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Certain soft photon amplitudes which have been recently suggested as alternatives to the usual Low form of
the soft photon approximation are studied and it is demonstrated that problems exist in their relation to the
corresponding nonradiative amplitude. The nonradiative amplitude, which is an input to soft photon calcula-
tions, is in certain cases required to be evaluated outside of its physical phase space region. Also, for the case
of two-body identical particle bremsstrahlung processes, the symmetrized or antisymmetrized form of these
soft photon amplitudes cannot be written in terms of the symmetrized or antisymmetrized amplitude for the
nonradiative process. It is found that the usual Low form of the soft photon theorem is essentially unaffected
by these problemgS0556-28186)06011-9

PACS numbg(s): 13.75.Cs, 11.80.Cr, 13.46f, 13.60—r

I. INTRODUCTION lar processes. The first of these, which we shall call the phase
space problem, concerns the expression of a soft photon am-
Bremsstrahlung processes, particularly proton-protorplitude solely in terms of measurable information about the
bremsstrahlung, have long been studied as a method of agn-shell nonradiative process. The second, the antisymmetri-
sessing the importance of off-shell effects in low and inter-zation problem, concerns the inability to write the correctly
mediate energy hadronic scattering. There have been twdtisymmetrizecppy soft photon amplitude in terms of the
main theoretical approaches: nonrelativistic potential model§easured, antisymmetripp elastic amplitude. The usual
[1-7] which include off-shell effects explicitly, and the soft Low form for the radiative amplitude will be shown to be
photon approximatioi8—13 which is written in terms of immune to these difficulties, while theuTTs and TSTTS
only on-shell information about the nonradiative scatteringgmplitudes fall victim to one or both of the problems.
process. Soft photon amplitudes therefore give information These problems both have analogs in the case of spinless
about off-shell effects only through any discrepancy betweeiwo-body bremsstrahlung processes. We begin by studying
their prediction for the bremsstrahlung spectrum and experithe problems in that algebraically simpler context, deriving
mental measurements, and even then there is an ambiguity {R€ spinless forms of the Low Ul Ts, and TsTTs amplitudes
that some of the discrepancy could arise from higher ordetn Sec. Il In Sec. Ill we consider the phase space problem
on-shell effects. while in Sec. IV we treat the symmetrization of identical
For the proton-proton bremsstrahlung process it had beeparticle spinless bremsstrahlung processes. In Sec. V we ex-
found in the past that the Low soft photon approximationtend our results to proton-proton bremsstrahlung where the
gave a good description of the older dafal], suggesting elastic and radiative amplitudes must be written in antisym-
that off-shell effects are small. The more recent 280 Mevmetric form, and present some illustrative examples of the
TRIUMF experiment{15] provided measurements not only Problems discussed.
of photon spectra but also of polarization observables. These
data showed some disagreement with the soft photon predic- Il. SPIN-0 AMPLITUDES
tion [12], indicating for the first time the presence of non-
trivial off-shell behavior in thep elastic scattering process.  We begin with two-body spin-zero scattering and first re-
Although most soft photon applications have used theview the derivation of the Low8] form of the soft photon
Low [8] approach, it is well known that the derivation of the approximation as well as the “Two-s-Two-t-special”
soft photon approximation is not unique. Different choices(TSTTS) and “Two-u-Two-t-special” (TUTTs) forms sug-
lead to soft photon amplitudes which differ (k). Re- gested by Liou and collaboratofd3]. The problems in
cently Liou, Timmermans, and Gibsgfi3] have suggested Which we are interested may be considered within this alge-
an alternate form for the soft photon amplitude. The claim igoraically simpler spinless framework, and then carried over
made that this “Two-u-Two-t-special{TuTTs) amplitude ~ With little modification to the more physically interesting
provides better agreement witpy data at all energies than case of nucleon- nucleon bremsstrahlung
the traditional Low amplitude. This success is contrasted in We defineA(s,t;pf,p3,p3,p3) to be the amplitude de-
that paper with the dramatic failure to describe the data oscribing the nonradiative scattering of particles of mags
another alternative soft photon amplitude, the “Two-s-Two-and m, into a final state composed of massag and m,
t-special” (TsTTs) amplitude. with s andt the usual Mandelstam variables. Tpeare the
In this paper we shall investigate two problems which carfour-momenta of the various particles and the variablarsd
arise in the application of soft photon amplitudes to particu+, and others to be defined later, are considered to be func-
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54 VALIDITY OF CERTAIN SOFT PHOTON AMPLITUDES 2241
tions of these four-momenta. Contact with the physical nonthen be constructed as follows. One writes the contribution
radiative amplitude, which can be evaluated from measuredf radiation from the external charged particles to the radia-
phase shifts, is made by going to the on-shell limit,tive amplitude in terms of off-shell evaluations of the nonra-
pi2=mi2. The Low form of the soft photon amplitude may diative scattering amplituda():

