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Geometrical interpretation of the semimicroscopic algebraic cluster model
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A geometrical mapping of the semimicroscopic algebraic cluster model is given. The geometrical variables
are the relative radius vector and the quadrupole deformation parameters. The last ones correspond to absolute
b andg values, while the orientation of the deformed nucleus in the laboratory can be changed. We show that
the position of the minimum of the nuclear molecular potential is determined by the minimal number ofp
bosons describing the relative motion. The minimal number ofp bosons is determined by the implementation
of the Pauli principle. Applications to simple systems (16O1a and 12C1a) are presented.
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I. INTRODUCTION

In recent years the semimicroscopic algebraic clus
model ~SACM! was introduced@1# in order to describe in a
unified way the low-lying collective spectrum and th
nuclear molecular resonances. In this model the rotation
vibrational relative motion of the clusters is described
terms of the vibron model@2#. This is an algebraic model of
the dipole collective motion with UR(4) group structure.
~The subscriptR is used to indicate the relative motion.! The
group generators are expressed in terms ofp ands bosons,
having l51 and l50 angular momenta, respectively. Th
p bosons are identical with the phonons of the thre
dimensional harmonic oscillator. With the help of thes
bosons the model space can be truncated to a finite num
of bosons, which denotes a representation of UR(4).

The internal structure of the clusters is accounted for
the SU~3! shell model@3#. The model space of the SACM is
constructed microscopically@4#; therefore, it is free from
Pauli-forbidden states and from the spurious excitations
the center-of-mass motion. The physical operators are trea
phenomenologically; they are expressed in terms of gro
generators.

The success of the model lies in the simultaneous desc
tion of the low-lying spectra and high-lying molecular state
However, it has the disadvantage of nearly all algebraic mo
els, namely, that it is difficult to visualize the geometri
properties of the cluster system. It would also be desirable
look for a connection to a geometrical picture which can
compared to already existing geometrical models for nucle
molecules@5#.

The objective of the present contribution is to fill this ga
In Sec. II the algebraic model is introduced very briefl
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while in Sec. III we give the mapping to a geometrical pic
ture. For this we will define for the relative motion a cohe
ent state depending on some parameters. The potentia
then given by the expectation value of the Hamiltonian wi
respect to this trial state. The parameters are related to
components of the relative distance vector. We shall see t
the minimal number ofp bosons, which is necessary to sa
isfy the Pauli principle, is directly related to the position o
the minimum of the nuclear molecular potential. The qua
rupole deformation variables are introduced in the same w
as given in Ref.@6#. In Sec. IV we apply the mapping to the
systems of16O1a and 12C1a. As will be seen, the results
are in agreement with what is expected. Also the depende
of the potential on the relative orientations can be describ
which is important for the second system where the12C
nucleus is strongly deformed. Finally, in Sec. V the summa
and conclusions are given.

Although in this contribution only asymmetric cluster sys
tems are discussed, we show in Appendix B, for comple
ness, how to treat symmetric systems.

II. SEMIMICROSCOPIC ALGEBRAIC CLUSTER MODEL

The building blocks of the SACM arep ands bosons in
the section of the relative motion and quanta of the harmo
oscillators in the shell models of the clusters. Their creati
and annihilation operators are denoted bypm

† ,s†,am
† and

pm,s,am(m521,0,11), respectively. Note that we use co
variant and contravariant indices in order to distinguish b
tween the different transformation properties of the creati
operators with respect to the annihilation operators. The c
travariant component of the annihilation operator is relat
to its covariant component via

pm5~21!12mp2m , am5~21!12ma2m . ~1!

This deviates from the usual definition. In Ref.@1# the p̃m
corresponds here topm. The commutation relations of these
operators are
2345 © 1996 The American Physical Society
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@pm8,pm
† #5dm

m8 , @s,s†#51, @am8,am
† #5dm

m8 ; ~2!

all the rest gives zero.
The fact that thep bosons of the relative motion corre-

spond to oscillator quanta, just like thea bosons of the in-
ternal structure of the clusters, has important consequen
This circumstance enables us to take into account the Pa
blocking effect. As for the construction of the model spac
this implementation is one of the main ingredients of th
semimicroscopic algebraic model. This leads to the conditi
that the number ofp bosons is bounded from below to a
number greater than zero. This can be seen immediately
counting the number of quanta in the shell model oscillat
of each cluster. The sum will be less than the total number
quanta of the united system. As an example take12C1a.
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The number of quanta fora is zero, because all nucleons
occupy the shell with zero quanta. The12C has eight nuclei
in thep shell and thus carries eight quanta. The total sum
8. The united system is16O and has 12 nuclei in thep shell
and, therefore, carries 12 quanta. As can be seen, four nuc
ons have to be lifted to thep shell of the united system and
four quanta have to be added in order to satisfy the Pa
principle. In the literature, this is known as the Wildermuth
condition @4#.

When constructing the model space one has to deal w
the spin and isospin degrees of freedom as well@3#. How-
ever, in the physical operators they do not necessarily sho
up explicitly. In case the clusters have spin and isospin zer
the spin- and isospin-dependent interactions are not essen
in most of the problems. Then the group structure of th
model has relatively simple form
UC1
~3! ^ UC2

~3! ^ UR~4!

u@n1
C1 ,n2

C1 ,n3
C1#,@n1

C2 ,n2
C2 ,n3

C2#,@N8,0,0,0#,

.UC~3! ^UR~3! .SUC~3! ^SUR~3! . SU~3!.O~3!.O~2!

@n1
C ,n2

C ,n3
C#,@np,0,0,#, ~lC ,mC! , ~np,0! , ~l,m!, KL ,L , M &.

