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Shapes and stability within the interacting boson model: Dynamical symmetries
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For algebraic models the coherent states are appropriate trial wave functions to study the energy surfaces of
the system. The equilibrium configurations of these functions are classified by means of the separatrix of the
catastrophe formalism, which is defined by the bifurcation and Maxwell sets. The bifurcation sets correspond
to curves in the parameter space associated to degenerate critical points while the Maxwell sets constitute the
locus of points for which the energy surface takes the same value in two or more critical points. As an example
we study the energy surfaces associated to the dynamical symmetries of the interacting boson model in the
essential parameter spa¢€0556-28136)05211-9

PACS numbe(s): 21.60.Fw, 03.65.Fd, 05.70.Ln

[. INTRODUCTION ing coherent statef7]. Analysis of shape and shape phase
transitions in this model have been realized in RE89]. In
The time dependent variational princigleDVP) is a for-  this work we apply the procedure introduced in Réf] to
mulation of the time dependent ScHinger equation the interacting boson model, but for the general Hamiltonian
through a variation of an action functiongl]. The Schre  of one and two-body central interactions involvisgandd
dinger equation is obtained by requiring that the action funcPosons and determining its associasegaratrix We show

tional be stationary under free variations of the time depenthat the equilibrium configurations can be classified by
dent state. means of two parameters and are enough to describe the

The Hamiltonian nature of the equations of motion arisingMOSt general energy surface. These ES are organized by the
from this principle was pointed o(i£] and leads to a sym- Separatrix which is useful to know: (i) how many equilib-
plectic structure, that is, a Hamiltonian function, which we fium configurations yield the system afid) if the behavior
are going to call it energy surface, plus generalized Poissofif the model around the critical points may or may not be
brackets. Thus through this procedure one can do static giPProximated by an harmonic oscillator. This analysis gen-
dynamic studies of the system. In the present work we willeralizes tho§e presented previously, in which only transitions
be studying only the static case, that is, the expectation valu@etween pairs of exact $8), O(6), and SU3) symmetries
of the Hamiltonian with respect to a trial wave function. It is &€ considered10]. In the past decade, effective Hamilto-
important to emphasize that, depending on the generality dfians of the IBA-1 have been used to describe energy spectra
the trial wave function that one chooses, the bigger o@nd transition probabilities of chains of isotopes and isotones
smaller region of the solution space that one can study. Fdt1—-13. The analysis of the stability and shape transitions
this reason, if the Hamiltonian has an algebraic structure, it i@roperties for this last case requires the generalization treated

convenient to choose as trial wave functions its associatet this work.

coherent states. In the second section a brief summary of the interacting
We are going to analyze the energy surfaes) within ~ Poson model, in its simpler version is givEsl, and their ES

the catastrophe theory formalism, which is based on imporare established. By means of the catastrophe theory, in the

tant mathematical results on functional analyi@s There- third section, the number of essential parameters of the ES

fore, if we have an energy surface dependingiorariables ~ and separatrix are determined. In the fourth section the be-

andr essential control parameters, the first step is to find it1avior of the IBA-1 dynamical symmetries in the essential

critical points and determine which are Morse points andP@rameter space is described, together with the kind and or-

which are not. In the Morse points the energy surface can b@er Of the shape transitions that they can yield. In the last

approximated by a local quadratic form, while for the non-Section a summary of the main stability and shape character-

Morse points the energy surface can be written in terms ofstics of the IBA-1 are indicated.

the catastrophe function, which is constructed by a germ plus

a perturbatlon. _For a num_ber of control parameters Igss or Il. SUMMARY OF THE IBA-1
equal to five, without special symmetry conditions, a list of
canonical catastrophe functions are kno\8h First a brief review of the interacting boson model

A connection 4] between the interacting boson mofe]  (IBA-1) is presented. This model was introduced in 185b
and the geometrical approach of Bohr-Motteldd} was to describe the properties of even-even nuclei through the
done by expressing the IBA-1 Hamiltonian in terms of shapédnteractions of two types of bosons: one with angular mo-
variables. This can be achieved by means of the correspondhientumL =0 (s boson and another with angular momentum
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L=2 (d boson. These bosons are considered formed by cor- To construct the Hamiltonian, single and two boson inter-
related pair of fermions and generate é)Jgroup structure. actions are considered that preserve the total number of
Thus the nuclei are described as a system @fidd bosons, bosons and are also rotational scalars. For one body terms,
whose number is determined by half of the valence nucleonandd boson number operators result naturally, while for the
while the core remains inert. two body case one gets

C ~ o~ ~ ~ o~
Higa1= €sNs+ ede+L:2024 f V2L +1[[d" < d X [dx d]t-]tol+ % ([[d"xd"2Ix d]Os+sTTd" < [dx d]F21]t0)

~ ~ ~ u

+ % ([d"xd"]08?+ 5T @x A1)+ ups's[dx A0+ - 57282, 2.1)

|
where the boson operators satisfy the commutation relations (N,Bv|HIN,B7y)
t t =By (N,B7YIN,B87)
[s,s']=1, [d,.d,]=6,,. (2.2
NeB? N(N—1) . .

