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Geometrical interpretation of the semimicroscopic algebraic cluster model
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A geometrical mapping of the semimicroscopic algebraic cluster model is given. The geometrical variables
are the relative radius vector and the quadrupole deformation parameters. The last ones correspond to absolute
B andy values, while the orientation of the deformed nucleus in the laboratory can be changed. We show that
the position of the minimum of the nuclear molecular potential is determined by the minimal number of
bosons describing the relative motion. The minimal numberr @osons is determined by the implementation
of the Pauli principle. Applications to simple systems®Q+a and ?C+a) are presented.
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PACS numbgs): 21.60.Cs, 21.60.Ev, 21.60.Fw, 21.60.Gx

I. INTRODUCTION while in Sec. Il we give the mapping to a geometrical pic-
ture. For this we will define for the relative motion a coher-
In recent years the semimicroscopic algebraic clusteent state depending on some parameters. The potential is
model (SACM) was introduced1] in order to describe in a then given by the expectation value of the Hamiltonian with
unified way the low-lying collective spectrum and the respect to this trial state. The parameters are related to the
nuclear molecular resonances. In this model the rotationalcomponents of the relative distance vector. We shall see that
vibrational relative motion of the clusters is described inthe minimal number ofr bosons, which is necessary to sat-
terms of the vibron moddP]. This is an algebraic model of isfy the Pauli principle, is directly related to the position of
the dipole collective motion with Y(4) group structure. the minimum of the nuclear molecular potential. The quad-
(The subscripR is used to indicate the relative motipithe  rupole deformation variables are introduced in the same way
group generators are expressed in terms @ind o bosons,  as given in Ref[6]. In Sec. IV we apply the mapping to the
havingl=1 and|=0 angular momenta, respectively. The systems of*®0+« and *C+ a. As will be seen, the results
m bosons are identical with the phonons of the threeare in agreement with what is expected. Also the dependence
dimensional harmonic oscillator. With the help of te of the potential on the relative orientations can be described,
bosons the model space can be truncated to a finite numbgich is important for the second system where tHe
of bosons, which denotes a representation af4). nucleus is strongly deformed. Finally, in Sec. V the summary
The internal structure of the clusters is accounted for byand conclusions are given.
the SU3) shell model3]. The model space of the SACM is Although in this contribution only asymmetric cluster sys-
constructed microscopicallj4]; therefore, it is free from tems are discussed, we show in Appendix B, for complete-
Pauli-forbidden states and from the spurious excitations of€ss, how to treat symmetric systems.
the center-of-mass motion. The physical operators are treated
DhenOTenologicaHY: they are expressed in terms of group;, SEMIMICROSCOPIC ALGEBRAIC CLUSTER MODEL
enerators.
° The success of the model lies in the simultaneous descrip- The building blocks of the SACM are ando bosons in
tion of the low-lying spectra and high-lying molecular states.the section of the relative motion and quanta of the harmonic
However, it has the disadvantage of nearly all algebraic modoscillators in the shell models of the clusters. Their creation
els, namely, that it is difficult to visualize the geometric and annihilation operators are denoted bf,o',a}, and
properties of the cluster system. It would also be desirable tar'™,o,a™(m= —1,0,+ 1), respectively. Note that we use co-
look for a connection to a geometrical picture which can bevariant and contravariant indices in order to distinguish be-
compared to already existing geometrical models for nucleaiween the different transformation properties of the creation
moleculeq 5]. operators with respect to the annihilation operators. The con-
The objective of the present contribution is to fill this gap. travariant component of the annihilation operator is related
In Sec. Il the algebraic model is introduced very briefly, to its covariant component via

=1t Mr_,, a™=(-1)1 " Ma_,. )
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m oty s =1 a™ af1=s": (2 The number of quanta fow is zero, because all nucleons
[m™ mml=0m , Lovo]=1, [a7.an]=om i (2) occupy the shell with zero quanta. TH&C has eight nuclei
in the p shell and thus cGarries eight quanta. The total sum is
The fact that ther bosons of the relative motion corre- 8: The united system i$% and has 12 nuclei in the shell
and, therefore, carries 12 quanta. As can be seen, four nucle-

spond to oscillator quanta, just like tlebosons of the in- ans have to be lifted to thp shell of the united system and

ternal structure of the clusters, has important consequenceg, - quanta have to be added in order to satisfy the Paull
This circumstance enables us to take into account the Pau'b'rinciple. In the literature, this is known as the Wildermuth

blocking effect. As for the construction of the model SPaceqondition[4].

this implementation is one of the main ingredients of the \ynen constructing the model space one has to deal with
semimicroscopic algebraic model. This leads to the conditionhe spin and isospin degrees of freedom as W&l How-

that the number ofr bosons is bounded from below to a ever, in the physical operators they do not necessarily show
number greater than zero. This can be seen immediately hyy explicitly. In case the clusters have spin and isospin zero,
counting the number of quanta in the shell model oscillatotthe spin- and isospin-dependent interactions are not essential
of each cluster. The sum will be less than the total number oin most of the problems. Then the group structure of the
quanta of the united system. As an example t&k8+a.  model has relatively simple form

all the rest gives zero.