~3!
s

t
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Here we also indicated the labels of the irreducible repre
tations~irreps!, which define the set of basis states.@Note the
different notation of the U(4) irrep:N8 with respect to that
of Ref. @1#.# Further simplification takes place when the clu
ters have a closed shell structure, and their excitations
omitted. It should be noted here that the total number
relative oscillation numberN8 is used as a cutoff paramete
In actual calculations, stable results for the states in con
eration are reached for already low numbers of excita
quanta~three to six shell excitations!. Contrary to other mod
els of molecules, e.g., atomic molecules@2,8#, no physical
meaning can be associated with the quantum numberN8.
This is reflected by the structure of the Hamiltonian wh
only depends on thep bosons.

For a core-plus-alpha-particle system with a core of e
proton and neutron numbers the model has a group stru
of UC(3)^UR(4). In general the operators of physic
quantities~including the Hamiltonian! are expressed in term
of the generators of this direct product group, and then
eigenvalue problem is solved by numerical diagonalizat
As in many other algebraic models, however, there is a v
important limiting case, called dynamic symmetry. Th
holds when the Hamiltonian can be expressed in terms o
invariant operators of the following group chain:

UC~3! ^UR~4!.UC~3! ^UR~3!.SUC~3! ^SUR~3!

u@n1
C ,n2

C ,n3
C#,@N8,0,0,0#, @np,0,0,#, ~lC ,mC!,~np,0!

.SU~3!.O~3!.O~2!

~l,m!,K,L,M &.
(38)

A simple Hamiltonian corresponding to this dynamic sy
metry is given by
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E5e1gnp1dnp
21hC2~l,m!1uK21bL~L11!. ~4!

If the core has a closed shell structure as well, then on
has (lC ,mC)5(0,0),(l,m)5(np,0), andK 5 0.

Since in the limiting case of the dynamic symmetry the
energy eigenvalue problem has an analytical solution, i
makes the application of the model very easy. So far pract
cal applications have been carried out in this approximation
therefore, in the following discussion we concentrate mainly
on this kind of Hamiltonian. It is proper to note, however,
that the forthcoming formalism enables us to build a geo
metrical relation of more general Hamiltonians as well.

III. GEOMETRY OF THE ALGEBRAIC CLUSTER MODEL

The principal idea is to define a coherent state as tria
wave function and to define the potential as

V~a!5^auĤmicua&, ~5!

where Ĥmic is the semimicroscopic algebraic Hamiltonian,
ua& the coherent state, anda5(am) a set of parameters yet
to be related to the relative vector. For simplicity, we do not
include in the trial state explicitly the dependence on the
internal structure of the clusters. This is assumed implicitly
and will be discussed later. The deformation variables o
each cluster will be introduced when necessary. Later w
will also relate the parametersam to the relative distance
vector. Note that Eq.~5! is the expression we get applying
the generator coordinate method in the Gaussian overlap a
proximation@7#, except for a constant term.
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A. Coherent state of the relative motion

As the coherent state we propose

ua&5NN,n0
~a•p†!n0@s†1~a•p†!#Nu0&

5
N!

~N1n0!!
NN,n0

dn0

dgn0
@s†1g~a•p†!#N1n0u0&ug51 ,

~6!

wheren0 gives the minimal number ofp bosons needed in
order to satisfy the Pauli principle and the total number
bosons is given byN1n0[N8. The second line gives a
equivalent expression needed to simplify calculations. I
understood that at the end of the differential operation
value ofg has to be set equal to 1. The factorNN,n0

is the
normalization of the state which depends on the minim
number of p bosons and the total number of boso
(N1n0). In the case ofn050 the above equation reduces
the equivalent formula obtained in the relation of the Alg
braic model for atomic molecules@8,9# to the geometrical
model@10#. In this presentation we extend the considerat
to a nonzero minimal number ofp bosons. Note that the
coherent state of Eq.~6! has no definite angular momentu
but can be expanded into states of definite angular mom
tum ~and number ofp bosons greater or equal ton0). In
defining the potentialV(a) we follow Ref. @7# and use the
coherent state as a trial state. Its advantage is that it con
all physically relevant states in the relative motion.

The scalar product ofa with the creation operator is give
by

~a•p†!5(
m

ampm
† 5(

m
amp†m

5(
m

~21!12ma2mpm
† , ~7!

and a similar formula holds for all other scalar products.
Now we are able to calculate the normalization factor

Eq. ~6!. Using the second line of Eq.~6! for the expression of
the coherent state and that by definition^0u0&51, the in-
verse square of the normalization factor is given by

NN,n0
22 5F N!

~N1n0!!
G2 dn0
dg1

n0

dn0

dg2
n0

3^0u@s1g1~a•p!#N1n0@s†1g2~a•p†!#N1n0u0&

5F ~N! !2

~N1n0!!
G dn0
dg1

n0

dn0

dg2
n0

@11g1g2~a•a!#N1n0, ~8!
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where again at the end of the calculationg1 andg2 have to
be set equal to 1. In the last step we used that the annihilat
operators act like derivatives on the right-hand side. Eva
ating the derivatives we finally can identify the invers
square of the normalization factor with

NN,n0
22 5N!n0! ~a•a!n0@11~a•a!#N

32F1S 2n0 ,2N;1;
~a•a!

11~a•a! D , ~9!

with 2F1( . . . ) being a hypergeometric function. It can be
easily checked that forn050 this reduces to the known for-
mula @8# for the normalization of the coherent state.

In the next step we present how to calculate the expec
tion value of an arbitary generator of UR(4) with respect to
the coherent state. The general expression we have to ca
late is of the form

^auOua&5N N,n0
2 F N!

~N1n0!!
G2 dn0
dg1

n0

dn0

dg2
n0

3^0u@s1g1~a•p!#N1n0

3O@s†1g2~a•p†!#N1n0u0&, ~10!

which is of the same structure as in Eq.~8! except for the
appearence of the operatorO. We will give an explicit deri-
vation for one particular generator of UR(4). For theother
ones only the final result will be given. The calculation t
obtain them is completely equivalent to the example.

