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Certain soft photon amplitudes which have been recently suggested as alternatives to the usual Low for
the soft photon approximation are studied and it is demonstrated that problems exist in their relation to
corresponding nonradiative amplitude. The nonradiative amplitude, which is an input to soft photon calc
tions, is in certain cases required to be evaluated outside of its physical phase space region. Also, for the
of two-body identical particle bremsstrahlung processes, the symmetrized or antisymmetrized form of th
soft photon amplitudes cannot be written in terms of the symmetrized or antisymmetrized amplitude for
nonradiative process. It is found that the usual Low form of the soft photon theorem is essentially unaffe
by these problems.@S0556-2813~96!06011-6#

PACS number~s!: 13.75.Cs, 11.80.Cr, 13.40.2f, 13.60.2r
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I. INTRODUCTION

Bremsstrahlung processes, particularly proton-prot
bremsstrahlung, have long been studied as a method of
sessing the importance of off-shell effects in low and inte
mediate energy hadronic scattering. There have been
main theoretical approaches: nonrelativistic potential mod
@1–7# which include off-shell effects explicitly, and the sof
photon approximation@8–13# which is written in terms of
only on-shell information about the nonradiative scatterin
process. Soft photon amplitudes therefore give informati
about off-shell effects only through any discrepancy betwe
their prediction for the bremsstrahlung spectrum and expe
mental measurements, and even then there is an ambiguit
that some of the discrepancy could arise from higher ord
on-shell effects.

For the proton-proton bremsstrahlung process it had be
found in the past that the Low soft photon approximatio
gave a good description of the older data@14#, suggesting
that off-shell effects are small. The more recent 280 Me
TRIUMF experiment@15# provided measurements not only
of photon spectra but also of polarization observables. The
data showed some disagreement with the soft photon pre
tion @12#, indicating for the first time the presence of non
trivial off-shell behavior in thepp elastic scattering process

Although most soft photon applications have used t
Low @8# approach, it is well known that the derivation of th
soft photon approximation is not unique. Different choice
lead to soft photon amplitudes which differ atO(k). Re-
cently Liou, Timmermans, and Gibson@13# have suggested
an alternate form for the soft photon amplitude. The claim
made that this ‘‘Two-u-Two-t-special’’~TUTTS! amplitude
provides better agreement withppg data at all energies than
the traditional Low amplitude. This success is contrasted
that paper with the dramatic failure to describe the data
another alternative soft photon amplitude, the ‘‘Two-s-Two
t-special’’ ~TSTTS! amplitude.

In this paper we shall investigate two problems which ca
arise in the application of soft photon amplitudes to partic
54/96/54~5!/2240~13!/$10.00
on
as-
r-
two
els
t

g
on
en
ri-
y in
er

en
n

V

se
dic-
-
.
he
e
s

is

in
of
-

n
u-

lar processes. The first of these, which we shall call the pha
space problem, concerns the expression of a soft photon a
plitude solely in terms of measurable information about th
on-shell nonradiative process. The second, the antisymme
zation problem, concerns the inability to write the correct
antisymmetrizedppg soft photon amplitude in terms of the
measured, antisymmetricpp elastic amplitude. The usual
Low form for the radiative amplitude will be shown to be
immune to these difficulties, while the TUTTS and TSTTS
amplitudes fall victim to one or both of the problems.

These problems both have analogs in the case of spinl
two-body bremsstrahlung processes. We begin by study
the problems in that algebraically simpler context, derivin
the spinless forms of the Low, TUTTS, and TSTTS amplitudes
in Sec. II. In Sec. III we consider the phase space proble
while in Sec. IV we treat the symmetrization of identica
particle spinless bremsstrahlung processes. In Sec. V we
tend our results to proton-proton bremsstrahlung where
elastic and radiative amplitudes must be written in antisym
metric form, and present some illustrative examples of t
problems discussed.

II. SPIN-0 AMPLITUDES

We begin with two-body spin-zero scattering and first re
view the derivation of the Low@8# form of the soft photon
approximation as well as the ‘‘Two-s-Two-t-special’
~TSTTS! and ‘‘Two-u-Two-t-special’’ ~TUTTS! forms sug-
gested by Liou and collaborators@13#. The problems in
which we are interested may be considered within this alg
braically simpler spinless framework, and then carried ov
with little modification to the more physically interesting
case of nucleon-nucleon bremsstrahlung.

We defineA(s,t;p1
2 ,p2

2 ,p3
2 ,p4

2) to be the amplitude de-
scribing the nonradiative scattering of particles of massm1
andm2 into a final state composed of massesm3 andm4
with s and t the usual Mandelstam variables. Thepi are the
four-momenta of the various particles and the variabless and
t, and others to be defined later, are considered to be fu
2240 © 1996 The American Physical Society
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tions of these four-momenta. Contact with the physical no
radiative amplitude, which can be evaluated from measur
phase shifts, is made by going to the on-shell lim
pi
25mi

2 . The Low form of the soft photon amplitude may
n-
ed
it,

then be constructed as follows. One writes the contributio
of radiation from the external charged particles to the radi
tive amplitude in terms of off-shell evaluations of the nonra
diative scattering amplitudeA():
e
ton,

he

litudes

s
ut

tering

could
M ext
m em5eQ3

p3•e

p3•k
A@ s̄1k•~p31p4!, t̄2k•~p12p3!;m1

2 ,m2
2 ,m3

212k•p3 ,m4
2#

1eQ4

p4•e

p4•k
A@ s̄1k•~p31p4!, t̄2k•~p22p4!;m1

2 ,m2
2 ,m3

2 ,m4
212k•p4#

2eQ1

p1•e

p1•k
A@ s̄2k•~p11p2!, t̄2k•~p12p3!;m1

222k•p1 ,m2
2 ,m3

2 ,m4
2#

2eQ2

p2•e

p2•k
A@ s̄2k•~p11p2!, t̄2k•~p22p4!;m1

2 ,m2
222k•p2 ,m3

2 ,m4
2#. ~1!

HereQi are the charges of the various particles andkm and em are the photon momentum and polarization vector. Th
nonradiative amplitudeA() is written with each of the charged legs in turn taken off-shell due to the emission of the pho
i.e., we use the same functional form as the on-shell, nonradiative amplitude considered as a function of thepi , but evaluate
thepi at the radiative point satisfyingp11p25p31p41k. We have chosen to express this off-shell behavior in terms of t

average Mandlestam variabless̄[ 1
2 (p11p2)

21 1
2 (p31p4)

2 and t̄[ 1
2 (p12p3)

21 1
2 (p22p4)

2. Other choices can be made
for the variables and such choices are at this stage entirely equivalent but would later give rise to soft photon amp
differing by terms ofO(k).

Following Low @8#, the occurrences of the nonradiative amplitudeA() in this radiative amplitude are expanded in power
of km about the point with explicit dependencies onkm set to zero—in our current example we expand abo
A( s̄, t̄;m1

2 ,m2
2 ,m3

2 ,m4
2). Only the leading two powers in this expansion are retained since it has been shown@11,16,17# that the

soft photon approximation is ambiguous in its prediction of higher orders in the power ofkm expansion due to the ambiguity
in choice of expansion point. The truncated expansion of Eq.~1! is

M ext
m em5FeQ3

p3•e

p3•k
S 11k•~p31p4!

]

] s̄
2k•~p12p3!

]

] t̄
12k•p3

]

]m3
2D

1eQ4

p4•e

p4•k
S 11k•~p31p4!

]

] s̄
2k•~p22p4!

]

] t̄
12k•p4

]

]m4
2D

2eQ1

p1•e

p1•k
S 12k•~p11p2!

