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Hartree-Fock-Bogoliubov approximation to relativistic nuclear matter
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We extend the mean-field approximation to relativistic quantum hadrodynamics to include pairing in nuclear
matter. This approach permits a simultaneous description of the energy gap in the single-particle spectrum and
of the saturation point of nuclear matter. The mean field associated with the pairing correlations has large
scalar and vector components that cancel each other resulting in a gap parameter that agrees with the results of
nonrelativistic calculationd.S0556-281®6)03110-X]

PACS numbeps): 21.65+f, 21.30.Fe, 21.60.Jz

[. INTRODUCTION son fields exchanged in ti¢N interaction and describes the
long-range particle-hole correlations between the nucleons,

The traditional nonrelativistic description of pairing cor- while A describes the short-range correlations that result
relations in nuclear physics is made in accordance with thérom the exchange of these mesd@as,35,34.
BCS model and has been successful in accounting for many We consider the simplest meson exchange model for the
nuclear phenomend —10|. It is a simple way of improving NN interactions in which the mesons propagate freely. The
the independent-particle approach to the shell model by invalues of the coupling constants and of the rest masses of the
troducing the short-range correlations associated with thénesons are adjusted to give the saturation point of nuclear
pairing of nucleons in the nuclear medium and responsiblgnatter, with a binding energy per nucleon 6fL5.75 MeV,
for the superfluid phase of the nucleus. Similarly, the long+gr a2 Fermi momentunke of 1.35 fm~! [30,37]. This de-

range correlations associated with collective phenomena ifines the usual effective theory for teN interactions and
nuclei are well described by the nonrelativistic random phase,, ihe approximate mean field and A [36,38.

approximation(RPA) [11]. The description of pairing correlations in the BCS model

On the other hand, it is well known that the nonrelativistic %39_4:]] requires the consideration of the time-reversed bary-

approaches using _reahstlc two-body interactions are not ablOniC states. Here we modify the usual QHD Lagrangian by
to account for basic phenomena, such as the spin-orbit part

of the nucleon-nucleus interaction and the saturation propermtroOIUCIngl an operatoy/", related through time reversal to

ties of nuclear mattef12—20. These properties can be well the fermion field operatory. The fermion propagator in the

described by a relativistic formulatidi21—29 and the suc- HFB_approximation is expressed in terms ®f=(T(y))
cess of the mean-field approach to quantum hadrodynami@nd G=(T(4*¢*)), as well as the anomalous propagators,
(QHD) initially developed by Walecka and collaborators F=(T(y4")) andF=(T(4"y)), associated with the corre-
[15,26-3Q, suggests that an enlarged version of the relativiated propagation of the nucleons in the nuclear medium, due
istic mean-field approach could also be considered to ade the pairing correlations.
count for the residual correlations between nucleons. While a The self-consistency equations are obtained from the
consistent relativistic formulation of RPA based on theSchwinger-Dyson equations for the self-energtesand A.
mean-field approximation to QHD has already been develAs an alternative procedure one can also formulate the model
oped[31] the same is not true with respect to the descriptiorby using relativistic Bogoliubov coefficients, in analogy to
of pairing correlations. To the best of our knowledge, only athe nonrelativistic onef37,42.
partial attempt toward a relativistic description of pairing has The results of these two equivalent algebraic formulations
been performed until now in the work of Kucharek and Ringcan be compared with calculations of nuclear matter in the
[32]. The present work goes in the direction of developing diterature, in terms of the explicit self-consistency equations
consistent relativistic description of the Hartree-Fock-for 3 andA or in terms of the numerical results for the mean
Bogoliubov (HFB) approximation to QHD. fields and the binding energy per nucleon as a function of the
Our formulation[33] uses the algebraic method devel- baryon density and momentur®-4,28,30,32,48 We obtain
oped by Gorko\34] for the description of superconductivity a simultaneous description of nuclear matter saturation and
in metals. In the mean-field approximation to QHD the effectof the gap parameter, compatible with traditional nonrelativ-
of the NN interaction on the single-particle propagator isistic calculations for pairing in nuclear mattes,4,6).
described in terms of the nucleon self-energiesand A, To obtain numerical results, we make an additional ap-
where A is the the pairing field. In this way, the field proximation by eliminating the divergent contributions of the
represents the vacuum expectation value of the various maegative-energy states of the Dirac sea, analogous to the
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truncation used in the Hartree or Hartree-FoidiE) approxi- — 1

mations to QHD[30]. Lo(X) = $(X)[16=M]h(x) + 519, b(x) 9 B(X) - mZp*(x)]
We note that the truncation of the negative-energy spec-

trum can be performed at several points in the calculation. In 1, 1 ,

particular, it is possible to truncate the spectrum at the HF + EvaM(X)VM(X)_ ZFMVFM

level (“no sea” approximation, before including the effects

of pairing, or at the HFB level{truncation approximation

where both mean field and pairing effects have been taken

into account. As the pairing fields are relatively small when 1 1

compared to the self-energy fields, one mlght expect the_t_j|f— + Emiﬁﬂ(x).ﬁu(x)_ Zé’“" Gr, )

ferences to be small. Nonetheless, we find that the pairing

fields in the “no sea” approximation are much larger than

those in the truncation approximation and behave differentlyvith vector field tensors

as a function of the baryon density.

1 - wo 22
+ 5[0, ()3 7(x) ~mZa?(x)]

This paper is organized as follows. In Sec. Il we present Fuo=0,V,—dV,,
the model Lagrangians and deduce the self-consistent mean-
field equations fo2, andA. In Sec. Ill we give the explicit GMV:%’;V_&V’;W 3

expressions for these equations, for the energy density and
the baryon density. We then introduce the additional trunca- . .
. N . and the interaction terms are

tion approximation and present the numerical results. In Sec.

IV, we redefine the model in terms of the Bogoliubov coef- — — "
ficients and present the results of the “no sea” approxima-  £int(X) = = gsth(X) B(X) (X) = G, (X) ¥, V¥(X) $h(X)
tion. We conclude that the truncation approximation is in g, — R )

better agreement with nonrelativistic results than the “no - ﬁzﬂ(x)ysyﬂrwx)-aﬂw(x)

sea” one. Our findings are summarized in Sec. V.