P _ P3-€ — - N2 2 2 2
M eX[EM_eQ3 p3kA[S+k(p3+p4)!t k(pl p3)lm1!m2!m3+2k.p3’m4]
+eQ4 A[s+k (P3+Pa),t—K- (p2—Pa)imi, m3,m5,mi+ 2k py]

—te A[s K- (p1+ P2),t—K-(p1—ps);mi—2k- py,m3,m3,m;]

P — —
_eQzﬁA[S_k'(Pﬁ'pz)i—k'(pz—p4);m§,m§_2k'Pzamgami]- (1)

Here Q; are the charges of the various particles &fdand ¢* are the photon momentum and polarization vector. The
nonradiative amplitudé\() is written with each of the charged legs in turn taken off-shell due to the emission of the photon,
i.e., we use the same functional form as the on-shell, nonradiative amplitude considered as a functiqn ,obtihe@valuate

the p; at the radiative point satisfying; + p,=ps+ p,+k. We have chosen to express this off-shell behavior in terms of the

average Mandlestam variablss 3 (p;+p,)?+ 2 (p3+p4)? andt= 3 (p;—p3)?+ 2 (p,— p4)?. Other choices can be made
for the variables and such choices are at this stage entirely equivalent but would later give rise to soft photon amplitudes
differing by terms ofO(k).
Following Low [8], the occurrences of the nonradiative amplitéd@ in this radiative amplitude are expanded in powers
of k* about the point with explicit dependencies &t set to zero—in our current example we expand about
A(s,t;m3,m3,m3,m2). Only the leading two powers in this expansion are retained since it has been ghiot$,17 that the
soft photon approximation is ambiguous in its prediction of higher orders in the povker etpansion due to the ambiguity
in choice of expansion point. The truncated expansion of(Eqis

Jd J Jd
M eox€n= eQ3 1+k- (p3+p4) —=K-(p1— pa)&t —+2k- psams)
+ 1+Kk-(p3+ i k —-|-2|( i
eQ4 Da- k (P3+Pa) o=k (P2=Pa)7 Pasrz
pi-€ 1-k J K J ok Jd
eQ 0. K (P17t P2) o=k (P1=Pa) 57— pl§—mf
p>-€ J J I
_eQijk<1_k'(p1+p2)a_s__k'(p2 p4) pzam2> A(s,t;m?,m3,m3,mj). 2

This truncated form is no longer gauge invariant. Gauge invariance may be reimposed by the addition ot teyrwhich
is independent ok and is presumed to have its physical origin in photon emission from internal charged lines in the scattering
process. The gauge invariance constrainfNigg(,+ M/ )k ,=0, which in this case implies an internal contribution of the form

J J
M€= —|e(Q1+ Q2+ Q3+ Qu)(P3tpPa)- E&_s_+ e(Q1—Q2— Q3+ Q4)(p1— pa)'GI

J
——+Qaps-€ A(s,t;m?,m3,m3,m3). ©)

+2e
am 2

d J
oms QaPa- e oma

Jd
Qi1p1-€ m2+Q2p2 €

There is an ambiguity here in the choice of internal radiation contribution since any independently gauge invariant term could
also be added to the radiative amplitude at this point.
The soft photon amplitude is the sum of the external and internal contributions:
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+eQ2 p;kpg_pf 19_5__eQ2 p:kpg_pff &_T}G,U,A( ,t,mi,m%,m%,mi). (4)

This amplitude is usually referred to as the Low choice, al-
though it differs slightly from the construction used in Low's Mg €= er A(Slz to4;Mi, M3, m3,m3)
original paper[8]. It is distinguished by the choice of a Ps:
single expansion point for the nonradiative amplitude.

