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The theory of self-consistent effective interactions in nuclei is extended for a system with a veloc
dependent mean potential. By means of the field coupling method, we present a general prescription to d
effective interactions which are consistent with the mean potential. For a deformed system with the con
tional pairing field, the velocity dependent effective interactions are derived as the multipole pairing inter
tions in doubly stretched coordinates. They are applied to the microscopic analysis of the giant dipole r
nances~GDR’s! of 148,154Sm, the first excited 21 states of Sn isotopes and the first excited 32 states of Mo
isotopes. It is clarified that the interactions play crucial roles in describing the splitting and structure of G
peaks, in restoring the energy weighted sum rule, and in reducing the values ofB(El).
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I. INTRODUCTION

The understanding of nuclear collective excitations h
been one of the most important subjects in the nuclear m
body problem@1#. In microscopic analyses of such excit
tions, separable multipole interactions have been introdu
and applied extensively for spherical, deformed, and rota
nuclei. The separable multipole-multipole interactions ori
nate from long-range correlations in particle-hole chann
and the physical meaning of these interactions has been c
fied by Mottelson in terms of the core polarization pheno
ena@2#. On the other hand, the multipole pairing interactio
originate from short-range correlations in particle-parti
channels, and there are many works concerning the phy
meaning of these interactions@1,3–7#. These interactions
have been widely used and have been playing crucial role
the study of nuclear structure, but theoretical foundations
the origin of such effective interactions in both the partic
hole and particle-particle channels have not been establi
enough from a unified physical picture. In particular, we co
sider that it is still an open and interesting problem to de
mine the proper form of the deformation dependence of
pairing interaction. It is the main purpose of the present
per to report a general prescription to derive effective int
actions which are consistent with the mean potential, and
will present a unified derivation of the multipole-multipo
interactions in particle-hole channels and the multipole p

*Current address: 1-1-34, Minato, Izumisano-shi, Osaka 598
pan.
†Deceased 14 April 1990.
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ing interactions in particle-particle channels on an equa
footing ~preliminary reports on this subject can be seen in
Refs.@8,9#!.

Since a nucleus can be regarded as a spatially and ene
getically saturated self-sustained system with a relativel
sharp boundary, one can assume that the following cond
tion, which will be called asnuclear self-consistency@10,11#,
is satisfied quite accurately: The shape of the mean potenti
and that of the density are the same even when the syste
undergoes collective motions. The concept of nuclear self
consistency, which is much more stringent than theHartree
self-consistency, has played important roles not only in de-
scribing an equilibrium nuclear shape@12,13# and in deriving
effective interactions for a spherical system@1,2#, but also in
deriving effective interactions for a deformed system
@10,11#, and higher order effective interactions@11,14,15#.
These interactions have been applied successfully to the ca
culations of the properties of the low-lying vibrational states
and high-frequency giant resonances, etc.@10,11,16–23#. It
is found that the effective interactions derived by the rigor-
ous application of the nuclear self-consistency are muc
more reliable than the conventional multipole-multipole in-
teractions@1,2,10,11#.

However, it has been pointed out that the spurious veloc
ity dependence in a single-particle mean potential, which
violates the Galilean invariance of the system, should be re
moved@1,3,5–7#. It is well recognized that the velocity de-
pendent terms affect the mass parameters of collective m
tions and thereby such quantities as the distribution o
transition strengths and the absolute value of the energ
weighted sum rule, etc., become unreliable@1,3,5–7,24,25#.
The realistic nuclear potential in fact contains velocity de-
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pendent terms such as the BCS pairing field,lW•sW and lW2

terms in the Nilsson model, etc. Some parts of them
responsible for violating the Galilean invariance and t
classical sum rule, and therefore these symmetries have t
restored properly. From this point of view, Pyatovet al. de-
veloped a simple and powerful method to introduce ad
tional interactions which restore such broken symmetries
RPA order @5,6#. Since then, symmetry restoring effectiv
interactions have been studied by several authors@5–7,26–
30#. In this paper, by investigating the coupling between c
lective and single-particle degrees of freedom, and by us
the concept ofnuclear self-consistencyand local Galilean
invarianceof the system as important guiding principles, w
will present a systematic method to derive self-consist
effective interactions in nuclei.

In Sec. II, the field coupling method@1,11# is applied to a
spherical system with a velocity dependent potential. In t
framework, we derive self-consistent velocity dependent
fective interactions by estimating the coupling between
collective displacement of nucleons and the mean field.
Sec. III, we extend the field coupling method to a deform
system and present a simple derivation of the dou
stretched multipole-multipole and multipole-pairing intera
tions. In Sec. IV, we investigate some fundamental prop
ties of these self-consistent effective interactions. It is sho
to be essential to express effective interactions in dou
stretched coordinates for restoring some broken symme
and also for the natural description of GDR’s in deform
nuclei. In Sec. V, we report the results of numerical calcu
tions in RPA of the GDR’s of148,154Sm, the first excited
21 states of Sn isotopes and the first excited 32 states of Mo
isotopes, by using the self-consistent velocity dependent
fective interactions.

II. GENERAL FRAMEWORK
OF FIELD COUPLING METHOD

A. Field coupling between collective distortion
and mean potential

The method to study collective motion that arises fro
the action of the field coupling in a system with a degener
one-particle excitation has been well developed by Bohr a
Mottelson @1#. It provides a self-consistent method to co
struct the relevant effective interaction by identifying th
field coupling as the Hartree field of the interaction. Bas
on the method, which will be referred to as thefield coupling
method, the theory of self-consistent effective interactions
nuclei has been developed@10,11,14#. As a result, it has been
shown, for example, that the conventional multipole intera
tion model must be improved to satisfy the nuclear se
consistency in deformed nuclei, resulting in the doub
stretched multipole interaction model. Here we will exte
sively apply the method to a system with the velocity depe
dent mean potential. Some examples of the velocity dep
dent field coupling were discussed in Ref.@1# in connection
with the analysis of the high-frequency quadrupole mod
and of the center-of-mass mode.