1 — - -
~59,9() YT pEO)Y(X). 4

We also characterize tHeN interactions in nuclear mat-
) ) ] ter by an effective single-particle Lagrangidny, given in

In this section we present the Lagrangian of the modelerms of the self-energies andA. In particular, the defini-
and the covariant equations for the mean-field enerBiies tion of A uses correlated pairs of single-particle states with
andA. We use the conventions of Itzykson and Zup&#],  opposite momenta and spin, in agreement with the original
such that for*=(a° a) andb*=(b°,b), the scalar product idea of Coopef39]. Following Gorkov[34] we introduce
is given byaﬂbﬂ:aobo_é,ﬁ_ such pairs by using a modified form of the time-reversed

We designate by/(x),¢(x),V”(x),7?(x),5”(x) the field states, which we designate Ipy}. If we designate the time-

g , reversal operator by, the time-reversed conjugate of the
operators at the point associated to the nucleons and me-fiald o, ¥, is given by[44]

sonso, w, m, and p, respectively. The quantum numbers
(J7,T) for each meson with spid, intrinsic parity 7, and
isospinT are

Il. THE MEAN-FIELD EQUATIONS FOR 3 AND A

YD) =TP(X)T =By (X)=yBy*X), (5

where

a(07,0, (17,0, (07,1, p(17,1). A
X=(—t,x), B=1ysC, (6)

We designate the effective meson-nucleon coupling conand C is the charge conjugation operator. Then we define
stants bygs.9,.9,, andg,, and the respective bare massesy* as

by mg,m,,m_, andm,. The nucleon bare mass I and

we assume in the present model that the nucleons and me- M(x)zB@rzw(T)(YFA?(x), 7
sons are pointlike. These assumptions are typical of the sim-

plest meson-exchange models of nuclear structure.

hereA=B
The Lagrangian density is given by where ®; and

.
L= Lo+ Lint, (1) 270 o

is a Pauli matrix operating in the isospin space. We use the
where L, is the free Lagrangian density following ansatz for the effective single-particle Lagrangian:
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| under transposition, Hermitian conjugation, and the ex-
f dtl—effzf d*xdy| $(X)[16—M+ you]o(X—y)¢(y) change of dummy variables, andy, yield the following
properties of the mean fields:

_ 1— _ _

— ()2 (X—y)(y)+ 2 WA (X—y) yA(y) A(X)=—ATAT(—x)AT and A(x)= — AAT(—x)A*,

9
1— —

+§WA(X)A(X—YW(V)]. ®  and
where §(x—vy) is a four-dimensional Dira@ function and 3 (X)=yo2T(—x)yo and A(x)= yOE(—x) Yo- (10
u is the chemical potential to be used as a Lagrange multi-
plier to fix the average number of particles. We can put the effective Lagrangidng in a more sym-

The symmetries of the effective mean-field Lagrangianmetrical form by noting that

f dxdYy OO (11— Mo+ yom) S(Xx—y) — S (x—y)Tiy) (1
=f d*xdty gL (i+ Mo— yor) 8(x—y) +SAx—y) 1Y), (12)

where
SAX)=AST(—x)AT. (13

The effective Lagrangian can then be rewritten in matrix form as

f dtLeﬁzgf d*xd*x'[ (), ¥A(%)]

(i0=M+pyo) S(X—X") = Z(x—x") A(x=x") ¢(x'))
X — . '
A(x—x") (ih+M— wyg) S(x—x")+3Ax—x") ) | yAX")
which immediately yields the following coupled equations of motion for the figidmnd y/*:
o [ (0= M+you)S(x—y) =X (x—y) A(x—y) p(y)
f d%y — . A =0. (14
A(x—y) (i6+M—you) 8(x—y)+2A(x—y) yAY)
|
Defining the generalized baryon field operator as so that the propagat@® depends only on the difference be-

tween the end points of propagation.
P(x) We observe thaG(x—Yy) is the usual baryon propagator
¥(x)= YA(X) while G(x—Yy) describes the propagation of baryons in time-
reversed states. The off-diagonal termsS¢x—y) describe
one obtains a generalized bary@uasiparticle¢ propagator  the propagation of correlated baryons and are just the rela-
tivistic generalizations of the anomalous propagators defined

Sx-y) (G(x—y) F(x—y)> by Gorkov[34].
X—V)=| ~ ~ . i
y Fix—y) G(x—Y) The propagator in momentum space satisfies
_ ] e A 15 (k_MJFloM_E(k) A(k) )
=7 oo | PO ). (9 A(k) K+M = you+3AK)
where, by({---), we mean the time-ordered expectation G(k) F(k) 1 0
value in the interacting nuclear matter ground state, X E(k) 5(k) “lo 1/ (16)

(0|T(---)|0). We assume that the stdt@) contains only
nucleons interacting in nuclear matter through the exchange To derive the mean-field equations, we first rewrite the
of virtual mesons and contains no real mesons. We also agteraction terms of the Lagrangian densify,, using the
sume that0) is symmetric under rotations and translations,compact notatiot32,33
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TABLE I. Vertices of the meson-nucleon couplings used in the
model. S(x—y)==8(x=y) 2 Tja(x) f d*zDf#(x~2)
]

i o ® p 7 (p.v.)

X(P(2)Tj5(2)P(2))— 2 Tjo(x)DP(x—y)
r] a (gs) (gvy/.L) (%gp’y,u;’) I (}l’«a < (ﬂ I# lp > ] J y
m’)@’yp. T

