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Shapes and stability within the interacting boson model: Dynamical symmetries
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For algebraic models the coherent states are appropriate trial wave functions to study the energy surfaces of
the system. The equilibrium configurations of these functions are classified by means of the separatrix of the
catastrophe formalism, which is defined by the bifurcation and Maxwell sets. The bifurcation sets correspond
to curves in the parameter space associated to degenerate critical points while the Maxwell sets constitute the
locus of points for which the energy surface takes the same value in two or more critical points. As an example
we study the energy surfaces associated to the dynamical symmetries of the interacting boson model in the
essential parameter space.@S0556-2813~96!05211-9#

PACS number~s!: 21.60.Fw, 03.65.Fd, 05.70.Ln
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I. INTRODUCTION

The time dependent variational principle~TDVP! is a for-
mulation of the time dependent Schro¨dinger equation
through a variation of an action functional@1#. The Schro¨-
dinger equation is obtained by requiring that the action fun
tional be stationary under free variations of the time depe
dent state.

The Hamiltonian nature of the equations of motion arisin
from this principle was pointed out@2# and leads to a sym-
plectic structure, that is, a Hamiltonian function, which w
are going to call it energy surface, plus generalized Poiss
brackets. Thus through this procedure one can do static
dynamic studies of the system. In the present work we w
be studying only the static case, that is, the expectation va
of the Hamiltonian with respect to a trial wave function. It is
important to emphasize that, depending on the generality
the trial wave function that one chooses, the bigger
smaller region of the solution space that one can study. F
this reason, if the Hamiltonian has an algebraic structure, it
convenient to choose as trial wave functions its associat
coherent states.

We are going to analyze the energy surfaces~ES! within
the catastrophe theory formalism, which is based on impo
tant mathematical results on functional analysis@3#. There-
fore, if we have an energy surface depending onn variables
andr essential control parameters, the first step is to find i
critical points and determine which are Morse points an
which are not. In the Morse points the energy surface can
approximated by a local quadratic form, while for the non
Morse points the energy surface can be written in terms
the catastrophe function, which is constructed by a germ pl
a perturbation. For a number of control parameters less
equal to five, without special symmetry conditions, a list o
canonical catastrophe functions are known@3#.

A connection@4# between the interacting boson model@5#
and the geometrical approach of Bohr-Mottelson@6# was
done by expressing the IBA-1 Hamiltonian in terms of shap
variables. This can be achieved by means of the correspo
540556-2813/96/54~5!/2374~11!/$10.00
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ing coherent states@7#. Analysis of shape and shape phas
transitions in this model have been realized in Refs.@8,9#. In
this work we apply the procedure introduced in Ref.@8# to
the interacting boson model, but for the general Hamiltoni
of one and two-body central interactions involvings andd
bosons and determining its associatedseparatrix. We show
that the equilibrium configurations can be classified b
means of two parameters and are enough to describe
most general energy surface. These ES are organized by
separatrix, which is useful to know: ~i! how many equilib-
rium configurations yield the system and~ii ! if the behavior
of the model around the critical points may or may not b
approximated by an harmonic oscillator. This analysis ge
eralizes those presented previously, in which only transitio
between pairs of exact SU~5!, O~6!, and SU~3! symmetries
are considered@10#. In the past decade, effective Hamilto
nians of the IBA-1 have been used to describe energy spe
and transition probabilities of chains of isotopes and isoton
@11–13#. The analysis of the stability and shape transitio
properties for this last case requires the generalization trea
in this work.

In the second section a brief summary of the interacti
boson model, in its simpler version is given@5#, and their ES
are established. By means of the catastrophe theory, in
third section, the number of essential parameters of the
and separatrix are determined. In the fourth section the
havior of the IBA-1 dynamical symmetries in the essenti
parameter space is described, together with the kind and
der of the shape transitions that they can yield. In the la
section a summary of the main stability and shape charac
istics of the IBA-1 are indicated.

II. SUMMARY OF THE IBA-1

First a brief review of the interacting boson mode
~IBA-1! is presented. This model was introduced in 1975@5#
to describe the properties of even-even nuclei through
interactions of two types of bosons: one with angular m
mentumL50 ~s boson! and another with angular momentum
2374 © 1996 The American Physical Society
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54 2375SHAPES AND STABILITY WITHIN THE INTERACTING . . .
L52 ~d boson!. These bosons are considered formed by c
related pair of fermions and generate a U~6! group structure.
Thus the nuclei are described as a system ofs andd bosons,
whose number is determined by half of the valence nucle
while the core remains inert.
or-

ns

To construct the Hamiltonian, single and two boson inte
actions are considered that preserve the total number
bosons and are also rotational scalars. For one body terms
andd boson number operators result naturally, while for th
two body case one gets
H IBA-15esNs1edNd1 (
L50,2,4

cL
2

A2L11@@d†3d†#@L#3@ d̃3d̃#@L##@0#1
v2
&

~@@d†3d†#@2#3d̃#@0#s1s†@d†3@ d̃3d̃#@2##@0#!