U3 ® Ug(3) ® Ug4)

I[n$,n5t,ng1,[nS2,n52,n52],[N’,0,0,0),
DUc(3) ®UR(3) DSUc(3)@SUx(3) D SU(3)D0(3)D0(2)

[nS.nS,nS1.[n10.0], (eome) » (N0, (Aow)s KoL, M. ®

Here we also indicated the labels of the irreducible represen-  E=¢+ yn_+ 5nfr+ 7Co(N, )+ 6K+ BL(L+1). (4)
tations(irreps, which define the set of basis statfisote the
different notation of the U(4) irrepN’ with respect to that
of Ref.[1].] Further simplification takes place when the clus- If the core has a closed shell structure as well, then one
ters have a closed shell structure, and their excitations arléaS .Q‘C"‘fC):(030).’.0"“):(n”’0)’ andK :.0'
omitted. It should be noted here that the total number of SINC€ in the limiting case of the dynamic symmetry the
relative oscillation numbeN’ is used as a cutoff parameter. energy e'ge”"?'“e_ problem has an analytical solution, I
In actual calculations, stable results for the states in consiomakeS t.he fappllcann of the deEI Very easy. So fa_r practi-
eration are reached for already low numbers of excitatioﬁ:al apphcqﬂons have peen pamed out in this approximation;
guanta(three to six shell excitatiopsContrary to other mod- therefore', in the follqwmg d|scu_SS|on we concentrate mainly
els of molecules, e.g., atomic molecul8], no physical on this kind of Hgmntonlan._ It is proper to note, _however,
meaning can be associated with the quantum nunter that _the forth_comlng formalism enable_s us to build a geo-
This is reflected by the structure of the Hamiltonian Whichmetrlcal relation of mare general Hamiltonians as well
only depends on ther bosons.

For a core-plus-alpha-particle system with a core of even. GEOMETRY OF THE ALGEBRAIC CLUSTER MODEL
proton and neutron numbers the model has a group structure o ) . )
of Uc(3)®Ug(4). In general the operators of physical The pr|n_0|pal idea is to define a cqherent state as trial
quantities(including the Hamiltonianare expressed in terms Wave function and to define the potential as
of the generators of this direct product group, and then the
eigenvalue problem is solved by numerical diagonalization. V(a):<01||:|mic| ), (5)
As in many other algebraic models, however, there is a very
important limiting case, called dynamic symmetry. This -
holds when the Hamiltonian can be expressed in terms of th@here Hy,c is the semimicroscopic algebraic Hamiltonian,

invariant operators of the following group chain: |@) the coherent state, angi=(an,) a set of parameters yet
to be related to the relative vector. For simplicity, we do not

Uc(3) ®Ur(4)DUc(3)®URg(3)DSUc(3)®SUr(3) include in the trial state explicitly the dependence on the

I[n$,nS,n$7,IN’,0,0,0, [n.,0,0], (Ac,xc),(n,,0) internal structure of the clusters. This is assumed implicitly
DSU(3)D0(3)D0(2) and will be discussed later. The deformation variables of
(M), K,L,M). each cluster will be introduced when necessary. Later we

(3) will also relate the parameters,, to the relative distance

vector. Note that Eq(5) is the expression we get applying
A simple Hamiltonian corresponding to this dynamic sym-the generator coordinate method in the Gaussian overlap ap-
metry is given by proximation[7], except for a constant term.
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A. Coherent state of the relative motion where again at the end of the calculatipnand y, have to
As the coherent state we propose be set equal to 1. In the last step we used that the annihilation
operators act like derivatives on the right-hand side. Evalu-
| @) =Ny n,(@ 7)ot + (a =")]N0) ating the derivatives we finally can identify the inverse
NI " square of the normalization factor with
0
— ) T T\ IN+n
B (N+no)!NN'”0dy”o[U +y(aa)]NT|0), 4,
6) .Nﬁyzno=N!n0!(a- a)"[1+(a- )"
wheren, gives the minimal number ofr bosons needed in o Fd —ne N1 (a-a) 9
order to satisfy the Pauli principle and the total number of 2F1{ ~No, =N, "1+(a-a))’ ©

bosons is given byN+ny=N'. The second line gives an

equivalent expression needed to simplify calculations. It is

understood that at the end of the differential ope.ration theyith ,F,(...) being a hypergeometric function. It can be
value of y has to be set equal to 1. The factdf,n, is the  easily checked that fan,=0 this reduces to the known for-
normalization of the state which depends on the minimaimula[8] for the normalization of the coherent state.

number of 7 bosons and the total number of bosons In the next step we present how to calculate the expecta-
(N+ng). In the case ohy=0 the above equation reduces to tion value of an arbitary generator ofd(4) with respect to

the equivalent formula obtained in the relation of the Alge-the coherent state. The general expression we have to calcu-
braic model for atomic moleculds,9] to the geometrical Ilate is of the form

model[10]. In this presentation we extend the consideration

to a nonzero minimal number of bosons. Note that the

coherent state of Ed6) has no definite angular momentum N! 2 dno  dno

but can be expanded into states of definite angular momen- <a|o|a>:Nl%l,n0 (N+no)! | dy™ gy

tum (and number ofr bosons greater or equal tg). In 07 Yy 572

defining the potentiaV/(a) we follow Ref.[7] and use the X(0|[ o+ yy(@-m) N0

coherent state as a trial state. Its advantage is that it contains

all physically relevant states in the relative motion. XO[a'+ y,(a- w")JN* 10| 0), (10
The scalar product ak with the creation operator is given

by

o mot m which is of the same structure as in E§) except for the
(a7 )_% @ ”m_% EmT appearence of the operator We will give an explicit deri-
vation for one particular generator ofd(4). For theother
=S (1)t gt @ ones only the final result will be given. The calculation to
= —m*m obtain them is completely equivalent to the example.
Let us take the generatof £' X ])), where we used
and a similar formula holds for all other scalar products. the notation of the usual angular momentum coupling:
Now we are able to calculate the normalization factor in
Eq. (6). Using the second line of E¢G) for the expression of
the coherent state and that by definitié®/0)=1, the in-

