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The theory of self-consistent effective interactions in nuclei is extended for a system with a velocity
dependent mean potential. By means of the field coupling method, we present a general prescription to derive
effective interactions which are consistent with the mean potential. For a deformed system with the conven-
tional pairing field, the velocity dependent effective interactions are derived as the multipole pairing interac-
tions in doubly stretched coordinates. They are applied to the microscopic analysis of the giant dipole reso-
nances(GDR’s) of 18155m, the first excited 2 states of Sn isotopes and the first excited Sates of Mo
isotopes. It is clarified that the interactions play crucial roles in describing the splitting and structure of GDR
peaks, in restoring the energy weighted sum rule, and in reducing the valueB(B#).
[S0556-28186)00511-0

PACS numbsg(s): 21.30.Fe, 21.60.Ev, 24.30.Cz, 27.60.

[. INTRODUCTION ing interactions in particle-particle channels on an equal
footing (preliminary reports on this subject can be seen in
The understanding of nuclear collective excitations haRRefs.[8,9]).
been one of the most important subjects in the nuclear many Since a nucleus can be regarded as a spatially and ener-
body problem[1]. In microscopic analyses of such excita- getically saturated self-sustained system with a relatively
tions, separable multipole interactions have been introducesharp boundary, one can assume that the following condi-
and applied extensively for spherical, deformed, and rotatingion, which will be called asiuclear self-consistendyt0,11],
nuclei. The separable multipole-multipole interactions origi-is satisfied quite accurately: The shape of the mean potential
nate from long-range correlations in particle-hole channelsand that of the density are the same even when the system
and the physical meaning of these interactions has been clatindergoes collective motions. The concept of nuclear self-
fied by Mottelson in terms of the core polarization phenom-consistency, which is much more stringent than ttzetree
ena[2]. On the other hand, the multipole pairing interactionsself-consistengyhas played important roles not only in de-
originate from short-range correlations in particle-particlescribing an equilibrium nuclear shafe2,13 and in deriving
channels, and there are many works concerning the physiceaffective interactions for a spherical systgin2], but also in
meaning of these interactior]4,3-7. These interactions deriving effective interactions for a deformed system
have been widely used and have been playing crucial roles if10,11, and higher order effective interactioh$1,14,15.
the study of nuclear structure, but theoretical foundations folThese interactions have been applied successfully to the cal-
the origin of such effective interactions in both the particle-culations of the properties of the low-lying vibrational states
hole and particle-particle channels have not been establishethd high-frequency giant resonances, €1€,11,16—23 It
enough from a unified physical picture. In particular, we con-is found that the effective interactions derived by the rigor-
sider that it is still an open and interesting problem to deterous application of the nuclear self-consistency are much
mine the proper form of the deformation dependence of thenore reliable than the conventional multipole-multipole in-
pairing interaction. It is the main purpose of the present pateractiong1,2,10,11.
per to report a general prescription to derive effective inter- However, it has been pointed out that the spurious veloc-
actions which are consistent with the mean potential, and wéty dependence in a single-particle mean potential, which
will present a unified derivation of the multipole-multipole violates the Galilean invariance of the system, should be re-
interactions in particle-hole channels and the multipole pairmoved[1,3,5-7. It is well recognized that the velocity de-
pendent terms affect the mass parameters of collective mo-
tions and thereby such quantities as the distribution of
*Current address: 1-1-34, Minato, Izumisano-shi, Osaka 598, Jaransition strengths and the absolute value of the energy
pan. weighted sum rule, etc., become unreliafle3,5-7,24,25
"Deceased 14 April 1990. The realistic nuclear potential in fact contains velocity de-
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pendent terms such as the BCS pairing fidids and 12 positions and momenta of nucleons in the system are dis-
terms in the Nilsson model, etc. Some parts of them ar®laced by the mode accordingly. Then the corresponding
responsible for violating the Galilean invariance and thechange in the nuclear density distribution gives rise to a vio-
classical sum rule, and therefore these symmetries have to #tion of the self-consistency settled before the displacements
restored properly. From this point of view, Pyateval. de- ~ are switched on. In this way additional field couplings are
veloped a simple and powerful method to introduce addijnduqed in the system in order to restore the nuclear self-
tional interactions which restore such broken symmetries ifonsistency.

RPA order[5,6]. Since then, symmetry restoring effective  Let us start by considering & ole collective shape os-
interactions have been studied by several aut[@.pg,26_ cillation mode of a Spherical nucleus. We assume that this
30]. In this paper, by investigating the coupling between col-mode is characterized by the collective displacement of the
lective and single-particle degrees of freedom, and by usingucleonic field variable as

the concept ofuclear self-consistencgnd local Galilean

invarianceof the system as important guiding principles, we r—r+or, or=-2, a;MV*QM (N=1), (1)

will present a systematic method to derive self-consistent “

effective interactions in nuclei. ) _ .

In Sec. II, the field coupling methdd.,11] is applied to a whgre_aw are thg colleqtlve gmphtudgs. The collective ve-
spherical system with a velocity dependent potential. In thidOCity field associated with this mode is expressed as
framework, we derive self-consistent velocity dependent ef-
fective interactions by estimating the coupling between the o(r)=—> dfuﬁQAM’ 2)
collective displacement of nucleons and the mean field. In 5
Sec. Ill, we extend the field coupling method to a deorm(Edwhich is irrotational and incompressible. We will require that
system and present a simple derivation of the doubly : " omp : nireq
stretched multipole-multipole and multipole-pairing interac-n.UCIeonlc .VEIOC't'eS entering into the velocity dgpendent
tions. In Sec. IV, we investigate some fundamental proper§’ mgle-partlcle pot(in'gal are to be measured -rela.tlve to the
ties of these self-consistent effective interactions. It is showrgollective velocityv(r) [1] so that the potential is to be
to be essential to express effective interactions in doublynvariant under the local Galilean transformation
stretched coordinates for restoring some broken symmetries
and also for the natural description of GDR'’s in deformed

nuclei. In Sec. V, we report the results of numerical calcula- L i
tions in RPA of the GDR's of*48155m  the first excited Then the variation of the average one body poterdidland