]

] s̄
2k•~p12p3!

]

] t̄
22k•p1

]

]m1
2D

2eQ2

p2•e

p2•k
S 12k•~p11p2!

]

] s̄
2k•~p22p4!

]

] t̄
22k•p2

]

]m2
2D GA~ s̄, t̄;m1

2 ,m2
2 ,m3

2 ,m4
2!. ~2!

This truncated form is no longer gauge invariant. Gauge invariance may be reimposed by the addition of a termMint
m em which

is independent ofk and is presumed to have its physical origin in photon emission from internal charged lines in the scat
process. The gauge invariance constraint is (Mext

m 1Mint
m )km[0, which in this case implies an internal contribution of the form

Mint
m em52Fe~Q11Q21Q31Q4!~p31p4!•e

]

] s̄
1e~Q12Q22Q31Q4!~p12p3!•e

]

] t̄

12eSQ1p1•e
]

]m1
2 1Q2p2•e

]

]m2
21Q3p3•e

]

]m3
21Q4p4•e

]

]m4
2D GA~ s̄, t̄;m1

2 ,m2
2 ,m3

2 ,m4
2!. ~3!

There is an ambiguity here in the choice of internal radiation contribution since any independently gauge invariant term
also be added to the radiative amplitude at this point.

The soft photon amplitude is the sum of the external and internal contributions:
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Msoft
m em[~Mext

m 1Mint
m !em

5H eQ3

p3
m

p3•k
1eQ4

p4
m

p4•k
2eQ1

p1
m

p1•k
2eQ2

p2
m

p2•k
1eQ3F p4•kp3•k

p3
m2p4

mG ]

] s̄
2eQ3F p1•kp3•k

p3
m2p1

mG ]

] t̄

1eQ4F p3•kp4•k
p4

m2p3
mG ]

] s̄
2eQ4F p2•kp4•k

p4
m2p2

mG ]

] t̄
1eQ1F p2•kp1•k

p1
m2p2

mG ]

] s̄
2eQ1F p3•kp1•k

p1
m2p3

mG ]

] t̄

1eQ2F p1•kp2•k
p2

m2p1
mG ]

] s̄
2eQ2F p4•kp2•k

p2
m2p4

mG ]

] t̄
J emA~ s̄, t̄,m1

2 ,m2
2 ,m3

2 ,m4
2! . ~4!
v

i

h

This amplitude is usually referred to as the Low choice, a
though it differs slightly from the construction used in Low’
original paper@8#. It is distinguished by the choice of a
single expansion point for the nonradiative amplitude.

Recently Liou, Timmermans, and Gibson@13# have con-
sidered choices of expansion point which limit the explic
km dependence of the nonradiative amplitudeA() in Eq. ~1!
to its invariant mass arguments. This removes the derivati
with respect tos-type andt-type variables from the resulting
soft photon amplitude. The authors of@13# suggest that this
property makes the soft photon approximation more suita
for application to processes thought to be dominated bys or
t channel resonances. To obtain their result, one is requ
to use a different pair of radiative variables for expansion
the external radiation contribution of each charged partic
Equation~1! now takes the form

Mmem5eQ3

p3•e

p3•k
A~s12,t24;m1

2 ,m2
2 ,m3

212k•p3 ,m4
2!

1eQ4

p4•e

p4•k
A~s12,t13;m1

2 ,m2
2 ,m3

2 ,m4
212k•p4!

2eQ1

p1•e

p1•k
A~s34,t24;m1

222k•p1 ,m2
2 ,m3

2 ,m4
2!

2eQ2

p2•e

p2•k
A~s34,t13;m1

2 ,m2
222k•p2 ,m3

2 ,m4
2!,

~5!

where we have defineds12[(p11p2)
2, s34[(p31p4)

2,
t13[(p12p3)

2, t24[(p22p4)
2 and where againA() is con-

sidered an implicit function of the four-momentapi . By ex-
panding Eq.~5! about the pointkm50, i.e., expanding in the
explicit km dependence, and truncating after the leading tw
terms inkm, and reimposing gauge invariance we have t
result
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Msoft8 •e5eQ3

p3•e

p3•k
A~s12,t24;m1

2 ,m2
2 ,m3

2 ,m4
2!

1eQ4

p4•e

p4•k
A~s12,t13;m1

2 ,m2
2 ,m3

2 ,m4
2!

2eQ1

p1•e

p1•k
A~s34,t24;m1

2 ,m2
2 ,m3

2 ,m4
2!

2eQ2

p2•e

p2•k
A~s34,t13;m1

2 ,m2
2 ,m3

2 ,m4
2!2Bmem

~6!

where, due to gauge invariance,Bm must satisfy the con-
straint

Bmkm5eQ3A~s12,t24;m1
2 ,m2

2 ,m3
2 ,m4

2!

1eQ4A~s12,t13;m1
2 ,m2

2 ,m3
2 ,m4

2!

2eQ1A~s34,t24;m1
2 ,m2

2 ,m3
2 ,m4

2!

2eQ2A~s34,t13;m1
2 ,m2

2 ,m3
2 ,m4

2!. ~7!

In order to obtain the ‘‘Two-s-Two-t-special’’~TSTTS! am-
plitude of @13# we must chooseBm itself to have the form

Bm[
~p11p2!

m

~p11p2!•k
@eQ3A~s12,t24;m1

2 ,m2
2 ,m3

2 ,m4
2!

1eQ4A~s12,t13;m1
2 ,m2

2 ,m3
2 ,m4

2!

2eQ1A~s34,t24;m1
2 ,m2

2 ,m3
2 ,m4

2!

2eQ2A~s34,t13;m1
2 ,m2

2 ,m3
2 ,m4

2!#. ~8!

The TSTTS amplitude is then
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MTSTTS•e5eQ3S p3•ep3•k
2

~p31p4!•e

~p31p4!•k
DA~s12,t24;m1

2 ,m2
2 ,m3

2 ,m4
2!1eQ4S p4•ep4•k

2
~p31p4!•e

~p31p4!•k
D

3A~s12,t13;m1
2 ,m2

2 ,m3
2 ,m4

2!2eQ1S p1•ep1•k
2

~p11p2!•e

~p11p2!•k
D

3A~s34,t24;m1
2 ,m2

2 ,m3
2 ,m4

2!2eQ2S p2•ep2•k
2

~p11p2!•e

~p11p2!•k
DA~s34,t13;m1

2 ,m2
2 ,m3

2 ,m4
2! ~9!
i
t

r

t

t

t

s

-

d

n

where we have employed the relation

~p31p4!•e

~p31p4!•k
5

~p11p2!•e

~p11p2!•k
.

The form ofBm in Eq. ~8! is troubling since it appears to
have a 1/km dependence and yet is assumed to repres
terms which would arise in a perturbative treatment due
radiation from internal charged lines. Such internal radiat
is known from perturbation theory arguments to give con
butions regular inkm as km→0 @18#. By expansion of the
occurrences of the nonradiative amplitudeA() in Eq. ~8!
about a common point, sayA(s12,t13;m1

2 ,m2
2 ,m3

2 ,m4
2), one

can show that so long as the charge conditionQ15Q3,
Q25Q4 is satisfied the apparent 1/km dependence vanishes
This charge condition holds for the elastic scattering p
cesses in which we are interested. For processes where
charge condition is not satisfied the TSTTS amplitude would
contain unphysical terms in its internal radiation part, and
would be ill defined.