Recently Liou, Timmermans, and Gibsph3] have con- +eQ4 A(slz,tlg,ml,mz,mg,m)
sidered choices of expansion point which limit the explicit Pa:
k#* dependence of the nonradiative amplitudg in Eq. (1)
to its invariant mass arguments. This removes the derivatives - te A(s34,t24, m2,m3,m3,m3)
with respect tcs-type andt-type variables from the resulting

soft photon amplitude. The authors [df3] suggest that this 0y €
.

property makes the soft photon approximation more suitable —eQ, ——A(Sas,t13;m2,m3, mi m?)— B¢,
for application to processes thought to be dominated by 2k
t channel resonances. To obtain their result, one is required ®)

to use a different pair of radiative variables for expansion of

the external radiation contribution of each charged particle. . . ]
Equation(1) now takes the form where, due to gauge invariancB# must satisfy the con-

straint
B#k,,= e QsA(S10,tq;M?, M2, M3, m2)
Mte —eQa A(slz,t24,m1,m2,m3+2k p3,m4) w = € QuAS12.Taai i, M3, M5, M
+eQ4A(Slz,t13;mf,mg,mi,mi)
+t"3Q4 A(SIZ tyg;m7,m3,m3,mj+ 2k p,) —eQA(S34,t24; M2, M2, m2,m?)
s o o —eQuA(Sgy,t13; M3, m3,m3,m3). (7)
_te A(534,t247m1 2k-py,m5,m3z,my)
In order to obtain the “Two-s-Two-t-special(TSTTs) am-
plitude of[13] we must choos®* itself to have the form
_eQz A(s34,t13,m1,m2 2k-p,,m3,m3),
(P1tp2)*
B”E— e QzA(So,t ‘m?,m3,m3 ,m)
(pl+p2) [ 3 12,424 1 2 3 4

©)

+eQuA(S12,t13; M5, M3, M3, m3)
where we have defined;,=(p;+p2)? Sz=(P3+pPs)?
t13=(P1— P3)? tos=(p2—p4)* and where agair\() is con- —eQ1A(S3s,t24; M2, M3, M3, m3)
sidered an implicit function of the four-momenpa. By ex-
panding Eq(5) about the poink#=0, i.e., expanding in the
explicit k* dependence, and truncating after the leading two
terms ink#, and reimposing gauge invariance we have the
result The TSTTs amplitude is then

_eQzA(534,t13;mi,m%,miymi)]- (8
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Ps-€ (p3tpa)-€
Pa-k  (P3tpa)-k

P3-€ (P3stpa)-€
P3-k  (p3tpa)-K

2 2 22
Migrrs €=€Q3 )A(slz,t24,m1,m2,m3,m4)+eQ4(

Pi-€ (p1+p2)-e>
pi-k  (p1t+p2)-k
Po-e  (P1tp2)-€
p2-k (Pt p2)-k

2 M2 2 2
XA(Slz,tlg,ml,m21m3ym4)_te(

XA(SS4!t24;m§1m§1m§1m§)_eQ2( )A(S341tl3;m§1mgymgvmi) (9)

where we have employed the relation A’(u,t) is of course identical toA(s,t). However it is a
different function of thep; and so has a different value than
(PstPs)-€_(P1tPa)-€ A(s,t) when they are evaluated using the radiagiyénstead
(p3t+pa)-k (prtp2)-k’ of the nonradiative ones.