2 states of Sn isotopes and the first excitedsBates of Mo that of the density distributiodp produced by the oscillation

isotopes, by using the self-consistent velocity dependent ef'® determined from the conditions
fective interactions.

p—p+dp, Sp=Mu(r). 3)

V(r+ 6r,p+ 8p)=V,(r,p),

II. GENERAL FRAMEWORK

r+6r,p+6p)=po(r,p), 4

OF FIELD COUPLING METHOD P P+0p)=po(r.P) @

A. Field coupling between collective distortion whereV,(r,p) andpo(r,p) are the potential and the density
and mean potential at the original equilibrium point in the phase space and are

The method to study collective motion that arises from@SSumed to be spherical, whi(r,p) and p(r,p) include

the action of the field coupling in a system with a degeneratd€ €ffect of the oscillation. In this paper we assume that
one-particle excitation has been well developed by Bohr an{1€S€ quantities expressed in the phase space are well defined
Mottelson[1]. It provides a self-consistent method to con- BY USing some appropriate semiclassical method such as the
struct the relevant effective interaction by identifying the WWigner transformatioi31-34. _

field coupling as the Hartree field of the interaction. Based The conditions of Eq(4) provide relations betweedV

on the method, which will be referred to as fimd coupling and dp through the displacement vectoss and 6p as

method the theory of self-consistent effective interactions in

nuclei has been developgtD,11,14. As a result, it has been V(r,p)=Vy(r,p)+8V(r,p),
shown, for example, that the conventional multipole interac- . . .
tion model must be improved to satisfy the nuclear self- p(r,p)=po(r,p)+ ép(r,p), (5)

consistency in deformed nuclei, resulting in the doubly
stretched multipole interaction model. Here we will exten-With
sively apply the method to a system with the velocity depen- . . -
dent mean potential. Some examples of the velocity depen- ~ 6V(I,p)=06V,+6Vp=—4r-VVo—6p-V, Vo,
dent field coupling were discussed in REf] in connection . .. oo
with the analysis of the high-frequency quadrupole modes op(r,p)=6p;+ dpp=—0r-Vpo—6p-Vypo, (6)
and of the center-of-mass mode. _ _

In a nuclear system, particle motions and collective mo-Where notations are defined by
tions are essentially coupled with each other in order to
achieve self-consistency between the potential and the den- V*=<

aaa) ﬁ_(aa a) @
sity distribution. If a collective mode excites in a nucleus, the ~loxtay’az)’ TP\ apy'apy’ dp,)
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In Eq. (6), for simplicity, only the leading order terms in - s 3 i o
a,, anda,,, are retained assuming that the vibrational am- f Frudprd™rd®pec ACVE, - VQy)0=0. (17
plitudes are small. Inclusion of the nonlinear field coupling
coming from higher order terms im, , has been performed We thus obtain
in Ref.[11] resulting in higher ordetmany body effective e s .
interactions. ThesV, and 6V, can be expressed in the stan- k= =A(V(VQ,, VV0)-VQy )0, (18)
dard form of the field couplingl] as L R R
. K= —M2A(V,(VQ] -V Vo) - VQy u)o- (19
_ * _ Vi VA _
oV, = KAE#: ax P FM_K_AVQW'VVO’ ®) SinceQ, , does not depend on the momentﬁr,ﬂ:M of Eq.

(9) and «, of Eqg. (19) can be expressed in terms of the

- L~ _ M . R Poisson bracket as
Np=1\2 a¥,Fru, szz—AVQM-VpVO. 9)
M

~ M
. . . F)\/L:”‘(’_{Q)\/L!VO}r (20)
Now we consider that the field coupling¥, andsV, are A
produced as the Hartree field of two-body interactions ~__ M2<{Q {QT Vallo 21
AT Au s A ? .
Him=32 |:>T\ Faut ﬂE EI EMEHQM HP, (10 In the above treatment, we have assumed the potential
2% 2% Vo can be expressed as a sum over individual particles:

V0=Ei:1AV0(Fi ,pi). However the monopole pairing poten-

and introduce self-consistency conditions as tial

of =AFT Y, af =A(F ). (11)
AN AL Vipair= - %(pg+ Py, Pi= clel=23 clcl
Here the average of a one body operator with respect to the Y
modified ground state ) corresponding to the densityis
calculated as

(22

is not expressed in this form. Hecéy creates a nucleon in the
A state y, y is a time reversed state of, and A is a gap
A(F)= < 2 F(i)> :f Fp(F,ﬁ)d3rd3p, (12) parameter. For such a potential we will replace the Poisson
i=1 brackets in Eqs(20) and(21) by the corresponding commu-
tation relations as
while that with respect to the original ground st&@ cor-

responding to the densify, is given by Em:%mm Vel, 23
A A
A<F>0:<_2 F(i)> =J Fpo(r,p)d3rd®p. (13 B M2 .

=1 0 K)\:_<%) <[Q)\M1[VO’Q)\M]]>O' (24)

Equation(11) can be calculated as . o .
Then the corresponding part of the effective interaction be-

comes
a:u:f Flﬂép,d*"rdsp
N N ngp):_ %z <[Q [V QT ]]> [Q)\/L!VO]T[Q)\Myvo]
:aiﬂf FI#VQ)\M'VPOd?)rdSp . Mt 0 hu 0 (25)
=—a} , A(VF},-VQ\ )0, (14)  This type of separable effective interactions have been dis-

cussed by several authors in connection with the symmetry-

- ~, 3 .3 restoring treatment of the nuclear Hamilton{&n-7,26—30.
aMZJ F).0ppd°rd-p
B. Two simple examples of self-consistent effective interactions

=Md§fﬂf EIMﬁQAM-ﬁppOd3rd3p It is worthwhile to briefly review the derivation of the
self-consistent effective interactions in the case of a simple
=—M af#A«VpFIM' VQu))o, (15) mean potential such as a harmonic oscillator poteptif] or

a pairing potential7].