In a nuclear system, particle motions and collective m
tions are essentially coupled with each other in order
achieve self-consistency between the potential and the d
sity distribution. If a collective mode excites in a nucleus, t
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positions and momenta of nucleons in the system are
placed by the mode accordingly. Then the correspond
change in the nuclear density distribution gives rise to a v
lation of the self-consistency settled before the displacem
are switched on. In this way additional field couplings a
induced in the system in order to restore the nuclear s
consistency.

Let us start by considering a 2l-pole collective shape os
cillation mode of a spherical nucleus. We assume that
mode is characterized by the collective displacement of
nucleonic field variable as

rW→rW1drW, drW52(
m

alm* ¹W Qlm ~l>1!, ~1!

wherealm are the collective amplitudes. The collective v
locity field associated with this mode is expressed as

vW ~rW !52(
m

ȧlm* ¹W Qlm , ~2!

which is irrotational and incompressible. We will require th
nucleonic velocities entering into the velocity depende
single-particle potential are to be measured relative to
collective velocity vW (rW) @1# so that the potential is to be
invariant under the local Galilean transformation

pW→pW 1dpW , dpW 5MvW ~rW !. ~3!

Then the variation of the average one body potentialdV and
that of the density distributiondr produced by the oscillation
are determined from the conditions

V~rW1drW,pW 1dpW !5V0~rW,pW !,

r~rW1drW,pW 1dpW !5r0~rW,pW !, ~4!

whereV0(rW,pW ) andr0(rW,pW ) are the potential and the densi
at the original equilibrium point in the phase space and
assumed to be spherical, whileV(rW,pW ) and r(rW,pW ) include
the effect of the oscillation. In this paper we assume t
these quantities expressed in the phase space are well de
by using some appropriate semiclassical method such as
Wigner transformation@31–34#.

The conditions of Eq.~4! provide relations betweendV
anddr through the displacement vectorsdrW anddpW as

V~rW,pW !5V0~rW,pW !1dV~rW,pW !,

r~rW,pW !5r0~rW,pW !1dr~rW,pW !, ~5!

with

dV~rW,pW !5dVr1dVp52drW•¹W V02dpW •¹W pV0 ,

dr~rW,pW !5dr r1drp52drW•¹W r02dpW •¹W pr0 , ~6!

where notations are defined by

¹W [S ]

]x
,

]

]y
,

]

]zD , ¹W p[S ]

]px
,

]

]py
,

]

]pz
D . ~7!
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In Eq. ~6!, for simplicity, only the leading order terms in
alm and ȧlm are retained assuming that the vibrational am
plitudes are small. Inclusion of the nonlinear field couplin
coming from higher order terms inalm has been performed
in Ref. @11# resulting in higher order~many body! effective
interactions. ThedVr anddVp can be expressed in the stan
dard form of the field coupling@1# as

dVr5kl(
m

alm* Flm , Flm5
1

kl
¹W Qlm•¹W V0 , ~8!

dVp5k̃l(
m

ȧlm* F̃lm , F̃lm5
M

k̃l
¹W Qlm•¹W pV0 . ~9!

Now we consider that the field couplingsdVr anddVp are
produced as the Hartree field of two-body interactions

H int5
kl

2 (
m

Flm
† Flm1

k̃l

2 (
m

F̃lm
† F̃lm[Hl

~r !1Hl
~p! , ~10!

and introduce self-consistency conditions as

alm* 5A^Flm
† &, ȧlm* 5A^F̃lm

† &. ~11!

Here the average of a one body operator with respect to
modified ground stateu & corresponding to the densityr is
calculated as

A^F&5K (
i51

A

F~ i !L 5E Fr~rW,pW !d3rd3p, ~12!

while that with respect to the original ground stateu0& cor-
responding to the densityr0 is given by

A^F&05K (
i51

A

F~ i !L
0

5E Fr0~rW,pW !d3rd3p. ~13!

Equation~11! can be calculated as

alm* 5E Flm
† dr rd

3rd3p

5alm* E Flm
† ¹W Qlm•¹W r0d

3rd3p

52alm* A^~¹W Flm
†
•¹W Qlm!&0 , ~14!

ȧlm* 5E F̃lm
† drpd

3rd3p

5M ȧlm* E F̃lm
† ¹W Qlm•¹W pr0d

3rd3p

52M ȧlm* A^~¹W pF̃lm
†
•¹W Qlm!&0 , ~15!

where we have assumed the time reversal invariance of
densityr0 which guarantees

E Flm
† drpd

3rd3p}A^¹W pFlm
†
•¹W Qlm&050, ~16!
-
g

-

the

the

E F̃lm
† dr rd

3rd3p}A^¹W F̃lm
†
•¹W Qlm&050. ~17!

We thus obtain

kl52A^¹W ~¹W Qlm
†
•¹W V0!•¹W Qlm&0 , ~18!

k̃l52M2A^¹W p~¹W Qlm
†
•¹W pV0!•¹W Qlm&0 . ~19!

SinceQlm does not depend on the momentumpW , F̃lm of Eq.
~9! and k̃l of Eq. ~19! can be expressed in terms of th
Poisson bracket as

F̃lm5
M

k̃l
$Qlm ,V0%, ~20!

k̃l52M2^ˆQlm ,$Qlm
† ,V0%‰&0 . ~21!

In the above treatment, we have assumed the poten
V0 can be expressed as a sum over individual particl
V05( i51

AV0(rW i ,pW i). However the monopole pairing poten
tial

Vpair52
D

2
~P0

†1P0!, P0
†[(

g
cg
†cg̃

†52(
g.0

cg
†cg̃

†

~22!

is not expressed in this form. Herecg
† creates a nucleon in the

stateg, g̃ is a time reversed state ofg, and D is a gap
parameter. For such a potential we will replace the Poiss
brackets in Eqs.~20! and~21! by the corresponding commu-
tation relations as

F̃lm5
M

i\k̃l
@Qlm ,V0#, ~23!

k̃l52SM\ D 2^@Qlm ,†V0 ,Qlm
† #‡&0 . ~24!

Then the corresponding part of the effective interaction b
comes

Hl
~p!52

1

2(m
1

^†Qlm ,@V0 ,Qlm
† #‡&0

@Qlm ,V0#
†@Qlm ,V0#.

~25!

This type of separable effective interactions have been d
cussed by several authors in connection with the symmet
restoring treatment of the nuclear Hamiltonian@5–7,26–30#.