T Sl t
verse square of the normalization factor is given by [7X W]En]—m%z (Imy1my| Sy, i, (11)
, [ NrJ2dM dm
Nﬁ,no= (N+ng)! | dy" dylo with (1m;1m,|Sm) being the Clebsch-Gordan coefficient
) S e and S the total spin. The action ofry,, to the right gives
X{0|[ o+ y1(a- I o+ yo( @ w') N 0| 0) (N+ng) o, and the action ofqr,“;l to the left gives
(N1)2 Tdmo dno (N-‘rno)ylaml and in each case the power of the square
— ’ . N+n : . .
__(N+no)!_dy2° dy“°[1+ v1vo(a- a)]" Mo, (8) brackets is reduced fromN(+ng) to (N+ng—1). Taking

2 into account the angular momentum coupling, we arrive at

(Olf+ ya(e @IV [ " x wl S T+ yo( @- 7)1V 0|0)

= (N+n0)2y17:[ @X all(O0|[ o+ yy(a m) N 0 Y o+ yy(a- ') N0 2 0). (12

Using the same steps as in the calculation of the normalization we obtain finally
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(N2 d% dno -
0 gy Y172l 1+ y172(@- @) N Mo (13
1 97

(a|[ 7" w]L?lla}:(N"‘no)[a’X a]LﬁS]N'%IHO(N+nO)! d

After having applied the derivatives i, and y, and setting them equal to 1 at the end, we obtain a sum which can be
rewritten in terms of the normalization consta.v\fgno [using Eq.(8) which gives the definition of the normalization consjant

We will not present the final expression here and instead maintain the compact expression.
For the other generators of theg(}) group(and their combinationswve obtain

, (NDHZ dMo dMho

t - N+ng—1
(alo 7Tm|a>_(N+nO)anr/\/Nn0(N+n0)!dyr;o d72072[1+717’2(a'a)] M™%,

2

Nn
(alo"o]a)=N?———,

N(Nfl)no

(l[[7"x a0 X [ax 7] ]3] @) = (N+ o) (N+no— D[ ax ]S X [ax a] XN

(NH)? d"h dno 2 2
X NTng)! dynOdyno(ylVZ) [1+y172(@ @)]N M2, (14)
' 1 2

For o'o we applied the operator directly on the original B. Coherent state with internal cluster structure

form of the state, because it is trivial. The fourth-order term  The group Wy(4) is not the only one appearing in the
in the creation and annihilation operators is also given eXHamiltonian of the semimicroscopic algebraic model. There
plicitly because it will appear in the second-order Casimirare also the SW,(3) groups k=1,2), as introduced by El-
operator. As can be_ seen, it has the same structure, excapitt [3], for each cluster and the total $(B) which is con-
that the above-mentioned procedure of calculating the expegained in the direct product SY(3)®SUc (3) as a sub-
tation value has to be applied twice. The situation is similaigoyp [Here the same notation ils used aszin 8, with the

for the expression of sixth order in the creation and annihi-difference that the groups appearing there are U(3) groups
lation operators. This one is needed for the third-order Camnstead of SIB) groups appearing heilén order to take into
simir operator. Taking the Hermitian conjugate of expres-account their contribution we have to add to the coherent
sions in Eq.(14) we obtain the expectation value of the state the dependence on the §83)-irreducible representa-
Hermitian conjugate operators. By construction, they are théion (irrep). For that the vacuum state in E@) is substituted
same. by

[0)—Inc,(Nc, c)) Ne, (A kic,)pe(he  me) kele,Mc=Lc), (15

where the notation refers to the 8) coupling of the repre- 5
sentations of the two clusters to a total §3)-irreducible (Qm(k))= \[;[nckJr $(Av—D)]azm(k)
representatioffirrep), which is still a vacuum for the bosons
of the relative motion. The \glk(B) guantum numbers in Eq. \F

_ Ck_ Gk = \/ =Nogaom(K). (16)
(3) are related to the S&Jk(3) labels as\c,=n;*—n, and T

— nCk_ nCk ilati

=n,*—nJ* Thenc are the total number of oscillation . .
He™ ‘ I3 Ckbek h b q Note thatQ? (k) is the algebraic quadrupole operator of clus-
quanta of cluster numbek. The numberspc and kc are o numberk and acts only on it.

multiplicity labels. For the operators of the g(3) groups The a,y(K) is the quadrupole deformation variable as in-
we then follow the rule as given in Refd1,12. Calculating  troduced in the geometrical model of the nucl¢l§]. For
the expectation value we substitute the algebraic quadrupolde p-, (Ac.uc), k¢, Le, andM¢ values we take a par-
operatorQZ (k) (k=1,2) by ticular coupling, i.e., thecc=1 (K=0), Lo=0 state of the
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most symmetric Pauli-allowed SAJ3) irrep.[ xc merely is whereQ",;m is the quadrupole operator which corresponds to
a multiplicity label with kc=1,2,3,..., wherexc=1 cor-  the usual definition as it is used in the microscopic(3U
responds tK =0 as introduced by Elliotf3]. Also pcisa  schemes; i.e., it is given by2(z2+p2)—(x2+p?)
multipicity label of how many timesNc, uc) appears inthe  —(y2+ pg)] with py, py, andp, the momenta irx, y, and
product ¢ ,uc,) With (Ac,,pc,).] Restricting to the Iow- 2. The indexa refers to “algebraic” and denotes that the
est SU-(3) irrep in energy corresponds to probing the loweroperator only acts within a shell. There are also equivalent
boundary of the potential. We also can take higher irrep®perators referring to the cluster structure:

which correspond to an excited cluster system. Note that

Q& (k) is sensitive only to the structure of the individual ne,Le.Q2, (18)
cluster. It does not act on the relative part of the coherent

state. So restricting th.¢=0 refers to the coupling of the where the first refers to the total number of oscillation quanta

two clusters andhot on a totall. of thg coherent statdhe of the two clusters, the second to the coupled angular mo-
coherent state does not have a definite angular momentum