where we have assumed the time reversal invariance of the herical h ) " l
densityp, which guarantees 1. Spherical harmonic oscillator potential

Let us consider a simple situation that the equilibrium

potential V, is given by the spherical harmonic oscillator

t vV FI .V =
fF)\M5ppd3fd3p°‘A<VpF>\M'VQ)\M>0_0’ (16 potential
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1 . Y~
Vo=Vio(r) = 5Magr (26) [R,vpair]=AEB (a|RIB)(clch—cpez) (37)

In this case, we do not have to consider the velocity depenyith
dent field coupling since the potential does not have any
velocity dependence. From Ed8) and (18) we obtain

A A 1 A
L L P:JZ1 pjzgl(—iﬁvj), R=Kj:1rj. (39)
F)\M=K—ngr-VQM=K—)\Mw§QM, (27)
> > More generally, ifO is an operator depending on coordinate
_ 2a/8AT © variables, then Eq(35 means that the monopole pairing
1= TAM @AV Qy,- V Qi field is not invariant under a local Galilean transformation. In
2)\2(2)\+1) r2 this sense the pairing field is considered to be a velocity
=- onA<r Yo (28)  dependent mean potentidl]. For a system with such a ve-
locity dependent potential, there arises a velocity dependent
where we used the relations field coupling as is discussed in Sec. Il A.
Let us investigate the interaction of E@5) in more de-
r. V*QM: AQ.., AQ,,=0, tail. By substitutingV ,,;; into Vo and by identifying the origi-
nal ground staté0) with the BCS vacuum state, the basic
2N(2N+1) quantities in Egs(23) and (24) are expressed as
AQLQ\)= . ' rax-2, (29

[Quu:Vpaid = —A(PY,— PR, (39
Thus the self-consistent effective interaction coincides with

the conventional multipole-multipole interaction
<[Q)\,u,r[vpair!Q;r\,u]]>0 E <a|Q>\M|B>|2
HY=— 2xie'f2 QQuu (30 (40
. ] where
with the self-consistent strength
cer__ 47 Mog PL=2 (alQudBeics, (41)

X\ IN+1 A<r2)\—2>0' (31)
and we have used the familiar relation between the coeffi-
cients of Bogoliubov-Valatin transformation and the quasi-
Let us introduce a one body operator particle energyu,v,=A/2E,. Thus the velocity dependent
effective interaction of Eq(25) can be obtained as

2. Pairing potential

0=2, (a|0|B)cics. (32 1 T
op g\p): - gG)S\eIfEM: (PI//._ PX#)( PML_ PXM) (42)
whose time reversal property is assumed to be
A with
TOT 1=(—)TOf (33

; 1
lentl self_ 2_
or equlvaenty~ A A GS _1/ > alE
(@|0[B)=(T|O|TB)=(-)T(B|O]a), (34)

- 2. (43

R This interaction is a natural extension of the dipole-pairing
where T denotes the time reversal operator, aned){ is a  interaction obtained by Bohr and Mottelsph] and Pyatov
shorthand notation for the time reversal phase and is eitheand Salamo\5] to a general ®-pole mode. Equatioii43)
+1 or —1. The commutation relation between the operatothas the same structure as that of the Belyaev ide[8i#].

O and the pairing field/,; is given by Further discussions for this interaction can be found in Refs.
7,20
Lt (o) _ [7,20
[0.Vpail = —5——A42 (a|O|B)(cicp—cjez).
aB Ill. SELF-CONSISTENT EFFECTIVE INTERACTIONS
(35 IN DEFORMED NUCLEI

From this relation, it is easily recognized that the pairing Now, let us apply the procedure of Sec. Il to a deformed
field satisfies the translational invariance but violates thesystem. For simplicity, we assume that the main part of the
Galilean invariance: equilibrium potential is described as a deformed harmonic
A oscillator with frequencies, , w,, andw,. In terms of the
[P,Vpairl =0, (36)  doubly stretched coordinat¢$0,11] defined by
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deformed nuclei. To do this, in the present case, we should
understand that all the, p, V, andV, appearing in Sec. Il

) ) _ are to be replaced by the corresponditigp”, V", andVY,
the deformed harmonic oscillator potential can be expressegith

in a spherical form as

__X //:ﬂ //:&
X'=—Xx, ¥y woy, z woz, (44

- 1% J J
> 1 V"E(—,,,—,,,—,,). 51
Vio(r) = 5M(w§x2+ 0y’ + wi7?) P\ apy" apy"  dp, BB
1 For example, the field coupling induced by the collective
- —ng(r”)zszO(r”). (45) displacements of Eq$46) and (49 becomes

2

As one of the possible and plausible collective shape os- VP =Vo(r,p) +4v(r",p")
cillation modes in the deformed system, we will introduce a =Vi+ V" (52)
doubly stretched ®pole mode characterized by

I N with
r//_>r!/+ 6r!/’
V"= 6V + 6V,
== ar V'Qy, (\=1), (46) -
A =i @l R al P, (53)
® ®
with
J J 4 oot V'Qy - V"Vg (54)
on—|__ "o =1 )\M:K_ A’ 0>
\Y <0X” vay// vaz7" |’ Q)\,u, Q}\,u(r )1 (47) A
i i = M " NIaV M " "
rather than the conver_ltlonar-z)o_le mode characterized by FX#ZVV"QM'V,)VOZ~—{QMHV0}- (55)
Eqg. (1). In fact, as discussed in Refll] based on the K K

Thomas-Fermi theory, the doubly stretched mode represents i .