B. Two simple examples of self-consistent effective interactions

It is worthwhile to briefly review the derivation of the
self-consistent effective interactions in the case of a simp
mean potential such as a harmonic oscillator potential@11# or
a pairing potential@7#.

1. Spherical harmonic oscillator potential

Let us consider a simple situation that the equilibriu
potentialV0 is given by the spherical harmonic oscillato
potential
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V05VHO~r !5
1

2
Mv0

2r 2. ~26!

In this case, we do not have to consider the velocity dep
dent field coupling since the potential does not have a
velocity dependence. From Eqs.~8! and ~18! we obtain

Flm5
1

kl
Mv0

2rW•¹W Qlm5
1

kl
lMv0

2Qlm , ~27!

kl52lMv0
2A^¹W Qlm

†
•¹W Qlm&0

52Mv0
2l2~2l11!

4p
A^r 2l22&0 , ~28!

where we used the relations

rW•¹W Qlm5lQlm , DQlm50,

D~Qlm
† Qlm!5

2l~2l11!

4p
r 2l22. ~29!

Thus the self-consistent effective interaction coincides w
the conventional multipole-multipole interaction

Hl
~r !52

1

2
xl
self(

m
Qlm
† Qlm ~30!

with the self-consistent strength

xl
self5

4p

2l11

Mv0
2

A^r 2l22&0
. ~31!

2. Pairing potential

Let us introduce a one body operator

O5(
ab

^auOub&ca
†cb , ~32!

whose time reversal property is assumed to be

T̂OT̂215~2 !TO† ~33!

or equivalently

^ãuOub̃&5^T̂auOuT̂b&5~2 !T^buOua&, ~34!

where T̂ denotes the time reversal operator, and (2)T is a
shorthand notation for the time reversal phase and is ei
11 or 21. The commutation relation between the opera
O and the pairing fieldVpair is given by

@O,Vpair#5
11~2 !T

2
D(

ab
^auOub̃&~ca

†cb
†2cb̃cã !.

~35!

From this relation, it is easily recognized that the pairi
field satisfies the translational invariance but violates
Galilean invariance:

@PW ,Vpair#50, ~36!
en-
ny

ith

her
or

g
he

@RW ,Vpair#5D(
ab

^auRW ub̃&~ca
†cb

†2cb̃cã ! ~37!

with

PW 5(
j51

A

pW j5(
j51

A

~2 i\¹W j !, RW 5
1

A(
j51

A

rW j . ~38!

More generally, ifO is an operator depending on coordinat
variables, then Eq.~35! means that the monopole pairing
field is not invariant under a local Galilean transformation. I
this sense the pairing field is considered to be a veloc
dependent mean potential@1#. For a system with such a ve-
locity dependent potential, there arises a velocity depende
field coupling as is discussed in Sec. II A.

Let us investigate the interaction of Eq.~25! in more de-
tail. By substitutingVpair intoV0 and by identifying the origi-
nal ground stateu0& with the BCS vacuum state, the basic
quantities in Eqs.~23! and ~24! are expressed as

@Qlm ,Vpair#52D~Plm
† 2Pl̃m!, ~39!

^†Qlm ,@Vpair,Qlm
† #‡&05D2(

ab
S 1

Ea
1

1

Eb
D u^auQlmub&u2,

~40!

where

Plm
† [(

ab
^auQlmub&ca

†cb̃
†
, ~41!

and we have used the familiar relation between the coef
cients of Bogoliubov-Valatin transformation and the quas
particle energy:uava5D/2Ea . Thus the velocity dependent
effective interaction of Eq.~25! can be obtained as

Hl
~p!52

1

8
Gl
self(

m
~Plm

† 2Pl̃m!~Plm2P
l̃m
†

! ~42!

with

Gl
self[1Y (

ab

1

4 S 1

Ea
1

1

Eb
D u^auQlmub&u2. ~43!

This interaction is a natural extension of the dipole-pairin
interaction obtained by Bohr and Mottelson@1# and Pyatov
and Salamov@5# to a general 2l-pole mode. Equation~43!
has the same structure as that of the Belyaev identity@3,4#.
Further discussions for this interaction can be found in Re
@7,20#.

III. SELF-CONSISTENT EFFECTIVE INTERACTIONS
IN DEFORMED NUCLEI

Now, let us apply the procedure of Sec. II to a deforme
system. For simplicity, we assume that the main part of th
equilibrium potential is described as a deformed harmon
oscillator with frequenciesvx , vy , andvz . In terms of the
doubly stretched coordinates@10,11# defined by



a

n

is

ly
i
n

s

n

ld

e

e

54 2335SELF-CONSISTENT VELOCITY DEPENDENT . . .
x95
vx

v0
x, y95

vy

v0
y, z95

vz

v0
z, ~44!

the deformed harmonic oscillator potential can be express
in a spherical form as

VHO~rW !5
1

2
M ~vx

2x21vy
2y21vz

2z2!

5
1

2
Mv0

2~r 9!25VHO~r 9!. ~45!

As one of the possible and plausible collective shape o
cillation modes in the deformed system, we will introduce
doubly stretched 2l-pole mode characterized by

rW9→rW91drW9,

drW952(
m

alm* ¹W 9Qlm9 ~l>1!, ~46!

with

¹W 9[S ]

]x9
,

]

]y9
,

]

]z9D , Qlm9 [Qlm~rW9!, ~47!

rather than the conventional 2l-pole mode characterized by
Eq. ~1!. In fact, as discussed in Ref.@11# based on the
Thomas-Fermi theory, the doubly stretched mode represe
great improvements over the conventional mode in the sen
that it satisfies~i! the constancy of the Fermi energy~which
is equivalent to the saturation condition!, ~ii ! the separation
of the center-of-mass motion,~iii ! the condition for a fluc-
tuation around the deformed equilibrium shape, and~iv! the
self-consistency between the nucleonic density and the p
tential, etc. The collective velocity field associated with th
mode is expressed as

vW 9~rW9!52(
m

ȧlm* ¹W 9Qlm9 , ~48!

which is a natural extension of the irrotational and incom
pressible flow of Eq.~2!.