Let us take the generator (@p†3p#m
[S] ), where we used

the notation of the usual angular momentum coupling:

@p†3p#m
[S]5 (

m1m2

~1m11m2uSm!pm1

† pm2
, ~11!

with (1m11m2uSm) being the Clebsch-Gordan coefficien
and S the total spin. The action ofpm2

to the right gives

(N1n0)g2am2
and the action ofpm1

† to the left gives

(N1n0)g1am1
and in each case the power of the squa

brackets is reduced from (N1n0) to (N1n021). Taking
into account the angular momentum coupling, we arrive a
^0u@s1g1~a•p!#N1n0@p†3p#m
[S]@s†1g2~a•p†!#N1n0u0&

5~N1n0!
2g1g2@a3a#m

[S]^0u@s1g1~a•p!#N1n021@s†1g2~a•p†!#N1n021u0&. ~12!

Using the same steps as in the calculation of the normalization we obtain finally
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^au@p†3p#m
[S] ua&5~N1n0!@a3a#m

[S]N_Nn0
2 ~N! !2

~N1n0!!

dn0

dg1
n0

dn0

dg2
n0

g1g2@11g1g2~a•a!#N1n021. ~13!

After having applied the derivatives ing1 and g2 and setting them equal to 1 at the end, we obtain a sum which can
rewritten in terms of the normalization constantsNNn0

@using Eq.~8! which gives the definition of the normalization constant#.
We will not present the final expression here and instead maintain the compact expression.

For the other generators of the UR(4) group~and their combinations! we obtain

^aus†pmua&5~N1n0!amNNn0
2 ~N! !2

~N1n0!!

dn0

dg1
n0

dn0

dg2
n0

g2@11g1g2~a•a!#N1n021,

^aus†sua&5N2
N_Nn0

2

N_~N21!n0

2 ,

^au@@p†3p†# [S1]3@p3p# [S2] #m
[S3] ua&5~N1n0!~N1n021!@@a3a# [S1]3@a3a# [S2] #m

[S3]N Nn0
2

3
~N! !2

~N1n0!!

dn0

dg1
n0

dn0

dg2
n0

~g1g2!
2@11g1g2~a•a!#N1n022. ~14!
c
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For s†s we applied the operator directly on the origina
form of the state, because it is trivial. The fourth-order ter
in the creation and annihilation operators is also given e
plicitly because it will appear in the second-order Casim
operator. As can be seen, it has the same structure, ex
that the above-mentioned procedure of calculating the exp
tation value has to be applied twice. The situation is simil
for the expression of sixth order in the creation and annih
lation operators. This one is needed for the third-order C
simir operator. Taking the Hermitian conjugate of expre
sions in Eq.~14! we obtain the expectation value of the
Hermitian conjugate operators. By construction, they are t
same.
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B. Coherent state with internal cluster structure

The group UR(4) is not the only one appearing in the
Hamiltonian of the semimicroscopic algebraic model. The
are also the SUCk(3) groups (k51,2), as introduced by El-
liott @3#, for each cluster and the total SUC(3) which is con-
tained in the direct product SUC1(3)^SUC2

(3) as a sub-
group.@Here the same notation is used as in Eq.~3!, with the
difference that the groups appearing there are U(3) grou
instead of SU~3! groups appearing here.# In order to take into
account their contribution we have to add to the cohere
state the dependence on the SUC(3)-irreducible representa-
tion ~irrep!. For that the vacuum state in Eq.~6! is substituted
by
u0&→unC1~lC1
,mC1

!,nC2~lC2
,mC2

!rC~lC ,mC!kCLC ,MC5LC&, ~15!
-

-

where the notation refers to the SU~3! coupling of the repre-
sentations of the two clusters to a total SUC(3)-irreducible
representation~irrep!, which is still a vacuum for the bosons
of the relative motion. The UCk(3) quantum numbers in Eq.

~3! are related to the SUCk(3) labels aslCk
5n1

Ck2n2
Ck and

mCk
5n2

Ck2n3
Ck. ThenCk are the total number of oscillation

quanta of cluster numberk. The numbersrC and kC are
multiplicity labels. For the operators of the SUCk(3) groups

we then follow the rule as given in Refs.@11,12#. Calculating
the expectation value we substitute the algebraic quadrup
operatorQm

a (k) (k51,2) by

ole

^Qm
a ~k!&5A5

p
@nCk1

3
2 ~Ak21!#a2m~k!

5A5

p
N0,ka2m~k!. ~16!

Note thatQm
a (k) is the algebraic quadrupole operator of clus

ter numberk and acts only on it.
Thea2m(k) is the quadrupole deformation variable as in

troduced in the geometrical model of the nucleus@10#. For
the rC , (lC ,mC), kC , LC , andMC values we take a par-
ticular coupling, i.e., thekC51 (KC50), LC50 state of the
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most symmetric Pauli-allowed SUC(3) irrep. @kC merely is
a multiplicity label withkC51,2,3,. . . , wherekC51 cor-
responds toKC50 as introduced by Elliott@3#. Also rC is a
multipicity label of how many times (lC ,mC) appears in the
product (lC1

,mC1
) with (lC2

,mC2
).# Restricting to the low-

est SUC(3) irrep in energy corresponds to probing the low
boundary of the potential. We also can take higher irre
which correspond to an excited cluster system. Note
Qm
a (k) is sensitive only to the structure of the individu

cluster. It does not act on the relative part of the coher
state. So restricting toLC50 refers to the coupling of the
two clusters andnot on a totalL of the coherent state~the
coherent state does not have a definite angular moment!.
With the dependence ona2m(k) we will be able to describe
the dependence of the potential as a function on the rela
orientation of the two clusters when we define the nucl
molecular axis as the laboratory systems for the clusters@12#.