The remaining soft photon amplitude which we shall la
use as an example is the ‘‘Two-u-Two-t-special’’~TUTTS!
amplitude of Ref.@13#. In constructing it we first note tha
the nonradiative amplitude may be parametrized in terms
the Mandelstam variablesu and t, rather thans and t. We
define a functionA8(u,t)[A(s,t) subject to the constrain
s1t1u5( i51

4 mi
2 . ThusA8(u,t) is just A(s,t) with s re-

placed by( i51
4 mi

22u2t. For the on-shell elastic proces
ent
to
on
ri-

.
o-
the

so

er

of

,

A8(u,t) is of course identical toA(s,t). However it is a
different function of thepi and so has a different value than
A(s,t) when they are evaluated using the radiativepi instead
of the nonradiative ones.

The off-shell external radiation amplitude of Eqs.~1! and
~5! which forms the starting point of the soft photon approxi
mation may be written in terms of this function as

Mmem5eQ3

p3•e

p3•k
A8~u14,t24;m1

2 ,m2
2 ,m3

212k•p3 ,m4
2!

1eQ4

p4•e

p4•k
A8~u23,t13;m1

2 ,m2
2 ,m3

2 ,m4
212k•p4!

2eQ1

p1•e

p1•k
A8~u23,t24;m1

222k•p1 ,m2
2 ,m3

2 ,m4
2!

2eQ2

p2•e

p2•k
A8~u14,t13;m1

2 ,m2
222k•p2 ,m3

2 ,m4
2!,

~10!

where, as in the TSTTS case, a choice of radiative variables
has been made which limits the explicitkm dependence in
A8() to the invariant mass arguments. We have define
u14[(p12p4)

2 andu23[(p22p3)
2 in the above. To arrive

at the corresponding soft photon amplitude one follows a
analogous procedure to that used for the TSTTS amplitude—
the result is
MTUTTS•e5eQ3S p3•ep3•k
2

~p22p3!•e

~p22p3!•k
DA8~u14,t24;m1

2 ,m2
2 ,m3

2 ,m4
2!1eQ4S p4•ep4•k

2
~p12p4!•e

~p12p4!•k
D

3A8~u23,t13;m1
2 ,m2

2 ,m3
2 ,m4

2!2eQ1S p1•ep1•k
2

~p12p4!•e

~p12p4!•k
D

3A8~u23,t24;m1
2 ,m2

2 ,m3
2 ,m4

2!2eQ2S p2•ep2•k
2

~p22p3!•e

~p22p3!•k
DA8~u14,t13;m1

2 ,m2
2 ,m3

2 ,m4
2!. ~11!
h

During the derivation the constraintQ15Q3, Q25Q4 once
again arises when we disallow unphysical contributions
the internal radiation part of the amplitude.

In Secs. III and IV we shall consider certain problem
which arise in the application of soft photon amplitudes. Th
expressions derived in this section—the Low-(s̄, t̄) amplitude
of Eq. ~4!, the TSTTS amplitude of Eq.~9!, and the TUTTS
to

s
e

amplitude of Eq.~11!—will serve as instructive examples
which demonstrate how these problems arise and in whic
circumstances they may be avoided.

III. PHASE SPACE PROBLEM

The soft photon approximation is useful in that it provides
a relatively simple link between the low energy part of a
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measured photon spectrum and the measured cross se
for the corresponding nonradiative process.

It is therefore reasonable to insist that a useful soft phot
amplitude must not require evaluations of the nonradiati
cross section at unphysical, unmeasurable points. Unfor
nately, as we shall show in this section, this condition is n
satisfied by certain soft photon theorems in the literatu
Whether the condition is upheld or not depends both up
the choice of radiative phase space variables one uses
parameterize the nonradiative amplitude during the constr
tion of the soft photon amplitude, and upon the masses of
particles involved in the scattering.

The crucial step in the construction of a soft photon am
plitude is the expansion of any off-mass-shell nonradiati
amplitudes about points where the kinematic variables ha
had all explicit dependence on photon momentumkm re-
moved, i.e.,km has been set to zero wherever it appears. W
will show that even after such an expansion the value of t
nonradiative amplitude may still be required at points outsi
of the region where it is measurable by experiment.

For example, a particular off-shell nonradiative amplitud
appearing in the derivation of the TSTTS soft photon ampli-
tude of Eq.~5! is

A~s34,t24;m1
222k•p1 ,m2

2 ,m3
2 ,m4

2!,

where we are considering radiation from particle 1. The so
photon prescription states that we make a Taylor series
pansion about the point where explicit dependence onkm has
been set to zero. For our example this point would be

A~s34,t24;m1
2 ,m2

2 ,m3
2 ,m4

2!.

This point can be termed on-shell because it is evalua
with p1

25m1
2. However, the functionA(s,t;m1

2 ,m2
2 ,m3

2 ,m4
2)

is only physically measurable within the region of the (s,t)
plane defined by nonradiative kinematics. We have no gu
antee that the region (s34,t24) obtained by evaluating
s34,t24 at values of thepi satisfying radiative phase spac
constraints is contained within this measurable area. Inde
for most choices of radiative variable pairs and for most se
of massesm1 ,m2 ,m3 ,m4 defining phase space, we find tha
the soft photon amplitude does indeed require evaluations
the nonradiative amplitude at points which are not physica
measurable.

Since the arguments of this section will depend only o
kinematic constraints and not on the spin structure of t
scattering process, we employ the spinless formalism of
previous section though we shall be discussing the kinem
ics applicable to the interactionsp2p→p2pg and
pp→ppg.

We begin with a simple example, choosing the mass
m15m35mp2 and m25m45mp , and considering the
TSTTS soft photon amplitude of Eq.~9! for a laboratory pion
energy of 298 MeV, corresponding to a typical experime
@19#. The hashed region of Fig. 1 shows the physically a
cessible part of the (s,t) plane—the amplitudeA(s,t) would
be known over this region if the elastic proces
p2p→p2p had been measured at all scattering angles a
for interaction energies up toAs'1.35 GeV. The TSTTS soft
photon amplitude calls for the evaluation of the nonradiati
tion

on
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amplitude at four points, one of these beingA(s34,t24). In
order to calculate this soft photon amplitude for initial sta
pion kinetic energy of 298 MeV in the laboratory frame an
for all allowed energies and orientations of the final sta
particles, it turns out that we require the functionA() for
values ofs34,t24 corresponding to the outlined region show
in Fig. 1. This clearly extends far outside of the region whe
the nonradiative amplitudeA() is measurable. Thus, for cer-
tain kinematics, the TSTTS soft photon approximation to the
bremsstrahlung amplitude will not be calculable unless o
is prepared to make a model-dependent extrapolation of
nonradiative amplitudeA() outside of its measurable region
The introduction of any such model dependence would r
move the usefulness of the soft photon approximation as
unambiguous method of relating thep2p→p2p process to
the radiative processp2p→p2pg. The evaluation point
(s34,t13) also suffers from this problem. The remaining tw
points in the TSTTS amplitude, (s12,t13) and (s12,t24), may
be shown to lie inside the measurable region of nonradiat
phase space for any elastic scattering process.

We can see intuitively how this problem arises. The qua
tities s12 ands34 are related by

s345s122k•~p11p21p31p4!.

As photon energy increasess34 becomes progressively
smaller thans12. Even though a range (s12,t24) as defined
by radiative kinematics might lie within the nonradiative re
gion for s5s12, if we takes5s34 we find the allowed range
of the nonradiative variablet to be much smaller. The points
(s34,t24) may not be contained within this nonradiative
physical region.