Now we will extensively apply the requirement of the
local Galilean invariance to the deformed system. Name
we will require that in terms of the doubly stretched coord
nates nucleonic velocities entering into the velocity depe
dent single-particle potential are to be measured relative
the collective velocityvW 9(rW9) so that the potential is to be
invariant under the transformation

pW 9→pW 91dpW 9, dpW 95MvW 9~rW9!, ~49!

where the doubly stretched momentums are introduced a

px95
v0

vx
px , py95

v0

vy
py , pz95

v0

vz
pz . ~50!

Then by use of the relationsd3r5d3r 9 and d3p5d3p9,
which are equivalent to the volume conservation conditio
vxvyvz5v0

3, we can follow the similar procedure as given
in Sec. II to derive self-consistent effective interactions i
ed

s-

ts
se

o-

-

,
-
-
to

n

deformed nuclei. To do this, in the present case, we shou
understand that all therW, pW , ¹W , and¹W p appearing in Sec. II
are to be replaced by the correspondingrW9, pW 9, ¹W 9, and¹W p9
with

¹W p9[S ]

]px9
,

]

]py9
,

]

]pz9
D . ~51!

For example, the field coupling induced by the collective
displacements of Eqs.~46! and ~49! becomes

V~rW9,pW 9!5V0~rW9,pW 9!1dV~rW9,pW 9!

[V091dV9 ~52!

with

dV95dVr91dVp9

5kl(
m

alm* Flm9 ,1k̃l(
m

ȧlm* F̃lm9 , ~53!

Flm9 5
1

kl
¹W 9Qlm9 •¹W 9V09 , ~54!

F̃lm9 5
M

k̃l
¹W 9Qlm9 •¹W p9V095

M

k̃l
$Qlm9 ,V09%. ~55!

From the self-consistency conditions

alm5A^Flm9 &, ȧlm5A^F̃lm9 &, ~56!

the coupling strengths are determined as

kl52A^¹W 9~¹W 9Qlm9 †
•¹W 9V09!•¹W 9Qlm9 &0 , ~57!

k̃l52M2A^¹W p9~¹W 9Qlm9 †
•¹W p9V09!•¹W 9Qlm9 &0

52M2^$Qlm9 ,$Qlm9 †,V09%%&0 , ~58!

and the self-consistent effective interaction to be used in th
deformed nucleus is given as

H int5
kl

2 (
m

Flm9 †Flm9 1
k̃l

2 (
m

F̃lm9 †F̃lm9

[Hl
~r !1Hl

~p! . ~59!

For the case ofV095VHO(r 9), the effective interaction be-
comes

Hl
~r !52

1

2
xl
self(

m
Qlm9 †Qlm9 ~60!

with

xl
self5

4p

2l11

Mv0
2

A^~r 9!2l22&0
, ~61!

and in the presence of the pairing field an additional effectiv
interaction is derived as
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Hl
~p!52

1

8
Gl
self(

m
~Plm9 †2P

l̃m
9 !~Plm9 2P

l̃m
9 †! ~62!

with

Gl
self[1Y (

ab

1

4 S 1

Ea
1

1

Eb
D u^auQlm9 ub&u2. ~63!

These interactions play crucial roles in restoring broken sy
metries of the system in RPA order, the detail of which w
be discussed in the next section.

IV. FUNDAMENTAL PROPERTIES
OF SELF-CONSISTENT EFFECTIVE INTERACTIONS

A. Translational invariance of a deformed system

The consistency of the residual interaction with the sh
model potential and the method to restore the translatio
invariance of a nuclear many body system was discussed
Pyatov and Salamov@5# for the case of the spherical oscilla
tor potential. Here we will briefly examine this problem in
deformed system.

Let us consider the oscillator Hamiltonian for the de
formed nucleus

H05(
i51

A H pi
2

2M
1VHO~r i9!J . ~64!

SinceH0 is a local one body Hamiltonian, it breaks the tran
lational invariance of the system. In fact, we have

@H0 ,PW 9#5 i\AMv0
2RW 9 ~65!

with

PW 95(
j51

A

pW j95(
j51

A

~2 i\¹W j9!,

RW 95
1

A(
j51

A

rW j9. ~66!

To recover the translational invariance, we need a coun
term which cancels the above commutation relation. Fo
spherical nucleus, as is well known, such a counterte
comes from the conventional dipole interaction. Now we w
show that for the deformed nucleus, the doubly stretch
dipole interaction plays the role to recover the translation
invariance of the system.

First of all, for the doubly stretched dipole interaction

Vl5152
x1

2 (
i j

@Q19~ i !•Q19~ j !#, ~67!

we can verify

@Vl51 ,PW 9#52 i\AMv0
2 x1

x1
self RW 9. ~68!

Then the total HamiltonianH5H01Vl51 satisfies
-
ll

ll
al
by

-

-

er-
a
rm
ll
ed
al

@H,PW 9#5 i\AMv0
2S 12

x1

x1
selfDRW 9. ~69!

Therefore if the strengthx1 of the doubly stretched dipole
interaction is set equal to its self-consistent valu
x1
self54pMv0

2/3A, we obtain @H,PW 9#50 exactly. In this
case, the total Hamiltonian can be expressed as

H5(
i51

A pi
2

2M
1
Mv0

2

4A (
i , j51

A

urW i92rW j9u2, ~70!

which explicitly guarantees the translational invariance o
the deformed system.

B. Restoration of the local Galilean invariance

As is discussed in the previous sections, generally a ph
nomenological potential, comprising velocity dependen
terms such as thelW2 term, thelW•sW terms and the pairing field,
etc., does not commute with arbitrary coordinate operators.
we chose the operator to be the multipole operator, such
situation is expressed from Eq.~23! as

@Qlm9 ,V0~rW,pW !#5
i\k̃l

M
F̃lm9 Þ0, ~71!

which means that the potentialV0 violates the local Galilean
invariance under the collective multipole oscillation. Here
the doubly stretched operators are used for deformed nuc
For spherical nuclei, of course we can omit the doubl
primes.