great improvements over the conventional mode in the sendg©™ the self-consistency conditions

that it satisfieqi) the constancy of the Fermi ener@yhich " . ~,

is equivalent to the saturation conditjorii) the separation an=AFYL),  an,=A(FLL), (56)
of the center-of-mass motiotiji) the condition for a fluc-
tuation around the deformed equilibrium shape, émgthe
self-consistency between the nucleonic density and the po- e T

tential, etc. The collective velocity field associated with this = —AV"(V QMT' V'Vo)-V QM)O’ (57)
mode is expressed as

the coupling strengths are determined as

K== M2AVE(V'Q]LT-ViVE) - V' Q) Lo

V(M= =2 o, V'Q,., (48) == MZ{Q}, {Q5,." Ve, (58)
which is a natural extension of the irrotational and incom-and the self-consistent effective interaction to be used in the
pressible flow of Eq(2). deformed nucleus is given as

Now we will extensively apply the requirement of the -
local Galilean invariance to the deformed system. Namely, I AR =T N =T~
. . . . Hlnt F)\,u, F)\,u+ F)\M F)\M
we will require that in terms of the doubly stretched coordi- 2% 2

nates nucleonic velocities entering into the velocity depen-
dent single-particle potential are to be measured relative to
the collective velocityy”(r”) so that the potential is to be
invariant under the transformation

=H{"+H{P. (59)

For the case oW/{=Vo(r"), the effective interaction be-

comes
5"_)5H+ 55111 55":M1;”(F"), (49) . 1 IE T
H rNn_—_ —se ” " (60)
where the doubly stretched momentums are introduced as » 2% I A Qs
" o ” wo " wWo with
Px=""Px, Py=""Py, Pz="—DPz. (50
Wy wy w, 2
self_ 4 M wg 61
Then by use of the relationd®r=d%"” and d®*p=d3p”, NTNFL A2, (61)

which are equivalent to the volume conservation condition
W0y 0= wg, we can follow the similar procedure as given and in the presence of the pairing field an additional effective
in Sec. Il to derive self-consistent effective interactions ininteraction is derived as
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1 " " " 4 3N : X1 S
HP=— geie”g (PL"=PL (PR =P, (62 [H,P ]=|ﬁAMwS( 1- Z") R". (69)
with Therefore if the strengtly; of the doubly stretched dipole

interaction is set equal to its self-consistent value
x$¥=47Mw?3/3A, we obtain[H,P"]=0 exactly. In this
case, the total Hamiltonian can be expressed as

1/1 1
self_ i " 2
G)\ _1/ ;B 4(Ea+ EB |<a|Q}\,u|IB>| . (63)
These interactions play crucial roles in restoring broken sym- pi2 M wé EA: |9 , -
i

metries of the system in RPA order, the detail of which will H=2 M A 4 -y’
be discussed in the next section. '

2, (70

which explicitly guarantees the translational invariance of
IV. FUNDAMENTAL PROPERTIES the deformed system.
OF SELF-CONSISTENT EFFECTIVE INTERACTIONS

A. Translational invariance of a deformed system B. Restoration of the local Galilean invariance

The consistency of the residual interaction with the shell AS iS discussed in the previous sections, generally a phe-
model potential and the method to restore the translationdlomenological potential, comprising velocity dependent
invariance of a nuclear many body system was discussed dgrms such as th term, thel - s terms and the pairing field,
Pyatov and Salamol\B] for the case of the spherical oscilla- €tc., does not commute with arbitrary coordinate operators. If
tor potential. Here we will briefly examine this problem in a we chose the operator to be the multipole operator, such a

deformed system. situation is expressed from E®3) as
Let us consider the oscillator Hamiltonian for the de- i
" g K)\NH
formed nucleus [Q},.Vo(r,p)]= -~ FX.#0, (71)
A 2
Ho=i§1 ﬁJF VHO(riﬁ)]- (64 which means that the potentd}, violates the local Galilean

invariance under the collective multipole oscillation. Here
the doubly stretched operators are used for deformed nuclei.
For spherical nuclei, of course we can omit the double
primes.

Now along the line of the general method of restoring the

SinceHj is a local one body Hamiltonian, it breaks the trans-
lational invariance of the system. In fact, we have

SN 2510
[Ho,P"]=1AAMwR (65 broken symmetry[5,26], we will show that the self-
with consistent velocity dependent effective interaction, i.e.,
H{P of Eq. (59), plays the role to restore the local Galilean
A A invariance of the system under the random phase approxima-
P'=2> p"=> (—i&V"), tion (RPA). In the RPA order we can verify
=1 =1
1A [QXM1H§\p)]RPA:ﬂ{[Q;: Fr reaFrde, (72
R . 2 n n M
R'=—> 1}". (66)
Af=1 :
with
To recover the translational invariance, we need a counter- M
term which cancels the above commutation relation. For a [Q,):,uvF,):,uT]RPA:-_""<[Q,):,uv[QK#TvVOJDO
spherical nucleus, as is well known, such a counterterm SN
comes from the conventional dipole interaction. Now we will i5
show that for the deformed nucleus, the doubly stretched — (73
dipole interaction plays the role to recover the translational M
invariance of the system. i
First of all, for the doubly stretched dipole interaction ~ 1huS we obtain
[Q4 Vot Hi Trea=0. (74)

Xl "y "y
Viei= - 52 [QU)- Qi) (67)
C. Simple model analysis of GDR of normal nuclei

we can verify It is worthwhile to point out that the doubly stretched
interaction model is powerful and plausible also for the de-
(69) scription of some isovector modes. In confirmation of it, let
us briefly review the simple model analysis of the splitting of
GDR in an axially symmetric deformed nucle[&l]. The
Then the total Hamiltoniaf =Hy+V, -, satisfies model Hamiltonian is assumed to be

[Vy_1,P"]=—ihAM w3 MR
X1



54 SELF-CONSISTENT VELOCITY DEPENDENT ... 2337

H=H0+V(Tfll) (75) TABLE I. E1 transition strength distribution for a schematic
M spherical system witiN=2=20. Energies and fractions of the
whereH, is the deformed oscillator Hamiltonian of E@4) EWSR are shown for some dominant states calculated in the RPA.
while V;\T::].l) is a residual isovector dipole interaction. Here Thg dlpglg-palrlng interaction is included forande, but not for
we will parametrize the shape of the nuclear potential as 4, b, andad.