This problem is by no means isolated to the one examp
shown above. For the case of proton-proton scattering
can also make the same comparison between the phys
elastic region of phase space and the regions mapped ou

FIG. 1. The hashed region shows the physical region of pha
space for the elastic process ofp2p scattering at pion beam kinetic
energy 298 MeV~i.e.,m15m35mp2, m25m45mproton). The out-
lined area shows the region covered by the radiative phase sp
point (s34,t24). This area extends far outside of the physical elast
region. The range ofs34 marked 15,k,150 MeV is the approxi-
mate region of radiative phase space studied in thep2pg experi-
ment of Ref.@19#.
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the radiative variable pairs needed to evaluate the TSTTS soft
photon amplitude. The results of this comparison are sho
in Fig. 2 for a typical set of kinematics corresponding to th
TRIUMF experiment@15#. In this case also, the parts of the
soft photon amplitude employing the expansion poin
A(s12,t13) or A(s12,t24) would require only measurable in-
formation about the nonradiative, elastic amplitude. Th
parts of the radiative amplitude using the pointsA(s34,t13)
or A(s34,t24) would, however, require unphysical informa
tion and would be incalculable unless one resorted to mod
dependent extrapolations of the elastic amplitude.

This difficulty might be avoided by considering only cer
tain experimental kinematics for the bremsstrahlung proce
This is clearly unsatisfactory, however, particularly when w

FIG. 2. The hashed area is the physical region of nonradiat
phase space for proton-proton elastic scattering. The area enclo
by the dotted line is the region mapped out by the points (s34,t13)
and (s34,t24) for the corresponding bremsstrahlung process, oper
ing at proton beam energy of 280 MeV—this corresponds to t
beam energy in the experiment of Ref.@15#. The particular regions
of radiative phase space studied in that experiment are a
shown—to reproduce the experiment’s kinematics we fix the o
going protons at angles of 12.4° and 12° to the beamline in t
laboratory frame. The points (s34,t13) and (s34,t24) are seen to be
outside of the measurable region of elastic phase space for m
photon angles. The lower plot is an expansion of the upper a
shows the photon angle measured in the target frame for the reg
(s34,t13) and (s34,t24). To guide the eye points have been marke
at 30° intervals in photon lab angle along these trajectories.
n
e

ts

e

el-

ss.
e

note that most modern experiments cover kinematic rang
for which the points (s34,t13) or (s34,t24) lie outside the
region accessible in the nonradiative process. For exam
the p2pg experiment of Ref.@19# covered the majority of
radiative phase space, with photon energy in the range 1
150 MeV being measured. This region is shown in Fig.
The 200 MeVpp bremsstrahlung experiment of Ref.@14#
measured the photon spectrum as a function of angle w
outgoing proton angles fixed at 16.4° on either side of th
beam axis in the laboratory frame and with all particles c
planar. For these kinematics the result is analogous to tha
Fig. 2 with the resulting trajectories through radiative pha
space of the pointsA(s34,t13) andA(s34,t24) falling outside
of the physical region of phase space for the elasticpp pro-
cess.

In contrast to the TSTTS soft photon amplitude the Low-
( s̄, t̄ ) soft photon amplitude of Eq.~4! relies on a single
evaluation of the nonradiative amplitude, atA( s̄, t̄ ). For elas-
tic scattering processes such asp2p→p2p our numeric
studies have found that the physical region of the radiati
variables (s̄, t̄ ) can fall slightly outside of the measurable
nonradiative region of phase space. For practical purpos
however, only a very tiny region of radiative phase spa
must be excluded in one’s model-independent calculation
the bremsstrahlung process when using the Low-(s̄, t̄) ampli-
tude.

For the special case of identical particle scattering t
radiative (s̄, t̄ ) region is entirely contained within the physi-
cal nonradiative (s,t) region. This is due to the fact that the
Mandelstam variabless̄, t̄,ū of a radiative identical particle
scattering process satisfy the same phase space constrain
the s,t,u of the corresponding nonradiative process. For th
nonradiative process we have the familiar constraints f
equal mass, two-body elastic scattering

s1t1u54m2,

s>4m2,

0>t,u>2~s24m2!. ~12!

For the radiative process we can use four-momentum cons
vation to write

~km!25~p1
m1p2

m2p3
m2p4

m!2⇒ s̄1 t̄1ū54m2, ~13!

where ū[ 1
2 (p12p4)

21 1
2 (p22p3)

2. We also have the
constraints,

s̄>4m2,

0> t̄,ū>2~ s̄24m2!. ~14!

The threshold condition ons̄ is clear; however, thet̄,ū con-
straints require some explanation. For identical particle sc
tering it may be shown, by considering the appropriate re
frames, that the variablest13, and symmetricallyt24, have
zero as their upper bounds. Thus the averaget̄5 1

2(t131t24)
is also bounded above by zero. Puttingt̄<0 into Eq.~13! we
find the lower bound forū; ū>2( s̄24m2). Finally, noting
that the constraints ont̄ and on ū must be the same for
identical particle scattering through the symmetry of the k
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nematics under the interchange of final state particles,
have the result of Eq.~14!. Our conclusion is that for iden-
tical particle scattering, all points (s̄, t̄ ) defined by radiative
phase space constraints lie within the allowed (s,t) region of
the corresponding nonradiative process. Numeric studie
the phase space regions confirm this conclusion.

From numeric studies of the kinematics for the intera
tions p2p→p2p, pp→pp and the corresponding brems
strahlung processes, it appears that the points used in
TUTTS soft photon amplitude lie inside the measurable no
radiative region, at least for the kinematic conditions relev
to existing experiments. This implies that, for these inter
tions, the TUTTS amplitude does not suffer from the phas
space problem.

IV. SYMMETRIZATION PROBLEM

In Sec. V we will show that a problem exists with co
rectly antisymmetrizing the spin-12 TSTTS and TUTTS ampli-
tudes of Ref.@13#. To illustrate the source of this problem w
consider in this section the quite analogous and algebraic
simpler symmetrization of the spin-0 TSTTS and TUTTS am-
plitudes.

The spin-0 amplitudes given in Sec. II would have to
explicitly symmetrized if applied to the case of identical pa
ticle scattering. Upon attempting to symmetrize the TSTTS
and TUTTS amplitudes we find that the connection to me
surable nonradiative scattering data is lost. More specifica
the symmetrized radiative TSTTS and TUTTS amplitudes can-
not be written in terms of the symmetrized nonradiative a
plitudes, and thus cannot be evaluated directly from exp
mental information on the nonradiative process. Th
problem is quite independent of the phase space prob
discussed previously. The Low amplitude, employing
single choice of Taylor expansion point at (s̄, t̄), is also
treated for comparison. It is found that the symmetriz
( s̄, t̄) soft photon amplitude may be written in terms of th
measurable, symmetrized nonradiative scattering amplitu
This is due to a special property of the (s̄, t̄) variables.
we

s of

c-
-
the
n-
ant
ac-
e

r-

e
ally

be
r-

a-
lly,

m-
eri-
is
lem
a

ed
e
de.

We denote the unsymmetrized nonradiative scattering a
plitude byA(s,t), where we have suppressed the invarian
mass arguments of this function. The symmetrized amp
tude, which we obtain by adding in the amplitude with
p3↔p4, is then

AS~s,t ![A~s,t !1A~s,u!5A~s,t !1A~s,4m22s2t !.
~15!

The unsymmetrized Low-(s̄, t̄) amplitude may be written
@10#

M~ s̄ , t̄ !•e5eQH Fp3•ep3•k
1Dm~p3!

]

]p3
mGA~ s̄, t̄ !

1Fp4•ep4•k
1Dm~p4!

]

]p4
mGA~ s̄, t̄ !