1
v0
2

~@d†3d†#@0#s21s†2@ d̃3d̃#@0#!1u2s
†s@d†3d̃#@0#1

u0
2
s†2s2, ~2.1!
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where the boson operators satisfy the commutation relati

@s,s†#51, @dm ,dn
†#5dmn . ~2.2!

The other possible commutation relations are zero and
coefficients in front of the interaction terms are adjustab
parameters that indicate their intensities.

One of the nicest features of the IBA-1 is that the Ham
tonian can be expressed in terms of the Casimir operator
the chain of groups@14#

U~6!.U~5!.O~5!.O~3!, ~2.3a!

U~6!.O~6!.O~5!.O~3!, ~2.3b!

U~6!.SU~3!.O~3!, ~2.3c!

that is

H5k1Nd1k2Nd
21k3NNd1k4L

21k5L
21k6P

21k7Q
2

1k8N1k9N
2, ~2.4!

whereNd is thed boson number operator,L
2 is the square of

the angular momentum,L2 is the Casimir operator of O~5!,
and P2 is related to the Casimir operator of O~6! through
P251

4~N
214N2L2!. Finally the quadrupole-quadrupole in

teraction is related to the SU~3! Casimir operatorG through
the expressionQ25 1

2G2 3
8L

2. It is important to emphasize
that the Hamiltonian would be diagonal if it can be written i
terms of the Casimir operators associated to one of the ch
of groups~2.3!.

In this contribution we are going to study only the stat
properties of the IBA-1, that is the behavior of the Hami
tonian function or energy surface. For this case we can c
sider the reality condition to the complex variables@15#.

Associated to the IBA-1 model is an intrinsic geometr
structure@7,16#, determined by its coherent states, which h
been discussed in Refs.@16,17#. These can be written in the
form

uNam&5~s†1Smamdm
† !Nu0&. ~2.5!

This yields the energy surface
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E~b,g!5
^N,bguHuN,bg&

^N,bguN,bg&

5
Neb2

~11b2!
1
N~N21!

~11b2!2 S a1b41a2b
3cos 3g

1a3b
21

u0
2 D , ~2.6!

wheree[ed2es ; the constantNes was substracted and the
variablesam were expressed in terms ofb, g, and the Euler
angles. As the energy surface is a rotational scalar, there
no dependence in the Euler angles and the parametersa1, a2,
anda3 are defined by

a15
c0
10

1
c2
7

1
9c4
35

, ~2.7a!

a252
2

A35
v2 , ~2.7b!

a35
1

A5
~v01u2!. ~2.7c!

III. ENERGY SURFACES AND CATASTROPHE THEORY

The energy surface of the IBA-1 is a function dependin
on the variables~b,g!, and the five parameters:e, u0, a1, a2,
anda3. We will consider the energy surface of the IBA-1 a
an example of how to use the catastrophe formalism to d
termine the shapes and stability of the model@3,16#. The
procedure is the following:

~i! The essential control parameters and the germ of t
energy surface are determined. This is accomplished by o
taining the equilibrium configurations, that is the critica
points of the Eq.~2.6!. From them, the critical point with
maximum degeneracy is selected and it is called the fund
mental root. Then a Taylor series expansion of the ener
surface around the fundamental root is done. The germ of t
IBA-1 is the first term of the expansion which cannot b
canceled by an arbitrary selection of the parameter values

~ii ! One constructs the bifurcation sets of the energy su
faces of the IBA-1. A bifurcation set is the locus of points in
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the space of essential control parameters at which a transi
occurs from one local minimum to another. The bifurcatio
sets are obtained from the condition detH50, whereH is
the matrix of second derivatives of the energy surface eva
ated at the critical points, i.e.,

Hi j5
]2e~xk!

]xi]xj
U

~x1
c ,x

2
c!

~3.1!

with x15b, andx25g and the superindexc in the variables
x1 andx2 denotes that they are critical points. The gradient
the energy surface is used to get information about its criti
points, while the matrixH defines its nature if detHÞ0, that
is, if they are maxima, minima, or saddle points. For th
reason the matrixH is called the stability matrix. However,
if detH50 the nature and number of critical points chang
meaning that (x 1

c ,x 2
c) is at least double degenerate. Ther

fore in a bifurcation set the qualitative nature of the ener
surface changes because equilibria are either created or
stroyed. The determinant of the stability matrix is equal
the product of its eigenvalues and they are associated to
variables of the energy surfacebc and gc . An eigenvalue
zero indicates that its associated variable does not beh
well, meaning that the energy surface in that critical poi
cannot be approximated by a quadratic expression in t
variable.

~iii ! The Maxwell sets are determined; these sets con
tute the locus of points in the essential parameter space
which the energy surface takes the same value in two
more critical points. They can be found through th
Clausius-Clapeyron equations. For the IBA-1, there are o
two essential parameters, denoted by (r 2 ,r 1), as we shall
prove. Then if we assume that for (r 2

0 ,r 1
0) there arep critical

pointsx1 ,x2 ,...,xp in which the energy surface has degene
ate critical values, the Clausius-Clapeyron equations are
fined by

e~1!5e~2!5e~3!5•••5e~p!, ~3.2a!

(
a

S ]e~k!