X{P(X) (YT 4(Y), (21)

and

L0 == 2 YOOT 0000000, (A §(xoy)=— S 100D Y (WP DAT AT
. (22)
where the Greek letters, 3, ... represent any indices nec- _

essary for the correct description of the meson propagatiowhere the equation foA(x—y) can be obtained using the
and coupling(Lorentz indices, isospin, ejc.The index | Hermiticity condition of Eq(10). These expressions become
indicates the mesons of the model; w, 7, andp and the self-consistency equations when we evaluate the expectation
I'j(x) designate the respective vertices of the meson-nucleovalues by using their relationship to the generalized baryon

coupling, given in Table I. propagator, Eq(15), which is itself a function of the mean
We then rewrite the meson fields; in terms of their fields. We find
sources as
2 (x=y)
a)=i | d*vD¥(x—v) (V)T N
é7'(x) |f dy D (x=y) (V)T jp(y)(y), (18 =5(x—y); Fja(x)f d4sz B(x—z)Tr[I‘jﬁ(z)G(z—z)]

where—iDJ-“B(x—y) is the free Feynman propagator of me-
sonj. =2 T (0D (x=y)G(Xx=y)T4(y), (23
Substituting Eq(18) into Eq. (17), we have '
and

o Ay d®v i SOT
f dtL= i3 fd XAy POOT () () 3k-9) = . T 0D x- Y x- D ATT A

XD =y YT 5N (y). (19 (24)

The equations foB, and A in momentum space are ob-

Following Gorkov [34], we then obtain the mean-field (4ineq by Fourier transforming the above expressions, giving
contribution of this interaction term by replacing each of the

Sgﬁjs;?le pairs of fermion fields by its vacuum expectatlonz(k)zzj: Fja(O)Dfﬁ(O)f (;1:)4 Tr[FJB(O)G(q)]e‘qom

1 d*q )
J dt('—int)efr:§; JdAXd‘lyDjaB(X—Y) —; IWFM(Q)DJ A(@)G(k—q)Tjs(—q),
XA2POOT |00 YO (YT (V) ) @9
_ — d
2900 T (P00 YT (Y)Y o §
_ — q o
=BT L OB TN T 7T) A0==3 [ G @D @F(k=a)
=TT 00T () (YT () ()} X AT T (~q)AT, (26)
(20)

respectively.
where(- - -) is again the time-ordered expectation value in These expressions are the seli-consistency equations of
the HFB approximation when we solve them simultaneously

the interacting nuclear-matter ground state. . . .
We note that the first term in this expression is a directW'th the Dyson equatior(16) for the generalized baryon

Hartree one, the second a Fock exchange one, while the |ag|Eopagator,S(k).

tVYO, after using the c_;lefinition ot/* to replace the trangposed Il THE RELATIVISTIC HFB APPROXIMATION

y's, can be recognized as pairing terms. Comparing these

mean-field contributions to those of the effective quasiparti- To obtain explicit equations fot, and A, we first intro-

cle Lagrangian, we can express the self-energy and pairinguce the symmetries of nuclear matter, which permit impor-
fields in terms of the two-fermion vacuum expectation valuegant simplifications in the structure of the mean fields. We
as assume nuclear matter to be invariant under rotations, trans-
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lations, and parity transformations and to have total isospifihe isospin dependence to an overall factordi, where the
zero. We also restrict our attention {&, pairing. We can  ynit vectorn is arbitrary in direction. Note that this form of
then reduce the form of the model mean fiel88,33, inthe  he pairing field reduces to the standard one, containing

nuclear matter rest frame, to the following: proton-proton and neutron-neutron pairing fields, when

S (K) =3 (KK, pr) — voS.o K| KO, Th= 75. The isospin symmetry of nqclea}r matter, hpwever,
(0 =24([Kl.IC.pe) = Y02 ol [ K, ) allows one to choose arbitrarily the direction in isospin space
+5-k3, (k| .k pg), of the pairing fieldA (k) without changing its'S, form.

We rewrite the generalized propagator as
and

AK)=[A4(|KI,K® pg) — YoA o( K|, K® pp)

~iyoy-KA(K,K,pg)]® 7. (27)

Although each of the terms in the expression Aocould, in
principle, be an independent isovector, we have simplifiedvherew=Kk° is the quasinucleon energy and, from Etp),

Yo 0)

—(— 7)1
S(k)=(w—"H) (0 Y

(28)

Yo7, K =M+ you—2(K) +ie) Yol )
Ay Yoy, Kk + M — you+SAK) —ie)]”

(0—H)= (29)

The symmetries of{ imply that its eigenvalues are degenerate in spin and isospin. Direct calculation gives the following
expression for the determinant of the inverseS(K):

defS(k) !]= defw—H]=[(w?— a)*- p%]*, (30)
where we have defined
a=Er2+ K2+ M*2+|Ag%+]|Ao|2+]| AT

and

B=2[ReATAX)]P+[EEM* + Re(AAF) P+[Efk* + IM(AAX) 2+ [M*Ar+ik*A,l?, (31)

in which the asterisk (*) indicating complex conjugation ing, in the zero-pairing limit, to the occupied states in the
should not be confused with the “starx( that indicates Fermi and Dirac seas. The contributing poles are
physical quantities modified by the self-energy. The latter are

the effective mass of the nucleon in the nuclear matter w_=—a+B and w,=—a—g, (35)
M™=M+2.(k), (32) which reduce in the zero-pairing limit and for baryon mo-

the effective “Fermi” energy menta below the Fermi levekg, to the usual HF-values

[30]
Ef=3o(k)+ pu,
w_=—E;—Ef and o, =E;—Ef, (36)
and the effective linear momentum
where
k*=[1+3,(k)]|k|. (33
Er=Vk*2+M*2, (37)

The 16 roots of the equation
To calculate the baryon density, we use the definifR0]

defw—H]=0 (39
reduce to four independent solutions given tw/a+ B, pe=(0]4(X) ¥o(X)[0)= =1 T %G(x—x,)]. (38
which are degenerate in the spin and the isospin quantum
numbers. The baryon energy density, relative to the chemical potential,

We integrate in the upper half plane of the baryon energys given by theT® component of the energy-momentum ten-
in Egs.(25) and(26) to select the contributions correspond- sor. We thus have
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~ nool @ . 9L oL’ One of them(A) is close to the value adopted in R¢L3]
H=T"+uN=—-L"+uN+ 2ol g+ XS ayt and the othe(B) is nearly twice this value and is close to the
t t values adopted in the Bonn potenti&®2,24,43. The two
E aL’ é 39 values are
+2 a0
T a(ag) ) o2
~ A:g?=25.4, =204
whereN is 9 4w
N= (%) yoib(X). (40)  and

