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Triaxiality in quadrupole deformed nuclei
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The intrinsicE2 matrix element$¢K =2|E2|K=0) for 25 deformed nuclei, covering from neodymium to
uranium, have been deduced from measured interfzhdnatrix elements between the ground band and
band after correcting for the first-order angular momentum dependence of the coupling between the rotation
and intrinsic motion. Fairly precise centroids for the triaxiality of the intrifS& moments are obtained, and
these correlate well with the triaxiality implied by the excitation energies. The strong correlation of the
triaxiality derived from theE2 properties and level energies provides a quantitative measure of triaxial quad-
rupole deformation of the nuclear shape for these stpB8556-281®6)02611-§

PACS numbgs): 21.10.Ky, 21.10.Re, 23.20.Js, 27 .70,

The well knowny band, a low-lying predominanti ”  nuclear shape, are compared with correspondipgralues
= 2,2" excitation, is a prominent feature of the level spec-derived from the excitation energies.
trum in even-even deformed nuclei. It is calledyaband Cline and Flaunj4-6] have developed a generally appli-
because its excitation energy andray decay properties cable, model-independent, technique for extracting the ex-
have been interpreted to result from the breaking of the axiapectation values of the intrinsic-frame parame®@(s, that
symmetry of the quadrupole shape of the ground stile relie; on use of rotational invaria}nts, qnd is: based on a sug-
that is, the collectivey degree of freedom. This paper ad- 9€stion by Kumar(7]. The rotational invariance of zero-
dresses the question of the triaxiality of this band. coupled products of th&2 operator is used to relate the

The triaxiality of the quadrupole shape usually is Speciﬁeoexpectation values of the zero-coupled products in the intrin-

in terms of Bohr's parameters(y), where the quadrupole sic frame to those evaluated in the laboratory frame. The
deformation tensors of a nuclea} density contour, in th gentroids of théE2 asymmetn for many nuclei throughout

intrinsic frame, are defined bya(2,0)=cosy and %he Periodic Table, determined by this method, correlate with

o ; the yg values derived from the excitation energies assuming
@(2,2)=Bsiny/\2. The magnitude of the quadrupole defor- a vy-rigid rotor relationship[4,5]. Although the rotational-

mation is characterized by and asymmetry by. The gen-  j,yariant method is model independent and is generally ap-

eral trend of they-ray branching ratios for decay of this pjicable, its usefulness is reduced because of appreciable er-

low-lying 2 y-band excitation are reproduced roughly by rors in the extracted values that result from compounding

calculations using either g-rigid rotor [2] or a rotation-  of the errors from the several products&s matrix elements

vibration model[3] with asymmetry angles fitted to the ex- involved in evaluating each rotational invariant.

perimental excitation energies. This paper presents a more precise method for extracting
The E2 properties in the intrinsic frame can be describeds values fromE2 data, but the applicability of this method is

in terms of two collective parameter€Q(5), whereQ speci-  restricted to nuclei where quadrupole correlations are strong.

fies the magnitude of the quadrupole deformation &rtle  The method uses band-mixing calculations to extract

triaxiality [4]. These parameters are defined in terms ofhe intrinsic matrix elements(K=2|E2|K=0) and

the intrinsic-frame E2 moments, E(2,0)=Qcos5 and (K=0|E2|[K=0) for deformed nuclei, from which the

E(2,+2)=Qsind\2. Note that we designai®as the asym- asymmetry of quadrupole deformation is determined by the

metry angle derived from thE2 properties, to differentiate E€XPression

it from the asymmetry angle specifying the radial shape of

the nucleus. The intrinsic-franie2 parameter€), 5, can be

related directly to the shape parametgrsy using a model-

dependent transition density. A third measure of the triaxial-

ity, designatedyg, can be derived from the level energies; . i iwincic matrix elements are determined from the ma-
this is a measure of the asymmetry of the moments of mertl?. + . .
rix element of the 2—0; transition and the interband

which are influenced by pairing and the microscopic struc- . .
ture. Frequently it is assumed that the centroidy 06, and E2 matrix elements between the ground apdhands. It is

_ X sumed that these interband matrix elements can be corre-
v are the same which is not necessarily true. The observel(?s,[ed by the following equatiofEq. (4-210 in Ref. [1]):
qualitative correlation between the excitation energies an

the E2 data can be attributed to the correlation of the cen-

troids of 8 and yg. This paper discusses a fairly precise VB(E2,lx/— 1) =(lx/K'2—2[1cK)

K=2|E2|K=0
ans= V2 [E2[K=0)

(K=0[E2]K=0) @)

method for extracting the centroids for the triaxial@yfrom X{My—Ma[l(Ic+1)
E2 data in quadrupole-deformed nuclei. TB2 triaxiality ! 2K
centroids 6, which are related to the triaxiality of the — I (I +1)1}E, (2)
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TABLE |. Extracted intrinsicE2 moments € b) and § angles.