Now along the line of the general method of restoring th
broken symmetry @5,26#, we will show that the self-
consistent velocity dependent effective interaction, i.e
Hl
(p) of Eq. ~59!, plays the role to restore the local Galilean

invariance of the system under the random phase approxim
tion ~RPA!. In the RPA order we can verify

@Qlm9 ,Hl
~p!#RPA5

k̃l

2
$@Qlm9 ,F̃lm9 †#RPA,F̃lm9 %1 , ~72!

with

@Qlm9 ,F̃lm9 †#RPA5
M

i\k̃l
^†Qlm9 ,@Qlm9 †,V0#‡&0

52
i\

M
. ~73!

Thus we obtain

@Qlm9 ,V01Hl
~p!#RPA50. ~74!

C. Simple model analysis of GDR of normal nuclei

It is worthwhile to point out that the doubly stretched
interaction model is powerful and plausible also for the de
scription of some isovector modes. In confirmation of it, le
us briefly review the simple model analysis of the splitting o
GDR in an axially symmetric deformed nucleus@11#. The
model Hamiltonian is assumed to be
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H5H01Vl51
~T51! , ~75!

whereH0 is the deformed oscillator Hamiltonian of Eq.~64!
while Vl51

(T51) is a residual isovector dipole interaction. He
we will parametrize the shape of the nuclear potential as

v'5vx5vy5v0~«!~11«/3!,

vz5v0~«!~122«/3! ~76!

with

v0~«!5v̊0@11«2/91O~«3!#, \v̊0'41A21/3 ~MeV!.
~77!

For comparison we will introduce two types of isovec
dipole interaction, one is an ordinary type and the other
doubly stretched type. The interaction in the latter cas
given by

Vl51
~T51!52

1

2(K x1K
~T51!~Q1K9 tz!

†~Q1K9 tz! ~78!

and we will parametrize the force strength
x1K
(T51)52jx1

self wherex1
self is the self-consistent strength

the isoscalar dipole interaction. The typical value ofj esti-
mated from the symmetry energy term in the mass form
under the Fermi gas approximation is about 3@1#.

Under the RPA, the excitation energy of eachK compo-
nent of the GDR is obtained analytically as

V115VGDRS 11
«

3~11j! D ,
V105VGDRS 12

2«

3~11j! D , ~79!

for the ordinary interaction, while

V115VGDR~11«/3!, V105VGDR~122«/3!, ~80!

for the doubly stretched interaction. HereVGDR is the reso-
nance energy of a spherical nucleus given by

VGDR5A11jv0 , ~81!

which, in both cases, is compatible with the experimen
systematics ofVGDR'80A21/3 ~MeV! if we put j53. For
the doubly stretched interaction, the total energy splitt
between theK50 andK51 components of the GDR is« in
units ofVGDR and is independent ofj, which is consisten
with the simple classical geometrical relation
(v'2vz)/v05«. This is in good agreement with the sy
tematics of the experimental observation@35–37#. On the
other hand, for the ordinary interaction, the splitting is t
small by a factor of 4 forj53. Thus the doubly stretche
interaction model seems much more improved than the o
nary one also for the isovector dipole mode.

D. Simple model analysis of GDR of superconductive nuclei

Effects of the inclusion of the pairing correlation on t
properties of giant resonances of superconductive nu
e
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have been studied by several authors@5,24,25#, and the shifts
in excitation energies, the changes in energy weighted s
rule ~EWSR!, etc., have been observed. However as in
cated in Refs.@24,25#, some of them seem to be spurious d
to the violation of the Galilean invariance of the syste
Here, by use of a simple schematic model, we will verify t
effects of the pairing correlations on the structure of GD
and will show that such spurious effects can be remedied
including the dipole pairing interaction.

The model Hamiltonian is assumed to be

H5H01Vl51
~T51!1(

t
$Vpair2lN̂1Hl51

~p! %t , ~82!

whereH0 is the oscillator Hamiltonian of Eq.~64!, Vl51
(T51) is

the isovector dipole interaction of Eq.~78!, Vpair is the mono-
pole pairing potential of Eq.~22!, andHl51

(p) is the dipole
pairing interaction of Eq.~62!. Here and in the following, the
summation indext is to be taken over the proton and th
neutron. The force strength of the isovector dipole inter
tion is fixed asj53, while that of the dipole pairing inter-
action is set to be its self-consistent value when it is
cluded. We perform quasiparticle RPA calculations for
schematic model system withN5Z520. It must be noticed
that the purpose here is not to compare with the experime
data of 40Ca but to investigate the fundamental properties
the dipole pairing interaction from the purely theoretic
point of view.

Table I shows our results on the electric dipole streng
distributions calculated by assuming the system to be sph
cal. To study the effect of the pairing correlation, we arti
cially change the value ofD. For the simplest case o
D50 (a), the GDR is located at 24.0 MeV, and the ener
weightedE1 transition strength of this state exhausts its cla
sical sum rule value of

S~E1!class5
9

4p

\2

2M

NZ

A
e2. ~83!

TABLE I. E1 transition strength distribution for a schemat
spherical system withN5Z520. Energies and fractions of the
EWSR are shown for some dominant states calculated in the R
The dipole-pairing interaction is included forc ande, but not for
a, b, andd.

Dp5Dn ~MeV! E ~MeV! EWSR ~%!

a 0.0 24.0 100

b 1.0 21.4 8
23.6 52
27.5 41

c 1.0 24.0 100

d 2.0 20.8 16
23.6 24
30.0 78
51.3 13

e 2.0 23.9 99
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FIG. 1. E1 transition strength distribution for a schematic model system ofN5Z520 with axially symmetric deformation ofb50.4
calculated in RPA. The continuous strength function, representing the strength per unit energy, is given in units of MeV21 relative to the
classical sum rule value~CSR!. In the model Hamiltonian of Eq.~82!, the pairing gap is fixed asD52.0 MeV both for protons and for
neutrons.K50 andK51 modes are shown by the solid and the dashed curves, respectively.~a! and ~b! correspond to the results obtained
with and without the inclusion of the dipole-pairing interaction, respectively.
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When the pairing gap is set to beD51.0 MeV (b), reflecting
the situation that the quasiparticle states are no more deg
erate, the GDR splits in spite of the assumption that th
system is spherical. There are mainly three components
the GDR~21.4, 23.6, and 27.5 MeV!. The center of the GDR
shifts upward about 1 MeV compared to the case ofD50,
and the EWSR is overestimated by about 10% relative to t
classical one. In order to remedy this situation, we switch o
the dipole pairing interaction (c). In this case, theE1 tran-
sition strength concentrates again on a single state at ab
24.0 MeV, and the EWSR recovers to its classical value. T
fact that the pairing correlation destroys the order in th
structure of the GDR can further be emphasized by increa
ing D to 2.0 MeV, though the value is not realistic. In this
hypothetical situation (d), the transition strength splits into
mainly four components at 20.8, 23.6, 30.0, and 51.3 Me
and the EWSR is overestimated by about 36%. Even in su
an extreme situation, if we additionally include the dipol
pairing interaction (e), the spurious effect of the pairing in-
teraction can be removed and theE1 strength is concentrated
on a single state at 23.9 MeV to recover the EWSR.