The other possible commutation relations are zero and the T 1+ + (1+B?)? ;8" +a7cos 3y

coefficients in front of the interaction terms are adjustable

parameters that indicate their intensities. +a.g24 Uo 26
One of the nicest features of the IBA-1 is that the Hamil- asp 2 (2.6
tonian can be expressed in terms of the Casimir operators of
the chain of group$14] where e=¢e4— €; the constaniNe, was substracted and the
variablesa,, were expressed in terms @f y, and the Euler
U(6)DU(5)D0(5)D0(3), (2.3  angles. As the energy surface is a rotational scalar, there is
no dependence in the Euler angles and the parametess,
U(6)20(6)20(520(3), (2.3p  andag are defined by
Co Cr, 9c4
U(6)DSUR)D0(3), 2.3 =9,z 7
(6)DSU(3)D0(3) (2.39 =15t 7+ 35 (2.79
that is
__ 2 2.7b
H = k;Ng+ kN2 ksNNg-+ KoL 2+ ks A2+ ksP?+ Ky Q2 N T (2.7h
+kgN+kgN?, 2.4 1
. . =— + . .
whereN, is thed boson number operatdr? is the square of as J5 (votuz) @79

the angular momentuni\? is the Casimir operator of (5),
and P? is related to the Casimir operator of(& through
P?=%(N%+4N—-L?. Finally the quadrupole-quadrupole in-
teraction is related to the $8) Casimir operatoG through The energy surface of the IBA-1 is a function depending
the expressiolQ®=3G— L. It is important to emphasize on the variabiegs,y), and the five parameters; Uy, a;, a,,
that the Hamiltonian would be diagonal if it can be written in and as. We will consider the energy surface of the IBA-1 as
terms of the Casimir operators associated to one of the chaign example of how to use the catastrophe formalism to de-
of groups(2.3. termine the shapes and stability of the mof@/16]. The
In this contribution we are going to study only the static procedure is the following:
properties of the IBA-1, that is the behavior of the Hamil- (i) The essential control parameters and the germ of the
tonian function or energy surface. For this case we can corenergy surface are determined. This is accomplished by ob-
sider the reality condition to the complex variablé$]. taining the equilibrium configurations, that is the critical
Associated to the IBA-1 model is an intrinsic geometry points of the Eq.(2.6). From them, the critical point with
structure{ 7,16], determined by its coherent states, which hasmaximum degeneracy is selected and it is called the funda-
been discussed in Refsl6,17. These can be written in the mental root. Then a Taylor series expansion of the energy
form surface around the fundamental root is done. The germ of the
IBA-1 is the first term of the expansion which cannot be
INa,)=(s"+3 ,,d])N0). (2.9  canceled by an arbitrary selection of the parameter values.
(ii) One constructs the bifurcation sets of the energy sur-
This yields the energy surface faces of the IBA-1. A bifurcation set is the locus of points in

Ill. ENERGY SURFACES AND CATASTROPHE THEORY
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the space of essential control parameters at which a transition

€

occurs from one local minimum to another. The bifurcation B a;B°+2| ag—2a;— m) B*—3ayB

sets are obtained from the condition #&+0, whereH is

the matrix of second derivatives of the energy surface evalu- €

ated at the critical points, i.e., +2|\up—ag— m) =0, (3.3
ﬁZE(Xk) . . . -

= (31 to de?ermlne th_e critical points. The cage= 73 is mclud_ed_

IX; X (xS xS) allowing negative values foB. From this expression, it is

immediate that thgg.=0 is a critical point for any values of

with x,;=g, andx,=y and the superindex in the variables the parameters of the energy surface; for this reason it is the
X, andx, denotes that they are critical points. The gradient offundamental root. The Taylor series expansion of the energy
the energy surface is used to get information about its criticasurfaceE(B) =E(B, y.=0) around this fundamental root is
points, while the matrix{ defines its nature if dét(+0, that  given by
is, if they are maxima, minima, or saddle points. For this
reason the matri#{ is called the stability matrix. However, N(N—1)ug
if det =0 the nature and number of critical points change, E(B)= TJF N(N-1)
meaning that X{,x$) is at least double degenerate. There-
fore in a bifurcation set the qualitative nature of the energy
surface changes because equilibria are either created or de-
stroyed. The determinant of the stability matrix is equal to
the product of its eigenvalues and they are associated to theherew=e/(N—1) was defined and the symboi(5) indi-
variables of the energy surfagg and y,. An eigenvalue cates terms of the ordgs® or higher. From the last expres-
zero indicates that its associated variable does not behawton, obviously the linear term if is not appearing because
well, meaning that the energy surface in that critical pointg,=0 is a critical point. The quadratic term i@ is elimi-
cannot be approximated by a quadratic expression in thatated by choosing
variable.