]r a
0 2

]e~k11!

]r a
0 D dr a

050, ~3.2b!

where we used the notatione (k)5e(xk ,r 1
0 ,r 2

0) with xk de-
noting a point in the variable space, that is~b,g!.

~iv! Finally the separatrix of the IBA-1 is constructed b
the union of the bifurcation and Maxwell sets. This divide
the parameter space into shape stability regions and ident
the locus of points where there are shape transitions, toge
with their order.

Next we follow the procedure indicated above. We sta
by evaluating the critical points of the energy surface, that
¹E~b,g!50. It is straightforward to find that the critica
points are localized along the linesgc50 ~prolate case! and
gc5p/3 ~oblate case!. Of course these are repeated by addi
to these values multiples of 2p/3 because the energy surfac
has aC3v symmetry. According to this symmetry all the
critical points are located on the CartesianX axis. For points
on the positive side of theX axis, prolate nuclei are de-
scribed while points on the negative part correspond to o
late nuclei.

For the variableb, gc50, one finds the algebraic equatio
tion
n
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bFa2b312S a322a12
e

N21Db223a2b

12S u02a32
e

N21D G50, ~3.3!

to determine the critical points. The casegc5p/3 is included
allowing negative values forb. From this expression, it is
immediate that thebc50 is a critical point for any values of
the parameters of the energy surface; for this reason it is
fundamental root. The Taylor series expansion of the ene
surfaceE(b)5E(b,gc50) around this fundamental root is
given by

E~b!5
N~N21!u0

2
1N~N21!F ~a32u01w!b21a2b

3

1S a122a31
3u0
2

2wDb4G1O~5!, ~3.4!

wherew[e/(N21) was defined and the symbolO~5! indi-
cates terms of the orderb5 or higher. From the last expres
sion, obviously the linear term inb is not appearing because
bc50 is a critical point. The quadratic term inb is elimi-
nated by choosing

a32u01w50. ~3.5!

This implies thatbc50 is double degenerate because also t
second derivative in the expansion is canceled. This fun
mental root is triple degenerate if we choose~3.5! and that

a250. ~3.6!

Next we try to remove the fourth derivative in the expansio
this implies

a122a31
3u0
2

2w50. ~3.7!

However, if the parameters of the model satisfy Eqs.~3.5!,
~3.6!, and ~3.7!, the energy surface~2.6! becomes indepen-
dent ofb andg and takes a constant value equal to

E5eN1a1N~N21!, ~3.8!

which, by means of the expressions~3.5!, ~3.6!, and~3.7!, is
equivalent toE5N(N21)u0/2 as it can be seen directly
from ~3.4!. Of course the higher powers inb that appear in
the Taylor series expansion,~3.4!, are canceled if the expres
sions~3.5!, ~3.6!, and~3.7! are satisfied.

Therefore we conclude that the energy surface is over
termined if we fix three parameters, and for this reason, o
can only satisfy Eqs.~3.5! and ~3.6!. Then we have that the
first term different from zero isb4, which characterizes the
germ of the system, and we introduce the essential con
parameters

r 15
a32u01w

2a11w2a3
, r 252

2a2
2a11w2a3

. ~3.9!
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The energy surface can be rewritten in terms of these par
eters in the form

e~b,g![
E~b,g!2N~N21!u0/2

e0

5
1

~11b2!2
@b41r 1b

2~b212!2r 2b
3 cos 3g#,

~3.10!

where we have definede05N(N21)(2a11w2a3)/2. No-
tice that if e0 is zero we have a trivial case and the energ
surface is a constant given by the Eq.~3.8!, so the interesting
cases occur whene0 is different from zero.

In summary, through the Taylor series expansion arou
the fundamental rootbc50, it was possible to determine the
essential parameters and the germ of the system. In term
these new parameters the critical points are found, in
Appendix, by solving the algebraic equation

b~r 2b
314b223r 2b14r 1!50. ~3.11!

Following step ~ii ! of the procedure, we find the nex
bifurcation sets.

Bifurcation set r2 axis. The critical pointbc50 is degen-
erate if and only if the conditionr 150 is satisfied; therefore
in this critical point the energy surface is always stable wh
r 1Þ0, and presents degeneracy all along ther 2 axis in both
variables.

Bifurcation set r1 axis with r1,0. As it was shown in the
Appendix, for this set we have the critical point (bc ,gc)
5(A2r 1,g). It presents degeneracy in the variableg and it
is a non-Morse point. This is proved by evaluating, in th
point, the stability matrix and finding that the eigenvalu
associated to the variableg is equal to zero. This set is as
sociated withg-unstable nuclei.

Bifurcation sets r11 and r12. To find the degeneracy of the
critical points that fall outside ther 2 andr 1 axes, the criteria
of the stability matrix requires solving algebraic equations
fifth degree. Then it is simpler to use an equivalent proced
that involves a mapping between the critical andR

2 param-
eter manifolds@3#. The critical manifoldbcÞ0 is defined by

r 2bc
314bc

223r 2bc14r 150. ~3.12!