Figure 1 shows the corresponding results obtained by
suming that the model system is deformed to be axially sym
metric shape ofb50.4. The continuous strength function
representing the transition strength per unit energy, is co
structed by using the Lorentzian weight function

r~v2vn!5
2

p

Gv2

~v22vn
2!21G2v2 . ~84!

In the present model calculations, we choose the width to
G51.0 MeV only for the sake of not wiping out the fine
structure of the resonance. Because of the deformation of
system, the GDR splits intoK50 andK51 components. For
the case of Fig. 1~a!, the GDR shows rather complicated
structure. The reason for it can be traced to the violation
the Galilean invariance for the pairing field and we ca
en-
e
of

he
n

out
he
e
s-

V,
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e
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,
n-
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the
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n

eliminate such a spurious effect by restoring the broken i
variance. In fact, if we additionally include the dipole pairing
interaction, the structure of the resonance becomes simp
both forK50 andK51 modes@Fig. 1~b!#. Furthermore, the
total energy splitting between theK50 andK51 modes,
relative to the average energy of these modes, becomes
proximately equal tob which is consistent to the simple
classical geometrical relation explained before.

V. NUMERICAL RESULTS

In this section, we report some characteristic results
numerical calculations in RPA of the GDR’s of148,154Sm,
the first excited 21 states of Sn isotopes and the first excite
32 states of Mo isotopes. It should be noted here that o
present calculations contain essentially only one free para
eter in the following sense; the single-particle bases are co
structed from the Nilsson1 BCS model with standard pa-
rameters; the strengths of the velocity dependent effecti
interactions such as the multipole pairing interactions a
fixed to be their self-consistent values when they are i
cluded; only the strengths of the multipole-multipole interac
tions are adjusted under the condition that a common val
of j, x2, andx3 is to be adopted for all the isotopes of Sm
Sn, and Mo, respectively.

Since the positions of bandhead states are very sensit
to the choice of the single-particle energies as are genera
observed in the RPA calculation of vibrational states in d
formed nuclei, one can improve the fit to experiments b
adjusting the single-particle energies, and further improv
ment can be obtained by slightly varying the strengths of th
effective interactions around the vicinity of the predicte
self-consistent values for each isotope. The fit to experime
we obtained is insufficient and an improved fit could hav
been obtained if these parameters were treated as adjust
as well. We have not done so in the present work, becau
the purpose of the present numerical investigation is to s



54 2339SELF-CONSISTENT VELOCITY DEPENDENT . . .
FIG. 2. E1 transition strength functions of~a! 148Sm and~b! 154Sm are given in units of MeV21 relative to the classical sum rule value
~CSR!. The model Hamiltonian is same as that of Eq.~85! except that the dipole-pairing interaction is not included here. In~b!, solid and
dashed curves correspond to theK50 andK51 modes, respectively.
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first to what extent our theory works without much playin
around with parameters and to provide understandings ra
than precision tools for the fitting of experimental data.

A. E1 strength distributions of 148,154Sm

We here present the results of realistic calculations on
E1 strength distributions of148,154Sm in the quasiparticle
RPA. The model Hamiltonian is assumed to be

H5H01VNil1Vl51
~T51!1(

t
$Vpair2lN̂1Hl51

~p! %t ,

~85!

VNil5(
i51

A

@2k\v̊0$2~ lW•sW !1m~ lW22^ lW2&!%# i , ~86!

which is essentially same as Eq.~82! except that the Nilsson
potentialVNil is additionally included.

We will study the effects of two kinds of velocity depen
dent interactions to restore the Galilean invariance of t
system; the one arising fromVpair and the other from the
velocity dependent part ofVNil . The former, the dipole pair-
ing interactionHl51

(p) , is given by Eq.~62!, while the latter,
Hl51
(Nil) , is given by

Hl51
~Nil !5

1

2(m k1h1m
† h1m ~87!

with

h1m5@Q1m9 ,VNil#, ~88!

k1521/̂ †Q1m9 ,@VNil ,Q1m9
†#‡&0 . ~89!

Although it is known that there exists a term associated w
the coordinate distortion of the spin-orbit potential given b
Eq. ~6-70! of Ref. @1#, we will not consider its effects in
order to concentrate our present analysis on the effects of
self-consistent velocity dependent interactions. We will al
g
ther

the

-
he

ith
y

the
so

neglect isovector corrections coming from the Nilsson poten
tial to the isovector dipole-dipole interaction because of the
same reason.

To fix the parameterj for the strength of the isovector
dipole-dipole interaction in this mass region, we first calcu-
late the case of148Sm by assuming its shape to be spherical
The resultant value ofj52.7 is adopted also for154Sm
whose quadrupole deformation parameter is assumed a
fixed as b50.35 in the following calculations. All other
strengths of the interactions are fixed just as the self
consistent values which restore the Galilean invariance of th
system. It should be noticed here that the doubly stretche
interactions are used for the deformed nucleus of154Sm. For
the model space, we retain all the Nilsson single-particle
states with 2<Nosc<7 for protons and 3<Nosc<8 for neu-
trons. The Nilsson parameters are taken from Ref.@13#. By
using experimental binding energies of Ref.@38#, the pairing
gap parameters are determined from the even-odd mass d
ferences asDn51.01 MeV,Dp51.36 MeV for 148Sm and
Dn51.07 MeV, Dp50.86 MeV for 154Sm. We use the
Lorentzian distribution of Eq.~84! to reproduce the reso-
nance width. We chooseG ~in units of MeV! as 5.10 for
148Sm, and 3.25, 5.25 for theK50, 1 modes of154Sm, re-
spectively.