0, = wx=wy=w0(s)(1+8/3), Ap:An (MGV) E (MeV) EWSR(%)
0.0 24.0 100
w,= wo(e)(1—2¢/3) (76)
_ b 1.0 21.4 8
with 23.6 52
o o —_ 27.5 41
wo(e)=bo[1+e%/9+0(e3)], hbo~41A" (MeV).

(77) c 1.0 24.0 100

For comparison we will introduce two types of isovectord 2.0 20.8 16
dipole interaction, one is an ordinary type and the other is a 23.6 24
doubly stretched type. The interaction in the latter case is 30.0 78
given by 51.3 13
2.0 23.9 99

= 1 = " ”n
VG == 520 X Y(Qm) Qi) (79

XD = — x5 wherey®"is the self-consistent strength of IN excitation energies, the changes in energy Welghteq sum
the isoscalar dipole interaction. The typical valuegogsti-  U!€ (EWSR), etc., have been observed. However as indi-
mated from the symmetry energy term in the mass formul&ated n _Refs_[24,25], some (.)f ther_n seem to be spurious due
under the Fermi gas approximation is aboUtig to the violation of_the Galilean invariance of the system.
Under the RPA, the excitation energy of ed¢tcompo- Here, by use of a §|mple schgmatlc model, we will verify the
nent of the GDR is obtained analytically as effects of the pairing correlations on the structure of GDR,
and will show that such spurious effects can be remedied by

e including the dipole pairing interaction.
01,=Qgpr| 1+ m) The model Hamiltonian is assumed to be
P P 2 H=Hot VIV + 2 (Vo ANHHP ), (82)
10=eor| 1= 3775 | (79 T
for the ordinary interaction, while whereH, is the oscillator Hamiltonian of Eq64), V(T:f) is

the isovector dipole interaction of E(8), Vi is the mono-
pole pairing potential of Eq(22), and H§\p,)1 is the dipole

pairing interaction of Eq(62). Here and in the following, the
summation indexr is to be taken over the proton and the
neutron. The force strength of the isovector dipole interac-
Qepr=V1+ éwg, (81  tion is fixed as¢=3, while that of the dipole pairing inter-
action is set to be its self-consistent value when it is in-
which, in both cases, is compatible with the experimentatluded. We perform quasiparticle RPA calculations for a
systematics of)gpr~80A~ 12 (MeV) if we put £&=3. For  schematic model system with=Z=20. It must be noticed
the doubly stretched interaction, the total energy splittingthat the purpose here is not to compare with the experimental
between thé& =0 andK =1 components of the GDR isin data of“°Ca but to investigate the fundamental properties of
units of Qgpr and is independent of, which is consistent the dipole pairing interaction from the purely theoretical
with the simple classical geometrical relation of point of view.
(0w, —w,)/wg=¢. This is in good agreement with the sys-  Table | shows our results on the electric dipole strength
tematics of the experimental observatif86—37. On the distributions calculated by assuming the system to be spheri-
other hand, for the ordinary interaction, the splitting is toocal. To study the effect of the pairing correlation, we artifi-
small by a factor of 4 for=3. Thus the doubly stretched cially change the value ofA. For the simplest case of
interaction model seems much more improved than the ordiA=0 (a), the GDR is located at 24.0 MeV, and the energy
nary one also for the isovector dipole mode. weightedE1 transition strength of this state exhausts its clas-
sical sum rule value of

Qll:QGDR(1+ 8/3), Q:LO:QGDR(]‘_ZS/S)! (80)

for the doubly stretched interaction. Hebkg;p is the reso-
nance energy of a spherical nucleus given by

D. Simple model analysis of GDR of superconductive nuclei

Effects of the inclusion of the pairing correlation on the S(E1) :i ﬁ_z N_Zez (83)
properties of giant resonances of superconductive nuclei cassT 4 2M A
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FIG. 1. E1 transition strength distribution for a schematic model systeN=Z=20 with axially symmetric deformation g8=0.4
calculated in RPA. The continuous strength function, representing the strength per unit energy, is given in units bfralative to the
classical sum rule valu€CSR. In the model Hamiltonian of Eq82), the pairing gap is fixed a4 =2.0 MeV both for protons and for
neutrons K =0 andK =1 modes are shown by the solid and the dashed curves, respectayeind (b) correspond to the results obtained
with and without the inclusion of the dipole-pairing interaction, respectively.

When the pairing gap is set to he= 1.0 MeV (b), reflecting  eliminate such a spurious effect by restoring the broken in-
the situation that the quasiparticle states are no more degewmariance. In fact, if we additionally include the dipole pairing
erate, the GDR splits in spite of the assumption that thenteraction, the structure of the resonance becomes simpler
system is spherical. There are mainly three components dfoth forK=0 andK=1 modegFig. 1(b)]. Furthermore, the

the GDR(21.4, 23.6, and 27.5 MeVThe center of the GDR total energy splitting between th€=0 and K=1 modes,
shifts upward about 1 MeV compared to the case\ef0, relative to the average energy of these modes, becomes ap-
and the EWSR is overestimated by about 10% relative to theroximately equal to8 which is consistent to the simple
classical one. In order to remedy this situation, we switch orclassical geometrical relation explained before.