The definition in Eq.~15! of the vacuum state of the rela
tive motion can be relaxed, if necessary, by not coupling t
total definite SU~3! irrep of the cluster. The main point her
is that the annihilation operatorss andpm applied to this
vaccum state have to give zero.

Next we will give the operators, which appear
the Hamiltonian of the semimicroscopic algebraic clus
model, in terms of the generators of all groups appear
in the model. Using the above formulas for the generator
UR(4), we canobtain their geometrical equivalent in term
of theam anda2m(k).

Following the notation of Ref.@1# the relevant generators
which depend on thep bosons, are given by

np5A3@p†3p#0
[0] ,

LR,m5A2@p†3p#m
[1] ,

QR,m5
A3
2

@p†3p#m
[2]5

1

2A2
QR,m
a , ~17!
er
ps
hat
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whereQR,m
a is the quadrupole operator which corresponds t

the usual definition as it is used in the microscopic SU~3!
schemes; i.e., it is given by@2(z21pz

2)2(x21px
2)

2(y21pz
2)] with px , py , andpz the momenta inx, y, and

z. The indexa refers to ‘‘algebraic’’ and denotes that the
operator only acts within a shell. There are also equivale
operators referring to the cluster structure:

nC ,LC ,QC
a , ~18!

where the first refers to the total number of oscillation quan
of the two clusters, the second to the coupled angular m
mentum, and the last to the sum of the quadrupole operat
of the two clusters. For each individual cluster the definition
are the same except that the operators carry an indexk with
k51,2.

With these definitions the second-order Casimir operat
of the total SU~3! group is related to the second-order Ca
simir operator of SUC(3) by

C2„~l,m!…5C2„~lC ,mC!…1np~np13!

2 3
2 ~LC•LR!14~QC•QR!

5C2„~lC ,mC!…1np~np13!2 3
2 ~LC•LR!

1 1
2 ~QC

a
•QR

a !, ~19!

where we used thatC2„(np ,0)…5np(np13) with the nor-
malization of the Casimir operators such that the eigenvalu
for example, of the C2„(l,m)…, is given by
l21lm1m213l13m @similar for the others as, e.g.,
C2„(lC ,mC)…].

The expression for the third-order Casimir operator i
rather lengthy. One has to recouple the terms such that t
factors depending only on thep-boson operators are coupled
together. The normalization of the third-order Casimir opera
tor is chosen in a way that the eigenvalue is given b
(l2m)(2l1m13)(2m1l13). After tedious calculation
we arrive at
C3„~l,m!…5@C3„~lC ,mC!…1C3„~np,0!…#29~12 2
3 nC!C2„~lC ,mC!…1nC

329~12 2
3np!C2„~np ,0!…

1np
319@12 2

3 ~nC1np!#C2„~l,m!…1~nC1np!313nCnp~nc1np!1
9

2
$np@~LC•LC!12~LC•LR!#

1nC@~LR•LR!12~LC•LR!#%1
27

4
A3

2
~@@LC3LC# [1]3LR#0

[0]1@@LR3LR# [1]3LR#0
[0] !

1
3

2
A5$np~@QC

a3QC
a #0

[0]12@QC
a3QR

a #0
[0] !1nC~@QR

a3QR
a #0

[0]12@QR
a3QC

a #0
[0] !%

1
3

4
A35

2
$@@QC

a3QC
a # [2]3QR

a #0
[0]1@@QR

a3QR
a # [2]3QC

a #0
[0]%, ~20!
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where (nC1np) is the sum of the number of quanta in th
cluster system and thep quanta. Having deduced relation
~17!–~20!, the expectation values are obtained by using
steps presented from Eqs.~8! – ~16!.

C. Relation of am to the radius parameter

Up to now we expressed every operator, which are fu
tions in thep bosons, in terms of the parameter valuesam of
the coherent state of Eq.~6!. In what follows they will be
related to the radial distance of the clustersrm . For that we
require the relation

^0urmu0&5rm , ~21!

where the operator on the left is the distance operator. H
ever, the distance operator cannot have the usual f
(A\/2mv)(pm

† 1pm) because a cutoff was introduced usin
the UR(4) group. (A\/mv is the oscillation length withm
being the nucleon mass and\v the distance in energy of the
shells in the nucleus composed by the two clusters. T
value sets the length scale in a nucleus.! Because of that, we
work in a space where the total number ofs plusp bosons
is conserved. The usual distance operator does not cons
the total number of bosons and, thus, does not give an
pectation value different from zero. In order to account
the conservation of the total number of bosons we have
modify the expression of the distance operator. This is d
by proposing ~i! to substitutepm

† and pm by pm
†s and

s†pm , respectively, and~ii ! to divide by the square root o
the expectation value ofs†s, i.e., by the number ofs
bosons. We use the convention that for zeros bosons this
part of rm is zero, which can be understood as a limitin
process of the numerator versus the denominator. With
we definethe modified distance operator as

rm5A \

2mv

~pm
†s1s†pm!

A^0us†su0&
1r 0,m , ~22!

wherer 0,m does not depend on the boson operators and, t
does not change the total number of bosons either.r 0,m is
determined by requiring, in order to be consistent, that
expectation value of the normal-ordered square of the or
nal distance operator (A\/2mv)(pm

† 1pm) with respect to
the state withN50 has to be equal tô(r0•r0)&. ~The nor-
mal ordering is used becauser 0,m should vanish when the
minimal number ofp bosons is zero. Then one has to obta
the modified form of the relative distance operator for th
case. If the normal ordering is not used, there would alw
remain a constant term.! In such a way we take into acoun
that there is a minimal number ofp bosons. We obtain

r 0,m5r 0r̂ m ,

r 0
25

\

2mv
N_0,n0

2 (
m

~21!m^0u:~a•p!n0~pm
† 1pm!