2Fp1•ep1•k
2Dm~p1!

]

]p1
mGA~ s̄, t̄ !

2Fp2•ep2•k
2Dm~p2!

]

]p2
mGA~ s̄, t̄ !J ~16!

where, following Ref.@10#, we introduce the notation

Dm~p![
p•e

p•k
km2em. ~17!

This is easily related to the usual form of Eq.~4! for the
amplitude by noting that

]

]p1
m 5

] s̄

]p1
m

]

] s̄
1

] t̄

]p1
m

]

] t̄
5~p1m1p2m!

]

] s̄
1~p1m2p3m!

]

] t̄
~18!

with similar expressions for the other derivatives.
The symmetrized amplitude is thenMS

•e
[M(12→34)•e1M(12→43)•e,
M
~ s̄ , t̄ !

S
•e5eQH Fp3•ep3•k

1Dm~p3!
]

]p3
mGA~ s̄, t̄ !1Fp4•ep4•k

1Dm~p4!
]

]p4
mGA~ s̄,ū!1Fp4•ep4•k

1Dm~p4!
]

]p4
mGA~ s̄, t̄ !

1Fp3•ep3•k
1Dm~p3!

]

]p3
mGA~ s̄,ū!2Fp1•ep1•k

2Dm~p1!
]

]p1
mGA~ s̄, t̄ !2Fp1•ep1•k

2Dm~p1!
]

]p1
mGA~ s̄,ū!

2Fp2•ep2•k
2Dm~p2!

]

]p2
mGA~ s̄, t̄ !2Fp2•ep2•k

2Dm~p2!
]

]p2
mGA~ s̄,ū!J . ~19!
A common factor in this expression is

A~ s̄, t̄ !1A~ s̄,ū!.

In order to have the soft photon amplitude solely a functio
of the measurable, symmetric part of the nonradiative amp
tude we must be able to write this factor in terms of th
n
li-
e

symmetric functionAS(). From Eq.~15! it is clear that since
the relations̄1 t̄1ū54m2 holds among the radiative vari-
ables we can write

A~ s̄, t̄ !1A~ s̄,ū!5A~ s̄, t̄ !1A~ s̄,4m22 s̄2 t̄ !5AS~ s̄, t̄ !.
~20!

The symmetrized radiative amplitude now takes on the form
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of the unsymmetrized amplitude, but withA( s̄, t̄) replaced by
the measurable, symmetrized nonradiative amplitu
AS( s̄, t̄):

M
~ s̄ , t̄ !

S
•e5eQH Fp3•ep3•k

1Dm~p3!
]

]p3
mGAS~ s̄, t̄ !

1Fp4•ep4•k
1Dm~p4!

]

]p4
mGAS~ s̄, t̄ !

2Fp1•ep1•k
2Dm~p1!

]

]p1
mGAS~ s̄, t̄ !

2Fp2•ep2•k
2Dm~p2!

]

]p2
mGAS~ s̄, t̄ !J . ~21!

This procedure of correctly symmetrizing the radiativ
amplitude by simply replacingA()→AS() works only for the
Low-( s̄, t̄) case, due to the relationships̄1 t̄1ū54m2 which
holds only for this specific Low choice of variables. We wil
now show explicitly that such a replacement in the TSTTS or
TUTTS amplitudes does not work and that these amplitud
cannot be expressed in terms of symmetrized nonradiat
amplitudes.

For the radiative process, the unsymmetrized TSTTS am-
plitude of Eq.~9! is

MTSTTS
m 5eQS F p3

m

p3•k
2

~p31p4!
m

~p31p4!•k
GA~s12,t24!

1F p4
m

p4•k
2

~p31p4!
m

~p31p4!•k
GA~s12,t13!

2F p1
m

p1•k
2

~p11p2!
m

~p11p2!•k
GA~s34,t24!

2F p2
m

p2•k
2

~p11p2!
m

~p11p2!•k
GA~s34,t13! D . ~22!

We define the symmetrized amplitudeMTSTTS
Sm

[M(12→34)
m 1M(12→43)

m

MTSTTS
Sm

5eQS F p3
m

p3•k
2

~p31p4!
m

~p31p4!•k
G @A~s12,t24!1A~s12,u14!#

1F p4
m

p4•k
2

~p31p4!
m

~p31p4!•k
G @A~s12,t13!1A~s12,u23!#

2F p1
m

p1•k
2

~p11p2!
m

~p11p2!•k
G @A~s34,t24!1A~s34,u23!#

2F p2
m

p2•k
2

~p11p2!
m

~p11p2!•k
G @A~s34,t13!1A~s34,u14!# D .

~23!
de

e

l

es
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We define symmetrized functions in analogy to the nonrad
ative case:

AS1~s34,t24,u23![A~s34,t24!1A~s34,u23!,

AS2~s34,t13,u14![A~s34,t13!1A~s34,u14!,

AS3~s12,t24,u14![A~s12,t24!1A~s12,u14!,

AS4~s12,t13,u23![A~s12,t13!1A~s12,u23!. ~24!

Notice that these functions are not the same as the symme
nonradiative functionAS(s,t) which would be measured in
the nonradiative process. This is because an internal co
straint similar to that for the nonradiative phase space va
ables,s1t1u54m2, does not hold fors34, t24, andu23, or
for the other sets of radiative variables which appear as
guments in the ASi. Instead one has relations like
s341t241u2354m222k•p1. Thus direct replacement of, for
example,AS1(s34,t24,u23) by A

S(s34,t24) will give an error
of the form

AS1~s34,t24,u23!2AS~s34,t24!

522p1•k
]

]u
A~s34,u!uu5u23

1O~k2! . ~25!

One would naively expect thisO(k) error which is being
introduced to give rise to anO(k/k) or O(1) error in the
amplitudeMTSTTS

Sm . Due to a cancellation in this leading or-
der between the fourASi() terms appearing inMTSTTS

Sm the
error introduced by these replacements is instead only
O(k). Thus in this case the error is of the same order as oth
terms dropped in the derivation of the amplitude.

For the TUTTS amplitude another difficulty arises in try-
ing to symmetrize. The unsymmetrized amplitude is given b
Eq. ~11!:

MTUTTS
m 5eQS F p3

m

p3•k
2

~p22p3!
m

~p22p3!•k
GA8~u14,t24!

1F p4
m

p4•k
2

~p12p4!
m

~p12p4!•k
GA8~u23,t13!

2F p1
m

p1•k
2

~p12p4!
m

~p12p4!•k
GA8~u23,t24!

2F p2
m

p2•k
2

~p22p3!
m

~p22p3!•k
GA8~u14,t13! D ~26!

and we define the symmetrized amplitude asMTUTTS
Sm

[M(1,2→3,4)
m 1M(1,2→4,3)

m so that
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MTUTTS
Sm 5eQS F p3

m

p3•k
2

~p22p3!
m

~p22p3!•k
GA8~u14,t24!1F p3

m

p3•k
2

~p12p3!
m

~p12p3!•k
GA8~ t24,u14!1F p4

m

p4•k
2

~p12p4!
m

~p12p4!•k
GA8~u23,t13!

1F p4
m

p4•k
2

~p22p4!
m

~p22p4!•k
GA8~ t13,u23!2F p1

m

p1•k
2

~p12p4!
m

~p12p4!•k
GA8~u23,t24!2F p1

m

p1•k
2

~p12p3!
m

~p12p3!•k
GA8~ t24,u23!