the dipole pairing interactionc]. In this case, thé&1 tran-

sition strength concentrates again on a single state at about

24.0 MeV, and the EWSR recovers to its classical value. The V. NUMERICAL RESULTS

fact that the pairing correlation destroys the order in the

structure of the GDR can further be emphasized by increas- In this section, we report some characteristig 12eSUItS of
ing A to 2.0 MeV, though the value is not realistic. In this numerical calculations in RPA of the GDR's df®'*Sm,

hypothetical situationd), the transition strength splits into the first excited 2 states of Sn isotopes and the first excited

mainly four components at 20.8, 23.6, 30.0, and 51.3 Mey3  states of Mo isotopes. It should be noted here that our

and the EWSR s overestimated by about 36%. Even in sucRrésent calculations contain essentially only one free param-
an extreme situation, if we additionally include the dipole eter in the following sense; the single-particle bases are con-

pairing interaction €), the spurious effect of the pairing in- structed from the Nilssor- BCS mod_el with standard pa-

teraction can be removed and tG# strength is concentrated _rameter;, the strengths of thg velocny ldepgndent _effectwe

on a single state at 23.9 MeV to recover the EWSR interactions such as the multipole pairing interactions are
Figure 1 shows the corresponding results obtained by adixed to be their self-consistent values when they are in-

suming that the model system is deformed to be axially Symg:luded; only the strengths of the multipole-multipole interac-

metric shape of3=0.4. The continuous strength function, t|(f)ns are a(?jjustt_adtunbder éhetc%nfdnm“ :Eat_a fommo? g/alue
representing the transition strength per unit energy, is cor £ X2, andys is to be adopted for all the isotopes of Sm,

structed by using the Lorentzian weight function Sn, gnd Mo, respe_:ctlvely. .
Since the positions of bandhead states are very sensitive

to the choice of the single-particle energies as are generally
(84)  observed in the RPA calculation of vibrational states in de-

formed nuclei, one can improve the fit to experiments by

adjusting the single-particle energies, and further improve-
In the present model calculations, we choose the width to benent can be obtained by slightly varying the strengths of the
I'=1.0 MeV only for the sake of not wiping out the fine effective interactions around the vicinity of the predicted
structure of the resonance. Because of the deformation of theelf-consistent values for each isotope. The fit to experiment
system, the GDR splits intii =0 andK =1 components. For we obtained is insufficient and an improved fit could have
the case of Fig. (B), the GDR shows rather complicated been obtained if these parameters were treated as adjustable
structure. The reason for it can be traced to the violation ofis well. We have not done so in the present work, because
the Galilean invariance for the pairing field and we canthe purpose of the present numerical investigation is to see

2 I'w?
p((l) (0,,)— ; (w2_w]2})2+r2w2'
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FIG. 2. E1 transition strength functions ¢& *°Sm and(b) *>*Sm are given in units of MeV* relative to the classical sum rule value
(CSR. The model Hamiltonian is same as that of E8F) except that the dipole-pairing interaction is not included heréb)nsolid and
dashed curves correspond to tRe=0 andK=1 modes, respectively.

first to what extent our theory works without much playing neglect isovector corrections coming from the Nilsson poten-
around with parameters and to provide understandings rathéial to the isovector dipole-dipole interaction because of the
than precision tools for the fitting of experimental data. same reason.
To fix the parameteg for the strength of the isovector
A. E1 strength distributions of 14815%5m dipole-dipole interaction in this mass region, we first calcu-
We here present the results of realistic calculations on thIate the case of**Sm by assuming Its shape to be spherical.
E1 strength distributions of*®%Sm in the quasiparticle The resultant value of=2.7 is adopted also for>Sm
RPA. The model Hamiltonian is assumed to be whose quadrupole deformation parameter is assumed and
' fixed as 8=0.35 in the following calculations. All other
. strengths of the interactions are fixed just as the self-
H=Hgo+Vyy+ VIV + >, {Vpair— AN+ HP L, consistent values which restore the Galilean invariance of the
T 85) system. It should be noticed here that the doubly stretched
interactions are used for the deformed nucleus®é®m. For
A the model space, we retain all the Nilsson single-particle
Vai= 2 [~ khbo{2(7-8)+ u(I2—(?))}];, (86)  States with 2<Ny<7 for protons and $:Nos=8 for neu-
i=1 trons. The Nilsson parameters are taken from RES]. By
o ) ] using experimental binding energies of R&8], the pairing
which is essentially same as Hg2) except that the Nilsson  gan parameters are determined from the even-odd mass dif-
potentialVy; is additionally included. ferences as\,=1.01 MeV, A,=1.36 MeV for *3Sm and
We will study the effects of two kinds of velocity depen- A,=1.07 MeV, A,=0.86 MeV for 15%Sm. We use the
dent interactions to restore the Galilean invariance of thg orentzian distriblftion of Eq(84) to reproduce the reso-
system; the one arising frofdp, and the other from the pance width. We choosE (in units of MeV) as 5.10 for
velocity dependent part &fy; . The former, the dipole pair- 1485y and 3.25, 5.25 for thk=0, 1 modes of'%‘Sm, re-
ing interactionH{”), , is given by Eq.(62), while the latter, spectively.

H§\N=”)1, is given by Figures 2a) and 2b) show theE1 strength functions for
o1
HN :EE K17L, M1, (87)  TABLEIl. CalculatedEl EWSR values of***Sm. Strengths
H integrated over the excitation energies from 5.5 MeV to 30.0 MeV

are given in units of % relative to the classical sum rule value. The

with model Hamiltonian is given by Eq85). The columnsa and b
—[Q". Vyi] 88) correspond to the results obtained without and with the inclusion of
(ET S VAR EK the dipole-pairing interactiorHﬁpjl, respectively, while in c the
interactionHN") is also included in addition téi{", .
xk1=—1K[Q1, .[ Vi Q7,1 Do- (89 Mt Mt
. . . ... Nucl b
Although it is known that there exists a term associated with uceus a ¢
the coordinate distortion of the spin-orbit potential given by 48sm 116.8 85.9 86.2
Eq. (6-70 of Ref. [1], we will not consider its effects in 15%5m (K=0) 411 31.3 30.2
order to concentrate our present analysis on the effects of thé‘sm K =1) 64.7 56.0 56.9

self-consistent velocity dependent interactions. We will alsa
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FIG. 3. Same as Fig. 2, except that the dipole-pairing interaction is included.