3~p2m
† 1p2m!~a•p†!n0:u0&, ~23!

where :. . . : stands for normal ordering,r̂ m is the unit vector
of rm , andr 0

2 nothing else than the expectation value of t
square of the real distance operator with respect to the s
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where nos bosons appear but only the minimal number o
p bosons. This corresponds in Eq.~6! to the case with
N50.

This procedure is in analogy with the one used by Roo
malen@13# in the description of atomic molecules, except fo
the additional contributionr 0,m which has its origin in the
requirement of a minimal number ofp bosons.

In order to evaluate the expectation value ofs†s we can
use the second equation of Eq.~14!. This gives a rather com-
plicated expression. We can simplify it by considering th
N of Eq. ~6! goes to`. The same is done for the evaluatio
of r 0. We get

rm'A \

2Nmv
A11~a•a!~pm

†s1s†pm!1r 0,m , ~24!

wherer 0 is computed by Eq.~23! with the result

r 0'A \

mv
n0. ~25!

This gives, for the expectation value,

rm'A2N\

mv
A11~a•a!am1r 0,m . ~26!

Note that the first term ofrm is proportional toANam , and
so for the limit ofN→`, and assuming thatrm has always
values of the order of several fm, theam will be a very small
number. For this reason we can identify, approximately f
am @with A11(a•a)'1#,

am'Amv

2N\
~rm2r 0,m!. ~27!

Note thatam gives thedifferenceof the radius variable to the
value of r 0,m . The last is only different from zero when the
minimal number ofp bosons (n0) is different from zero.
This will produce in the potential a minimum value atr 0 and,
therefore,n0 plays a very important role in determining the
structure of the nuclear molecular potential.

As was seen from the previous discussion, we can co
sider the limit ofN→` in order to get approximate values
for the expectation values. In fact, this should be the limit
be considered when the cutoff is raised. In this limit th
expressions for the expectation values acquire a particula
simple form, namely, the one as ifn0 is set to zero. One can
then ask if all the effort done in the first sections is of pra
tical value. This is indeed the case because, first, calculati
are done withN5 finite and one has to discuss to whic
potential these calculations correspond. Second, the fact
n0 is different from zero survives in the appearence ofr 0,m in
Eq. ~27!. In what follows, we will for simplicity only con-
sider the limitN→` in order to deduce the potential in the
case of two-cluster systems.

As a next step we have to express the expectation val
of the operators, which appear in the Hamiltonian, in term
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of rm and r 0,m . We will see that in the limitN→` all de-
pendence onN will vanish. This should be so because t
cutoff, given byN, is an arbitray value introduced by han

The rule is simple: We have to calculate the expectat
value of any operator with respect to the trial state. In
limit of N→` it is sufficient to calculate the expectatio
value with respect to the coherent state withn050. As we
saw above, it will give the correct value for the real case
this limit. Next, the parameter valueam has to be substituted
by Eq. ~27!. As an example, consider the operatorsnp and
np
2 . Following the steps, we obtain

^np&'N~a•a!'
mv

2\
~r2r 0!

2,

^np
2 &'N~N21!~a•a!2'Smv

2\ D 2~r2r 0!
4. ~28!

A particular application is the expectation value of the o
erator@LR3LR#0

[0] . Using Eq.~13! and Eq.~17! we arrive at

^au@LR3LR#0
[0] ua&5

2

A3
^aunpua&.

The expectation value of the totalL2 operator is obtained by
using that the operatorLm is a sum ofLR,m and of the cluster
partLC,m and that the two clusters are coupled to zeroLC .

A little more involved is the calculation of the expectatio
value of the second-order Casimir operatorC2„(l,m)…. The
expectation value of the expression of Eq.~19! has to be
calculated. Using also Eq.~17! we obtain

^C2„~l,m!…&'C2~lC ,mC!13Smv

2\ D ~r2r 0!
2

1Smv

2\ D 2~r2r 0!
41

1

2
A30

p
N@N0,1a2~1!

1N0,2a2~2!#•@a3a# [2] , ~29!

whereN0,k gives the total number of oscillation quanta
cluster numberk @plus 3

2(Ak21); see Eq.~16!# anda2(k) is
the deformation of thekth cluster which is defined via its
SUk(3) irrep as given in Refs.@6,12# and its relation to the
quadrupole operator is also given in Eq.~16!. The ‘‘• ’’ de-
fines the scalar product between theQC,m and the function in
a. Substitutingam by Eq. ~27! we obtain finally

^C2„~l,m!…&5C2~lC ,mC!13Smv

2\ D ~r2r 0!
2

1Smv

2\ D 2~r2r 0!
41

1

2
A30

p Smv

2\ D
3@N0,1a2~1!1N0,2a2~2!#•@ r̃3 r̃ # [2] ,

~30!

with
e
.
n
e

in

-

f

r̃ m5rm2r 0,m ,

C2„~lC ,mC!…5lC
21lCmC1mC

213lC13mC . ~31!

In Appendix A we show how, for the case of one deforme
axially symmetric cluster and another spherical one, t
deformation-dependent term in Eq.~30! can be expressed in
the deformation variableb(1) of the deformed cluster and
its orientation with respect to the molecularz axis. This we
will need in the applications. Similarly, the expectation valu
of other operators can be determined. In the next section
apply the procedure to two simple systems.

IV. APPLICATION TO 16O1a AND 12C1a

The first system is particularly simple, because both clu
ters are characterized by the scalar (0,0) SU~3! irrep. The
second one represents the next more complicated situa
with one cluster deformed. In both cases the Hamiltonian h
a particularly simple structure and, therefore, can illustrate
a transparent way the geometrical mapping.

In the following we use model parameters obtained fro
the new, standardized Hamiltonian of the semimicroscop
algebraic cluster model@14#. The new ingredient of this is
selecting a harmonic oscillator parameter appropriate for
mass number of the given unified nucleus, which then resu
in a consistent set of parameters. Previously the harmo
oscillator constant was fitted together with the other para
eters, as a result of which a direct comparison of differe
cluster systems was difficult.