. . . mentum, and the last to the sum of the quadrupole operators
With the dependence szm(k).we will be at_)Ie to describe . of the two clusters. For each individual cluster the definitions
the dependence of the potential as a function on the reIatwgre the same excent that the operators carry an ikdeith
orientation of the two clusters when we define the nu<:lea[<:1 > P P y

molecular axis as the laboratory systems for the clugfitis With these definitions the second-order Casimir operator

. The d_efmmon in EQ(15) O.f the vacuum state of the_rela- of the total SUW3) group is related to the second-order Ca-
tive motion can be relaxed, if necessary, by not coupling to a.

total definite SW3) irrep of the cluster. The main point here Simir operator of SY(3) by
is that the annihilation operators and =™ applied to this

vaccum state have to give zero. Co((N, 1)) =Co((Nc,pnc))+Nn(np+3)
Next we will give the operators, which appear in ~ 3 (Le-Lp)+4(Qc- Qg)
the Hamiltonian of the semimicroscopic algebraic cluster 21-C =R C xR
_rnodel, in terms_of the generators of all groups appearing =Cy((Ac,pe))+n (N, +3)—2(Lc-LR)
in the model. Using the above formulas for the generators of
Ug(4), we canobtain their geometrical equivalent in terms +3(Q%-QR), 19

of the a,, and a5 (K).

Following the notation of Ref1] the relevant generators, Where we used thaE,((n,,0))=n.(n,+3) with the nor-
which depend on ther bosons, are given by malization of the Casimir operators such that the eigenvalue,

for example, of the C,((\,w)), is given by
N+ Au+ p?+3N+3u [similar for the others as, e.g.,
n,=3[a' Xz, Ca(\c c)].
The expression for the third-order Casimir operator is
B " 1] rather lengthy. One has to recouple the terms such that the
Lrm= \/E[” X7l factors depending only on the-boson operators are coupled
together. The normalization of the third-order Casimir opera-

\/5 1 tor is chosen in a way that the eigenvalue is given by
Qr m:_[ﬂ.‘rxﬂ]%]:_ng, (17) (A=) (2N + w+3)(2u+ N +3). After tedious calculation
2 227 we arrive at

Ca((\, 1)) =[Cs((A¢,c))+ Ca((n,0)]1—-9(1 -5 nc)Col(Nc, ) +Ng—9(1—5n,)Cy((n,,0))

+n3+9[1—5(nc+n,)1Co((\, 1)+ (Nc+n,)3+3ncn (ne+n,)+ g{nrr[(LC' Lo)+2(Le-LRr)]
+nc[(Lr-Lr)+2(Lc-Lr) ]} + 217\/2([[ch Lc]ttx LR]E)O]+[[LRX Le]™tx LR]E)O])

3
+ 5V5{n,([QEX QZIY + 2L QX QRIF) +nc([QRX QRIP + 2L Q&< QZIT)}

3 /35
" Z\g{[[QéX QR1!x QRIE +[[Q&X Q&I X Q&1 20
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where fic+n,) is the sum of the number of quanta in the where noo bosons appear but only the minimal humber of
cluster system and the quanta. Having deduced relations 7 bosons. This corresponds in E() to the case with
(17)—(20), the expectation values are obtained by using theN=0.

steps presented from Eq8) — (16). This procedure is in analogy with the one used by Roos-
malen[13] in the description of atomic molecules, except for
C. Relation of a,, to the radius parameter the additional contributiom,, which has its origin in the

. requirement of a minimal number of bosons.
Up to now we expressed every operator, which are func- d | h . lueodtr
tions in thew bosons, in terms of the parameter valugsof In order to eva uate the expectation valu we can
the coherent state c;f E@6). In what follows they will be use the second equation of E4). This gives a rather com-
: y plicated expression. We can simplify it by considering that

relat(_ad to the raghal distance of the clustegs For that we N of Eqg. (6) goes tox. The same is done for the evaluation
require the relation of ry. We get
0.

(Ofrm0)=rm, (21)

[ h
where the operator on the left is the distance operator. How-  r,~ 2wa\/1+(a' a)(mho+ o' T +rom, (29)
ever, the distance operator cannot have the usual form

(\/h/me)(TrfnJr ) because a cutoff was introduced using ) )

the Ug(4) group. (A/me is the oscillation length witm ~ Wherer is computed by Eq(23) with the result
being the nucleon mass a¥id@ the distance in energy of the

shells in the nucleus composed by the two clusters. This f

value sets the length scale in a nuclg®ecause of that, we Mo~ mno-

work in a space where the total numberoplus = bosons

is conserved. The usual distance operator does not conserve ]

the total number of bosons and, thus, does not give an ex.his gives, for the expectation value,
pectation value different from zero. In order to account for

the conservation of the total number of bosons we have to 2N#A

modify the expression of the distance operator. This is done Fm~ N g V1T (@ @antron. (26)

by proposing (i) to substitutew! and m, by = ¢ and

o', respectively, andii) to divide by the square root of i i _

the expectation value ob'o, ie., by the number ofr Note that the-flrst term of ,, is propoonnaI to\/ﬁam, and
bosons. We use the convention that for zerdosons this SO for the limit of N—, and assuming that, has always
part of r, is zero, which can be understood as a limiting V&lues of the order of several fm, thg, will be a very small
process of the numerator versus the denominator. With thigumber. For this reason we can identify, approximately for