(iii) The Maxwell sets are determined; these sets consti- az—Ug+w=0. (3.5
tute the locus of points in the essential parameter space for
which the energy surface takes the same value in two oThis implies that,=0 is double degenerate because also the
more critical points. They can be found through thesecond derivative in the expansion is canceled. This funda-

Clausius-Clapeyron equations. For the IBA-1, there are onlynental root is triple degenerate if we chod8e5) and that
two essential parameters, denoted bby,(,), as we shall

prove. Then if we assume that far,r 9) there arep critical a,=0. (3.6)
pointsXxy,X,, ... X, in which the energy surface has degener-

ate critical values, the Clausius-Clapeyron equations are deyext we try to remove the fourth derivative in the expansion;

(az—Up+w)B%+a,8°

B*+0(5), (3.9

3U0
+|a;—2a3+ 7—W

fined by this implies
D () (B —...= P
) ‘ ‘ ° 92 a;—2as;+ %—W=O (3.7
gl gelkrny 1 3T 2 ' '
(c?l’_o_ &r—o) 5ra=0, (32b)

However, if the parameters of the model satisfy H&s5),
(3.6), and(3.7), the energy surfac€.6) becomes indepen-

i) — 0 1Oy wi ]
where we used the notatio = e(x,,r 3,1 3) with x, de dent of 8 and y and takes a constant value equal to

noting a point in the variable space, that &v).

(iv) Finally the separatrix of the IBA-1 is constructed by
the union of the bifurcation and Maxwell sets. This divides
the parameter space into shape stability regions and 'dentlfl%vshich, by means of the expressiof®s5), (3.6), and(3.7), is

the locus of points where there are shape transitions, together - = X .
with their order. équivalent toE=N(N—1)uy/2 as it can be seen directly

Next we follow the procedure indicated above. We start{rom (3.4. Of course the. higher powers mth&.‘t appear in
by evaluating the critical points of the energy surface, that ishe Taylor series expansiof8.4), are canceled if the expres-

VE(B,y)=0. It is straightforward to find that the critical sions(3.9), (3.6), and(3.7) are satisfied. .
points are localized along the linag=0 (prolate caseand Therefore we conclude that the energy surface is overde-

y.= /3 (oblate case Of course these are repeated by aoldingtermlned if we fix three parameters, and for this reason, one

to these values multiples ofi23 because the energy surface can only sa_tlsfy Eqs(3.5) and (.3'6)' Then we have _that the
has aC,, symmetry. According to this symmetry all the first term different from zero |_§B4, which characterlges the
critical points are located on the Cartesraxis. For points germ of the system, and we introduce the essential control

on the positive side of th& axis, prolate nuclei are de- parameters

scribed while points on the negative part correspond to ob-

late nuclei. M=o, fp=— o
For the variables, y.=0, one finds the algebraic equation 2a;+tw—ag 2a;tw—ag

E=eN+a;N(N—1), (3.9

as—Ugt+w 2a, (3.9
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The energy surface can be rewritten in terms of these param- ary ary,

eters in the form VW
de 1 2
 E(B,%)—N(N-1)ug/2 LAE R,
f(ﬁ,'y)— 60 1”7)\1 1”7)\2

1 0 1

(3.10

where we have defined,=N(N—1)(2a,+w—a3)/2. No-
tice that if ¢, is zero we have a trivial case and the energy
surface is a constant given by the £8.8), so the interesting IS zero. Imposing this condition, one gets the expression
cases occur wheg, is different from zero.

In summary, through the Taylor series expansion around _ 8y
the fundamental rog8.=0, it was possible to determine the 273(1-\)"
essential parameters and the germ of the system. In terms of
these new parameters the critical points are found, in thdhen in general the mapping is invertible except for the

3
:—Zx2(1—>\§)+2>\1 (3.19

(3.1

Appendix, by solving the algebraic equation curve in the three-dimensional space
2
B(roB3+4B8%—3r,8+4r,)=0. (3.19) 8\ Ap
z 2 ! (Bcira,r)=| A, 3(1-\9)" 3(1-19) (\i+3)],
Following step(ii) of the procedure, we find the next ! ! 3.17)

bifurcation sets.

Bifurcation set p axis The critical point3;=0 is degen-  pecause it indicates the set of points at which the tangent
erate if and only if the condition; =0 is satisfied; therefore pjane to the manifold3.12 is vertical, meaning that they
in this critical point the energy surface is always stable whemave associated the same essential control parameters. Then

r1#0, and presents degeneracy all along thexis in both  the projection(3.14) takes the form
variables.