] ) ) ) . The off-shell external radiation amplitude of E4%) and
The form of B in Eq. (8) is troubling since it appears to (5) which forms the starting point of the soft photon approxi-

have a 1k* dependence and yet is assumed to represefhation may be written in terms of this function as
terms which would arise in a perturbative treatment due to

radiation from internal charged lines. Such internal radiation P3-€ | 5 o o )
is known from perturbation theory arguments to give contri- Mﬂfu:ermA (U1q,t24; M7, My, M5+ 2K- pg,my)
butions regular ink* as k*—0 [18]. By expansion of the
occurrences of the nonradiative amplitud¢) in Eq. (8) Ps-€ 5 5 5 5
about a common point, sa(s;,,t13;M2,m3,m3,m3), one +eQ4mA (Uzg,tag; My, M3, M3, Mg+ 2k pa)
can show that so long as the charge condit@p=Qs,
Q,=Q, is satisfied the apparentkty dependence vanishes.
This charge condition holds for the elastic scattering pro-
cesses in which we are interested. For processes where the
charge condition is not satisfied theTirs amplitude would
contain unphysical terms in its internal radiation part, and so
would be ill defined. (10)

The remaining soft photon amplitude which we shall later
use as an example is the “Two-u-Two-t-specidlTUTTS)  where, as in the 3TTs case, a choice of radiative variables
amplitude of Ref[13]. In constructing it we first note that has been made which limits the expliéit dependence in
the nonradiative amplitude may be parametrized in terms oA’() to the invariant mass arguments. We have defined
the Mandelstam variablas andt, rather thans andt. We Uy =(p1— p4)2 andu,s=(po— p3)2 in the above. To arrive
define a functionA’(u,t)=A(s,t) subject to the constraint at the corresponding soft photon amplitude one follows an
s+t+u=3"_m?. ThusA’(u,t) is just A(s,t) with s re-  analogous procedure to that used for tref s amplitude—
placed by={ ,m?—u—t. For the on-shell elastic process, the result is

Pi-€
_temA (U23,t24;mi_2k' Dl,mﬁ,mi,mﬁ)

p2-€ |
—eQz—pz_ A (Ups,tig; M2, ma—2k- pp,m3,m3),

Ps-€ (P1—Pa)-€

ps'f_(pz_ps)‘f _
Pa-k  (P1—Pa)-k

p3-k  (p2—p3)-k

L2 2 2 2
Mayrrs €=€Q3 )A’(u14,t24,ml,mz,m3,m4)+eQ4(

Pi-€ (pl_P4)'6)
p1-k  (P1—Pa)-k
P2-€ (p2—p3)-€
p2-k  (p2—p3)-k

2 M2 2 2
XA,(U23,t13,ml,m21m3ym4)_eQ1(

><A’(u23,tz4;mi,mﬁ,mi,mi)—eQz( )A’(um,tla;mf,m%,m%,mﬁ). (11

During the derivation the constrai@;=Q3, Q,=Q, once  amplitude of Eq.(11)—will serve as instructive examples
again arises when we disallow unphysical contributions tovhich demonstrate how these problems arise and in which
the internal radiation part of the amplitude. circumstances they may be avoided.

In Secs. Il and IV we shall consider certain problems
which arise in the application of soft photon amplitudes. The l. PHASE SPACE PROBLEM
expressions derived in this section—the Losyt] amplitude The soft photon approximation is useful in that it provides
of Eq. (4), the TsTTs amplitude of Eq.(9), and the TTTs a relatively simple link between the low energy part of a



2244 MARK WELSH AND HAROLD W. FEARING 54

measured photon spectrum and the measured cross section g
for the corresponding nonradiative process.

It is therefore reasonable to insist that a useful soft photon
amplitude must not require evaluations of the nonradiative —0-7
cross section at unphysical, unmeasurable points. Unfortu-
nately, as we shall show in this section, this condition is not  _ - |
satisfied by certain soft photon theorems in the literature.
Whether the condition is upheld or not depends both upon=
the choice of radiative phase space variables one uses t6 —0-5 ]
parameterize the nonradiative amplitude during the construc-
tion of the soft photon amplitude, and upon the masses of the _ , |
particles involved in the scattering.

The crucial step in the construction of a soft photon am-
plitude is the expansion of any off-mass-shell nonradiative *051 | 112 5 o 5 T s s
amplitudes about points where the kinematic variables have ' ' ’ 5 (Gev?) v B ‘
had all explicit dependence on photon momentltnre- /
moved, i.e.k* has been set to zero wherever it appears. We
will show that even after such an expansion the value of the FIG. 1. The hashed region shows the physical region of phase
nonradiative amplitude may still be required at points outsidesPace for the elastic process#f p scattering at pion beam kinetic
of the region where it is measurable by experiment. energy 298 MeMi.e., my=mg=m,—, M=M;=Myo) . The out-

For example, a particular off-shell nonradiative amplitude“ned area shows the region covered by the radiative phase space

appearing in the derivation of thesTTs soft photon ampli- point (sz4,t,4). This area extends far outside of the physical elastic
tude of Eq.(5) is region. The range of3, marked 15<k<<150 MeV is the approxi-

mate region of radiative phase space studied in#th@y experi-
ment of Ref[19].