Nucleus  (K=0|E2|K=0) (K=2|E2|K=0) V2 ratiof 6 (degreg? 5 (degree®
1507d 1.65 0.21833) 0.18428) 10.416)

1525m 1.86 0.23d15) 0.17811) 10.1(6)

1545m 2.07 0.19(25) 0.13017) 7.410)

156Gd 2.10 0.238) © 0.16073) 9.1(2)

158Gd 2.23 0.22(20) 0.14013 8.07)

160Gd 2.28 0.2165) 0.1344) 7.62)

160Dy 2.24 0.2536) 0.1604) 9.1(2)

py 2.31 0.2567) 0.1574) 8.92)

1e4py 2.36 0.25011) 0.15Q7) 8.54)

166gy 2.41 0.2646) 0.1554) 8.802) ~10
168y 2.43 0.2488) © 0.141(5) 8.013) ~9
168y 2.40 0.26%929) 0.15817) 9.0(10)

174yp 2.41 0.13621) 0.08012) 4.6(7)

1764 2.32 0.24116) 0.14710) 8.4(6)

178 2.17 0.21911) 0.1437) 8.1(4)

iy 1.89 0.25610) © 0.1917) 10.94) ~12
186y 1.88 0.40617) 0.30913) 17.7)

18505 1.67 0.4171) ¢ 0.3539) 19.45) ~21
1880g 1.59 0.4007) ¢ 0.35715) 19.68) ~21
1900s 1.53 0.3987) ¢ 0.36634) 20.117) ~24
1920s 1.46 0.4% 0.436 23.6 ~24
230Th 2.84 0.25725) 0.12712) 7.27)

232Th 3.03 0.3%° 0.144 8.2

24 3.30 0.25412) 0.1095) 6.23)

23y 3.51 0.2677) 0.1073) 6.1(2)

% rom the present technique.

bFrom the rotation-invariant technique.

‘More than the 2 state of they band were included in the fitting.
9From three-band-mixing =0, 2, and 4 calculation.

®From three-band-mixingK=0, 2, and 0) calculation.

The ratio of(K=2|E2|K=0) to (K=0|E2|K=0).

where M, and M, are the fitted intrinsic matrix elements, A total of 25 deformed nuclei has been studied in this
'=K+2 and ¢ is equal to2 if K=0 and equal to 1 work, ranging from neodymium to uranium. They are

otherwise. Equatiori2) underlies use of the Mikhailov plot °Nd [9], %21%6m [10,17, %615816d [12,13,

[8]. The applicability of Eq(2) is based on the assumption 160.162.16fyy [13 14, 166.16% [15 16, 168174p [17,18,

that both bands are rotational bands having the same intrinsi&6.1744¢ [1g], 18418y [19,20, 186188190.1%)5 [21,27,

deformation. The intrinsic matrix eleme(K =2|E2|K=0) 230237y [23_25, and 2423} [23,24,2§. The justification

is related to theV, andM, matrix elements by the following  for the use of Eq(2) to correlate the interbanB2 matrix

relationship(Eq. (4-211) in Ref. [1]): elements between the ground amdbands is demonstrated
) by analyses of the rotational-invariant technidde-6] ap-
(K'[E2[K)=M;+ 4K+ 1)M,. (3 plied to % [16], 8AW [19], and 186:188.1901%g [21],

which showed an almost constant magnitude and asymmetry
The matrix elementK=2|h, ,|K=0) coupling theAK=2 " for quadrupole deformation in both the ground apbands.
bands can be deduce] from the level-energy spacing and Thjs is consistent with the interpretation that these bands are
the reduced amplitudgk =2e . ,|K=0) describing the ad-  ytational bands with approximately equal intrinsic deforma-

mixture of the two bands. That is tion. Cases where tHe2 data are inconsistent with the linear
B B relationship in Eq.(2), due to mixing with a third state or
(K=2]e . |K=0)— (K=2|h,,|K=0) (4 band mixing, were not included except for?0s and

E(K=2)-E(K=0)" 232Th, where the three-band-mixing calculations had been
done previously[22]. For most cases, only three decay
where the reduced amplitude is related to g matrix  branchings of thé,K™ = 2,2* excitation are involved in the
element derived from the experiment? data: least-squares fit except fol¢Gd, ©616%r ¥4y, and
186,188,19yg where the interband2 matrix elements for