The coordinates of any point on this manifold embedded
the three-dimensional space are

~bc ;r 2 ,r 1!5~l1 ;l2 ,2
1
4 @l2l1

314l1
223l2l1# !, ~3.13!

wherer 1 was obtained from Eq.~3.12!. Now we consider the
projection mapping of the two-dimensional manifold~3.12!
down onto the two-dimensional essential control paramet
planeR

2, defined by

x:~bc ,r 2 ,r 1!→~r 2 ,r 1!,

r 25l2 ,

r 152 1
4 ~l2l1

314l1
223l2l1!. ~3.14!

The previous expression defines a singular mapping if
Jacobian of the transformation
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detS ]r 2
]l1

]r 1
]l1

]r 2
]l2

]r 1
]l2

D
5detS 0

2 3
4l2l1

222l11
3
4l2

1

2 1
4l1

31 3
4l1

D
52

3

4
l2~12l1

2!12l1 ~3.15!

is zero. Imposing this condition, one gets the expression

l25
8l1

3~12l1
2!
. ~3.16!

Then in general the mapping is invertible except for the
curve in the three-dimensional space

~bc ;r 2 ,r 1!5S l1 ;
8l1

3~12l1
2!
,

l1
2

3~12l1
2!

~l1
213! D ,

~3.17!

because it indicates the set of points at which the tange
plane to the manifold~3.12! is vertical, meaning that they
have associated the same essential control parameters. T
the projection~3.14! takes the form

x:~bc ,r 2 ,r 1!→~r 2 ,r 1!,

r 25
8l1

3~12l1
2!
,

r 15
l1
2

3~12l1
2!

~l1
213!, ~3.18!

which is denoting the parametric equations for the bifurca
tion sets that fall outside ther 1 andr 2 axes. Eliminating the
parameterl1 one obtains

r 1152
~9r 2

2116!3/2

54r 2
2 2

32

27r 2
221, ~3.19a!

r 125
~9r 2

2116!3/2

54r 2
2 2

32

27r 2
221. ~3.19b!

Following the calculations made in the Appendix the critica
points onto the bifurcation sets haveD50. Thus they are
obtained by replacingr 1→r 11 into Eq. ~A7! and the result
into ~A10!

b1152
4

3r 2
12

A9r 22116

3r 2
, ~3.20a!

b1252
4

3r 2
2

A9r 22116

3r 2
. ~3.20b!

In similar form, the critical points onto the setr 12 are found
if we replacer 1→r 12
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b2152
4

3r 2
22

A9r 22116

3r 2
, ~3.21a!

b2252
4

3r 2
1

A9r 22116

3r 2
. ~3.21b!

From the critical points~3.20! and~3.21!, we proved that
b12 andb22 are degenerate critical points by determining t
eigenvalues of the stability matrix. In this analysis it w
found thatb is the bad behaved variable. In Fig. 1 the co
structed bifurcation setsr 2 axis, negativer 1 semiaxis,r 11,
and r 12 are illustrated with continuous lines.

Next, we proceed to build the Maxwell sets by means
Eqs. ~3.2!. For the IBA-1, it is found that there are thre
Maxwell sets, associated to the branchesbc50, and bc

5A2r 1.
For the basic branch,bc50, the energy surface has valu

zero, then to find the Maxwell set, the Eq.~3.10! is equated
to zero, withgc50 andgc5p/3. After simplifications it is
reduced to

~r 111!b27r 2b12r 150. ~3.22!

This equation gives us two intersections of the energy s
face with thex axis, then there is always an extreme po
between them. Therefore, when the solutions are degener
we find the Maxwell sets associated to the basic branch.
solutions of the last expression are degenerated when
discriminant is zero, that is

r 2
228r 1~r 111!50. ~3.23!

Solving r 1 as function ofr 2 we get two sets, which will be
denoted byr 13

6 and are given by

r 13
6 52 1

26 1
2A11r 2

2/2. ~3.24!

The value r 13
1 corresponds to the Maxwell set where th

minima of the energy surface degenerate, whiler 13
2 is asso-

ciated to maxima. There are four critical points onto the
bifurcation sets. However, those associated with the deg

FIG. 1. The separatrix of the IBA-1 is shown. For positiver 1
values, the continuous line is indicating the bifurcation setr 12 and
the dashed one the Maxwell setr 13

1 . For negativer 1 values, the
bifurcation setsr 11 and r 1 semiaxis are displayed with continuou
lines, while the Maxwell setsr 13

2 and r 1 semiaxis are shown with
dashed lines.
e
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eration of maxima arebc50 andb13
2 while the minima occur

for bc50 andb13
1 . Theb13

6 critical points can be calculated
by solving Eq.~3.22! under the replacement ofr 1→r 13

6 and
they are given by

b13
6 5

r 2

6A11r 2
2/211

, ~3.25!

where the positive values ofb13
6 correspond to the prolate

nuclei while the negative ones correspond to the oblate ca
For the branchbc5A2r 1, the Maxwell set is associated

to the locus of points of the negativer 1 semiaxis. The ES in
this branch presents minima of the same depth for any val
of the variableg. In Fig. 1, the Maxwell setsr 13

6 and the
negativer 1 semiaxis are displayed by dashed lines.