1485m and '%sm, respectively, taking the model Hamil- 4(b) agree quite well with the Lorentzian distribution of
tonian of Eq.(85) but switching off the dipole-pairing inter- Figs.4c) and 4d) which fit the experimental data of photo-
action. Here we see that even if we use the doubly stretcheageutron cross sectigi85].

interaction, the calculated splitting betwekr=0 andK =1
resonances of>‘Sm is too small. Furthermore, as can be

seen from columra of Table II, the EWSR values exceed ) )
the classical values for both nuclei. As stated repeatedly, e now consider the effects of the self-consistent quad-

these difficulties stem from the mixture of spurious stategUPOle pairing interaction on the excitation energi(;)
arising from the broken Galilean invariance Wf,, and and theE2 transition probabilities8(E2) of Sn isotopes
Vyi . In the following we show the results obtained by re- within the quasiparticle RPA. The model Hamiltonian is as-
storing the broken symmetry in two steps. sumed to be

First, we study the effect oH{®,. The columnb of
Table Il shows that the sum rule values approach the classi-
cal values. However, from Fig. 3, we see that the centers of
the resonances shift to lower excitation energies and the
structure in the lower peak region reveal unnatural shapevhereV,_, andH{", are the quadrupole-quadrupole inter-
Finally we take into accourit-l(xhﬂ')1 so that the Galilean in- action and the quadrupole pairing interaction, respectively.
variance of the Hamiltonian is restored. As can be seen from The single-particle model space is spanned by all the
Fig. 4 and columnc of Table II, the unnatural resonance Nilsson states with 2 Nys=<6 for protons and &Ng=<7
structure disappears and the EWSR values keep close to tifier neutrons. The Nilsson parameters are taken from Ref.
classical limit. We note that the final results of Figa)dand  [13], and the deformation is set to be zero. To investigate the

B. The first excited 2* states in Sn isotopes

H=Ho+Vyi+Vicat 2 {Vpar— AN+H,1 ., (90)

TABLE lIl. Energies of the first excited 2 states andE2 transition probabilities in Sn isotopes are given
in units of MeV andB(E2),,, respectively. Results of calculations obtained without and with the inclusion
of the quadrupole-pairing interactidfhﬁ@2 are compared with experimental data. The pairing gaps adopted
in the calculations are taken from the experimental even-odd mass differen@gsafbile those for protons
are set to be zero fd.

a b
Without H{”, With H{P, Without H{”, with H{P), Expt.

N E(2*) B(E2) E(2") B(E2) E(2") B(E2) E(2%) B(E2) E(2") B(E2)

62 1.72 18.7 1.57 13.3 1.66 15.7 1.57 10.7 1.26 16.2
64 1.72 19.6 1.57 14.1 1.68 15.9 1.58 10.8 1.30 15.3
66 1.41 19.8 1.19 17.1 1.37 15.7 1.34 10.6 1.29 12.9
68 1.23 23.9 1.03 20.4 1.20 19.0 1.21 12.2 1.23 12.7
70 1.20 24.8 1.00 21.2 1.16 20.0 1.18 12.7 1.17 11.6
72 1.22 22.7 1.13 15.0 1.17 18.5 1.18 11.9 1.14 10.9
74 1.35 18.0 1.27 12.9 1.31 14.9 1.27 10.0 1.13 9.3
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FIG. 4. Same as Fig.3 fqa) and(b), except that the additional interacti N:”{ is included. For comparison, Lorentzian distributions
which fit the experimental data of the photoneutron cross seg86hare given in(c) and (d) for **8Sm and'®‘Sm, respectively. The
experimental Lorentz line parameters for the mathematical expressi@) ==;0;(EI";)%/[E?— Ei2)2+ (ET',)?] are taken from Ref.35] as
E;=14.8+0.1, ';=5.1+0.2, o,=2339+12 for the best single line fit of*Sm andE,;=12.35-0.10, I';=3.35+0.15, o, =192+ 10,
E,=16.1+0.1,I",=5.25+0.20, 0,= 204+ 10 for the best two-line fit of>*Sm, respectively. HerE’s andI"'s are given in units of MeV
while ¢’s are given in units of mb.

effect of the quadrupole pairing force on the lated values ofE(2;) and B(E2) are plotted in Figs. @)
B(E2;Og—>21*) value, the strength of the quadrupole pairingand &b), respectively, and corresponding numerical values
force, G,, is fixed to be its self-consistent value when it is are given in columrb of Table IIl, where we see better
included, while that of the quadrupole interactign, is used agreements with experimental data compared to the case
as an adjustable parameter to reproduce experimentalith A, #0.
E(27) of 116118128 39]
First, we adopt the pairing gaps determined from the . ) . .
even-odd mass differences. The adopted valug,dfor the C. The first excited 3~ states in Mo isotopes
best fit obtained without(with) the inclusion of the Here we will study the effects of the self-consistent octu-
quadrupole-pairing interactiok|{”, , is 0.92(0.90 in units  pole pairing interactiorH ), , in the quasiparticle RPA cal-
of x3*". The calculatedE(2]) and B(E2) are plotted in culations of the excitation energi&(3;) and theE3 tran-
Figs. 5a) and 8b), respectively, and corresponding numeri- sition probabilities of the first excited 3 states in Mo
cal values are given in coluna) of Table Ill. These results jsotopes. The model Hamiltonian is assumed to be
show thatHﬁpz)2 is necessary and important in reproducing
experimentaE(2; ) andB(E2) values S|multa}neously. . H:H0+VNiI+V)\:3+E {Vpair—NNﬂLH;\p:)s}m (91)
Second, we have also performed numerical calculations T
by fixing the proton energy gap to be zero. This is because
the proton shell is closed in Sn. In this case, the adopted
value of y, for the best fit obtained withoutith) the inclu-  whereV, 5 andH{" ; are the octupole-octupole interaction