If one neglects the retardation terms in E8Q), which are ) i
associated with the time derivatives of the meson fields, then B:g,=53.7, =428 (43

the ground state expectation valuetbfcan be shown to be

| The values for the constangé and g2 for the (o, o, m,
€:<|:|>: = lim Tr(i ;, 9— M)G(x—y) p) model and for the ¢, ) model are given in Table Il for
2yﬂx+ both the HFB approximation and the HF approximation. In
_ both cases the values gf andg? are adjusted to fit the
. ~ I saturation point of nuclear matter. We present only results in
—\)]——| g4 -
+(iy d+M)G(x=y)] 4j d’y TrZ(x—y) which the retardation terms in the self-consistency equations
. have been neglected. Results including the retardation terms
X G(y—X)—A(X—Y)F(y—x)—A(X—Yy)F(y—X) are very sim?lar to those shown. N
We have introduced, as an additional parameter, a cutoff

—3AX—Y)G(y—x)], (41) at |k|=A in the baryon momentum integrals of the self-
. . _ consistency equations. Such a cutoff is used in n{aoy not
which can be written in momentum space as all) nonrelativistic HFB calculations. Here it might be justi-
, &k fied as a crude approximation to the nucleon-meson vertex
: T form factors that our calculations dwt contain.
=—z| 5—3Tr K)+2(y-k+M)]G(k
€ Zf (2m)* {2(+2(y )G The values of the components of the self-enelyyas a

— function of the baryon density for the various models of the

— RLAKF(K)]}- (42) NN interaction are very close to the corresponding values in

the Hartree-Fock approximation and show almost no varia-
Sion for increasing values of the cutoff\. The functional
dependence of the components, 3, andX, of the self-
. energy with the baryon density for a given cutoff, is al-

A. The truncation method most identical to that of the Hartree-Fock results. The values

From previous QHD calculations, one knows that the ne-of the componenk, calculated with interactions which in-
glect of terms associated with the pabe gives good results clude the pion are more strongly density dependent than
within the relativistic HF approximatiofi26—30. Thus one those which do not include it, particularly at high baryon
can expect that the same procedure could be successfuliiensities, while¢ and 3, are less model dependent. This
applied to the HFB approximation. result is also found in the HF ca$&3].

We define thetruncation approximationto the present Numerical results for the binding energy per nucleon,
HFB model as the elimination of the terms associated witlBE/A, are shown in Fig. 1 as a function of the Fermi mo-
w_ in the self-consistency equations, E(5) and(26). We  mentum kg, for the (o, w) and (o, w, 7, p—A) models.
shall also assume that the meson masses are fixed and tAdte binding energy per nucleoBE/A, of the HFB results
the coupling constants are adjusted to give the nuclear matt@re almost identical to the HF ones. The HFB binding energy
saturation point: a binding energy per nucleon ofpresents differences with respect to the HF binding energy
BE/A~—15.75 MeV at a Fermi momentum d&f-~1.35 only for low baryon densities.

In the limit of zero pairing, the above expressions reduc
to the usual results of the HF approximation to QHD.

fm 1 [30,37. The variation in the magnitude of the pairing fields,for
the various types o N interactions, is quite expressive. To
1. Numerical results with the truncation approximation analyze the results foA, we use the gap parametey;,

In our numerical evaluations, the masses of the meson&Nich is given in Eq/(54) of the next section,
have been fixed at the values usually adopted in the literature
and given in Table 1[28,30. We shall designate the various
forms of theNN interaction used through explicit indication
of the mesons considered in the model.

The coupling constants for the mesomsand w are ad-  This form of the gap parameter results from a comparison of
justed in the diverse cases. The coupling constant for théhe present results with the nonrelativistic ones, as will be
pion is fixed at its empirical value cgfr=181.0. The value explained in Sec. IV. Note that the gap parameter is a result
of the p meson coupling constant is not fixed in the literatureof the partial cancellation between the principal components
[21,22,28,32,38,45 so we have used two arbitrary values. of the pairing field,Ag andA,.

Ag=A M- A+iA k*||2|
- —x | %
G OEk s T Ek
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FIG. 1. The binding energy per nucleon as a function of the FIG. 2. The two principal components of the pairing field,
baryon density in the truncation approximation using a cutoff ofand Ay, and the gap parameteks, as a function of the baryon
506 MeVk. The coupling constants have been adjusted to reprodensity in the truncation approximation for a cutoff of 506 MeV/
duce the saturation point of nuclear matter. c. Ag is the gap parameter defined in E@6).

The values of the maximum of the gap parameterw, 7, p—A) models, forke=0.68 fm™ 1. Note that the gap
Acmax. for several values of the cutoff are given in Table IV. parameterAg, changes sign for a baryon momentum of
Values between 2.4 MeV and 3.1 MeV are obtained forabout 2 fm 1.

Acmax for a cutoff of 506 MeVE and a Fermi momenta of
ke~ 0.7 fm~ 1. For a cutoff of 410 MeW, one obtains
slightly larger maxima forAg, between 2.4 MeV and 4.1
MeV in the same density interval. The results for= 506

MeV/c, in the (o, o, 7, p—A) and (o, @) models, are in

In the truncation approximation, the dependence of the
maximum ofAg with the cutoff A shows the same general
trend in the interaction models considered. The magnitude of
the components of the fieltl decrease and reach an absolute
minimum for 500 MeV¢ <A< 800 MeVkt and then in-

agreement with the values obtained with nonrelativistic calcrease forA —«, as shown in Fig. 4. This behavior is more

culations, which estimate a maximum valueAyf in nuclear
matter between 2.5 MeV and 3.0 MeV f&r between 0.7
fm~! and 0.8 fri ! [2—4]. For A= 410 MeVk, just the
(o, w, 7, p—A) model and, forA= 716 MeVk, just the
(o, w, m, p—B) model are in accordance with nonrelativis-
tic calculations.

pronounced in the cases in which the pion is present due to
its longer range. FoA —«, the maxima ofAg in the (o,

o, m, p—A) model and in the ¢, ») model converge to
well-defined asymptotic values.