Bifurcation set § axis with r;<<0. As it was shown in the X:(Beil2,r1)—(ry,rq),
Appendix, for this set we have the critical poinBJ, v.)
=(y—rq,7). It presents degeneracy in the variapland it 8N
is a non-Morse point. This is proved by evaluating, in this r2_3(1_)\%)'
point, the stability matrix and finding that the eigenvalue
associated to the variablgis equal to zero. This set is as- 7\%
sociated withy-unstable nuclei. (\+3), (3.19

X A ' r= 3( 1__)\2)
Bifurcation sets {, and ry,. To find the degeneracy of the 1

critical points that fall outside the, andr, axes, the criteria
of the stability matrix requires solving algebraic equations o
fifth degree. Then it is simpler to use an equivalent procedur
that involves a mapping between the critical @Al param-

fwhich is denoting the parametric equations for the bifurca-
g’on sets that fall outside the, andr, axes. Eliminating the
parameten; one obtains

eter manifoldg3]. The critical manifoldB,#0 is defined by (9r2+16)32 32
_ 2
roB3+482—3r,8,+4r,=0. (3.12 fu= 54r5 272 1 (3.193
The coordinates of any point on this manifold embedded in (9r2+16)%2 32
the three-dimensional space are ri= 5 >— 1. (3.19b
54r5 27r5

o, r) =N N, — AN+ ANT =30 )), 3.1
(Boirz.r)=(haikz, ~alhzhs ! 2Ma)) (313 Following the calculations made in the Appendix the critical

wherer ; was obtained from Eq3.12. Now we consider the points onto the bifurcation sets ha@=0. Thus they are
projection mapping of the two-dimensional manifd@l12  obtained by replacing,;—r; into Eq. (A7) and the result
down onto the two-dimensional essential control parameterito (A10)

plane9i?, defined by

4 2\/9r§+16
+ —!

r,=»ANo,
2 4 JorZrie 220
r=—% (\A3+4N2—3\,0). (3.14 Pr==30," Tar, (3-200

The previous expression defines a singular mapping if thén similar form, the critical points onto the set, are found
Jacobian of the transformation if we replacer,—r,
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FIG. 1. The separatrix of the IBA-1 is shown. For positive 0.4
values, the continuous line is indicating the bifurcationrggtand &5 03
the dashed one the Maxwell sef;. For negativer; values, the E? 02
bifurcation sets ;; andr; semiaxis are displayed with continuous 01 ()
lines, while the Maxwell sets;3 andr; semiaxis are shown with %4 12
dashed lines. X X
4 \/9r§+ 16 FIG. 2. Energy surfaces cufs(x,0), with x=8 cosy, are dis-
B21=— ?_2?, (3.218  played. In(a) for the regionr;>r 4 in (b) for ry=r, and in(c)
2 2 for the domairr {3<r;<r,. The plots@), (b’), and(c’) are closer
4 \/m vri]ews to the minirfna for tr_le (;:orrelsporlldinglj curves, and they show
Boy= — 3_r2 + 3, (3.21b the appearance of an excited prolate local minimum.

" . eration of maxima ar@.=0 andB1; while the minima occur
From the critical point¢3.20 and(3.21), we proved that (5 g _q andg!,. The B2 critical points can be calculated

B1, and B,, are degenerate critical points by determining theby solving Eq.(3.22 under the replacement of —r =, and
eigenvalues of the stability matrix. In this analysis it Wasthey are given by

found thatg is the bad behaved variable. In Fig. 1 the con-
structed bifurcation sets, axis, negativer, semiaxis,r,

andr 4, are illustrated with continuous lines. 31tszr—2, (3.25
Next, we proceed to build the Maxwell sets by means of + \/1+r22/2+1

Egs. (3.2. For the IBA-1, it is found that there are three
Maxwell sets, associated to the branch@s=0, and 3.  where the positive values g8;; correspond to the prolate
=-r. nuclei while the negative ones correspond to the oblate case.
For the basic branchg,=0, the energy surface has value  For the branchg.=/—r4, the Maxwell set is associated
zero, then to find the Maxwell set, the E®.10 is equated to the locus of points of the negativg semiaxis. The ES in
to zero, withy,=0 and y.=/3. After simplifications it is  this branch presents minima of the same depth for any value
reduced to of the variabley. In Fig. 1, the Maxwell sets 3 and the
o negativer, semiaxis are displayed by dashed lines.
(ry+1)B°Fr,B+2r,=0. (3.22 In the second and third steps we have constructed the
bifurcation and Maxwell sets. Thus the separatrix in the
IBA-1 is defined by the curves in the parameter space
ér ,r1), which result from the bifurcation and Maxwell sets
gzsociated to the critical points. In the bifurcation sets the
ualitative nature of the energy surface changes because
uilibria are either created or destroyed. In Fig. 1, the sepa-
ratrix of the IBA-1 is displayed. The typical shapes of the ES
2_ _ are stable within the six regions divided by the separatrix.
r2=8r(ra+ 1)=0. .23 Therefore the qualitative aspect of the surfaces can be deter-

Solving r; as function ofr, we get two sets, which will be Mined by exhibiting a cut valid fo=0 and y=/3 of the