2F p2
m

p2•k
2

~p22p3!
m

~p22p3!•k
GA8~u14,t13!2F p2

m

p2•k
2

~p22p4!
m

~p22p4!•k
GA8~ t13,u14! D . ~27!
i
e
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Consistent with our previous definition ofA8() we have, for
example, A8(t24,u14)5A(( imi

22t242u14,u14) where
A(s,t) is the nonsymmetrized amplitude for the nonradiativ
process. Again there is difficulty because the radiative a
plitude is not expressed in terms of the symmetrized non
diative amplitude, which is all that can be measured. T
terms in the square brackets of the formpi /k•pi can in fact
be factored leaving a correctly symmetrized combination
theA8 as an overall factor. However, the problem arises w
the (pi2pj )

m/k•(pi2pj ) terms, which were added to mak
the amplitude gauge invariant. The momenta are such t
these terms cannot be factored leaving just the symmetri
amplitude.

The procedure followed in Ref.@13# is to take for the
symmetrized radiative amplitude the original unsymmetriz
TUTTS amplitude with the functionsA8() replaced by their
counterparts from the symmetrized elastic process. This p
scription would give the result

eQS F p3
m

p3•k
2

~p22p3!
m

~p22p3!•k
GA8S~u14,t24!

1F p4
m

p4•k
2

~p12p4!
m

~p12p4!•k
GA8S~u23,t13!

2F p1
m

p1•k
2

~p12p4!
m

~p12p4!•k
GA8S~u23,t24!

2F p2
m

p2•k
2

~p22p3!
m

~p22p3!•k
GA8S~u14,t13! D ~28!

where, for example,

A8S~u23,t24!5A8~u23,t24!1A8~ t24,u23!

5A~4m22u232t24,t24!

1A~4m22u232t24,u23!

5AS~4m22u232t24,t24!. ~29!

This expresses the result in terms of measurable nonradia
amplitudes, but is not completely symmetric under the inte
change of particle labels 3 and 4 because of the kinema
factors multiplyingAS.

A detailed comparison between the symmetrized amp
tude of Eq.~27! and the form of Eq.~28! shows them to be
unequal. They differ in this case by terms ofO(k/k). Since
theO(k/k) terms are uniquely determined in a soft photo
approach and can come only from the diagrams with rad
e
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he

of
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tion from external legs@18#, this must mean that this pre-
scription in effect adds in someO(k/k) terms which are not
allowed by the analyticity requirements of the soft photon
approach. We have found no way to express the correct e
pression, Eq.~27!, solely in terms of the measurable symme-
trized nonradiative amplitude,AS(s,t), other than simply ex-
panding aboutū, t̄ and thus recovering the original Low
amplitude Eq.~4!, up to corrections ofO(k).

Since the problem arises with the (pi2pj )
m/k•(pi2pj )

terms which were added to make the amplitude gauge inva
ant, an alternative approach would be to try to find som
different gauge term to add which does not suffer from thes
problems@20#. To explore this possibility rewrite Eq.~26! as

MTUTTS
m 5eQS F p3

m

p3•k
2D3

mGA8~u14,t24!1F p4
m

p4•k
2D4

mG
3A8~u23,t13!2F p1

m

p1•k
2D1

mGA8~u23,t24!

2F p2
m

p2•k
2D2

mGA8~u14,t13! D . ~30!

Here theD i
m are structures of the general formVm/k•V,

whereV is some vector, and originate in the term added t
ensure gauge invariance. In accord with general principle
this gauge term must beO(1) and cannot contain terms
O(k/k). To determine the conditions imposed on theD i

m by
this analyticity requirement we expand theA8() about the
single point s̄, t̄,ū. The result is that all theD i

m , or more
precisely, alle•D i , must be equal. One can see from Eq

~26! that for theMTUTTS
m amplitude this is satisfied.

Next we defineD i8 to beD i with p3↔p4 and symmetrize
the amplitude by adding in a piece withp3↔p4 as was done
in going from Eq.~26! to Eq.~27!. Then the requirement that
we be able to express the full symmetrized amplitude i
terms of the symmetrized elastic amplitudes of Eq.~29!,
which are the measurable quantities, requires thatD15D18 ,
D25D28 , D35D48 , andD45D38 . This condition is not satis-
fied by theD i of the symmetrized TUTTS amplitude of Eq.
~27! and that is the reason that the TUTTS amplitude cannot
be written in a correctly symmetrized form.

Putting these requirements on theD i together, we find that
the D i must all be the same and must be symmetric in th
interchangep3↔p4. That is not true for theD i of the TUTTS
amplitude, but it is easy to find suchD i . For example, con-
sider the following fourD i :
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p3
m1p4

m

k•~p31p4!
,

1

4 S p1
m

k•p1
1

p2
m

k•p2
1

p3
m

k•p3
1

p4
m

k•p4
D ,

1

2 S p3
m2p4

m

k•~p32p4!
1

p1
m2p2

m

k•~p12p2!
D ,

1

2 S p1
m2p4

m

k•~p12p4!
1

p1
m2p3

m

k•~p12p3!
D . ~31!

Any of these, when used in the symmetrized version of E

~30!, will produce an amplitudeMTUTTS
m which is gauge invari-

ant, satisfies the analyticity and other requirements of a s
photon theorem, is properly symmetric in the interchange
identical particles so that only the measurable symmetriz
elastic amplitudes are required, and is expressed in term
the same kinematic variables as the originalMTUTTS

m
. All of

these amplitudes will be equivalent, as is generally true
various different soft photon amplitudes, in the sense th
they will differ by terms which areO(k).

The arguments above have shown that the TSTTS and
original TUTTS amplitudes for a spin-0 scattering proces
cannot be made correctly symmetric under interchange
identical particles while maintaining the necessary link to t
symmetric nonradiative amplitude. For the TSTTS case we
found the failure in symmetrization to arise atO(k) in the
amplitude, but for the TUTTS case it arises atO(k/k) . In the
next section we extend the derivation of the Low-(s̄, t̄),
TSTTS, and TUTTS amplitudes to spin-12 identical particle
scattering, and consider the calculation of proton-prot
bremsstrahlung. We thus show that exactly the same pr
lems which arose in this section in symmetrizing a spin
amplitude arise also in antisymmetrizing a spin-1

2 amplitude.

V. EXTENSION TO SPIN- 1
2

In this section we will consider the proton-proton brem
strahlung process. This requires the extension of the spin

formalism of Sec. II to the scattering of spin-12 particles.
Care must also be taken to write thepp elastic and thepp
bremsstrahlung amplitudes such that they are antisymme
under interchange of final state protons.

The unsymmetrized amplitude for elastic proton-proto
scattering may be written

A@12→34#[ (
a51

5

Fa~s,t !@ ū3tau1#@ ū4t
au2# , ~32!

where

ta[H 1, 1A2smn,ig5g
m,gm,g5J

with summation over the Lorentz indices of theta being
implied. The antisymmetrizedpp elastic amplitude is then
defined as
q.
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AA~s,t ![A@12→34#2A@12→43#

5 (
a51

5

Fa~s,t !@ ū3tau1#@ ū4t
au2#

2 (
a51

5

Fa~s,u!@ ū4tau1#@ ū3t
au2#. ~33!

Using the Fierz relation@21#

~ ta!fs~ ta!tn5 (
b51

5

Cab~ tb!fn~ tb!ts ~34!

with

Cab5
1

4 S 1 1 1 1 1

6 22 0 0 6

4 0 22 2 24

4 0 2 22 24

1 1 21 21 1

D , ~35!

the antisymmetrized expressionAA(s,t) can be put back into
the form of the unsymmetrizedA@12→34#,

AA~s,t !5 (
a51

5 S Fa~s,t !2 (
b51

5

CbaFb~s,u!D @ ū3tau1#

3@ ū4t
au2#. ~36!