A(S34,t24;m% — 2K+ pg,m3,m3,m3),

amplitude at four points, one of these beiA@S;4,t54). In
brder to calculate this soft photon amplitude for initial state
)f)'ion kinetic energy of 298 MeV in the laboratory frame and
for all allowed energies and orientations of the final state
particles, it turns out that we require the functié) for
values ofsg,,t54 corresponding to the outlined region shown
in Fig. 1. This clearly extends far outside of the region where
. . L 'a;e nonradiative amplitud&() is measurable. Thus, for cer-
This point can be termed on-shell because it is evaluatefhy yinematics, the 3TTs soft photon approximation to the
with py=m;. However, the functior\(s,t;m;,m3,m3,Ms)  premsstrahlung amplitude will not be calculable unless one
is only physically measurable within the region of tt] s prepared to make a model-dependent extrapolation of the
plane defined by nonradiative kinematics. We have no guargnradiative amplitudé() outside of its measurable region.
antee that the regionsg,,ty,) obtained by evaluating The introduction of any such model dependence would re-

S34,{24 At values of thep; satisfying radiative phase space moye the usefulness of the soft photon approximation as an
constraints is contained within this measurable area. Indeednampbiguous method of relating the p— 7 p process to

for most choices of radiative variable pairs and for most setgne radiative processr p— m py. The evaluation point

of massesn,,m,,mz,m, defining phase space, we find that (g + ) also suffers from this problem. The remaining two
the soft photon amplitude does indeed require evaluations q;oints in the EBTTS amplitude, 615,t19) and 6y2,tss), may

the nonradiative amplitude at points which are not physically,e shown to lie inside the measurable region of nonradiative

measurable. phase space for any elastic scattering process.

_ Since the arguments of this section will depend only on" \ye can see intuitively how this problem arises. The quan-
kinematic constraints and not on the spin structure of thgjsiag sy, andsy, are related by

scattering process, we employ the spinless formalism of the

where we are considering radiation from particle 1. The sof
photon prescription states that we make a Taylor series e
pansion about the point where explicit dependenck‘ohas
been set to zero. For our example this point would be

" 2 2 2
A(S341t241m11m21m31m4)'

previous section though we shall be discussing the kinemat- S34=S1o— K- (P1+Pa+P3+pa).
ics applicable to the interactionsm” p— =7 py and
pPp—ppPy-. As photon energy increasess, becomes progressively

We begin with a simple example, choosing the massesmaller thans;,. Even though a ranges{,,t,,) as defined
m;=mz=m_- and m,=mu=m,, and considering the by radiative kinematics might lie within the nonradiative re-
TsTTs soft photon amplitude of Ed9) for a laboratory pion  gion for s=s;,, if we takes= s, we find the allowed range
energy of 298 MeV, corresponding to a typical experimentof the nonradiative variableto be much smaller. The points
[19]. The hashed region of Fig. 1 shows the physically ac{s;,,t,,) may not be contained within this nonradiative
cessible part of thes(t) plane—the amplitudé(s,t) would  physical region.
be known over this region if the elastic process This problem is by no means isolated to the one example
7~ p—m_ p had been measured at all scattering angles andhown above. For the case of proton-proton scattering we
for interaction energies up tgs~1.35 GeV. The $TTssoft  can also make the same comparison between the physical
photon amplitude calls for the evaluation of the nonradiativeelastic region of phase space and the regions mapped out by
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note that most modern experiments cover kinematic ranges
for which the points $34,t15) or (Szs,ty4) lie outside the
region accessible in the nonradiative process. For example
the 7~ py experiment of Ref[19] covered the majority of
radiative phase space, with photon energy in the range 15—
150 MeV being measured. This region is shown in Fig. 1.
The 200 MeV pp bremsstrahlung experiment of Réfl4]
measured the photon spectrum as a function of angle with
outgoing proton angles fixed at 16.4° on either side of the
beam axis in the laboratory frame and with all particles co-
planar. For these kinematics the result is analogous to that of
Fig. 2 with the resulting trajectories through radiative phase
space of the pointé(Ss4,t13) andA(ss4,t,4) falling outside

of the physical region of phase space for the elgspqro-
cess.