This equation gives us two intersections of the energy sur
face with thex axis, then there is always an extreme point
between them. Therefore, when the solutions are degenerat
we find the Maxwell sets associated to the basic branch. Th

solutions of the last expression are degenerated when tfb
discriminant is zero, that is

Figs. 2-5 in all the regions when one moves along the line
r=—3+3J1+ r§/2. (3.24 r,=4v2/3. In these figures one can appreciate the following:

for r,>r 4, the shape of the ground state band is spherical;
The valuer ;5 corresponds to the Maxwell set where the for values of the control parameters between the bifurcation
minima of the energy surface degenerate, whilgis asso- I, and the Maxwellr ;5 sets, the ES have a second prolate
ciated to maxima. There are four critical points onto theseminimum. For nuclei described by ES of this region, the
bifurcation sets. However, those associated with the degershape coexistence phenomena for excited states among
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FIG. 3. CutsE(x,0) are shown. Ir(@) for r {3<r;<r,, in (b) FIG. 5. CutsE(x,0) are shown. Ifa) for r ;3<r;<0, in (b) for
for ry=r 13, and in(c) for the region G<r;<r ;3. The correspond- . —r I in (c) and(d) the curves are shown for two valuesrafin
ing closer views are displaying the transition from spherical to detpe regionr ;;<r,<r 1s, in (€) for ry=ry;, and in(f) for ry<ry,.
formed shapes. Notice that the oblate region becomes inaccessible afterwards the

maxwell setr ;3.

spherical and prolate shapes are present. Far, &r ;5 the
shape of the ground state band is prolate and excited ban
are spherical, indicating again the presence of the shape
existence phenomena. Foif;<r;<0 the spherical excited
band disappears and the system has a very well defined pro- In Fig. 6 the corresponding ES are illustrated when one
late minimum characteristic of rotational nuclei. In Figs. 4 - al.ong the line,=0 in the parameter space. Fige=0
and 5 there is an apparent oblate local minimum; however, i&ne has a spherical éhape, while fgr0 we have ihe pres-

IS a saddle point bgcause Itis unstable wnh_rgspect to thgnce of y-unstable nuclei. The ES are shown in Fig. 7,
variabley. Forr;<r ;3 there is only a prolate minimurgsee

Figs. 4 and pand for even smaller values of the system is

?@ss and less bound, as is indicated in all the figures by the
“Bashed line. It represents the asymptotic vakie;r,+1, of
the energy surface wheg—o.
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FIG. 6. CutsE(x,0) are shown for,=0. In (a) for r;=1, in (b)
for r;=0, and in(c) for r;=—1/2. The plots at the right indicate
closer views at the minima, displaying the transition from a spheri-
cal to deformedy-unstable shapes. In particular, (') the catas-
trophe germ of the IBA-1 is shown.

FIG. 4. CutsE(x,0) are shown. Irfa) for 0<r,<r 13, in (b) for
r;=0, and in(c) for r 13<r;<<0. The closer views are displaying
the disappearance of the excited spherical states.
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0 (Berve) = (Be(S), vc(9)), (3.260
025
8_0'07'2 Ec(Be,ve) = Ec(Be(S), vc(S)). (3.260
E? K| It is convenient to classify the shape transitions by their or-
-1.25 der, then a transition is of the orderif
15((a) \/ | i
-10 5 10 jim EC(IS) = |im‘9—E°’|(i) , (3.27)
x e—0 S so—€ €0 ds sgte
o fori=0,1,2,3...,(h—1), but it is not satisfied for=n. The
02 parametess, denotes a point onto the separatrix.
~0.4 To find the order of the shape transitions present in the
© o5 IBA-1 we use the following procedure.
X o8 Evaluate the energy surface in two critical points onto the
w A bifurcation set being crossed, with the appropriate parameter
1.2 (m \/' values. If they are not equal, one has a zero order transition.
10 s 0 If that is not the case, tak_e the first derivative of the energy
surface with respect tetaking into account that the function
is evaluated in two critical points
0 ﬁzfﬂ_f_ﬁﬁy (32&
0.5 ds odrqy ds dry, ds
8 05
5 075 wheredr,/ds are the direction cosines. Furthermdenust
w ! be evaluated in critical points onto the bifurcation. If they are
125 N not equal one has a first order transition and so on.
15[(¢) Next, we study the shape transitions that occur when the
10 5 10 control parameters of the energy surface are crossing the

separatrix of the IBA-1 model. We start by considering
r,>0; when the bifurcation set;, is intersected the ES have
a zero order transition between the spherical ground state