IV. THE BOGOLIUBOV-VALATIN TRANSFORMATION

We thus conclude that, for the models considered, it is

possible to find a cutoff between 400 Me&vénd 700 MeV/
¢ such that the maximum & in nuclear matter is between
the limits indicated by the nonrelativistic calculations.
The results for the components of the fidld as a func-
tion of the Fermi momenturkg, are shown in Fig. 2. One
notes that the various componentsiofeach a maximum for

ke~ 0.7 fm~%, which is a characteristic feature of the de-

pendence of the pairing field da . Another important fea-

In this section, we reformulate the HFB approximation in
terms of Bogoliubov coefficients. We develop the “no sea”
approximation[13,32,36 and use it in calculations, which
we then compare to the results obtained in the truncation
approximation.

The method we present was developed by Bogoliubov
and collaboratord46—48, and independently by Valatin
[49], for the description of pairing correlation among fermi-

ture appearing in the figures is the relatively small gap paons, in the context of the theories of superfluidity and super-
rameterA that results from the partial cancellation of the conductivity. It consists of a description of the fielsand

large components of the pairing fieldg andA,. The com-

A of the HFB approximation in terms of the contributions of

ponentA+ is several orders of magnitude smaller than theparticles and antiparticles that are generalized to allow for

others and is not shown.

partially occupied single-particle statgs0,51]. The method

In Fig. 3, the components of the pairing field as a functionis based upon a canonical transformation in the Fock space

of the baryon momentum are shown for the, @) and (o,

TABLE Il. Values of the masses of the mesons used in the

numerical calculations
Meson g ® T p
Mass(MeV) 550 783 138 770

TABLE lll. Coupling constants used in the various models.

Model g2 g% (HFB) g2 (HF)

(o, w, m, p—A) 101.814 121.148 121.258
(o, ®, m, p—B) 100.731 120.433 120.533
(o, ) 96.392 129.260 129.560
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FIG. 3. The two principal components of the pairing field, FIG. 4. The maximum gap parameté¥gnay, as a function of

and A,, and the gap parametek, as a function of the baryon the cutoffz_&. The curves thaF saturate gt high vaIL_Jes of the cutoff

momentunk, for pg~0.021 fm 3, in the truncation approxima- Were obtained in the truncation apprommatlon Whl|.e thoge that ex-

tion. The two cases correspond Ac= 506 MeVk. trapolate the_ upper bound of the figure were obtained in the “no
sea” approximation.

such that the new operators describe the creation and anni- ilarlv. the Bogoliub ficients for th tinucl
hilation of correlated quasiparticles in the interacting groun imilarly, the Bogoliubov: coetlicients for the antinucieons

state|0). One then defines a mean-field model in which the

nucleons dressed by the fields and A are described by B; =<5|dT . |’,\]> and Dj. =<5|d|2 |M>. (46)
these new operators. The mean-field approximation is given s ks g g

in terms of an approximate ground state that satisfies the |, these expressions the symbals and aI are the

equation nucleon annihilation and creation operators, respectively,
- while the symbol«d, and d{ are the antinucleon ones. All
,[0)=0, (44 these operators are associated with the one-particle states

given by the HF approximation, Whi|§\i> and|l’\7l> are the

where , is the new destruction operator anddesignates jntermediate states of nuclear matter with one nucleon more
the quantum numbers of a one-quasiparticle state in nucleq,;r less than the ground state.

matter. The Gorkov factorization given in EQO) is a direct Although the ground state does not have a fixed number

result of the above equation and the Wick theof@™. 4 hycleons, the average number of nucleons is fixed as the
In the previous section we saw that the single-particle >

spectrum of the present model, as well as the Sehc_mean value of the operatdt given in Eq.(40). The single-

. . - article states and energies are given by the eigenvalues of
consistency equations f& and A, are independent of the b g 9 y the elgenva

nucleon isospin. Therefore, for each type of quasiparticle'fhe zero-temperature thermodynamic potent{ai:,H—,uN.

one can consider the indaxas designating only the momen- The stateg0), |N), and|M) are eigenstates df and the
tum k and the Spirs energy of the quasinucleons is given with respect to the

One can identify the contributions of the different types ofChe'ﬁniC""I potential. An explici_t reali_zation 9f the reIativisFig
states in the present model by comparison with the nonrela- FB ground state can be derl_v ed, just as in the nonrelativis-
tivistic case, in which the coefficients of the Bogoliubov ic case[4,42,57 (see Appendix A

: : : : The baryon propagatofs andF, defined in Eq(15), can
g;nsformatlon, which we designate By andC, , are given be rewritten as functions of the Bogoliubov coefficients in an

expansion over the intermediate states of nuclear matter,
classified in accordance with the types of quasiparticle they

—~ ~ T -~
N) and Cis=(0la_;_M). (45  contain,

—k-s

Ags= <6| ks

TABLE IV. The maximum of the gap parameter obtained with the truncation approximation for various
values of the cutoff\.

AGma><
Model A = 410 MeVk A = 506 MeVk A = 601 MeVk A =716 MeVk
(o, w, m, p—A) 2.939 2.802 3.113 3.356
(o, w, m, p—B) 2.404 2.373 2.665 3.072

(0, w) 4.066 3.092 2.402 2.058
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TABLE V. Vectors of the basis§, andS, . respectively. We designate these 8s={u,, ,u,} and
: : S,={v1\,va} , with N corresponding to the values of spin
Spin up Spin down and energy given in Table V. Note that these are the eigen-
x vectors corresponding to the Hartree-Fock mean field alone
Energy + Ey Uiz U102 (no pairing P g
Energy — Ei U210 11 Uz2U 12 :

The definition of 4 and the equation for the baryon
propagators imply that

2iG 5=(0|T(cth)|0) vis=BU_=fli s =12, (49)
_ Ol iV gDV ot —t) — (Ol li wheref, is a phase factor. We can thus take the vectors of
; ({0l el )(il 46l 0) O(te—to) — (Ol o) the baseS, andS, in 4. (48 1o be
X (il 4l 0) Bty to)1, T L
- _ — 47) 1ks— Vi1-k-s— 7 v Xs
iF o= (O[T (¥ 1)[0)
and
=2 [(O1yeIN{/0) Bte—to) = (Ol gal1) o
. Uoks=UV2-k-s= 7 EE‘FM* Xs» (50)
X (Il 0) ot —to)].
where
The summations over the intermediate stdfgsand|l) , run
over all possible quasiparticles of the model. o oa R 1
To expand the fieldgy and ¢* in terms of the Fock op- kK'=kk=[1+Z,(K]k, 7= 2EL(ELIMY) (51)
k\ =k

erators of the nucleons, one can use two orthonormal bases
in the bispinor spaces, andS, , defined by the eigenvectors and y, represents the Pauli spinor of the baryon state.