In the second and third steps we have constructed t
bifurcation and Maxwell sets. Thus the separatrix in th
IBA-1 is defined by the curves in the parameter spac
(r 2 ,r 1), which result from the bifurcation and Maxwell sets
associated to the critical points. In the bifurcation sets th
qualitative nature of the energy surface changes becau
equilibria are either created or destroyed. In Fig. 1, the sep
ratrix of the IBA-1 is displayed. The typical shapes of the E
are stable within the six regions divided by the separatri
Therefore the qualitative aspect of the surfaces can be det
mined by exhibiting a cut valid forg50 andg5p/3 of the
energy surface defined in Eq.~3.10!. The ES are shown in
Figs. 2–5 in all the regions when one moves along the lin
r 254&/3. In these figures one can appreciate the following
for r 1.r 12 the shape of the ground state band is spherica
for values of the control parameters between the bifurcatio
r 12 and the Maxwellr 13

1 sets, the ES have a second prolat
minimum. For nuclei described by ES of this region, th
shape coexistence phenomena for excited states amo

s

FIG. 2. Energy surfaces cutsE(x,0), with x5b cosg, are dis-
played. In~a! for the regionr 1.r 12, in ~b! for r 15r 12, and in ~c!
for the domainr 13

1 ,r 1,r 12. The plots~a8!, ~b8!, and~c8! are closer
views to the minima for the corresponding curves, and they sho
the appearance of an excited prolate local minimum.
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spherical and prolate shapes are present. For 0,r 1,r 13
1 the

shape of the ground state band is prolate and excited ba
are spherical, indicating again the presence of the shape
existence phenomena. Forr 13

2 ,r 1,0 the spherical excited
band disappears and the system has a very well defined
late minimum characteristic of rotational nuclei. In Figs.
and 5 there is an apparent oblate local minimum; however
is a saddle point because it is unstable with respect to
variableg. For r 1,r 13

2 there is only a prolate minimum~see
Figs. 4 and 5! and for even smaller values ofr 1 the system is

FIG. 3. CutsE(x,0) are shown. In~a! for r 13
1 ,r 1,r 12, in ~b!

for r 15r 13
1 , and in~c! for the region 0,r 1,r 13

1 . The correspond-
ing closer views are displaying the transition from spherical to d
formed shapes.

FIG. 4. CutsE(x,0) are shown. In~a! for 0,r 1,r 13
1 , in ~b! for

r 150, and in~c! for r 13
2 ,r 1,0. The closer views are displaying

the disappearance of the excited spherical states.
nds
co-

pro-
4
, it
the

less and less bound, as is indicated in all the figures by
dashed line. It represents the asymptotic value,E→r 111, of
the energy surface whenb→`.

In Fig. 6 the corresponding ES are illustrated when on
moves along the liner 250 in the parameter space. Forr 1.0
one has a spherical shape, while forr 1,0 we have the pres-
ence of g-unstable nuclei. The ES are shown in Fig. 7

e-

FIG. 5. CutsE(x,0) are shown. In~a! for r 13
2 ,r 1,0, in ~b! for

r 15r 13
2 , in ~c! and~d! the curves are shown for two values ofr 1 in

the regionr 11,r 1,r 13
2 , in ~e! for r 15r 11, and in ~f! for r 1,r 11.

Notice that the oblate region becomes inaccessible afterwards
maxwell setr 13

2 .

FIG. 6. CutsE(x,0) are shown forr 250. In ~a! for r 151, in ~b!
for r 150, and in~c! for r 1521/2. The plots at the right indicate
closer views at the minima, displaying the transition from a sphe
cal to deformedg-unstable shapes. In particular, in~b8! the catas-
trophe germ of the IBA-1 is shown.
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along ther 1522 straight line. Forr 2,0 the ES characterize
oblate shapes plus a prolate saddle critical point, while f
positive r 2 values describe prolate shapes with an obla
saddle critical point. Notice that the possible shapes pres
in the left-hand side of the parameter space can be obtai
by making a reflection~b→2b! in the ones plotted in the
Figs. 2–5.

Shape transitions

The classical theory of phase transitions can be applied
the catastrophe formalism@3#. We will say that a shape tran-
sition occurs when the point~b,g! describing the state of a
physical system jumps from one locally stable critical bran
to another. This will be happening when the control param
eters (r 2 ,r 1) are varied and crossings through the separat
of the system are taking place.

Usually the control parameters are assumed to depend
only one parameter, which is used to describe a curve in
parameter space; thus in general we have

r 1→r 1~s!, ~3.26a!

r 2→r 2~s!, ~3.26b!

FIG. 7. CutsE(x,0) are shown forr 1522. In ~a! for r 251, in
~b! for r 250, and in~c! for r 2521. The plots are displaying the
transition from a prolate to oblate shapes, through ag unstable.
or
te
ent
ned

to

ch
-

rix

on
the

~bc ,gc!→„bc~s!,gc~s!…, ~3.26c!

Ec~bc ,gc!→Ec„bc~s!,gc~s!…. ~3.26d!

It is convenient to classify the shape transitions by their
der, then a transition is of the ordern if

lim
e→0

] iEc~s!