FIG. 7. CutsE(x,0) are shown for,=—2. In (a) for r,=1, in  band and excited prolate stat@ee Fig. 2 If the setr 3 is
(b) for r,=0, and in(c) for r,=—1. The plots are displaying the crossed, there is a first order transition from a spherical to a
transition from a prolate to oblate shapes, throughunstable. prolate shapésee Fig. 3. When the bifurcation sat;=0 is

intersected there is a zero order transition between excited

along ther ;= —2 straight line. For,<0 the ES characterize SPherical states and the ground state deformed band of the
oblate shapes plus a prolate saddle critical point, while fofyStem(see Figs. 3 and)dexcept for,=0. In this casdsee
positive r, values describe prolate shapes with an oblatd9- 6 we have a second order shape transition from a
saddle critical point. Notice that the possible shapes presefPherical nucleus to g-unstable deformed one. Notice in

in the left-hand side of the parameter space can be obtaindd9- 4 the appearance of a minimum in the variafiéor
by making a reflection(8——p) in the ones plotted in the Oblate shapes; however, it is unstable in the varigblend
Figs. 2-5. therefore a saddle critical point. The bifurcation set negative

r, semiaxis produces a first order transition when it is
crossed from one side to the otleee Fig. J. Forr,<O0, the
ES are reflected with respect to the vertical axis under the

The classical theory of phase transitions can be applied t8'2PPINg r2— —r, because it is equivalent to change
the catastrophe formalisi3]. We will say that a shape tran- B—=B.

sition occurs when the poinj3,y) describing the state of a
physical system jumps from one locally stable critical branch

to another. This will be happening when the control param- . .
eters ¢,,r,) are varied and crossings through the separatrix The dynamical symmetries of the IBA-1 have played an

of the system are taking place Important role in the developing of the model. For example,

Usually the control parameters are assumed to depend &Hsegf?rr:s;geyosb?aei(r:\terz 3\,?31 el:g:;z;?iigrﬁ:g dterlas ns.’lltt%]fd rt_amlnd
only one parameter, which is used to describe a curve in th 9 ) y

) . namical symmetry describes an anharmonic vibrator, the
parameter space; thus in general we have SU(3) is an axial rotor, and finally the @) limit is a de-
ri—rq(s), (3.263  formed y-unstable rotor. Then we consider it important to
find the locus of points in the essential parameter space
which are associated to these dynamical symmetries.

We start by studying a truncation of the IBA-1 Hamil-

Shape transitions

IV. DYNAMICAL SYMMETRIES

ro—ro(s), (3.26h
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tonian(2.1), which is comprised of Casimir operators of the Ke
U(5) limit, that is Up=> +2Ko. (4.6¢
— 2 2 2 2

H=KiNg+kNg+KsNNg+ kL "+ ks A"+ koN"  (4.1) Evaluating the control parameters it is foung ;) =(0,1),

independently of the intensities of the interactions. It is im-

portant to note that the operatdré and A? have one body

contributions proportional tdl,. If these are eliminated one

arrives at the condition of an energy surface constant. The

These parameteis are related to the single-boson and two-
boson matrix elements through the E4) of the Ref.[11].
By means of that expression and the E2.7), it is found

e=Kk;+ky+ks+ 6k, +4ks, (4.28  most general interactiofd.5), without one body contribu-
tions, has been discussed previoydl9] and is responsible
Ug= 2Kg, (4.2b  for the collective motion.
For the @6) case we replace in the Hamiltonigh5) the
a;=kytkg+kg, (420  operatorP? by
a,=0, 4.2 ~ ~
? (424 P2=§[dfx dT][OJ[dXd][°]+% s2s2— ? ([dTx d"]l0s?
az=ks+2kg. (4.2¢
+s[dxd]o). 4.7

These five parameters define the energy surface of the vibra-

tional limit and through them and E€3.9), the control pa-  Then the associated ES can be determined easily by means
rameters of the system are calculated, i.e., of the expressior4) of Ref. [11] and Eq.(2.7). They are
characterized by the parameters

0 by +ky+ksN 43
r,=0, rq= , .
2 Y b+ (2N 1)kp+ksN €= 6k, + 4ks, (4.89
where b;=k;+6k,+4ks. Notice that if k,=0, we have K
(r,,r1)=(0,1) in the essential parameter space. In general, u0=?6+2k9, (4.8b
one has that the possible ES are characterized by the points
on ther, axis; ther, values depend strongly on the relative K
intensities and signs of the pgramett?rlg !(2, andk;. For a1=—6+k9, (4.80
small values ok,, the ES are in the vicinity of ;=1. 4

The Q6) algebra is comprised of fifteen generators, ten of
them close under the commutation relations of dB)@lge- a,=0, (4.80
bra. The other five have phase ambiguities due to the fact
that thes and d boson operators could undergo a gauge B Ke oK 48
transformation without changing the commutation proper- a3——?+ 9: (4.89

ties. There are two realizations used in the literature, that is
i~ t ~ i~ " The corresponding control parameters are evaluated through
Ayw=dd,—d, d,, A, =s'd,+sd,, (448 Eq.(3.5 and it is found that

_aty 4t A —ofd —ed - -
App=did, —d,d,, A,=s'd,—sd,. (4.4b (=0, rl:;tem i; .9
J(N—