of We can expand the propagators of E47) in terms of
. these spinors and substitute the latter into the equation they
Yoy K+ yoM =+ v (K) satisfy[the Fourier transform of Eq19)]. After simplifying,
R we obtain an explicit equation for the Bogoliubov coeffi-
and yoy-k— yoM + u— vo2A(k), (48)  cients
|
o+Ef—Ej 0 —Ag -0 Ars
0 o+Ef+Eg -5 -’ Bys
* * * =0, (52)
—Ag -6 o—Ef+Eg 0 Cys
-8 —A* 0 w—Ef—Eg/ |\ Dks
|
along with the normalization condition An analysis of these equations shows that for
) ) ) ) o=+ Ja— B, the values ofA|? and|C|? are similar to soft-
|Asl“+[Bisl “+|Crsl “+|Didl “= 1, (53 ened step functions of the typ#k—kg) and 8(kg—k), re-

here th inarticl . fthe f " spectively, while|B|? and |D|? take much smaller values.
w ere+ j@SIpa;IC € ehnerggg '? onde ?] fe” OUr poSSIvIE - i solution describes the propagation of particles above the
roots, = yar= 8, and we have defined the following param- o i seq and the propagation of time-reversed holes inside

eters: the Fermi sea. In the solution corresponding to

w=—Ja—pB, the roles of|A|?> and|C|? are reversed. This

AG(k)=A0M—*—AS+iAT&*k|, describes the propagation of holes inside the Fermi sea and
Ex = the propagation of time-reversed particles above the Fermi
sea.
—~ M* KK A similar analysis show that the solutian=+ ya+ 8,
A(k):AOE_E +As+'ATE_E’ (34 gescribes the propagation of time-reversed antiparticles and,
finally, the solutionw= —a+ B, describes the propagation
K* M*| IZ| of antiparticles.
S(K)=iAg—=5 +Ar——. In the expressions of the previous section, the integration
Ex Ex over the baryon energy selects the two poles in the upper half
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TABLE VI. The maximum of the gap parameter obtained with the “no sea” approximation for various
values of the cutoffA.

AGmax
Model A = 410 MeVkt A = 506 MeVkt A = 601 MeVkt A = 716 MeVkt
(o, w, 7, p—A) 4.825 5.247 7.110 7.821
(o, w, 7, p—B) 3.938 4,340 6.011 6.697
(o, w) 5.977 6.184 6.956 7.600

plane and given in Eq.35). The terms associated with the 1

pole w_ define the contribution associated with the holes in Ag~ 4_2f p?dpuv(k,p
the Dirac sea, which are those responsible for the diver- ™

gences of the model. In the truncation approximation these . ] o )
divergences were removed by eliminating the terms associhere the effective gap potential(k,p), is given in Appen-
ated with the polew_. We can see in Eq(52) that this dix B. The equation fo\g is formally identical to the non-
procedure does not eliminate all the contributions associatetlativistic BCS equation. One can thus identify the param-
with the coefficients8 andD, which correspond to the anti- €terAg with the usual gap parameter of the BCS theory.
nucleons of the HF approximation, due to their coupling to If we neglect the retardation terms in the effective gap
the Other terms through the Componmf the pairing f|e|d pOtential, Eq(Bl), the reSUIt abOVe becomes |dent|Cal to the

The importance of these contributions will be analyzed in thedaP equation obtained by Ring and Kuchaf8k] who also
next section. worked in the “no sea” approximation. Nevertheless, we

note that Ring and Kucharek only partially considered the
coupled self-consistency equations BrandA.
The strongest motive for considering the “no sea” ap-
If one neglects the contribution &f in Eq. (52), the co-  proximation lies in the similarity of the algebraic expressions
efficientsB, and D, are zero for thew, (Fermi holg so-  with the nonrelativistic ones. The latter have produced a
lution while the coefficientsA,s and C, are zero for the good description of pairing in nuclear matf@r4]. The non-
w_ (Dirac hole solution. The truncation approximation then relativistic limit of Eq. (55) yields
eliminates the contribution oB,; and D, together with
w_ . This defines the “no sea” approximatidi3,32,36
that leads to the following reduced form of E&2) for the
Bogoliubov coefficients:

A

) , (57
V(EE—Ep)%+[Ag|?

A. The “no sea” approximation

2

. \ K Ey
(Ep)NR=Ep—M= M and Vyg=2s— VEO (58)

whereVy is the nonrelativistic nucleon-nucleon interaction

o+ Er—Ey —Ae Axs -0 (55) potential [15]. Thus, in this limit, Eq.(55) corresponds
—A% o—Ef+E;/\ Cys ' closely to the original formulations of Gorkov, Bogoliubov,
and Valatin[34,46—49 of the description of pairing correla-
with the normalization condition tions.
|Ac?+|Cie?=1. (56) B. Numerical results of the “no sea” approximation

The results for the differeniN interactions, designated

Recall that, in the truncation approximation, the negativein accordance with the notation defined in the previous sec-
energy HFB states are discarded. In the “no sea” approxition, are shown in Table VI. They were obtained with a
mation given here, one discards the negative-energy Hprocedure analogous to the one used in the truncation
states, as well as their coupling to the positive-energy onemethod. The meson masses have been fixed at the values
through the pairing field(k). The “no sea” approximation given in Table Il and the coupling constants have been ad-
thus neglects HF-particle—HF-antiparticle correlations thajusted to fit the saturation point of nuclear matter. The values
are included in the truncation approximation. of the coupling constants obtained for the “no sea” approxi-

The definition of the pairing field, given in Eq.(54),  mation are identical to those used in the truncation approxi-
suggests that the “no sea” approximation should be almosination due to the small values of the pairing fidldat the
equivalent to the truncation one at small values of the baryosaturation point for the differemi N interactions considered.
momentumk, for which the coupling tern¥ is essentially The values for the components of the self-eneXgy the
linear ink and small. For large values of the baryon momen-“no sea” approximation are very close to the corresponding
tum, however, the coupling between the positive- andones obtained with the truncation method. In both approxi-
negative-energy HF states is on the ordeiAg{k) and dif-  mations the results for the self-energy are close to the those
ferences between the two approximations can be expectedof the HF approximation.