A. 16O1a

The Hamiltonian of this system is given by@14#

H5e1gnp1hC2„~np,0!…1bL2, ~32!

with L2 as the total angular momentum operator ande
the zero-point energy, adjusted to experimental data. T
values used aree5263.998 MeV,g5\v513.185 MeV,
h520.4641 MeV, andb50.1562 MeV.g has been deter-
mined from the formula\v545A21/3225A22/3 @15# as a
harmonic oscillator parameter characteristic for nuclei wi
A520 nucleons. Taking the same\v value and 8 as the
minimal number ofp bosons (n0) Eq. ~25! yields r 055.01
fm as the minimum of the nuclear molecular potential. Th
value is consistent with the estimation based on the pictu
of two touching clusters with a distance of 1.2 fm
3(A1

1/31A2
1/3)54.93 fm; i.e., the two clusters slightly over-

lap. For the potential we finally get~in MeV!

V~r !5263.99811.9078~r2r 0!
220.0118~r2r 0!

4.
~33!

This corresponds to a shifted oscillator with the minimum
r 0 containing also a slight anharmonic contribution of th
fourth order. The negative sign of the fourth-order term, im
plying an unstable behavior for larger , should not worry us
very much. First, this term becomes important only for ve
large values ofr . The maximum of the potential in Eq.~33!
is at r514 fm and the potential has there a value of' 77
MeV above the minimum. Second, the wave functions
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physical interest are not sensitive to this unphysical ran
and, therefore, the potential deduced is sensitive only to
too large values ofr . The negative factor is a consequence
how the model Hamiltonian of Eq.~32! is adjusted to experi-
mental data at low energies. As a result the Hamilton
contains a quadratic term innp ~in the second-order Casimi
operator! with negative coefficient. This term lowers highe
shells~largenp values! too much. One has, however, to kee
in mind that the above consideration is forN→` and finite
distance; i.e., according to Eq.~27! the variableam is always
very small. In actual calculations the number of excit
quanta, i.e.,N, is of the order of 3–6. In this case deviation
appear for large values ofam . These deviations appear a
unphysically large distances, i.e., to which the states fit
are not sensitive. We will consider now the limit ofa→`
but finiteN. @The general discussion is very complicated a
not intuitive. This is due to the complex expressions of, e
the normalization given in Eq.~9!.# In this case the inverse
square of the normalization@Eq. ~9!# can be approximated by

NNn0
22→~N1n0!! ~a•a!N1n0. ~34!

Also the factor @11g1g2(a•a)#N1n02k in Eqs. ~13! and
~14! can be approximated by

@11g1g2~a•a!#N1n02k→~g1g2!
N1n02k~a•a!N1n02k.

~35!

These are the terms which become important for the exp
tation value ofnp andnp

2 which is proportional to the tota
spin 0 in Eq. ~13! and also the intermediate spins equ
to 0 in Eq. ~14!. With these approximations, the expect
tion value of np is given by (N1n0) and for (np)

2

by (N1n0)(N1n021). So they approach a consta
value. The expectation value of the su
@gnp1hC2„(np ,0)…1bL2# is given in this limit by

^au@gnp1hC2„~np ,0!…1bL2#ua&

→~N1n0!F S g13h1
2

A3
b D 1h~N1n021!G .

~36!

With the parameter values given in Eq.~32! the potential
approaches forN58 the value180.2; i.e., now the bending
over of the potential has been avoided. One can also
when the bending over approximately starts by determin
at which value this assymptotic constant is zero. This is
case forN'18. The explanation, given here, is the same
the next case studied in this contribution.

The anharmonic contribution in Eq.~33! being small al-
lows us toestimatethe position of the first excited 12 state,
representing a relative excitation. Assuming that the rad
kinetic energy is quadratic and the mass is nothing
the effective massm5mOma /(mO1ma)5(1634/20)m
5(16/5)m we arrive at
ge
ot
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\v r5\ACr

m
'7.024 MeV, ~37!

whereCr5231.9078 is the stiffness of the radial potentia
and we used\c'197 MeV fm,mc2'938 MeV. This has
to be compared with the experimental observation of 5.78
MeV @16# which is fairly close, considering the simplicity of
our approach.

B. 12C1a

This system represents the next level of complexity wit
one of the clusters deformed. The Hamiltonian with param
eters fitted to the experimental data@14# takes the form

H5229.416113.921np20.5738np~np13!

20.0896C2„~l,m!…10.5422K210.2038L2. ~38!

Here K2 is the K-band splitting operator as introduced in
Ref. @6#. This operator splits the degeneracy of the 21 states
belonging to theg-vibrational band and to the ground-state
one. Since we defined the potential as the expectation va
with respect to the 01 state withK50, this term does not
contribute.

In deriving the potential we use Eq.~30! for the expecta-
tion value of the second-order Casimir operator and Ref.@10#
for the relation of the quadrupole variablesa2m of 12C @see
Eq. ~16!# to the deformation and orientation variable
(b,u2) ~see Appendix A!. An indexC will indicate that we
deal with 12C. Using Eqs.~28!–~30! and Appendix A the
potential can be expressed as

V~r !5241.9251@2.046710.2329bC~3cos2u2C21!#

3~r2r 0!
220.018 68~r2r 0!

4. ~39!