We are going to distinguish these two realizati¢hglg and
(4.4b, following [18]. by denoting the corresponding Notice again the influence of the one body termd bfand

algebras by @) and Q6), respectively. A% If these are eliminated one arrives at the values
Next we study the @) limit, which is defined by the (r,,r;)=(0,—1). In this limit depending on the relative
Hamiltonian strength betweer andkg, that isé=kg(N—1)/¢, the ES are
— associated to the following, values:
H=k4L%+ksA2+kgP?+koN2. (4.5
_ o _ —1<¢<1=0<rq, (4.103
The ES associated to this limit are determined by the set of
parameters 1<é<oo=—1<r,<0, (4.10b
€= 6k, +4ks, (4.69 —w<gs—1=r,<— 1. (4.100
alzﬁ +Ko, (4.6p  Therefore, as we have shown in the previous discussiee
4 Fig. 6), for r;>0 the energy surface has a minimumds:0,
while if r;<0 it has a maximum i8=0 plus two minima of
a,=0, (4.60  the same depth.
The SU3) algebra is formed by nine generators, the an-
a =@+2k (4.60 gular momentum plus the quadrupole operators. There are
32 o ' two currently used versions of the quadrupole operator
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~ \/7 ~ a2= _2\/§k7, (413d
_ T
Q#—(sTd}ﬁsdﬂ)——z [d"xd]t?], (4.113
a3:4k7+ 2k9, (4139
Q,=(s'd +sdT)+—y7 [dtxd]t2! (4.11b
M M ) 2 ’ .

that define the typical ES within this symmetry. Substituting
which together with the angular momentum generate algethe last parameters into E(B.9) one gets
bras that we denote §8) and SU(3), respectively.

We start analyzing th&sU(3) limit by considering the 16v2k;(N—1) 24K, — 25k, + 16k;N
Hamiltonian M2 a3k — 12N "1 2k, t 3k, — 12N
H=K4L2+k;Q2+kgN2. (4.12 (4.14
For this Hamiltonian, we find the parameters In the last expression, if the total number of bosons is equal
. to one the harmonic limitr(,,r;)=(0,1) is obtained, while,
€=6k,— k7, (4133 for N>1, the two body terms dominate and one gets
(ro,rq) =(—4v2/3,—4/3). Notice that this is the result one
Uo= 2Ky, (4130  finds when the Hamiltonian is comprised only by the

§J(3) Casimir operator. _
For the SU3) case we have to replace tR¥ interaction

a;=— +Kg, (4.130 by Q?, which is defined by the expression

3\5

11 7 ~ ~ ~ ~ 3 -~ ~
Q?=5Ng+ — Nat7 [d"xd"Cldx d]to)— - [[olTxolT][le[o|><o|][21][01+E [[dTxd"4Ix [dx d]t41to]

4
+2.5sTs[dTx d]t+ B([dTx dT]%s2+ sT dx d]100) — 35([[dTx dT]Zx d] s+ sT[dTx[dx d]lZ]). (4.15

The parameters V2
r]_:i? r,+1, (4.18a

E:6k4_% k7, (4163

r,=0. 4.18
Up= 2Ky, (4.16h 2 (4.180

Therefore we have for the exact limits the following

a Zﬁ K (4.160 results: For the harmonic case the pditl); for the SU3)
17 ' : two points(+4v2/3,—4/3) characterizing nuclei with prolate
a2:2\/2k7, (416d 2
1F
a3=4k7+ 2kg, (416e
o]
yield the ES associated to this case, and from them it is 2
straightforward to find At S ]
16v2k,(N—1) 24K, — 25k, + 16k;N 2t -
(2= a3k, — 12N’ 1T 24k, + 3k, — 12N Al
-4 . .

Once more, foN=1 one gets the harmonic limit and when -4 -2 0 2 4

N>1 the control parameters take the valudg2/3,—4/3).

This corresponds to the case of a Hamiltonian defined by the FiG. 8. The IBA-1 dynamical symmetries are described in the

SU(3) Casimir operator. essential parameter space, together with the separatrix of the IBA-1.
In summary we have found that the dynamical symme-The vertices of the double triangle are indicating the®USQ6),

tries described above can yield ES determined by the pointsnd U5) limits. The crossings of the sides of this double triangle

on the straight lines and the separatrix show the points where there are shape transitions.
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and oblate shapes, respectively; for thenstable limit the surfaces, respectively. However, we want to emphasize that

point (0,—1). Thus they describe the double triangle indi- this is due to the definition used for the coherent sté2es

cated in the Fig. 8. The straight lin¢4.183 represent tran- and, if a gauge transformation is made in thendd bosons

sitions of the ES from spherical to oblate or prolate nucleiforming the coherent states, the opposite result could be ob-

while the (4.18h indicates transitions from spherical to tained.

y-unstable nuclei. Notice also that these results were ob-

tained by considering Hamiltonians associated to the Casimir ACKNOWLEDGMENTS

operators of a single chain of groug2.3). This happens ) ] ] )

because the Casimir operators have one body terms in it, W& want to thank valuable discussions with Alejandro

which correspond to the harmonic limit. Frank and Jorge G. Hirsch. This work was partially done
To have the transition from the-unstable to oblate or during a visit of O.C. to the Institute of Nuclear Theory at

prolate nuclei, one has to consider Hamiltonians of the fornfhe University of Washington in Seattle. This work was sup-
ported in part by Project No. UNAM-DGAPA IN102094.