(25

we definethe modified distance operator as am [with V1+(a- a)~1],
h (mlotoln )
M= ( m m +roms (22) ~ m _ (27)
2me \[0]cTo|0) : Um 2Nh(rm Fom)-

wherer g ,, does not depend on the boson operators and, thus ) ) ) ]

does not change the total number of bosons eithgr, is Note thata,, gives thedlfferencegf the radius variable to the
determined by requiring, in order to be consistent, that th&/2/Ueé ofrom. The last is only different from zero when the
expectation value of the normal-ordered square of the origiMinimal number of bosons () is different from zero

nal distance operatorm)(w;ﬂL ) with respect to This will produce in the po_tent|al aminimum valuergtgnd,

the state wittN=0 has to be equal t&(ro-ro)). (The nor- therefore,ngy plays a very important role in determining the
mal ordering is used becausg,, should vanish when the structure of the nuclear molecglar po.tent|al._

minimal number ofr bosons is zero. Then one has to obtain . As was seen from the previous d|scu33|or_1, we can con-
the modified form of the relative distance operator for thisSlder the limit O_fN_’oo in order to get approximate va_llu_es
case. If the normal ordering is not used, there would alway or the expectation values. In fact, this should be the limit to

remain a constant terinln such a way we take into acount e considered when the cutoff is raised. In this limit the
that there is a minimal number of bosons. We obtain expressions for the expectation values acquire a particularly
’ simple form, namely, the one asnf, is set to zero. One can

rO,m:rOfmi then ask if all the effort done in the first sections is of prac-
tical value. This is indeed the case because, first, calculations
) ) —— N are done withN= finite and one has to discuss to which
ro:m/\/o,n()% (=1)™Ol:(a m)"o( g+ ) potential these calculations correspond. Second, the fact that
N is different from zero survives in the appearence®yf in
X(thﬂL ) (a ,,-T)ﬂo;|o>, (23 Eqg. (27). In what follows, we will for simplicity only con-
sider the limitN—« in order to deduce the potential in the
where :. . . : stands for normal ordering,, is the unit vector case of two-cluster systems.

of rp,, andré nothing else than the expectation value of the As a next step we have to express the expectation values
square of the real distance operator with respect to the staté the operators, which appear in the Hamiltonian, in terms
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of r, andrg,. We will see that in the limitN—c< all de-
pendence orN will vanish. This should be so because the
cutoff, given byN, is an arbitray value introduced by hand. Cz(()\c,ﬂc)):)\é+ )\cﬂc+ﬂé+ 3\c+3uc. (31

The rule is simple: We have to calculate the expectation
value of any operator with respect to the trial state. In thein Appendix A we show how, for the case of one deformed,
limit of N—oo it is sufficient to calculate the expectation axially symmetric cluster and another spherical one, the
value with respect to the coherent state wig=0. As we  deformation-dependent term in E@QO) can be expressed in
saw above, it will give the correct value for the real case inthe deformation variablgg(1) of the deformed cluster and
this limit. Next, the parameter valug, has to be substituted its orientation with respect to the moleculagxis. This we
by Eq.(27). As an example, consider the operatarsand  will need in the applications. Similarly, the expectation value
nfT. Following the steps, we obtain of other operators can be determined. In the next section we

apply the procedure to two simple systems.

rm=Im=Tom:

Mw
(n)=N(a-a)~—(r—rp)?

24 IV. APPLICATION TO %0+ a AND C+a

) The first system is particularly simple, because both clus-
Mo ters are characterized by the scalar (0,0)(3Urrep. The
2\ _ 2| 4 ) . | )
(N ~N(N-1)(er @) ( 2ﬁ) (r=ro)”. (28) second one represents the next more complicated situation
with one cluster deformed. In both cases the Hamiltonian has
A particular application is the expectation value of the op-& Particularly simple structure and, therefore, can illustrate in

erator{ Lgx Lg]l%' . Using Eq.(13) and Eq.(17) we arrive at & transparent way the geometrical mapping. ,
In the following we use model parameters obtained from

the new, standardized Hamiltonian of the semimicroscopic

algebraic cluster moddil4]. The new ingredient of this is

selecting a harmonic oscillator parameter appropriate for the

mass number of the given unified nucleus, which then results

The expectation value of the totaf operator is obtained by 1N & consistent set of parameters. Previously the harmonic

using that the operatdr.., is a sum ofL , and of the cluster oscillator constant was f_|tted together with t_he other param-

partL: , and that the two clusters are coupled to zkpa eters, as a result of V\{hI_Ch a direct comparison of different
A litfle more involved is the calculation of the expectation ClUSter systems was difficult.

value of the second-order Casimir opera®y((\,u«)). The

expectation value of the expression of E§9) has to be A. O+ a

calculated. Using also E¢17) we obtain The Hamiltonian of this system is given hg4]

[0]] o)\ = 2
(el[LrXLgly"|@)= ﬁ(alnwla%

Mw H=e+yn,+5Cy((n,,0)+BL? (32
<Cz(()\aM))>“02()\c'Mc)+3(ﬁ)(r_fo)2
with L2 as the total angular momentum operator and
Mo\ 2 1 /30 the zero-point energy, adjusted to experimental data. The
ﬁ) (r=ro)*+ 5\/;N[No,1az(1) values used are=—63.998 MeV, y=%w=13.185 MeV,
n=—0.4641 MeV, ang3=0.1562 MeV.y has been deter-
+Ng2a5(2)]-[@X a]'?], (299  mined from the formulahw=45A"13—25A"28 [15] as a
harmonic oscillator parameter characteristic for nuclei with
where N gives the total number of oscillation quanta of A=20 nucleons. Taking the saniav value and 8 as the
cluster numbek [plus 2(A,—1); see Eq(16)] anda,(k) is ~ Minimal number ofz bosons Q) Eq. (25) yieldsr,=5.01
the deformation of theéth cluster which is defined via its fm as the minimum of the nuclear molecular potential. This
SU(3) irrep as given in Refd6,12] and its relation to the Vvalue is consistent with the estimation based on the picture
quadrupo|e operator is also given in Hqﬁ) The “.” de- of two touchlng clusters with a distance of 1.2 fm
fines the scalar product between ®g ,, and the functionin % (A*+A7%)=4.93 fm; i.e., the two clusters slightly over-