]si U
s02e

5 lim
e→0

] iEc8~s!

]si U
s01e

, ~3.27!

for i50,1,2,3,...,(n21), but it is not satisfied fori5n. The
parameters0 denotes a point onto the separatrix.

To find the order of the shape transitions present in
IBA-1 we use the following procedure.

Evaluate the energy surface in two critical points onto t
bifurcation set being crossed, with the appropriate param
values. If they are not equal, one has a zero order transit
If that is not the case, take the first derivative of the ene
surface with respect tos taking into account that the function
is evaluated in two critical points

dE

ds
5

]E

]r 1

]r 1
]s

1
]E

]r 2

]r 2
]s

, ~3.28!

where]r k/]s are the direction cosines. FurthermoreE must
be evaluated in critical points onto the bifurcation. If they a
not equal one has a first order transition and so on.

Next, we study the shape transitions that occur when
control parameters of the energy surface are crossing
separatrix of the IBA-1 model. We start by considerin
r 2.0; when the bifurcation setr 12 is intersected the ES hav
a zero order transition between the spherical ground s
band and excited prolate states~see Fig. 2!. If the setr 13

1 is
crossed, there is a first order transition from a spherical t
prolate shape~see Fig. 3!. When the bifurcation setr 150 is
intersected there is a zero order transition between exc
spherical states and the ground state deformed band of
system~see Figs. 3 and 4!, except forr 250. In this case~see
Fig. 6! we have a second order shape transition from
spherical nucleus to ag-unstable deformed one. Notice i
Fig. 4 the appearance of a minimum in the variableb for
oblate shapes; however, it is unstable in the variableg, and
therefore a saddle critical point. The bifurcation set negat
r 1 semiaxis produces a first order transition when it
crossed from one side to the other~see Fig. 7!. For r 2,0, the
ES are reflected with respect to the vertical axis under
mapping r 2→2r 2 because it is equivalent to chang
b→2b.

IV. DYNAMICAL SYMMETRIES

The dynamical symmetries of the IBA-1 have played
important role in the developing of the model. For examp
their energy spectra and electromagnetic transitions rem
us of those obtained with geometrical models. The U~5! dy-
namical symmetry describes an anharmonic vibrator,
SU~3! is an axial rotor, and finally the O~6! limit is a de-
formed g-unstable rotor. Then we consider it important
find the locus of points in the essential parameter sp
which are associated to these dynamical symmetries.

We start by studying a truncation of the IBA-1 Hami
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tonian~2.1!, which is comprised of Casimir operators of th
U~5! limit, that is

H5k1Nd1k2Nd
21k3NNd1k4L

21k5L
21k9N

2. ~4.1!

These parameterski are related to the single-boson and two
boson matrix elements through the Eq.~4! of the Ref.@11#.
By means of that expression and the Eq.~2.7!, it is found

e5k11k21k316k414k5 , ~4.2a!

u052k9 , ~4.2b!

a15k21k31k9 , ~4.2c!

a250, ~4.2d!

a35k312k9 . ~4.2e!

These five parameters define the energy surface of the vi
tional limit and through them and Eq.~3.5!, the control pa-
rameters of the system are calculated, i.e.,

r 250, r 15
b11k21k3N

b11~2N21!k21k3N
, ~4.3!

where b15k116k414k5 . Notice that if k250, we have
(r 2 ,r 1)5~0,1! in the essential parameter space. In gener
one has that the possible ES are characterized by the po
on ther 1 axis; ther 1 values depend strongly on the relativ
intensities and signs of the parametersb1, k2, and k3. For
small values ofk2, the ES are in the vicinity ofr 151.

The O~6! algebra is comprised of fifteen generators, ten
them close under the commutation relations of an O~5! alge-
bra. The other five have phase ambiguities due to the f
that the s and d boson operators could undergo a gaug
transformation without changing the commutation prope
ties. There are two realizations used in the literature, that

Lmm85dm
† d̃m82dm8

† d̃m , Lm5s†d̃m1sdm
† , ~4.4a!

Lmm85dm
† d̃m82dm8

† d̃m , L̄m5s†d̃m2sdm
† . ~4.4b!

We are going to distinguish these two realizations~4.4a! and
~4.4b!, following @18#, by denoting the corresponding
algebras by O~6! and Ō~6!, respectively.

Next we study the Ō~6! limit, which is defined by the
Hamiltonian

H5k4L
21k5L

21k6P̄
21k9N

2. ~4.5!

The ES associated to this limit are determined by the set
parameters

e56k414k5 , ~4.6a!

a15
k6
4

1k9 , ~4.6b!

a250, ~4.6c!

a35
k6
2

12k9 , ~4.6d!
e

-

bra-

al,
ints
e

of

act
e
r-
is

of

u05
k6
2

12k9 . ~4.6e!

Evaluating the control parameters it is found (r 2 ,r 1)5~0,1!,
independently of the intensities of the interactions. It is im-
portant to note that the operatorsL2 andL2 have one body
contributions proportional toNd . If these are eliminated one
arrives at the condition of an energy surface constant. Th
most general interaction~4.5!, without one body contribu-
tions, has been discussed previously@19# and is responsible
for the collective motion.