H=a'1

_ 2
é aL?, (4.19 APPENDIX: CRITICAL POINTS OF THE IBA-1

whereG andG are indicating the Casimir operators of GV We separate the critical points and review its behavior in

and@(S), respectively.£? denotes the Casimir operator of the following regions.

“The ES for th h ; h _ (i) ry=0 andr,=0. In this case, the expressi()ﬁ.?) be-
g(ei)ric eguatsior?sr these cases are characterized by the par?:lomes,33=0 and then one gets th@.=0 has triple degen-

eracy, which as we have shown is the maximum one present

27—4 42 in the IBA-1.
Mh=— T3 lo=*3 3 (4.20 (i) r,=0 andr,#0. We have four critical pointg3.=0 is
7 g doubly degenerated for all the possible values pfand
with »=a4/a,. These represent the following two straight 1
lines: Br,= —(—2% 4+ 3r3), (A1)
2
V2
=+g r,—1, (4.2)  where ﬂr*z yields a minimum in the energy surface, while
,8[2 corresponds to a maximum.
which are also shown in the Fig. 8. (iii) r,#0 andr,=0. This is clearly they-unstable case
because we hava,=0 and all the dependence inin the
V. CONCLUSIONS energy surface disappears. For this case B can be

In this work by means of the coherent states and the ¢ immediately solved. We have three critical points, one of
tastrophe theory, the separatrix of the IBA-1 general Hamil-hem’BC:O and the other two are given by
tonian of one and two body central interactions was con- Br=+\—r,. (A2)
structed. The Maxwell set;; divides the ES in two "1

regions: Forr,>r {3 the ES describe spherical nuclei,

while for r,<r ;5 they characterize deformed nuclei; prolate while the last two to minima.
whenr,>0 and oblate ifr ,<<0. The shape coexistence phe- (iv) r,#0 andr,#0. For this case, again th&,=0 is a

nomena between spherical and deformed shapes is present i | point and the others are obtained by solving &)

the ES forr, values into the region €r,<r,, which is when B+0, which is a cubic equation; that is
stronger in the Maxwell set;5. Although the ES do not have

simultaneously oblate and prolate local minima, for the re- (roB3+4B%—3r,B8+4r,)=0. (A3)
gion r 13<r,<0 the possibility of having fluctuations be-
tween oblate and prolate shapes exists. In the IBA-1 moddBy making the change of variable
there are at most second order shape transitions according to
the thermodynamic Eherenfest classification. y=jB+ i (A%)
The dynamical symmetries of the IBA-1 are described in 3ry’
the space of control parameters by the double triangle shown ) ) _
in Fig. 8. It was found that the S8) limit can describe ©On€ gets the reduced third order algebraic equation
prolate or oblate shapes, while the group®)and SU5) 3 _
appear wherr,=0. The intersections between the double y*+ay+b=0, (AS)
trian_gle. and the curves forming the separatrix indicate strongnare the parameters
gualitative changes in the ES.
Notice that this formulation allows us to obtain the most 16
general interaction which yields a constant energy surface. a=—3— 3r2 (AB)
This has been used thoroughly in Rf8] to separate intrin- 2

The B.=0 corresponds to a maximum in the energy surface,

sic and collective parts of an algebraic Hamiltonian. In par- r+1 32
ticular we found for the @) limit that their realizations b=4| 21—+ _g) (A7)
(4.43 and (4.4b produce y-unstable and constant energy I2 217r35
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Notice that the parameteis and b let us to rewrite Egs. Finally for D<<0 one has the irreducible case with three real
(3.123 and (3.12h in the form of the elementary cusp ca- roots

tastrophe.
Following the standard procedure for solving the reduced y,=2—al3 cog ¢/3), (Alla)
cubic equation, one defines the discriminant
— 443 2 —
D=4a3+27b2, (A8) Vo — 23 Co<w3¢)' (AL1D)
to find the nature of the roots. D >0 there is only one real
root !
a
—p)¥ (_p 1/3 y3=—2y—al3 COf{ 3 ) , (Allc
y]_:[ 7 + 7_ \ D/lOS} . (Ag)
where ¢ is defined by the expression
If D=0 one has
—p) B _h)13 J=D
= — =Va={ — tan p=— —. Al12
Y1 (2+ v Y2=Y3 [2] : (A10) ¢ 2 (A12)
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