Note that for12C the value ofbC is 20.66 ~oblate deforma-
tion! and thus the lowest positon in energy is foru2C50°.
This means that the symmetry axis of the12C nucleus coin-
cides with the molecularz axis; i.e., thea particle is ap-
proaching along the symmetry axis of the12C nucleus. This
is the orientation we will discuss; i.e., we assume that th
molecular system is within that minimum and investigat
how the potential behaves as a function in the intermolecu
distance. Of course, the potential depends also on the an
u2C and the deformation variablebC . What we do is to
construct a cut through the multidimensional potential e
ergy surface. The stiffness parameters inuC as an example
can be obtained by expanding in Eq.~39! around the mini-
mum. As in the16O1a system the potential inr is a shifted
harmonic oscillator with a slight anharmonic contribution
As a possible average value ofbC we took the one from Ref.
@17#. In what follows we will discuss the orientation where
u2C50°. The position of the minimum of the nuclear mo
lecular potential is, according to Eq.~25! at r 053.45 fm. One
would expect a deformation-dependentr 0, however, Eq.~25!
was derived without reference to the deformation of the clu
ters, and thereforer 0 is best considered an average value
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When the radius of12C along the symmetry axis is calcu-
lated we obtain, using the formulas given in Ref.@10#, a
value of 3.595 fm. For thea particle we obtain a spherical
radius of 2.064 fm. Therefore, the touching distance of th
clusters is 5.659 fm withbC520.66. This has to be com-
pared to the above value ofr 0. Of course, we assumed the
formula for a box distribution of the mass for the nuclei. W
know that this is not the case for light nuclei, especially fo
thea particle. The above values suggest that the minimum
the potential is well inside of the touching configuration
Now we discuss the potential.

Using Eq.~39! we obtain

V1~r !5241.92511.8138~r2r 0!
220.018 68~r2r 0!

4,
(40)

from where we can deduce, in analogy to the case12O1a,
the position of the first excited 12 state 6.926 MeV. This
has to be compared with the experimental first excite
Jp512 state: 7.117 MeV. We therefore conclude that
good qualitative agreement exists between experiment a
the simple procedure. We note that the orientation where t
Coulomb energy is highest is lowest in energy, although o
would have expected naively the other way around~because
of the higher Coulomb repulsion!. The difference must come
from the nuclear interaction. Followingab initio studies in
similar systems@18#, where the potential energy surface wa
calculated, we are in agreement with these results.

We mention that the remarkable agreement between
predicted and observed energy of theJp512 states can be
attributed to the application of the standardized Hamiltonia
@14#. The results are definitely poorer using the parameters
the nonstandardized Hamiltonians.

We would like to clarify one paradox. The united system
in the last example is16O, which is a spherical nucleus.
Nevertheless, the two clusters are at a finite distance, wh
seems to present a contradiction. This contradiction is virtu
as can be seen in what follows: The spherical structure of t
ground state is reflected in the harmonic oscillator@or SU~3!#
picture by the fact that the oscillator quanta belonging to th
nucleons are distributed isotropically in space; i.e., all th
directions are equally important. The same is valid in th
cluster approach, together with the extra point that some
the oscillator quanta of the united nucleus are assigned to
deformedcore nucleus and some to therelativemotion ~the
last contains more than zero quanta and thus represen
finite distance between the clusters!. Together with the rela-
tive oscillation quanta the ground state of16O has in each
direction four quanta.

V. SUMMARY AND CONCLUSIONS

This contribution was motivated by finding a geometrica
connection of the semimicroscopic algebraic cluster mod
In order to obtain this connection we followed the bas
ideas of Ref.@8# with the essential difference that a minima
number ofp bosons has to be introduced. This conditio
stems from the Pauli principle and the fact that the sum
oscillator quanta of the two clusters is less than the numb
of oscillator quanta of the united system. As a consequen
e
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of introducing a minimal number ofp bosons the resulting
potential by construction will have aminimum at a relative
distance different from zero. Its distance from the origin is
proportional to the square root of this minimal number. I
calculating the expectation values we implemented at the e
the limit of N→`. In the parameter valueam the formulas
are the same as usingn050. Nevertheless, the explicit for-
mulas can be used in order to deduce which approxima
potential is to be employed in the actual microscopic calc
lation where the numberN is chosen finite.

We applied the procedure to two simple systems. In t
first one (16O1a) both clusters have defomation zero an
the corresponding Hamiltonian is particularly simple. Th
calculated valuer 0 is consistent with the assumption that th
minimum of the nuclear molecular potential should be a
proximately at the touching distance of the two clusters~as-
suming a box distribution in mass!. We also estimated the
position of the first excited 12 state. This was possible be-
cause the anharmonic contribution in the relative distan
turned out to be very small. The result of 7.024 MeV is o
qualitative and order of magnitude agreement with the e
perimental observed one which is at 5.785 MeV. In the se
ond case (12C1a) one cluster is strongly oblate deformed
(bC520.66 @17#! and the other one~the a particle! is
spherical. Also in this case the Hamiltonian is simple, thoug
more complicated than in the first case. The potential d
pends now also on the deformation of the carbon nucleus a
on its orientation with respect to the molecularz axis, which
is defined to be along the vector connecting both cluste
@20#. The minimum corresponds to the situation where th
a particle approaches the12C nucleus along to the symmetry
axis of the 12C nucleus. This is in agreement with the alge
braic considerations@19# and with the calculation of the po-
tential energy surface in related cluster systems@18#. The
estimated position of the first excited 12 state is at 6.926
MeV compared to the experimental one, which is 7.11
MeV. The agreement is surprisingly good and is partly acc
dental. This positive result is also due to the new, standa
ized parametrization of the model Hamiltonian@14#, allow-
ing a consistent description of neighboring core1a systems.
The results may change slightly when the deformation va
ables are treated dynamically.

Comparing also the calculatedr 053.45 fm with the esti-
mation of the touching distance, it agrees qualitatively wi
it. The overlap with the12C nucleus is larger than in the cas
with 16O. Of course, the assumption of a box distribution o
the mass, which entered in the estimation, is quite rough a
therefore, the deduced value ofr 0 can be considered to be
consistent with this estimation.