+

a. Substitutinge,,, by Eq. (27) we obtain finally lap. For the potential we finally géin MeV)
Mo V(r)=—63.998+1.9078r —r)°—0.0118r —ry)*.
= —|(r—rg)? 33
(Cao(N,u)))=Ca(Ac,puc) +3 % )(r o) (
2 1 /30 This corresponds to a shifted oscillator with the minimum at
+(@) (r—ro)*+ _\ﬁ(@> ro containing also a slight anharmonic contribution of the
2f 2V 7w\ 2h fourth order. The negative sign of the fourth-order term, im-

~ 2 plying an unstable behavior for large should not worry us
X[No1p(1) + Nopas(2)]- [P XTI, very much. First, this term becomes important only for very
(30 large values of. The maximum of the potential in E¢33)
is atr=14 fm and the potential has there a value~of77
with MeV above the minimum. Second, the wave functions of
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physical interest are not sensitive to this unphysical range C,
and, therefore, the potential deduced is sensitive only to not ho,=h\/—=7.024 MeV,

too large values of. The negative factor is a consequence of

how the model Hamiltonian of Eq32) is adjusted to experi-

mental data at low energies. As a result the HamiltoniarwhereC,=2x1.9078 is the stiffness of the radial potential
contains a quadratic term im, (in the second-order Casimir and we usedic~197 MeV fm, mc2~938 MeV. This has
operatoy with negative coefficient. This term lowers higher to be compared with the experimental observation of 5.785
shells(largen; valueg too much. One has, however, to keep MeV [16] which is fairly close, considering the simplicity of
in mind that the above consideration is fdr—o and finite  our approach.
distance; i.e., according to E@7) the variablex,, is always

very small. In actual calculations the number of excited

guanta, i.e.N, is of the order of 3—6. In this case deviations

appear for large values af,,. These deviations appear at  This system represents the next level of complexity with
unphysically large distances, i.e., to which the states fittedne of the clusters deformed. The Hamiltonian with param-
are not sensitive. We will consider now the limit af—~ eters fitted to the experimental ddtd] takes the form

but finite N. [The general discussion is very complicated and

not intuitive. This is due to the complex expressions of, e.g., H=—29.416+13.92h,—0.5738,(n,+3)

the normalization given in Eq9).] In this case the inverse _ 2 2
square of the normalizatidiEq. (9)] can be approximated by 0.089@C,((N, 1))+ 0.542K“+0.2038.°. (38)

(37

B. ’C+a

Here K2 is the K-band splitting operator as introduced in
N'\—“%O*)(NJF No)! (e @)™ "o, (34 Ref.[6]. This operator splits the degeneracy of the @ates
belonging to they-vibrational band and to the ground-state
one. Since we defined the potential as the expectation value
with respect to the 0 state withK=0, this term does not
contribute.
In deriving the potential we use E30) for the expecta-
[1+ vy yo(a- @) [N oK (g, y,)N T oK@ @)NTNo—K, tion value of the second-order Casimir operator and R€X.
(35  for the relation of the quadrupole variables, of 12C [see
Eqg. (16)] to the deformation and orientation variables
) _ (B,0,) (see Appendix A An indexC will indicate that we
These are the terms which become important for the expegteal with '2C. Using Eqgs.(28)—(30) and Appendix A the
tation value ofn, and nfT which is proportional to the total potential can be expressed as
spin 0 in Eqg.(13) and also the intermediate spins equal
to 0 in Eq. (14). With these approximations, the expecta-
tion value of n, is given by N+ng) and for (,)? V(r)=—41.925+[2.04670.232B(3c0S O,c— 1)
by (N+ng)(N+ng—1). so they approach a constant X (r—ro)2—0.018 68r —ry)*. (39)
value. The expectation value of the sum
[ yn,.+ 7Cy((n,,0))+ BL2] is given in this limit by

Also the factor[1+ y;v,(a-a)]N"" X in Egs. (13) and
(14) can be approximated by

Note that for'2C the value of3. is —0.66 (oblate deforma-
tion) and thus the lowest positon in energy is #@=0°.

2
(allyn,+ nCa((n,,0)+BL%]|@) This means that the symmetry axis of tHe€ nucleus coin-
cides with the molecular axis; i.e., thea particle is ap-
2 . - .
—(N+ny) ( y+37+ —,3> + p(N+ng— 1)]_ proaching along the symmetry axis of th&C nucleus. This
V3 is the orientation we will discuss; i.e., we assume that the

molecular system is within that minimum and investigate
how the potential behaves as a function in the intermolecular
distance. Of course, the potential depends also on the angle
With the parameter values given in E@2) the potential 6,c and the deformation variablgc. What we do is to
approaches foN =8 the value+80.2; i.e., now the bending construct a cut through the multidimensional potential en-
over of the potential has been avoided. One can also seargy surface. The stiffness parametersinas an example
when the bending over approximately starts by determiningan be obtained by expanding in E&9) around the mini-
at which value this assymptotic constant is zero. This is thenum. As in the'®0+ a system the potential in is a shifted
case forN~18. The explanation, given here, is the same forharmonic oscillator with a slight anharmonic contribution.
the next case studied in this contribution. As a possible average value 8¢ we took the one from Ref.
The anharmonic contribution in E¢33) being small al- [17]. In what follows we will discuss the orientation where
lows us toestimatethe position of the first excited 1state, 6,c=0°. The position of the minimum of the nuclear mo-
representing a relative excitation. Assuming that the radialecular potential is, according to E@5) atry=3.45 fm. One
kinetic energy is quadratic and the mass is nothing butvould expect a deformation-dependegthowever, Eq(25)
the effective massu=mgm,/(mg+m,)=(16xX4/20)m  was derived without reference to the deformation of the clus-
=(16/5)m we arrive at ters, and therefore, is best considered an average value.