For the O~6! case we replace in the Hamiltonian~4.5! the
operatorP̄2 by

P25
5

4
@d†3d†#@0#@ d̃3d̃#@0#1

1

4
s†2s22

A5
4

~@d†3d†#@0#s2

1s†2@ d̃3d̃#@0#!. ~4.7!

Then the associated ES can be determined easily by mea
of the expression~4! of Ref. @11# and Eq.~2.7!. They are
characterized by the parameters

e56k414k5 , ~4.8a!

u05
k6
2

12k9 , ~4.8b!

a15
k6
4

1k9 , ~4.8c!

a250, ~4.8d!

a352
k6
2

12k9 . ~4.8e!

The corresponding control parameters are evaluated throug
Eq. ~3.5! and it is found that

r 250, r 15
e2k6~N21!

e1k6~N21!
. ~4.9!

Notice again the influence of the one body terms ofL2 and
L2. If these are eliminated one arrives at the values
(r 2 ,r 1)5~0,21!. In this limit depending on the relative
strength betweene andk6, that isj5k6(N21)/e, the ES are
associated to the followingr 1 values:

21,j<1⇒0,r 1 , ~4.10a!

1,j,`⇒21,r 1,0, ~4.10b!

2`,j<21⇒r 1,21. ~4.10c!

Therefore, as we have shown in the previous discussion~see
Fig. 6!, for r 1.0 the energy surface has a minimum inb50,
while if r 1,0 it has a maximum inb50 plus two minima of
the same depth.

The SU~3! algebra is formed by nine generators, the an-
gular momentum plus the quadrupole operators. There ar
two currently used versions of the quadrupole operator
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Qm5~s†d̃m1sdm
† !2

A7
2

@d†3d̃#m
@2# , ~4.11a!

Q̄m5~s†d̃m1sdm
† !1

A7
2

@d†3d̃#m
@2# , ~4.11b!

which together with the angular momentum generate alg
bras that we denote SU~3! andSU(3), respectively.

We start analyzing theSU(3) limit by considering the
Hamiltonian

H5k4L
21k7Q̄

21k9N
2. ~4.12!

For this Hamiltonian, we find the parameters

e56k42
9
4k7 , ~4.13a!

u052k9 , ~4.13b!

a15
k7
2

1k9 , ~4.13c!
e-

a2522&k7 , ~4.13d!

a354k712k9 , ~4.13e!

that define the typical ES within this symmetry. Substitutin
the last parameters into Eq.~3.9! one gets

r 25
16&k7~N21!

24k413k7212k7N
, r 15

24k4225k7116k7N

24k413k7212k7N
.

~4.14!

In the last expression, if the total number of bosons is equ
to one the harmonic limit (r 2 ,r 1)5~0,1! is obtained, while,
for N@1, the two body terms dominate and one ge
(r 2 ,r 1)5~24&/3,24/3!. Notice that this is the result one
finds when the Hamiltonian is comprised only by th
SU(3) Casimir operator.

For the SU~3! case we have to replace theQ̄2 interaction
by Q2, which is defined by the expression
Q255Ns1
11

4
Nd1

7

4
@d†3d†#@0#@ d̃3d̃#@0#2

3A5
8

@@d†3d†#@2#3@ d̃3d̃#@2##@0#1
3

2
@@d†3d†#@4#3@ d̃3d̃#@4##@0#

12A5s†s@d†3d̃#@0#1A5~@d†3d†#@0#s21s†2@ d̃3d̃#@0#!2A35~@@d†3d†#@2#3d̃#@0#s1s†@d†3@ d̃3d̃#@2##@0#!. ~4.15!
e
-1.

e
ons.
The parameters

e56k42
9
4 k7 , ~4.16a!

u052k9 , ~4.16b!

a15
k7
2

1k9 , ~4.16c!

a252&k7 , ~4.16d!

a354k712k9 , ~4.16e!

yield the ES associated to this case, and from them i
straightforward to find

r 252
16&k7~N21!

24k413k7212k7N
, r 15

24k4225k7116k7N

24k413k7212k7N
.

~4.17!

Once more, forN51 one gets the harmonic limit and whe
N@1 the control parameters take the values~4&/3,24/3!.
This corresponds to the case of a Hamiltonian defined by
SU~3! Casimir operator.

In summary we have found that the dynamical symm
tries described above can yield ES determined by the po
on the straight lines
t is

n

the

e-
ints

r 156
7&

8
r 211, ~4.18a!

r 250. ~4.18b!

Therefore we have for the exact limits the following
results: For the harmonic case the point~0,1!; for the SU~3!
two points~64&/3,24/3! characterizing nuclei with prolate

FIG. 8. The IBA-1 dynamical symmetries are described in th
essential parameter space, together with the separatrix of the IBA
The vertices of the double triangle are indicating the SU~3!, SO~6!,
and U~5! limits. The crossings of the sides of this double triangl
and the separatrix show the points where there are shape transiti
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and oblate shapes, respectively; for theg-unstable limit the
point ~0,21!. Thus they describe the double triangle ind
cated in the Fig. 8. The straight lines~4.18a! represent tran-
sitions of the ES from spherical to oblate or prolate nuc
while the ~4.18b! indicates transitions from spherical t
g-unstable nuclei. Notice also that these results were
tained by considering Hamiltonians associated to the Cas
operators of a single chain of groups~2.3!. This happens
because the Casimir operators have one body terms i
which correspond to the harmonic limit.