M,=6(K=0|E2|K=0)K=2|e,,|K=0). (5  many members of th&=2 band have been measured.
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TABLE Il. Excitation energies in keV for the first and second

o b'@' '®| I A I: 2" states of deformed nuclei and the extractgdvalues.
L N ]
~ - (} g - Nucleus E(2f_,) E(2:.,) Ratio® g (degre¢
2 [ ® ] 150Nd 130.2 1061.9 8.2 13.8
? -4 % - 1525m 121.8 1085.9 8.9 13.2
=2 1 3 ] 1545m 82.0 1440.4 17.6 9.6
& F ] 156Gd 89.0 1154.1 13.0 11.0
i e[ —] 15
X - . %Gd 79.5 1187.1 14.9 104
L % ] 160Gd 75.3 988.2 13.1 11.0
0 e e e ] %Dy 86.8 966.2 11.1 12.0
. B, | ! ] 162y, 80.7 888.2 11.0 12.0
o -1 o ] 164py 73.4 761.8 10.4 12.4
sk ] 166y 80.6 785.9 9.8 12.6
& a2l 4 165y 79.8 821.2 103 12.4
VR S $ ] 168y 87.7 983.9 11.2 11.8
£ 50 % ] 74y 76.5 1634. 21.4 8.7
E . b ] 1ot 88.4 1341.3 15.2 10.2
R % = 7 93.2 1174.6 12.6 11.2
C ] B4y 111.2 903.3 8.1 14.0
[ P IS SRR SN B 186y 122.6 737.9 6.0 16.0
0.0 0.1 0.2 0.3 0.4 1860 g 137 767 5.60 16.4
2Y3(K=2|E2|K=0)/(K=0|E2|K=0) = tand 1880 155 633 4.08 19.2
19%0g 187 558 2.98 22.8
FIG. 1. The reduced amplitudeppe) and coupling matrix el- 1920 206 489 237 25.4
ement(lower) plotted versus the ratio of intrinsi€2 matrix ele- 2307 53.2 781.0 14.7 10.4
ments which corresponds to #@nThe arrow indicates thé’*Yb 2321, 19.4 7855 15.9 10.0
data where_ the in'trin_sidEZ strength may be _njissin_g due to an 23 43'5 926.7 21'3 8.7
unusually high excitation energy that allows mixing with two-quasi- 239 44'9 106.0 23.6 8.3

particle states.

2The ratio ofE(2;_,) to E(25_o).

The extracted intrinsic matrix elements
(K=2|E2|K=0) for those nuclei and the correspondidg and using the adiabatic approximation. The reverse process
centroids are listed in Table I. Also included, in the lastis more difficult in that it involves knowing the radial depen-
column of Table I, are the centroids éfdetermined using dence and fluctuation widths @f and y [6]. However, for
the rotation-invariant technique for some of the nuclei studthe deformed nuclei considered here, it is expected that the
ied; these agree reasonably well with the values obtained inentroids ofs andy are comparable. Note that tB2® asym-
the present work. metry centroids does not differentiate the fluctuation ampli-

Figure 1 shows the mixing amplitudes and mixing matrix tude for dynamic triaxial motion from a possible static quad-
elements plotted versus the intrin&@ matrix element ratio rupole potential energy minimum at#0.
which corresponds to ta@ Both the extracted values of the A measure of the triaxialityyg, relating the moments of
reduced amplitude for the wave function, and the couplingnertia, can be derived from the excitation energy of the
matrix element are small. They correlate with the asymmetry, K™ = 2,2* state. Although the triaxiality is expected to be
angle § showing an increase in absolute value with increasea dynamic, rather than a static effect, the extreme rigid tri-
in the centroids. One notable exception i§4Yb, where the axial rotor model can be used to obtain a crude estimate of
asymmetry is a factor of 2 smaller than that of neighboringthe centroid ofyg using the relation between the excitation
nuclei. A possible cause for the small asymmetryifyb, is  energies of the 2 and 2} states,
because thé,K™ = 2,2" state has an unusually high exci-

tation_ en_ergy(1634 keV, aII_owing mixing with two- Errkez 1+ 1—(8/9)sif3 e
quasiparticle states; the resulting strength fragmentation will = _ : (6)
lead to an underestimate of the intrinsic matrix element B2+ k=0) 1—1—(8/9)sirf3ye

(K=2|E2|K=0). The K=2 purity of they band is illus-
trated by the smallness of the mixing amplitude of theTable Il lists those excitation energies and the corresponding
K=0 component which, even in the worst case!#Os, is  estimate of theyg centroids for all nuclei studied.