In contrast to the 3TTS soft photon amplitude the Low-
(s,t) soft photon amplitude of Eq(4) relies on a single
evaluation of the nonradiative amplitude Ais,t ). For elas-
tic scattering processes such aSp—a p our numeric
studies have found that the physical region of the radiative
variables 6,t) can fall slightly outside of the measurable
nonradiative region of phase space. For practical purposes,
however, only a very tiny region of radiative phase space
must be excluded in one’s model-independent calculation of
the bremsstrahlung process when using the Ley)@mpli-
tude.

For the special case of identical particle scattering the
radiative 6,t) region is entirely contained within the physi-
cal nonradiative §,t) region. This is due to the fact that the
262 366 370 574 Mandelstam variables,t,u of a radiative identical particle
o scattering process satisfy the same phase space constraints as
the s,t,u of the corresponding nonradiative process. For the

FIG. 2. The hashed area is the physical region of nonradiativéevonradiative process we have the familiar constraints for
phase space for proton-proton elastic scattering. The area enclosequal mass, two-body elastic scattering
by the dotted line is the region mapped out by the poistg, ;)

O
o

[N
n
<
A
[k
S
.LJ
B3]

and (s34,t54) for the corresponding bremsstrahlung process, operat- s+t+u=4m?

ing at proton beam energy of 280 MeV—this corresponds to the

beam energy in the experiment of REE5]. The particular regions s=4m?,

of radiative phase space studied in that experiment are also

shown—to reproduce the experiment’s kinematics we fix the out- 0=t,u=—(s—4m?). (12

going protons at angles of 12.4° and 12° to the beamline in the

laboratory frame. The pointss{,,t;2) and (Gs4,t,,) are seen to be For the radiative process we can use four-momentum conser-
outside of the measurable region of elastic phase space for mowation to write

photon angles. The lower plot is an expansion of the upper and

shows the photon angle measured in the target frame for the regions (k#)2=(ph+p4—p4—ph)2=stt+u=4m?, (13
(S34,t13) @and (sa4,t,4). ToO guide the eye points have been marked
at 30° intervals in photon lab angle along these trajectories. where u= 3 (p1—ps)2+ 3 (p.—p3)2. We also have the

I . . constraints,
the radiative variable pairs needed to evaluate tHETS soft

photon amplitude. The results of this comparison are shown s=4m?,
in Fig. 2 for a typical set of kinematics corresponding to the o
TRIUMF experimen{15]. In this case also, the parts of the 0=t,u=—(s—4m?). (14

soft photon amplitude employing the expansion points . .
A(S12,t19) or A(Sy2,t24) Would require only measurable in- The threshold condition osa is clear; however, the,u con-
formation about the nonradiative, elastic amplitude. Thestraints require some explanation. For identical particle scat-
parts of the radiative amplitude using the pois;,,t;5)  tering it may be shown, by considering the appropriate rest
or A(Ss4.t24) Would, however, require unphysical informa- frames, that the variables;, and symmetricallyt,,, have
tion and would be incalculable unless one resorted to modekero as their upper bounds. Thus the average(tis+to,)
dependent extrapolations of the elastic amplitude. is also bounded above by zero. Puttirg0 into Eq.(13) we
This difficulty might be avoided by considering only cer- find the lower bound fou; u=—(s—4m?). Finally, noting
tain experimental kinematics for the bremsstrahlung processhat the constraints oh and onu must be the same for
This is clearly unsatisfactory, however, particularly when weidentical particle scattering through the symmetry of the ki-
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nematics under the interchange of final state particles, we We denote the unsymmetrized nonradiative scattering am-
have the result of Eq.14). Our conclusion is that for iden- plitude by A(s,t), where we have suppressed the invariant
tical particle scattering, all points(t) defined by radiative mass arguments of this function. The symmetrized ampli-
phase space constraints lie within the allowsd)(region of  tude, which we obtain by adding in the amplitude with
the corresponding nonradiative process. Numeric studies qi;«< py, is then
the phase space regions confirm this conclusion.