To have the transition from theg-unstable to oblate or
prolate nuclei, one has to consider Hamiltonians of the fo

H5a1FGḠG2a2L2, ~4.19!

whereG andḠ are indicating the Casimir operators of SU~3!
andSU(3), respectively.L2 denotes the Casimir operator o
O~6!. The ES for these cases are characterized by the p
metric equations

r 15
2h24

22h13
, r 256

4&

2h23
, ~4.20!

with h5a1/a2. These represent the following two straig
lines:

r 156
&

8
r 221, ~4.21!

which are also shown in the Fig. 8.

V. CONCLUSIONS

In this work by means of the coherent states and the
tastrophe theory, the separatrix of the IBA-1 general Ham
tonian of one and two body central interactions was co
structed. The Maxwell setr 13

1 divides the ES in two
regions: For r 1.r 13

1 the ES describe spherical nucle
while for r 1,r 13

1 they characterize deformed nuclei; prola
when r 2.0 and oblate ifr 2,0. The shape coexistence ph
nomena between spherical and deformed shapes is prese
the ES for r 1 values into the region 0,r 1,r 12, which is
stronger in the Maxwell setr 13

1 . Although the ES do not have
simultaneously oblate and prolate local minima, for the
gion r 13

2 ,r 1,0 the possibility of having fluctuations be
tween oblate and prolate shapes exists. In the IBA-1 mo
there are at most second order shape transitions accordin
the thermodynamic Eherenfest classification.

The dynamical symmetries of the IBA-1 are described
the space of control parameters by the double triangle sh
in Fig. 8. It was found that the SU~3! limit can describe
prolate or oblate shapes, while the groups O~6! and SU~5!
appear whenr 250. The intersections between the doub
triangle and the curves forming the separatrix indicate stro
qualitative changes in the ES.

Notice that this formulation allows us to obtain the mo
general interaction which yields a constant energy surfa
This has been used thoroughly in Ref.@18# to separate intrin-
sic and collective parts of an algebraic Hamiltonian. In p
ticular we found for the O~6! limit that their realizations
~4.4a! and ~4.4b! produceg-unstable and constant energ
i-
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surfaces, respectively. However, we want to emphasize th
this is due to the definition used for the coherent states~2.5!
and, if a gauge transformation is made in thes andd bosons
forming the coherent states, the opposite result could be o
tained.
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APPENDIX: CRITICAL POINTS OF THE IBA-1

We separate the critical points and review its behavior
the following regions.

~i! r 150 andr 250. In this case, the expression~3.7! be-
comesb350 and then one gets thatbc50 has triple degen-
eracy, which as we have shown is the maximum one pres
in the IBA-1.

~ii ! r 150 andr 2Þ0. We have four critical points,bc50 is
doubly degenerated for all the possible values ofr 2, and

b r2
65

1

r 2
~226A413r 2

2!, ~A1!

whereb r2
1 yields a minimum in the energy surface, while

b r2
2 corresponds to a maximum.

~iii ! r 1Þ0 and r 250. This is clearly theg-unstable case
because we havea250 and all the dependence ing in the
energy surface disappears. For this case Eq.~3.8! can be
immediately solved. We have three critical points, one o
thembc50 and the other two are given by

b r1
656A2r 1. ~A2!

Thebc50 corresponds to a maximum in the energy surfac
while the last two to minima.

~iv! r 1Þ0 and r 2Þ0. For this case, again thebc50 is a
critical point and the others are obtained by solving Eq.~3.8!
whenbÞ0, which is a cubic equation; that is

~r 2b
314b223r 2b14r 1!50. ~A3!

By making the change of variable

y5b1
4

3r 2
, ~A4!

one gets the reduced third order algebraic equation

y31ay1b50, ~A5!

where the parameters

a5232
16

3r 2
2 , ~A6!

b54S r 111

r 2
1

32

27r 2
3D . ~A7!
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Notice that the parametersa and b let us to rewrite Eqs.
~3.12a! and ~3.12b! in the form of the elementary cusp ca
tastrophe.

Following the standard procedure for solving the reduc
cubic equation, one defines the discriminant

D54a3127b2, ~A8!

to find the nature of the roots. IfD.0 there is only one real
root

y15H 2b

2 J 1/31H 2b

2
2AD/108J 1/3. ~A9!

If D50 one has

y15H 2b

2 J 1/3, y25y35H 2b

2 J 1/3. ~A10!
-

ed

Finally for D,0 one has the irreducible case with three r
roots

y152A2a/3 cos~f/3!, ~A11a!

y2522A2a/3 cosS p2f

3 D , ~A11b!

y3522A2a/3 cosS p1f

3 D , ~A11c!

wheref is defined by the expression

tanf52
A2D

A27b
. ~A12!
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