One can obtain a self-consistency equation£ey using The results for the components of the pairing field as a
Eq. (54), the hypothesis thaB,; and D, are zero and the function of the baryon density in the “no sea” approxima-
self-consistency equations for the componentd oh terms  tion are given in Fig. 5 for thed, w) and the ¢, o, ,
of the Bogoliubov coefficients. Witk ,=0, one finds p—A) models. One observes a similarity in form with the
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ues of the pairing fields in the truncation approximation be-
low those of the “no sea” one. Because the coupling first
increases and then decreases slowly with the baryon momen-
tum [in proportion toAy(k)], its contribution grows and the
difference between the two approximations increases as the
cutoff is raised and higher momentum states are included.

The values of the gap parameter obtained in the “no sea”
approximation are systematically larger than nonrelativistic
ones, except at values of the cutaffsmaller than 300 MeV/
c. The values of the maxima of the gap parameter in the “no
sea” approximation are all larger than 3.9 MeV. Further-
more, these values systematically increase for increasing cut-
offs, as shown in Fig. 4. We thus conclude that the truncation
approximation of the previous section provides results in bet-
ter agreement with the nonrelativistic ones than those of the
“no sea” approximation.

The results we have obtained are qualitatively similar to

FIG. 5. Pairing fields as a function of the baryon density in thet0S€ of Kucharek and Rin@2], who also found large val-

“no sea” approximation using a cutoff of 506 Me¥/The dashed

ues for the relativistic gap parameter in comparison with the

curves correspond to ther(w,,p) model while the solid ones nonrelativistic ones. Kucharek and Ring also obtained de-

correspond to thed, ) model.

results of the truncation approximation but a difference in
magnitude of the resulting gap parameter. The results as
function of the baryon momentum are given in the Fig. 6,

also for the ¢, w) and (o, w, 7, p—A) models, for

ke=0.68 fm~1. One again notes a similarity in form but a
difference in magnitude when comparing the “no sea” re-
sults with the truncation ones.

One observes in Fig. 4 that the maximum value of the ga;g
parameter in the “no sea” approximation is always larger
than that in the truncation approximation. The difference be
tween the two values grows as the value of the cutoff i
increased. These differences can be explained in terms of the
coupling of positive- and negative-energy HF states througl&
the pairing fields that is neglected in the “no sea” approxi-
mation. The contribution of this interaction reduces the val-
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FIG. 6. The two principal components of the pairing field,

and Ay, and the gap parametekg, as a function of the baryon

momentum,k, for pg~0.021 fm~

3

, in the “no sea” approxima-

tion. The two cases correspond Ao= 506 MeVcL.

creasing values of the gap parameter for decreasing cutoffs,
but the threshold value of the cutoff below which they ob-
tained good agreement with the nonrelativistic results was
A=< 700 MeVk, instead of the 300 Me¢/that we found.

4 \We believe the different threshold cutoffs to be due to the
use of the Hartree approximation by Kucharek and Ring in
their evaluation of the self-energy. The coupling constants

in the Hartree approximation are significantly different from
the values obtained in the HF and the HFB approximations
iven in Table Il . As the pairing field depends quite strongly
n the NN interaction used, th& field obtained with the
coupling constants of the Hartree approximation can show

large differences with respect to the results obtained in the

*HF or the HFB approximations.

The use of the Hartree or the HF approximation to the
field is not, strictly speaking, consistent with the pairing
correlations of the HFB approximation. Nonetheless, the
very similar values obtained for the coupling constants and
for the baryon self-energys,, in the HF and the HFB ap-
proximations, show the HF approximation ¥ to be an
excellent estimate of its HFB value. The use of the Hartree
approximation to3 in a calculation that includes pairing
correlations seems to us to be inadequate, if the same cou-
pling constants are to be used in the calculation of the self-
energy and pairing fields.

V. CONCLUSIONS

In this work we have presented a relativistic formulation
of the HFB approximation. We have used the mean fields of
the self-energy, and of the pairing correlationg,, to de-
scribe correlated nucleons in nuclear matter at zero tempera-
ture. Our formulation followed the algebraic method origi-
nally developed by Gorko\34] for the description of
superconductivity in metals, in agreement with the BCS
model[39-41 and with the approach developed by Bogo-
liubov et al.[46-48.

We use a Lagrangian formalism for nucleons interacting
through the exchange of mesons and an effective Lagrangian
involving the self-energy and the pairing fields. The corre-
lated baryon states are described by a generalized baryon
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field W= (4,4 involving the fields associated with two with the momentum, its contribution grows and the differ-
baryon states that are time-reversal conjugates of one aence between the two approximations increases as the cutoff
other. The general equations of motion fér are derived is raised and higher momentum states are included.

from the Lagrangians of the model and a generalized baryon We have compared the results of these two procedures
propagator is defined involving the usual baryon propagator¥ith the results of nonrelativistic calculations for the pairing

of the type( ya), and@ﬁﬁ), as well as anomalous propa- fields, which show2-4] a maximum forA 5 in nuclear mat-

—A ter of about 3.0 MeV for a Fermi momenturi-~0.8
gators of the typey/”y), and{yy”). As a consequence, the fm 1. This maximum ofA g could only be obtained with the

self-energy of the generalized baryons also involves the pailz,  caq” approximation by using a value of the momentum

ing field. cutoff smaller than 300 Me¥/ Such a cutoff is small in

The self-consistency equations of the HFB approximation,,mnarison with the usual values. The values of the cutoff
to QHD are deduced using simplified algebraic structures foppained with the truncation approximation are larger and in

the field;E andA in Lorentz and isospin spaces, in accor- petter agreement with other estimafe®,36,53,54 As the
dance with the symmetries of nuclear matter. This permits agerivation of the “no sea” procedure also involves more
explicit definition of the baryon propagators in terms of thedrastic approximations than the truncation one, we conclude
components ob, andA. One finds that the most important that the truncation approximation is better suited than the
components of these fields are the scalar oesand A,) “no sea” one for the evalution of the pairing fields within
and the vector zero-component onesy(and Ay), which  the HFB approximation.