The correctly antisymmetrized amplitude is then identical
the unsymmetrized amplitude but withFa(s,t) replaced by

Fa
A~s,t ![Fa~s,t !2 (

b51

5

CbaFb~s,u!, ~37!

wheres1t1u54m2. It is these functions,Fa
A(s,t), and not

the unsymmetrizedFa(s,t) which are experimentally acces
sible through study ofpp elastic scattering. We must there
fore ensure that the antisymmetrized forms of our soft ph
ton approximations to the proton-proton bremsstrahlu
amplitude can be expressed purely in terms of theFa

A(s,t),
rather than theFa(s,t).

We now consider the form of the three soft photon a

plitudes of Sec. II extended to spin-12 identical particle scat-
tering. The unsymmetrizedpp bremsstrahlung soft photon
amplitudes may be written in the form

Mmem5 (
a51

5

eQ@ ū3Xm
aemu1ū4tau21ū3tau1ū4Ym

aemu2#

~38!

with the functionsXm
a andYm

a taking on a different form for
each of the Low-(s̄, t̄), the TSTTS, and the TUTTS ampli-
tudes. Using the notation of Ref.@13#

R~p!•e5
1

4
@e” ,k” #1

ikp

8m
$@e” ,k” #,p” %,
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wherek51.79 andm are the proton anomalous magneti
moment and mass, we may write theXm

a andYm
a functions

for each case as follows:

~i! Low-( s̄, t̄) amplitude:

Xa
•e[Fp3•e1R~p3!•e

p3•k
1Dm~p3!

]

]p3
mG taFa~ s̄, t̄ !

2taFp1•e1R~p1!•e

p1•k
2Dm~p1!

]

]p1
mGFa~ s̄, t̄ !,

Ya
•e[Fp4•e1R~p4!•e

p4•k
1Dm~p4!

]

]p4
mG taFa~ s̄, t̄ !

2taFp2•e1R~p2!•e

p2•k
2Dm~p2!

]

]p2
mGFa~ s̄, t̄ !.

~39!

~ii ! TSTTS amplitude:

Xa
•e[Fp3•e1R~p3!•e

p3•k
2

~p31p4!•e

~p31p4!•k
G taFa~s12,t24!

2taFp1•e1R~p1!•e

p1•k
2

~p11p2!•e

~p11p2!•k
GFa~s34,t24!,

Ya
•e[Fp4•e1R~p4!•e

p4•k
2

~p31p4!•e

~p31p4!•k
G taFa~s12,t13!

2taFp2•e1R~p2!•e

p2•k
2

~p11p2!•e

~p11p2!•k
GFa~s34,t13!.

~40!

~iii ! TUTTS amplitude:

Xa
•e[Fp3•e1R~p3!•e

p3•k
2

~p22p3!•e

~p22p3!•k
G taFa8 ~u14,t24!

2taFp1•e1R~p1!•e

p1•k
2

~p12p4!•e

~p12p4!•k
GFa8 ~u23,t24!,

Ya
•e[Fp4•e1R~p4!•e

p4•k
2

~p12p4!•e

~p12p4!•k
G taFa8 ~u23,t13!

2taFp2•e1R~p2!•e

p2•k
2

~p22p3!•e

~p22p3!•k
GFa8 ~u14,t13!.

~41!

For the TUTTS expressions we have defined the function
Fa8 (u,t)[Fa(s,t) under thepp elastic phase space con
straints1t1u54m2.

One can easily see by comparison of Eqs.~39!, ~40!, and
~41! with Eqs. ~16!, ~22!, and ~26!, respectively that these
results are very similar to those obtained for the spin-0 ca
They each contain the extra factorR(p) which arises from
the magnetic moment part of the electromagnetic couplin
The scalar amplitudesA of the spin-0 cases are replaced by
sum over terms involving the scalar amplitudesFa , which
are functions of the same variables asA, times a momentum
independent matrix factorta . Because of the Dirac structure
s

e.

g.
a

one must be careful about the ordering of theta factors, and
of course include the spinors as in Eq.~38!. The important
point though is that the dependence on kinematic factors a
on the scalar variables appearing in the amplitudes is ess
tially the same as in the spin-0 case.

The phase space problem noted for the spinless case
Sec. III depends only on kinematics, not on the particle
spins, and so carries over directly to proton-proton brem
strahlung. The physical region of radiative variables pai
such as (s34,t24) can still lie outside of the measurable re
gion in the (s,t) plane of nonradiative phase space.

The amplitudes given above must be antisymmetrized
we are to treat identical spin-12 particle scattering. The anti-
symmetrization of the spin-12 amplitudes is no different in
principle than the symmetrization of spin-0 amplitudes give
in the preceding section and the results are identical: t
Low-( s̄, t̄) amplitude can be successfully antisymmetrize
while still being expressed solely in terms of the measure
elastic phase shifts; the TSTTS and TUTTS amplitudes cannot
be so expressed. We now show these attempts at antisym
trization explicitly and demonstrate how the problems aris

As has been shown previously for example by Fearin
@10#, one can antisymmetrize the Low-(s̄, t̄) amplitude using
an analogous procedure to that shown above forpp elastic
scattering. One would take the amplitude of Eqs.~38! and
~39!, exchangep3

m↔p4
m , and apply the Fierz manipulation.

The result is then in the same form as Eq.~39!, but with
Fa( s̄, t̄) replaced by(b51

5 CbaFb( s̄,ū). The final antisymme-
trized form is then also identical to Eq.~39! but with
Fa( s̄, t̄) replaced byFa

A(Low)( s̄, t̄) where

Fa
A~Low!~ s̄, t̄ ![Fa~ s̄, t̄ !2 (

b51

5

CbaFb~ s̄,ū!, ~42!

and s̄, t̄,ū satisfy the radiative phase space constrai
s̄1 t̄1ū54m2. By their identical definitions we see that
Fa
A(Low)[Fa

A . Operationally, therefore, one only has to tak
the antisymmetrizedFa

A from a phase shift analysis ofpp
elastic scattering data and insert these functions in the u
symmetrized Low-(s̄, t̄) amplitude of Eq.~39! in order to
ensure the correct antisymmetrization of this radiative amp
tude.

When we attempt the same procedure for the TSTTS am-
plitude a problem arises. The calculation goes just as w
the (s̄, t̄) case except for the definition of the four antisym
metrizedFa functions. To obtain the antisymmetrized TSTTS
amplitude we must replace theFa of the unsymmetrized
amplitude of Eq.~40!, in analogy with Eqs.~23! and~24!, as
follows:

Fa~s34,t24!→Fa
A~1!~s34,t24,u23!

[Fa~s34,t24!2 (
b51

5

CbaFb~s34,u23!,

Fa~s34,t13!→Fa
A~2!~s34,t13,u14!

[Fa~s34,t13!2 (
b51

5

CbaFb~s34,u14!,
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Fa~s12,t24!→Fa
A~3!~s12,t24,u14!

[Fa~s12,t24!2 (
b51

5

CbaFb~s12,u14!,

Fa~s12,t13!→Fa
A~4!~s12,t13,u23!

[Fa~s12,t13!2 (
b51

5

CbaFb~s12,u23!. ~43!

The various Lorentz variables in these definitions do not s
isfy the same internal constraints as do thes,t,u of
Fa
A(s,t)—for example, inFa

A(3)(s12,t24,u14) we have that
at-

s121t241u1454m212k•p3Þ4m2

in general. Thus theseFa
A(1,2,3,4) cannot be simply replaced

by theFa
A(s,t) of pp elastic scattering as defined in Eq.~37!.