Figures 2~a! and 2~b! show theE1 strength functions for

TABLE II. CalculatedE1 EWSR values of148,154Sm. Strengths
integrated over the excitation energies from 5.5 MeV to 30.0 MeV
are given in units of % relative to the classical sum rule value. The
model Hamiltonian is given by Eq.~85!. The columnsa and b
correspond to the results obtained without and with the inclusion o
the dipole-pairing interactionHl51

(p) , respectively, while in c the
interactionHl51

(Nil ) is also included in addition toHl51
(p) .

Nucleus a b c

148Sm 116.8 85.9 86.2
154Sm (K50! 41.1 31.3 30.2
154Sm (K51! 64.7 56.0 56.9
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FIG. 3. Same as Fig. 2, except that the dipole-pairing interaction is included.
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148Sm and 154Sm, respectively, taking the model Hamil
tonian of Eq.~85! but switching off the dipole-pairing inter-
action. Here we see that even if we use the doubly stretc
interaction, the calculated splitting betweenK50 andK51
resonances of154Sm is too small. Furthermore, as can b
seen from columna of Table II, the EWSR values exceed
the classical values for both nuclei. As stated repeated
these difficulties stem from the mixture of spurious stat
arising from the broken Galilean invariance ofVpair and
VNil . In the following we show the results obtained by re
storing the broken symmetry in two steps.

First, we study the effect ofHl51
(p) . The columnb of

Table II shows that the sum rule values approach the cla
cal values. However, from Fig. 3, we see that the centers
the resonances shift to lower excitation energies and
structure in the lower peak region reveal unnatural sha
Finally we take into accountHl51

(Nil) so that the Galilean in-
variance of the Hamiltonian is restored. As can be seen fr
Fig. 4 and columnc of Table II, the unnatural resonanc
structure disappears and the EWSR values keep close to
classical limit. We note that the final results of Figs.4~a! and
ed
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ly,
s
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si-
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the

4~b! agree quite well with the Lorentzian distribution of
Figs.4~c! and 4~d! which fit the experimental data of photo-
neutron cross section@35#.

B. The first excited 21 states in Sn isotopes

We now consider the effects of the self-consistent quad
rupole pairing interaction on the excitation energiesE(21

1)
and theE2 transition probabilitiesB(E2) of Sn isotopes
within the quasiparticle RPA. The model Hamiltonian is as-
sumed to be

H5H01VNil1Vl521(
t

$Vpair2lN̂1Hl52
~p! %t , ~90!

whereVl52 andHl52
(p) are the quadrupole-quadrupole inter-

action and the quadrupole pairing interaction, respectively.
The single-particle model space is spanned by all th

Nilsson states with 2<Nosc<6 for protons and 2<Nosc<7
for neutrons. The Nilsson parameters are taken from Re
@13#, and the deformation is set to be zero. To investigate th
on
ted
TABLE III. Energies of the first excited 21 states andE2 transition probabilities in Sn isotopes are given
in units of MeV andB(E2)sp, respectively. Results of calculations obtained without and with the inclusi
of the quadrupole-pairing interactionHl52

(p) are compared with experimental data. The pairing gaps adop
in the calculations are taken from the experimental even-odd mass differences fora, while those for protons
are set to be zero forb.

a b

Without Hl52
(p) With Hl52

(p) Without Hl52
(p) With Hl52

(p) Expt.

N E(21) B(E2) E(21) B(E2) E(21) B(E2) E(21) B(E2) E(21) B(E2)

62 1.72 18.7 1.57 13.3 1.66 15.7 1.57 10.7 1.26 16.2
64 1.72 19.6 1.57 14.1 1.68 15.9 1.58 10.8 1.30 15.3
66 1.41 19.8 1.19 17.1 1.37 15.7 1.34 10.6 1.29 12.9
68 1.23 23.9 1.03 20.4 1.20 19.0 1.21 12.2 1.23 12.7
70 1.20 24.8 1.00 21.2 1.16 20.0 1.18 12.7 1.17 11.6
72 1.22 22.7 1.13 15.0 1.17 18.5 1.18 11.9 1.14 10.9
74 1.35 18.0 1.27 12.9 1.31 14.9 1.27 10.0 1.13 9.3
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FIG. 4. Same as Fig.3 for~a! and~b!, except that the additional interactionHl51
(Nil ) is included. For comparison, Lorentzian distribution

which fit the experimental data of the photoneutron cross section@35# are given in~c! and ~d! for 148Sm and154Sm, respectively. The
experimental Lorentz line parameters for the mathematical expressionsL(E)5( is i(EG i)

2/@E22Ei
2)21(EG i)

2] are taken from Ref.@35# as
E1514.860.1, G155.160.2, s15339612 for the best single line fit of148Sm andE1512.3560.10, G153.3560.15, s15192610,
E2516.160.1,G255.2560.20,s25204610 for the best two-line fit of154Sm, respectively. HereE’s andG ’s are given in units of MeV
while s ’s are given in units of mb.
s
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effect of the quadrupole pairing force on th
B(E2;0g→21

1) value, the strength of the quadrupole pairi
force,G2, is fixed to be its self-consistent value when it
included, while that of the quadrupole interaction,x2, is used
as an adjustable parameter to reproduce experime
E(21

1) of 116,118,120Sn @39#.
First, we adopt the pairing gaps determined from

even-odd mass differences. The adopted value ofx2 for the
best fit obtained without~with! the inclusion of the
quadrupole-pairing interaction,Hl52

(p) , is 0.92~0.90! in units
of x2

self. The calculatedE(21
1) and B(E2) are plotted in

Figs. 5~a! and 5~b!, respectively, and corresponding nume
cal values are given in column~a! of Table III. These results
show thatHl52

(p) is necessary and important in reproduci
experimentalE(21

1) andB(E2) values simultaneously.
Second, we have also performed numerical calculati

by fixing the proton energy gap to be zero. This is beca
the proton shell is closed in Sn. In this case, the adop
value ofx2 for the best fit obtained without~with! the inclu-
sion of Hl52

(p) is 0.940~0.965! in units of x2
self. The calcu-
e
ng
is

ntal

the

ri-

ng

ons
use
ted

lated values ofE(21
1) andB(E2) are plotted in Figs. 6~a!

and 6~b!, respectively, and corresponding numerical value
are given in columnb of Table III, where we see better
agreements with experimental data compared to the ca
with DpÞ0.