(36)
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When the radius oft?C along the symmetry axis is calcu- of introducing a minimal number ofr bosons the resulting
lated we obtain, using the formulas given in REIO], a  potential by construction will have minimum at a relative
value of 3.595 fm. For ther particle we obtain a spherical distance different from zerdts distance from the origin is
radius of 2.064 fm. Therefore, the touching distance of theroportional to the square root of this minimal number. In
clusters is 5.659 fm withBc=—0.66. This has to be com- calculating the expectation values we implemented at the end
pared to the above value of. Of course, we assumed the the limit of N—. In the parameter value,, the formulas
formula for a box distribution of the mass for the nuclei. We gre the same as using=0. Nevertheless, the explicit for-
know tha’g this is not the case for light nuclei, espepi_ally formulas can be used in order to deduce which approximated
thea particle. The above values suggest that the minimum of,stengial is to be employed in the actual microscopic calcu-
the potential is well inside of the touching configuration. | tion where the numbeX is chosen finite.

Now we discuss the potential.

Using Eq.(39) we obtain We applied the procedure to two simple systems. In the

first one %0+ «) both clusters have defomation zero and
the corresponding Hamiltonian is particularly simple. The
calculated value is consistent with the assumption that the
minimum of the nuclear molecular potential should be ap-
proximately at the touching distance of the two clusias
suming a box distribution in massWe also estimated the

the position of the first excited 1 state 6.926 MeV. This position of the first excited 1 state. This was possible be-

has to be compared with the experimental first excite@Use the anharmonic contribution in the relative dis.tance
J7=1" state: 7.117 MeV. We therefore conclude that aturngd put to be very small. The result of 7.024 Mev is of
good qualitative agreement exists between experiment arfi@litative and order of magnitude agreement with the ex-
the simple procedure. We note that the orientation where thBerimental zobserved one which is at 5.785 MeV. In the sec-
Coulomb energy is highest is lowest in energy, although on@nd case ¥C+a) one cluster is strongly oblate deformed
would have expected naively the other way aro(mecause (Bc=—0.66 [17]) and the other ondthe « particlg is
of the higher Coulomb repulsi¢nThe difference must come Spherical. Also in this case the Hamiltonian is simple, though
from the nuclear interaction. Followingb initio studies in more complicated than in the first case. The potential de-
similar systemg$18], where the potential energy surface waspends now also on the deformation of the carbon nucleus and
calculated, we are in agreement with these results. on its orientation with respect to the molecutaaxis, which

We mention that the remarkable agreement between this defined to be along the vector connecting both clusters
predicted and observed energy of tl'e=1" states can be [20]. The minimum corresponds to the situation where the
attributed to the application of the standardized Hamiltoniany particle approaches theC nucleus along to the symmetry
[14]. The results are definitely poorer using the parameters oxis of the 2C nucleus. This is in agreement with the alge-
the nonstandardized Hamiltonians. . braic considerationgL9] and with the calculation of the po-
_ We would like to clarify one paradox. The united systemiential energy surface in related cluster systdit@]. The
in the last example is'°O, which is a spherical nucleus. estimated position of the first excited 1state is at 6.926
Nevertheless, the two cIustgr_s are at a finite d_lst'anc.e, ‘,Nh'CKPIeV compared to the experimental one, which is 7.117
seems to present a contradlcthn. This contradlctlon is virtuajyay The agreement is surprisingly good and is partly acci-
as can be seen in what follows: The spherical structure of thgg o Thjs positive result is also due to the new, standard-

ground state is reflected in thelharmonlc oscﬂléthp(3)] ized parametrization of the model Hamiltoniptv], allow-
picture by the fact that the oscillator quanta belonging to theIn a consistent descrintion of neighboring coe svstems
nucleons are distributed isotropically in space; i.e., all th 9 P g 9 Y ’

directions are equally important. The same is valid in thgThe results may change slightly when the deformation vari-
cluster approach, together with the extra point that some ofPles are treated dynamically. B . _

the oscillator quanta of the united nucleus are assigned to the Comparing also the calculateg=3.45 fm with the esti-
deformedcore nucleus and some to thelative motion (the ~ mation of the touching distance, it agrees qualitatively with
last contains more than zero quanta and thus representsite_lTh(la overlap with the'“C nucleus is larger than in the case
finite distance between the clusterSogether with the rela- With *°0. Of course, the assumption of a box distribution of
tive oscillation quanta the ground state ¥ has in each the mass, which entered in the estimation, is quite rough and,

Vy(r)=—41.925+ 1.8138r —r)?—0.018 68r —r)*,
(40)

from where we can deduce, in analogy to the c¥@+ «,

direction four quanta. therefore, the deduced value f can be considered to be
consistent with this estimation.
V. SUMMARY AND CONCLUSIONS The method, presented in this paper, is able to give

a relation of the semimicroscopic algebraic cluster model

This contribution was motivated by finding a geometricalto a geometrical picture. With it the results can be, at least
connection of the semimicroscopic algebraic cluster modelqualitatively, compared with other procedures where poten-
In order to obtain this connection we followed the basictial energy surfaces are deduc¢or fitted. In fact, our
ideas of Ref[8] with the essential difference that a minimal method can also be used in order to propose starting poten-
number of w bosons has to be introduced. This conditiontials (estimations It can also be applied in a systematic
stems from the Pauli principle and the fact that the sum oftudy where one is interested in how nuclear molecular po-
oscillator quanta of the two clusters is less than the numbetentials can be formed and how it depends on the underlying
of oscillator quanta of the united system. As a consequenceluster structure.
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APPENDIX A: NUCLEAR MOLECULAR DEGREES 1/ mw 5
o EREEDOM - §(ﬁ> \/;No,lﬁ(l)[:acoé"az(l)— 11(r—ro)2.