sion of H{”, is 0.940(0.965 in units of x3*". The calcu- and the octupole pairing interaction, respectively.
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FIG. 5. (a) Excitation energies of the first*2 states andb) FIG. 6. Same as Fig. 5, except that the pairing gaps for protons
E2 transition probabilities in Sn isotopes. Results of calculationsare set to bed,=0 in the calculations.
with and without the inclusion of the quadrupole pairing interaction
are shown by dot-dashed and dashed lines, respectively. Solid lingfescription of the collective motions of atomic nuclei, espe-
correspond to the experimental data. In the calculations, pairing;ia”y to the system with velocity dependent mean potentials.
gaps are determined from the odd-even mass differences both fg{s the guiding principles for this purpose we have imposed
protons and for neutrons. the conditions of nuclear self-consisten&0,11] and local
Salilean invariancd1,3,5—7 of the system, implemented
Nilsson states with &N, <7 for protons and &N,=<9 with the simple and transparent field coupling method devel-

for neutrons. Energy gaps are determined from the experP€d by Bohr and Mottelsofi]. _
mental even-odd mass differences. To investigate the effect 1he nuclear self-consistency requires that the shape of the
of the octupole pairing force on th(E3;0,—3;) value, mean potential and that of the density are the same even

the strength of the octupole pairing for@®s, is fixed to be when the system undergoes collective motions, while the lo-
its self-consistent value when it is included, while that of the

octupole interactionys, is used as an adjustable parameter TABLE IV. Energies of the first excited 3 states and3 tran-

to reproduce the experimental data dE(3;) in sition probabilities in Mo isotopes are given in units of MeV and
94.96,98.10810 [40]. The adopted value of; for the best fit B(E3)sp, respec_;tively. Results of calcul_a_tiong obtain_ed(vx;ithout and
obtained withoutwith) the inclusion of the octupole-pairing With the inclusion of the octupole-pairing interactiof”; are
interaction,Hgf’:)3, is 0.95(0.97) in units Ofxgelf. compared with experimental data. The pairing gaps adopted in the

The calculatecE(3]) and B(E3) from the ground state calculations are taken from the experimental even-odd mass differ-
17 %= . ences.
to the 3, state are plotted in Figs(& and 1b), respectively,

The single-particle model space is spanned by all th

and corresponding numerical values are given in Table IV. Without H{®, With H{, Expt.
Here we see that the calculat8{E3) values are reduced
and improved systematically by the effects Igf”,, al- N  E(37) B(E3) E(3") B(E3) E(37) B(E3)
though the fit to experimental data is insufficient. 52 274 51.2 266 443 253 17
V1. SUMMARY 54 2.36 53.4 2.32 44.6 2.23 24
56 1.93 58.6 1.97 47.3 2.02 33
We have extensively applied the prescription to derivess 1.91 60.2 1.92 47.8 1.91 32

self-consistent effective interactions, needed for the unified
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teractions for particle-particle channel from the unified
physical picture. In the case of deformed nuclei, it is shown
that these interactions must be expressed in terms of the dou-
bly stretched coordinates so as to guarantee the conditions of
nuclear self-consistency and local Galilean invariance of the
system.

The origin of the doubly stretched multipole-multipole in-
1 teractions have already been clarified and they have found
1 many successful applicatiof$0,11,16—23 while the origin
of the doubly stretched multipole pairing interactions are
clarified in this paper on the same footing. We have applied
175 — - the doubly stretched multipole pairing interactions to the

] analyses of some collective states in Sm, Sn, and Mo iso-

dso L Lo b o Lo L topes by means of RPA, and for the dipole mode we have
N also tested the velocity dependent effective interaction aris-
70 (o ing from the Nilsson potential. We have seen the effects of

Hb) 1 such velocity dependent effective interactions in the recovery
60 b S x of the classicaE1 sum rule for GDR’s of!*8155m, in the

r -7 ] systematic reduction of th€2 transition probabilities for the

3.00

2.75

2.50

2.25

£ (MeV)

2.00

i x——=="" ] first excited 2 states of Sn isotopes, and also in the system-
%0 a X ] atic reduction ofE3 transition probabilities for the first ex-
Xommemrm X 1 cited 3~ states of Mo isotopes. It should be noted here that
recently the doubly stretched quadrupole pairing interaction

- X ] was successfully applied also to the microscopic analysis of
30 - )/\ E identical bands in superdeformed nuclei, and it was shown
C 1 that the doubly stretched quadrupole pairing interaction has

20 [ / o several advantages compared to the nonstretched and
. 1 stretched onef41].
ot Lo v Lo b . In summary, it is clarified that the self-consistent velocity
N dependent effective interactions play crucial roles to recover
the local Galilean invariance and eliminate various unphysi-
FIG. 7. (@) Excitation energies of the first 3states andb) cal effects arising from the s_purious \{elocity depender)cg of
E3 transition probabilities in Mo isotopes. Results of calculationsth® Mmean potential. For rotating nuclei, we can apply similar
with and without the inclusion of the octupole pairing interaction Prescription in order to find the proper effective interactions
are shown by dot-dashed and dashed lines, respectively. Solid lin&¥hich faithfully take into account the effects of the collective
correspond to the experimental data. rotation. Results of it will be reported in a separate paper.

40 |-

B(E3)/B(E3)s.p.

cal Galilean invariance requires that the nucleonic velocities
entering into the velocity dependent single-particle potential
should be expressed relative to the local collective flow. In  We are very much grateful to Dr. S.-I. Kinouchi for valu-
the field coupling method, the coupling between the particleable discussions through the course of the present work. One
motion and the collective field is identified, within the Har- of the authors(T. Kubo) would like to express his sincere
tree approximation, as the averaged one body field of théhanks to Dr. T. Marumori, Dr. K. Matsuyanagi, and Dr. F.
effective interaction which we look for, and the coupling Sakata for helpful comments and continuous encouragement.
strength of it can be fixed by the above conditions. He also acknowledges Dr. O. Morimatsu and the late Dr. Y.

For the multipole collective shape oscillation modes in theMiyama for their help in computations. One of the authors
harmonic oscillator potential with the monopole pairing cor-(H.S. would like to express his gratitude to Dr. R. Wyss for
relation, we have derived the multipole-multipole interac-the useful comments on the applications of the doubly
tions for particle-hole channel and the multipole-pairing in-stretched quadrupole pairing interaction.
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