C. The first excited 32 states in Mo isotopes

Here we will study the effects of the self-consistent octu
pole pairing interaction,Hl53

(p) , in the quasiparticle RPA cal-
culations of the excitation energiesE(31

2) and theE3 tran-
sition probabilities of the first excited 32 states in Mo
isotopes. The model Hamiltonian is assumed to be

H5H01VNil1Vl531(
t

$Vpair2lN̂1Hl53
~p! %t , ~91!

whereVl53 andHl53
(p) are the octupole-octupole interaction

and the octupole pairing interaction, respectively.
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The single-particle model space is spanned by all t
Nilsson states with 0<Nosc<7 for protons and 0<Nosc<9
for neutrons. Energy gaps are determined from the expe
mental even-odd mass differences. To investigate the eff
of the octupole pairing force on theB(E3;0g→31

2) value,
the strength of the octupole pairing force,G3, is fixed to be
its self-consistent value when it is included, while that of th
octupole interaction,x3, is used as an adjustable paramet
to reproduce the experimental data ofE(31

2) in
94,96,98,100Mo @40#. The adopted value ofx3 for the best fit
obtained without~with! the inclusion of the octupole-pairing
interaction,Hl53

(p) , is 0.95~0.97! in units ofx3
self.

The calculatedE(31
2) andB(E3) from the ground state

to the 31
2 state are plotted in Figs. 7~a! and 7~b!, respectively,

and corresponding numerical values are given in Table I
Here we see that the calculatedB(E3) values are reduced
and improved systematically by the effects ofHl53

(p) , al-
though the fit to experimental data is insufficient.

VI. SUMMARY

We have extensively applied the prescription to deriv
self-consistent effective interactions, needed for the unifi

FIG. 5. ~a! Excitation energies of the first 21 states and~b!
E2 transition probabilities in Sn isotopes. Results of calculatio
with and without the inclusion of the quadrupole pairing interactio
are shown by dot-dashed and dashed lines, respectively. Solid l
correspond to the experimental data. In the calculations, pair
gaps are determined from the odd-even mass differences both
protons and for neutrons.
he
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V.

e
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description of the collective motions of atomic nuclei, espe
cially to the system with velocity dependent mean potentials
As the guiding principles for this purpose we have impose
the conditions of nuclear self-consistency@10,11# and local
Galilean invariance@1,3,5–7# of the system, implemented
with the simple and transparent field coupling method deve
oped by Bohr and Mottelson@1#.

The nuclear self-consistency requires that the shape of t
mean potential and that of the density are the same ev
when the system undergoes collective motions, while the lo

ns
n
ines
ing
for

FIG. 6. Same as Fig. 5, except that the pairing gaps for proton
are set to beDp50 in the calculations.

TABLE IV. Energies of the first excited 32 states andE3 tran-
sition probabilities in Mo isotopes are given in units of MeV and
B(E3)sp, respectively. Results of calculations obtained without an
with the inclusion of the octupole-pairing interactionHl53

(p) are
compared with experimental data. The pairing gaps adopted in th
calculations are taken from the experimental even-odd mass diffe
ences.

Without Hl53
(p) With Hl53

(p) Expt.

N E(32) B(E3) E(32) B(E3) E(32) B(E3)

52 2.74 51.2 2.66 44.3 2.53 17
54 2.36 53.4 2.32 44.6 2.23 24
56 1.93 58.6 1.97 47.3 2.02 33
58 1.91 60.2 1.92 47.8 1.91 32
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cal Galilean invariance requires that the nucleonic veloci
entering into the velocity dependent single-particle poten
should be expressed relative to the local collective flow
the field coupling method, the coupling between the part
motion and the collective field is identified, within the Ha
tree approximation, as the averaged one body field of
effective interaction which we look for, and the couplin
strength of it can be fixed by the above conditions.

For the multipole collective shape oscillation modes in
harmonic oscillator potential with the monopole pairing c
relation, we have derived the multipole-multipole intera
tions for particle-hole channel and the multipole-pairing

FIG. 7. ~a! Excitation energies of the first 32 states and~b!
E3 transition probabilities in Mo isotopes. Results of calculatio
with and without the inclusion of the octupole pairing interacti
are shown by dot-dashed and dashed lines, respectively. Solid
correspond to the experimental data.
es
ial
In
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teractions for particle-particle channel from the unifie
physical picture. In the case of deformed nuclei, it is show
that these interactions must be expressed in terms of the d
bly stretched coordinates so as to guarantee the condition
nuclear self-consistency and local Galilean invariance of t
system.

The origin of the doubly stretched multipole-multipole in
teractions have already been clarified and they have fou
many successful applications@10,11,16–23#, while the origin
of the doubly stretched multipole pairing interactions a
clarified in this paper on the same footing. We have appli
the doubly stretched multipole pairing interactions to th
analyses of some collective states in Sm, Sn, and Mo i
topes by means of RPA, and for the dipole mode we ha
also tested the velocity dependent effective interaction ar
ing from the Nilsson potential. We have seen the effects
such velocity dependent effective interactions in the recove
of the classicalE1 sum rule for GDR’s of148,154Sm, in the
systematic reduction of theE2 transition probabilities for the
first excited 21 states of Sn isotopes, and also in the syste
atic reduction ofE3 transition probabilities for the first ex-
cited 32 states of Mo isotopes. It should be noted here th
recently the doubly stretched quadrupole pairing interacti
was successfully applied also to the microscopic analysis
identical bands in superdeformed nuclei, and it was sho
that the doubly stretched quadrupole pairing interaction h
several advantages compared to the nonstretched
stretched ones@41#.

In summary, it is clarified that the self-consistent veloci
dependent effective interactions play crucial roles to recov
the local Galilean invariance and eliminate various unphy
cal effects arising from the spurious velocity dependence
the mean potential. For rotating nuclei, we can apply simil
prescription in order to find the proper effective interaction
which faithfully take into account the effects of the collectiv
rotation. Results of it will be reported in a separate paper
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