In Ref.[20] the degrees of freedom of a nuclear molecule (A4)

are discussed. There is the relative distance of the two clus-
ters and two internal deformation variables of each nucleus.APPENDIX B: EXTENSION TO A SYMMETRIC SYSTEM
Additionally there are seven angular degrees of freedom.

. . . . ) Up to now only asymmetric systems have been consid-
Two of them describe the orientation of the relative distance : .
. - . red. In order to incl mmetri tems one has t m-
vector in the laboratory frame. Defining as in REZ0] the ered. In order to include symmetric systems one has to sy

is of th lecular intrinsic f | h lati metrize the coherent trial state of E&) with respect to the
Z axis of the moiecuiar Intrinsic frame along the relative arity transformation. Because theboson changes its sign
distance vector, the orientation of one cluster is described b

o : ; nder this transformation, the stai®) changes to
two Euler angles, the first is a rotation along thexis (ar- die) 9
bitrarily defined and the second a rotation around thaxis

of the intrinsic system of thaucleus The orientation of the | = a)=Nun [0 (a-a")]V0). (B1)
second cluster is then given by three Euler angles defined
with respect the molecular axis. The new trial state has the form

The situation simplifies significantly when one cluster is
spherical(e.g., the second clusjeand the other is axially
symmetric. For example, in a spherical nucleus no Euler
angles are needed and in an axially symmetric nulceus
rotation of its intrinsicz axis does not affect the nucleus.
Also an axially symmetric nucleus has only one intrinsic
deformation variable, i.e.3, which is negative for oblate N2=2((ala)+(a| - a)) (B3)
nuclei. For the cases discussed in this paper, this is the situ-
ation we encounter. Therefore, we only have to deal witivhere we used thaf—a|—a)= (ala) and (—ala)=
threedegrees of freedorfapart from the two angles describ- (al— ). The first term in Eq(B3) was derived in the main
ing the orientation of the relative distance vector to the labotext. The second one is obtained with the same methods. The
ratory frame. These are the relative distance of the clusterstesult is
the deformation variabl@, and the orientation angle of the
intrinsic z axis of the deformed nucleus with respect to the JFi(—=ng,—N;1;— (a- @)/[1—(a- a)])
molecularz axis (the deformation variabley is implicitly (o —a)= F(—n N1 = 1
present in the sign of). 2F1(=1o, =N 1= (- @)/[1+ (e @)])

1—(a- )N [1-(a a)}N

|@)=MN|a)+]~a)). (B2)

$he normalization constadt’ is given by

Having defined the molecular axis along the relative

distance vector, which coincides with the directionaf, 1t(wa |1t (aa
one finds that the variable,, in the molecular frame is just
ap=Iia. The factori is chosen in order to have the correct
transformation properties with respect to complex Conj“gaappearence of the exponentill, we cannot neglect the

. . _ _ 1_ . .
tion, i.e.,a™=(-1)""a_p. As shown in Eq(29) atypi- (. 4) Remember that the, is inversely proportional to

cal interaction includes the couplifigex @]l . It will now JN. Therefore, using Eq(27) the [1+ (a- a)] is propor-
acquire the form

(B4)

where the arrow gives the limit dl—«. Because of the

tional to
[ax a]ll= — \2/3a%5,,. (A1) Mo\ (r—rg)2|N
[1+(a-a)]N~|1%| =
With this and supposing that the first nucleus is deformed 2h N

and axially symmetric, the last term in E9) can be re-

( +(mwl2h)(r—rg)?
written as —€ :

1 /5 With this, the normalization factor acquires the form
- E\/;N Noaa?B(1)[3c020,(1)—1].  (A2)
1

We have used that the deformation variablg(1) is given N= [2(1+ef(mw/h)(rfro)z)]l/Z' (BS)
by [10]

Now we consider the evaluation of the expectation value
az0=3B(1)[3cog6,(1) 1], (A3)  of
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o:TrL . .77; T, ... T, account that each application of an annihilation operator to
! kot k the right gives an extra sign. With this we obtain finally
where the number of creation operators is equal to the num- (af W:ql R 7T:rnk77nl Tl @)
ber of annihilation operators. As in the main text we apply 5
the creation operators to the left and the annihilation opera- [1+(—1)ke (MMr=ro)]
tors to the right. The expectation value ©fwith respect to - [1+ef(mw/h)(rfro)z]

the new trial state is given by

X {a 71':“1 . .W;rnkﬂ'nl o la). (B7)

(a]O|@)=2M(a|O]a)+(a|O| - a)). (B6) Note that forr =r this gives identical results as in the asym-
metric case ifk=even and it gives zero contribution if
(We used tha{ — a|O|la)= (a|O|-a) and (—a|O|—@)  k=odd, all in the limit wherN— . Away fromr =r there
=(a|Ola).) is a nonvanishing contribution also fér=odd, which ap-

The first term is evaluated in the same way as for asymproaches for very far fromr, the same result as for the
metric systems while for the second we have to take intasymmetric case.
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