The functions are not identically defined. To make such
replacement will result in the radiative amplitude having im
proper symmetry properties. As in the spin-0 case, howev
one can calculate the error introduced by such a replaceme
Again the naive estimate of the error is too pessimistic, du
to cancellation, and the actual error is only ofO(k).

While attempting to antisymmetrize the TUTTS amplitude
we find another difficulty, just as we did in the spin-0 case
After replacing p3

m↔p4
m in the unsymmetrized version of

TUTTS and applying the Fierz manipulation we find
Mm
3↔45eQp(

a51

5

(
b51

5

CbaS Fb8 ~ t13,u23!ū4Fp4m1Rm~p4!

p4•k
2

~p22p4!m

~p22p4!•k
G tau2ū3tau1

2Fb8 ~ t24,u23!ū4tau2ū3t
aFp1m1Rm~p1!

p1•k
2

~p12p3!m

~p12p3!•k
Gu11Fb8 ~ t24,u14!ū4tau2ū3Fp3m1Rm~p3!

p3•k

2
~p12p3!m

~p12p3!•k
G tau12Fb8 ~ t13,u14!ū4taFp2m1Rm~p2!

p2•k
2

~p22p4!m

~p22p4!•k
Gu2ū3tau1D . ~44!
n

,

-
e
s

-

y

e

The full antisymmetrized amplitude is then obtained by su
tracting this from the amplitude obtained from Eqs.~38! and
~41!. The factorsR(p) involving the magnetic moments
cause no problem. They can be separated, along with
pi /k•pi pieces, from theFa8 which can then be put in a form
analogous to Eq.~37!. The (pi2pj )

m/k•(pi2pj ) terms mix
up the momenta however, just as for the spin-0 case a
prevent the radiative amplitudes from being put into th
original form given in Eqs.~38! and ~41!, except with the
antisymmetrizedFa8 . Thus it is impossible to express the
TUTTS amplitude purely in terms of the antisymmetrize
Fa
A functions which are the measurable quantities. The a

plitudes TSTTS and TUTTS could be correctly antisymme-
trized by computingMm2Mm(p3↔p4) directly in terms of
the unsymmetrized functionsFa(s,t). As stated previously
however, theFa(s,t) cannot be derived frompp elastic scat-
tering data alone. Thus we would lose the direct connecti
between a process and its radiative counterpart which gi
the soft photon theorem its utility. Alternatively, one coul
modify the original TUTTS amplitude by changing the terms
added to give gauge invariance, just as was discussed for
spin-0 case.

From Ref.@13# we see that Liouet al. seem to have used
the antisymmetricFa

A(s,t) pp elastic functions directly in
their unsymmetrized TSTTS and TUTTS amplitudes. Their re-
sults cannot have the correct symmetry properties, and ag
the error will be ofO(k) for the TSTTS amplitude and of
O(k/k) for the TUTTS.

We shall now illustrate these ideas with some nume
results for thepp bremsstrahlung soft photon spectrum. Low
energy proton-proton elastic scattering data are usually
rameterized in terms of a phase shift fit. For our calculatio
b-
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e

d
m-
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ric

pa-
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we have used as input the recent analysis of the Nijmege
group, Refs.@22–24#. The relationship between these phase
shifts and the invariant functionsFa

A(s,t) is straightforward
but rather algebraically involved, and is set down explicitly
in Ref. @25#. In order to investigate the work of Liou, Tim-
mermans, and Gibson@13# we have inserted theseFa

A in
place of the unsymmetrized functionsFa in the soft photon
amplitudes of Eqs.~39!, ~40!, and~41!. As shown above this
will give rise to the correctly antisymmetrized radiative am-
plitude only for the Low-(s̄, t̄) case of Eq.~39!.

In Fig. 3 we have shown the differential spectrum
d5s/dV3dV4duk as a function of the laboratory frame pho-
ton angleuk for one of the kinematic choices studied by the
Harvardpp bremsstrahlung experiment of Ref.@26#—that is,
with beam kinetic energy of 157 MeV, with final state pro-
tons detected at 10° on either side of the beamline direction
and with all particles coplanar. Shown are the Low-(s̄, t̄) and
TUTTS soft photon calculations using the Nijmegen phase
shift data set as input. From the symmetry of this experimen
tal setup it is clear that the photon angular spectrum must b
symmetric under reflection about the beamline axis. This i
the case for the Low-(s̄, t̄) spectrum, while the TUTTS spec-
trum does not have this symmetry property. Since the au
thors of Ref. @13# give their results only in the region
uk50°→180° this cannot be checked directly from their
paper. We obtain results shown in Fig. 3 which agree ver
well with their results for that range ofuk but are not mirror
symmetric aboutuk5180°, which they should be. This is
consistent with an error in the antisymmetrization of the
TUTTS amplitude.

Due to the phase space problem described in Sec. II w
cannot present a result for the TSTTS amplitude without ex-
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trapolating the functionFa
A far outside of the physical region

of nonradiative phase space. In terms of the phase sh
which are parameterized by center-of-mass frame mom
tum and scattering angleuc.m., this would correspond to
evaluating the nonradiative amplitude for cosuc.m.,21. The
authors of Ref.@13# do present results for the TSTTS ampli-
tude. These spectra differ by large factors from other s
photon calculations, from potential model calculations, a
from experimental data. This difference appears in spite
the well known result that the leading two orders of the ph

FIG. 3. The solid line shows the TUTTS soft photon approxima-
tion for pp bremsstrahlung for the caseT5157 MeV,
u35u4510°. The Low-(s̄, t̄) soft photon amplitude is shown by the
dashed line. Both are computed using the most recent Nijmeg
phase shift data set. The spectra should exhibit mirror symmetry
ug about the pointug5180°, since the protons are emitted at equ
angles on either side of the beam direction. The Low-(s̄, t̄) result is
symmetric, but the TUTTS result is clearly not. This is in agreemen
with our work of Sec. V.
fts,
n-

ft
d
of
o-

ton spectrum are uniquely predicted. The authors of Ref.@13#
suggest that this large discrepancy is evidence that
TUTTS amplitude should be preferred over the TSTTS ampli-
tude for calculations of identical particle scattering. An alte
native explanation might be that this large discrepancy
simply a reflection of the fact that the elastic amplitude
which are required far outside the physical region, were e
trapolated in some unphysical way.

VI. CONCLUSIONS

We have seen that problems arise in the practical appli
tion of certain soft photon amplitudes to two-body brem
strahlung processes, in particular topp bremsstrahlung.
Since the variabless̄, t̄, andū of radiative phase space satisfy
the same constraints as the Mandelstam variabless, t, and
u of the corresponding nonradiative process we find that t
usual Low formulation of the approximation, which ex
presses all elastic amplitudes at a single point in terms
these variables, is unaffected by the phase space problem
the antisymmetrization problem. In contrast, neither th
‘‘Two-u-Two-t-special’’ ~TUTTS! nor the ‘‘Two-s-Two-t-
special’’ ~TSTTS! amplitudes suggested in Ref.@13# can be
antisymmetrized while being written in terms of the measu
ablepp elastic amplitude. Additionally the TSTTS amplitude
was found to be incalculable unless one makes a mod
dependent extrapolation of thepp elastic amplitude outside
of its physical, on-shell region. We conclude that the TUTTS
and TSTTS soft photon amplitudes, and those other altern
tive forms for the soft photon approximation which rely on
Taylor expansions about radiative variable pairs other th
( s̄, t̄) and share the same problems, are not suitable for
soft photon analysis of proton-proton bremsstrahlung.
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