only 5% for the 2 state. Note that%Os is outside of the To have a better understanding of the systematics of tri-
domain of this discussion, in that the linearity of E8) is  axiality in quadrupole deformed nuclei, tii? data and the
violated. excitation-energy ratio for the,K™ = 2,2* excitation and

The intrinsic-frameE2 centroids Q,d), which are ex- the first 2" state are plotted against each other in Fig. 2.
perimental observables, can be related to the modelFigure 2a) shows that there is a strong correlation between
dependent shape parametesy) within a collective model them. Figure &) shows the strong correlation of the2 &
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FIG. 2. The asymmetry of quadrupole deformation derived from Mass Number
the intrinsicE2 matrix elements vs that derived from the excitation-
H — + ] . . .
energy ratio between theK” = 2,2" and the first 2 states. The FIG. 3. The products of the vibration amplitude and frequency

solid curve is the assumed correlation based on a static triaxiglf the| K™ = 2,2" excitation plotted against the mass number. The
quadrupole shape. The arrow indicates #i&/b data where the spjig curve is resulted from a mass parameter of 20 times of the
intrinsic E2 strength may be missingee caption for Fig. )1 mass parameteR (irrot), for a surface vibration in the liquid drop
model. The symbol ¢ ) indicates the data derived from band-
centroid, versus theg centroid derived using the extreme mixing calculations and no error was assigned. See the caption of
rigid-rotor model. The anomalous case’d8fYb is marked in  Fig. 1 for the arrow indicator.
Fig. 2 by the arrow. The correlation, shown in Fig. 2, is ) ] ) ] ]
strong evidence for the existence of triaxial quadrupole de@lSO is @ measure of the classical oscillator strength implying
formation. This correlation is moderately well described bythat they-vibration motion in deformed nuclei carries about
the extremey-rigid rotor model which ignores dynamic 270 Of the classicak2 oscillator strength. .
shape effects. The systematic deviation, for the most strong| Recent rando_m-p_hase approx!maUCRPA) calculations
deformed nuclei, is not unexpected considering the extremgzﬂ' for thg y-vibrational states in thg strongly deformed
model used to estimatee. Note that pairing correlation nuclei, predict that the low-lying-vibrational mode carries

effects[3] are too small to account for this systematic devia—a\bOUt 10% of the classici2 oscillator strength. In these
tion y calculations, the parameters for the quadrupole-quadrupole

Within the framework of they vibrator model, thd ,K™ :ntegaitlg Z+W Setr:tef Ii);e?ep?r(z)cingte(;h?rhei;( %';zgg(i)crzﬁedn;rrgeyn;fh the
= 2,2* excitation is due to vibrational motion which breaks ié twice t’he observed strength.
the axial symmetry for quadrupole deformation of the |5 summary, the determination of the intrinsic matrix el-
ground  state. ~ The intrinsic  matrix  element ement(K=2|E2|K=0) for 25 deformed nuclei has been
(K=2|E2|[K=0) (a measure of the vibration amplitudis  achieved from the interband matrix elements between the
related to the excitation energy measure of the vibration ground andy bands after correcting for the first order angu-

frequency by the following equatioEq. (6-92) in Ref.[1]):  lar momentum dependence of the coupling between the ro-
tational and intrinsic motion. These provided a fairly precise
(K=2|E2|K=0)= (iZRZ) / 72 study of the triaxiglity an_gl§ characterizing the centroid of _
Arr 2DEy+ (k=2 the E2 moments in the intrinsic frame for deformed nuclei
ranging from neodymium to uranium. TIE® triaxiality cen-
_ (iZRz) [E2+k=2) 7) troids, &, correlate well withyg centroids, derived from the
“\an 2C excitation energy using the extreme rigid triaxial rotor

model, demonstrating quantitatively that the root mean
whereZ is the atomic numbeR=1.2AY3fm, D is the mass square shape is triaxially deformed. TB& centroidss pro-
parameter, an@ is the restoring force parameter. The prod-vide a good measure of the triaxiality of the nuclear shape
uct of the intrinsic moment and the excitation energy for thefor these states but are not sensitive to dynamic shape fluc-
I,K™ = 2,2" state, which can be interpreted as the vibratortuations. Under the assumption ofyavibrator, the relation-
mass parametér®/2D, is plotted against the mass number in ship between the intrinsic matrix element and excitation en-
Fig. 3. A mass parameter that is 20 tin@sirrot) (see Eq. ergy of the I,LK™ = 22" state implies that the
(6A-31) in Ref.[1]), for a surface vibration in the liquid drop y-vibrational strength in deformed nuclei accounts for about
model, is consistent with the data. The quantidyjrrot)/D, 5% of the classicaE2 oscillator strength.
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