The method, presented in this paper, is able to gi
a relation of the semimicroscopic algebraic cluster mod
to a geometrical picture. With it the results can be, at lea
qualitatively, compared with other procedures where pote
tial energy surfaces are deduced~or fitted!. In fact, our
method can also be used in order to propose starting pot
tials ~estimations!. It can also be applied in a systemati
study where one is interested in how nuclear molecular p
tentials can be formed and how it depends on the underly
cluster structure.
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APPENDIX A: NUCLEAR MOLECULAR DEGREES
OF FREEDOM

In Ref. @20# the degrees of freedom of a nuclear molecu
are discussed. There is the relative distance of the two cl
ters and two internal deformation variables of each nucleu
Additionally there are seven angular degrees of freedo
Two of them describe the orientation of the relative distan
vector in the laboratory frame. Defining as in Ref.@20# the
z axis of the molecular intrinsic frame along the relativ
distance vector, the orientation of one cluster is described
two Euler angles, the first is a rotation along they axis ~ar-
bitrarily defined! and the second a rotation around thez axis
of the intrinsic system of thenucleus. The orientation of the
second cluster is then given by three Euler angles defin
with respect the molecular axis.

The situation simplifies significantly when one cluster i
spherical~e.g., the second cluster! and the other is axially
symmetric. For example, in a spherical nucleus no Eul
angles are needed and in an axially symmetric nulceus
rotation of its intrinsicz axis does not affect the nucleus
Also an axially symmetric nucleus has only one intrinsi
deformation variable, i.e.,b, which is negative for oblate
nuclei. For the cases discussed in this paper, this is the s
ation we encounter. Therefore, we only have to deal wi
threedegrees of freedom~apart from the two angles describ-
ing the orientation of the relative distance vector to the lab
ratory frame!. These are the relative distance of the cluster
the deformation variableb, and the orientation angle of the
intrinsic z axis of the deformed nucleus with respect to th
molecularz axis ~the deformation variableg is implicitly
present in the sign ofb).

Having defined the molecularz axis along the relative
distance vector, which coincides with the direction ofam ,
one finds that the variableam in the molecular frame is just
a05 ia. The factori is chosen in order to have the correc
transformation properties with respect to complex conjug
tion, i.e.,am5(21)12ma2m . As shown in Eq.~29! a typi-
cal interaction includes the coupling@a3a#m

[2] . It will now
acquire the form

@a3a#m
[2]52A2/3a2dm0 . ~A1!

With this and supposing that the first nucleus is deforme
and axially symmetric, the last term in Eq.~29! can be re-
written as

2
1

2
A5

p
NN0,1a

2b~1!@3cos2u2~1!21#. ~A2!

We have used that the deformation variablea20(1) is given
by @10#

a205
1
2b~1!@3cos2u2~1!21#, ~A3!
s-
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where b(1) is the deformation andu2(1) the orientation
angle of the symmetry axis of the nucleus with respect to th
molecularz axis.

When relation~27! is assumed, we get, for expression
(A2),

2
1

2 Smv

2\ DA5

p
N0,1b~1!@3cos2u2~1!21#~r2r 0!

2.

~A4!

APPENDIX B: EXTENSION TO A SYMMETRIC SYSTEM

Up to now only asymmetric systems have been consid
ered. In order to include symmetric systems one has to sym
metrize the coherent trial state of Eq.~6! with respect to the
parity transformation. Because thep boson changes its sign
under this transformation, the stateua‹ changes to

u2a&5NNn0
@s†2~a•p†!#Nu0&. ~B1!

The new trial state has the form

ua)5N~ ua&1u2a&). ~B2!

The normalization constantN is given by

N2252~^aua&1^au2a&! ~B3!

where we used that̂2au2a&5 ^aua& and ^2aua&5
^au2a&. The first term in Eq.~B3! was derived in the main
text. The second one is obtained with the same methods. T
result is

^au2a&5
2F1„2n0 ,2N;1;2 ~a•a!/@12~a•a!# …

2F1„2n0 ,2N;1;2 ~a•a!/@11~a•a!# …

3F12~a•a!

11~a•a!G
N

→F12~a•a!

11~a•a!G
N

, ~B4!

where the arrow gives the limit ofN→`. Because of the
appearence of the exponentialN, we cannot neglect the
(a•a). Remember that theam is inversely proportional to
AN. Therefore, using Eq.~27! the @16(a•a)# is propor-
tional to

@16~a•a!#N'F16Smv

2\ D ~r2r 0!
2

N GN
→e6~mv/2\!~r2r0!2.

With this, the normalization factor acquires the form

N5
1

@2~11e2~mv/\!~r2r0!2!#1/2
. ~B5!

Now we consider the evaluation of the expectation valu
of
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O5pm1

† . . .pmk

† pn1
. . .pnk

,

where the number of creation operators is equal to the n
ber of annihilation operators. As in the main text we app
the creation operators to the left and the annihilation ope
tors to the right. The expectation value ofO with respect to
the new trial state is given by

~auOua!52N~^auOua&1^auOu2a&!. ~B6!

~We used that̂ 2auOua&5 ^auOu2a& and ^2auOu2a&
5^auOua&.!

The first term is evaluated in the same way as for asy
metric systems while for the second we have to take i
um-
ly
ra-

m-
nto

account that each application of an annihilation operator
the right gives an extra sign. With this we obtain finally

~aupm1

† . . .pmk

† pn1
. . .pnk

ua!

5
@11~21!ke2~mv/\!~r2r0!2#

@11e2~mv/\!~r2r0!2#

3^aupm1

† . . .pmk

† pn1
. . .pnk

ua&. ~B7!

Note that forr5r 0 this gives identical results as in the asym
metric case ifk5even and it gives zero contribution if
k5odd, all in the limit whenN→`. Away from r5r 0 there
is a nonvanishing contribution also fork5odd, which ap-
proaches forr very far from r 0 the same result as for the
asymmetric case.
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