take large values. The partial cancellation of these large com- The total HFB energy per nucleon as a function of the
ponents yield the usual nonrelativistic results both for theé=ermi momentum is extremely close to the HF one, except at
nucleon-nucleon potentid¥yg=2s— E;2o/M*, and for the low barypn densities. The functiongl erendenge of the self-
gap parameter of the BCS modalg=M*A,/E;—A;. The  €nergy field% on the baryon density is almost independent
remaining componentss, and Ay, are several orders of ©Of the cutoff and close to the HF result3,27,28,3Q The
magnitude smaller than the principal ones, while the compoYalues of the coupling constants for all meson exchanges
nentsSt andA, are identically zero here. considered are also very close to the values obtained in the

The self-consistency equations in the HFB approximatior{iF €valuations. Thus one can conclude that the HF result for
contain two contributions, corresponding to those of thethe field would serve as a good approximation to its actual

Dirac and the Fermi seas. The contributions from thevalue in the evaluation of tha field. Such a prescription
negative-energy states are divergent, as in the Hartree-Fo¥kould be analogous to the use of the nonrelativistic HF
case, and the numerical calculations have been performéﬁean'f'e|d wave functions in the determination of the single-
using two different procedures for the elimination of theseParticle spectrum using the BCS equati¢@s 10, o
contributions: the truncation and the “no sea” approxima- To summarize, we have obtained two basic results in this
tions. In the truncation approximation, the negative-energyVork. First, we have derived a consistent relativistic formu-
HEB states are discarded. In the “no sea” approximation,!a“on for the HFB approximation to QHD that yields results

one discards the negative-energy HF states, as well as thdft good agreement with the traditiona_ll nonrelativistic palcu-
coupling to the positive-energy ones through the pairindat'of‘s- Second, we have chara}cterlzed t_he truncation ap-
field. The “no sea” approximation thus neglects HF- Proximation as a better r_ngthod, in comparison with _th(_% “no
particle—HF antiparticle correlations that are included in theS€@" procedure, for obtaining approximate results within the
truncation approximation. mean-field approximation to QHD.

The relative smallness of the pairing fields obtained in
nonrelativistic calculations, when compared to the self-
energy fields obtained in mean-field approaches to QHD,
suggests that the HFB results should consist of the usual HF B, v. Carlson and T. Frederico acknowledge partial sup-
results for the baryon self-energy along with a relativelyport provided by the Brazilian National Research Council
small value for the field\, which should not depend impor- (CNPq).
tantly on the procedure used to evaluate it. Nonetheless, the
results obtained in the truncation and the “no sea” approxi-
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mations are quite different and show different behaviors for APPENDIX A: EXPLICIT DEFINITION
increasing values of the cutoff in the baryon momentum in- OF THE INTERACTING GROUND STATE
tegrals.

Using the definitions and properties of the Bogoliubov
coefficients of Sec. IV, we assume that the ground state has
the form

The pairing fields in the truncation approximation show
an initial decrease with an absolute minimum for 500 MeV/
¢ <A< 800 MeVk, followed by an increase to an asymp-
totic value for increasing cutoffs, while the “no sea” pairing
results are larger and systematically increase with the cutoff. _

The differences in the two results can be understood in termd0)=]] [m,+n,aja’, +o,(ajd",—dla’,)+p,did",
of the coupling of the positive- and negative-energy HF

states thgt is neglected in the “no seg” approximation. Its +qxa1afxd1dix]|0>,

contribution is always negative, reducing the values of the

pairing fields in the truncation approximation below those of

the “no sea” one. Because this coupling tends to increasand define the quasiparticle operators as
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a)\(w_):Al)\a)\+ Bl)\di)\-I—Cl)\ai)\-i- Dl)\d)\ y and

Br(w_)=—Cpal—Dyd_,+Aja_,+Bg,d;, -g2 2MgM 7+ 2B Eg+H, (k,p)
n(w)=Ana,+Byd",+Cya’, +D,d,, Pk

o(wy)= _szal_ Dod_y+Azna_,+ Bzxdla X 60+(k,p)},

where the indices 1 and 2 refer to the poles and o,

given in Eg.(35). Then the usual anticommutation condi- 22EpE— MMy

tions, vu(K,p)=g;, 2ESETkp 6, (k,p),
{of \a\}=1, g2\% 1
v (kap):(_w) *—*”M;M*—E*E;
" 2M P~ Ep
{BI!B}\}:]-! EpEk
1
imi=t, +§(Hw+<k,p)—mi)}
and
0’7T+(k1p) Y — U
{5l .5}1=1, " akp m2E5Ex—2MM},

with all the other anticommutators being equal to zero, as

2
K4 PPt —H (K
+p + 2 H7T+( 1p)

well as the conditions that defii@) as the vacuum for the %
new Fock operators, 1
= = = = +2k?p2+ SH .. (k,p)(M2—H . (K, ”
o,[0)=5,[0)=110)=4,/5)=0, P g M Pz = Hir o (koP))
give the following results: » (kp)— gi ZEEEE—M;M; o o) .
’ - i * =% +\K, .
M, =ApDo—AxnD1, NM=Cy Dy —Cy Dy, ? 4 2E Ekp P
0,=B1,Doy—BoD1y,  PAr=A1Bo—As»B1,, The functionsH;, and ¢;, are defined as
and Hj. (k,p) =K+ p?+mi—[w,(p)~w. (k)% (B3
d\=B1nCa—B2Cyy, where
as well as the normalization properties of the Bogoliubov w,(K)=V(EE—E})?+|Ag|? (B4)
coefficients of Sec. IV.
and
APPENDIX B: THE EFFECTIVE GAP POTENTIAL
In the gap equation, Eq57), we use the following defi- j+ H, (k.p)—2Kp J=0,0,m,p.

nitions: (B5)

v(K,P)=v4(K,p) + v ,(Kk,p) +v .(k,p)+v,(k,p) (Bl)  We have usetk=|k| andp=|q| here.
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