero,
well as the conditions that defineu 0̃& as the vacuum for the
new Fock operators,

alu 0̃&5blu 0̃&5glu 0̃&5dlu 0̃&50,

give the following results:

ml5A1lD2l2A2lD1l , nl5C1lD2l2C2lD1l ,

ol5B1lD2l2B2lD1l , pl5A1lB2l2A2lB1l ,

and

ql5B1lC2l2B2lC1l ,

as well as the normalization properties of the Bogoliubo
coefficients of Sec. IV.

APPENDIX B: THE EFFECTIVE GAP POTENTIAL

In the gap equation, Eq.~57!, we use the following defi-
nitions:

v~k,p!5vs~k,p!1vv~k,p!1vp~k,p!1vr~k,p! ~B1!
-

as

v

and

vs~k,p!5
2gs

2

2Ep
!Ek

! F11
2Mk

!Mp
!12Ep

!Ek
!1Hs1~k,p!

4kp

3us1~k,p!G ,
vv~k,p!5gv

2
2Ep

!Ek
!2Mk

!Mp
!

2Ep
!Ek

!kp
uv1~k,p!,

vp~k,p!5S gp
2

2M D 2 1

Ep
!Ek

! H FMk
!Mp

!2Ep
!Ek

!

1
1

2
„Hp1~k,p!2mp

2
…G

2
up1~k,p!

4kp Fmp
2Ep

!Ek
!22Mk

!Mp
!

3S k21p21
mp
2

2
2Hp1~k,p! D

12k2p21
1

2
Hp1~k,p!„mp

22Hp1~k,p!…G J ,
vr~k,p!5

gr
2

4

2Ep
!Ek

!2Mk
!Mp

!

2Ep
!Ek

!kp
ur1~k,p!. ~B2!

The functionsHj1 andu j1 are defined as

Hj1~k,p!5k21p21mj
22@v1~p!2v1~k!#2, ~B3!

where

v1~k!5A~EF
!2Ek

!!21uDGu2 ~B4!

and

u j15 lnU Hj1~k,p!12kp

H j1~k,p!22kpU with j5s,v,p,r.

~B5!

We have usedk5ukW u andp5uqW u here.
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