From numeric studies of the kinematics for the interac- AXS,H=A(s,t) +A(s,u)=A(s,t) + A(s,4m*—s—t).
tions # p— 7 p, pp—pp and the corresponding brems- (15
strahlung processes, it appears that the points used in t
TuTTs soft photon amplitude lie inside the measurable non-
radiative region, at least for the kinematic conditions relevan

hﬁwe unsymmetrized Lows(t) amplitude may be written

ElO]

to existing experiments. This implies that, for these interac- Ds- P .
tions, the TTTs amplitude does not suffer from the phase M) e=eQ{ 3 “(P3) | A(sit)
space problem. P3-k IPs
'ps-e€ g —
IV. SYMMETRIZATION PROBLEM + +DM(pay)—|A(S,t)
| Psa-K py
In Sec. V we will show that a problem exists with cor- i .
rectly antisymmetrizing the spi-TsTTs and TUTTS ampli- _|PreE_ “(p )i A(s,t)
tudes of Ref[13]. To illustrate the source of this problem we | P1-K ! 0p’f_ '
consider in this section the quite analogous and algebraically i .
simpler symmetrization of the spin-0sTts and TUTTS am- _|P2r€ DH(py)— A(s_t_) (16)
plitudes. | P2k 2 ap“ '

The spin-0 amplitudes given in Sec. Il would have to be
explicitly symmetrized if applied to the case of identical par-Where, following Ref[10], we introduce the notation
ticle scattering. Upon attempting to symmetrize thel TS
and TuTTs amplitudes we find that the connection to mea- DH(p)= Ekﬂ_eﬂ_ (17)
surable nonradiative scattering data is lost. More specifically, :
the symmetrized radiativesTTs and TuTTs amplitudes can-
not be written in terms of the symmetrized nonradiative am-This is easily related to the usual form of Eg) for the
plitudes, and thus cannot be evaluated directly from experiamplitude by noting that
mental information on the nonradiative process. This
problem is quite independent of the phase space problem 9 ds 0 - i
djscussed _previously. The Low ampl.itude_,_em'ploying a gp# f9p1 s apM a = (P1utP2s) —+(plﬂ p3ﬂ) e
single choice of Taylor expansion point as$,1), is also (18)
treated for comparison. It is found that the symmetrized
(s,t) soft photon amplitude may be written in terms of the with similar expressions for the other derivatives.
measurable, symmetrized nonradiative scattering amplitude. The = symmetrized amplitude is then MS. e

This is due to a special property of ths, ) variables. =M12-.34)" €+ M(1243) €,
|
M~ A [P pu A L PeE o i A(s;t)
s €=eQ (pg) (sH+ D K (p4) (s.u) 0. K (m)apﬂ A(st)
P3-€ —
+|——+D* S,u)— Ast —F—D* Asu
Da K (ps)ﬂpM A(s,u) (Pl) (sH— [pl K (pl) (s,u)
P2 € —— | P2 —
- D+ t D* S,u) ;. 19
[pz (pz)ap# A(s,t)— [pz (pz) A( )] (19
|
A common factor in this expression is symmetric fu_ngon_AS(). From Eq.(15) it is clear that since
the relations+t+u=4m? holds among the radiative vari-
A(S.D+AGS0). ables we can write

A(s,H) +A(S,u)=A(s,1) +A(s,4m*—s— 1) =AS(s,t ).
In order to have the soft photon amplitude solely a function (20)
of the measurable, symmetric part of the nonradiative ampli-
tude we must be able to write this factor in terms of theThe symmetrized radiative amplitude now takes on the form
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of the unsymmetrized amplitude, but witt{s,t) replaced by ~We define symmetrized functions in analogy to the nonradi-
the measurable, symmetrized nonradiative amplitudetive case:

AS(s,t):
S _ p3’ € d S Asl(S34,t24,u23)EA(334,t24)+A(S34,U23)’
M(s,_’()'e_eQ{ _pa-k+D#(p3)_apg A>(s,t)
_p4- € d ] — A52(334’t13’u14)EA(S341t13)+A(534,U14),
+ + DH _ AS st
s k (p4)o7pff_ (s,t)
(py-€ J ] < AS3(S15,t94,U10) =A(S1,t0) + A(S10,U1g),
- —DH(p1)—3|A(S,t
prk (pl)ap,l,,- (s,t)

AS(S15,t13,Up9) =A(S12,t19) + A(Sy,Uza). (24

| pupy ASET . @Y . |
2K ap5 | Notice that these functions are not the same as the symmetric
nonradiative functiomAS(s,t) which would be measured in
This procedure of correctly symmetrizing the radiativethe nonradiative process. This is because an internal con-
amplitude by simply replacing() —A3() works only for the  straint similar to that for the nonradiative phase space vari-
Low-(s,t) case, due to the relationstsg-t+u=4m? which ables,s+t+u=4m?, does not hold foss,, to4, anduys, or
holds only for this specific Low choice of variables. We will for the other sets of radiative variables which appear as ar-
now show eprICItIy that such a replacement in thE Ts or guments in the ASi Instead one has relations like
TuTTs amplitudes does not work and that these amplitude§34+t24+ U,s=4m?— 2k- p;. Thus direct replacement of, for
cannot be expressed in terms of symmetrized nonradiativexample AS1(S34,t4,U03) by AS(Sa4,t,,) Will give an error
amplitudes. of the form
For the radiative process, the unsymmetrized 6 am-
plitude of Eq.(9) is

PE  (Pstpa)” ASL(Sg4,t24,Uz3) — AX(Sas,t24)

ps-k  (pstps)-k

A(S12:t24)

M#STTS:eQ( 9
== 2p1- Ko nA(Saa,Wumu,yt O(K?) . (29

[ ph (patpa) ] _ _ e .
Pa-K - (Ps+pa)-K A(s12,t13) One would naively expect thi®(k) error which is being

) : introduced to give rise to ad(k/k) or O(1) error in the
amplitude M+% . . Due to a cancellation in this leading or-

__ PY  (pitpr)* -A(s t) der between the fouASi() terms appearing ioVI$4. ¢ the
[p1-k  (pr+py) -k 32 error introduced by these replacements is instead only of
O(K). Thus in this case the error is of the same order as other
[ b (P1+po)* | terms dropped in the derivation of the amplitude.
— |- = Alsa ) | (22) For the TUTTs amplitude another difficulty arises in try-
[P2-k (P1tP2)-K] ing to symmetrize. The unsymmetrized amplitude is given by
Eqg. (11):
We define the symmetrized amplitude M a- (1Y
=M{12-30F M(iz-a3) P (P2—Pa)”
Su MTlSTT?eQ( K (p—pa)-K A'(U14,t20)
Meares Ps3 P2~ Ps3
P (p3tpa)” [ PE (P pa)* ]
=e - A(S12,t94) +A(S15,U + - A’ (Uys,t
Q(L)g‘k (D3t pa)-K [A(S12,124) + A(S12,U14) ] Pak  (p1—pa) K| (Ugs,tya)
| Ph (pstpa)” Y (pi—pa)” ]
+_p4- K (Ps+pa)-K [A(S12,t13) T A(S12,U23)] - A’ (Ups,trs)

_pl'k_(pl_p4)'k_
pr B (p1tp2)*
[P Kk (p1t+p2)-k

ps _ (p1+pP2)*
P2 k  (P1+p2)-k

[A(S34,t24) + A(S34,Uz3) ] [ p% B (P2—Pa)* |
[ P2-k  (p2—p3)-K]|

A'(U4,t13) (26)

[A(S34,113) +A(S34,U14)] |

: . . S
and we define the symmetrized amplitude aaTU*;TS
(23) EM6'2H3’4)+ Mé”l,zﬂ4,3) SO that
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5 _ (P2—pa)*

p

Q( ps K (pz—pa) K
+[ P4 _ (P2—pa)*
Ps-k  (p2—py)-k
Ps  (p2—p3)*

P2-k  (p2—p3)-k

73 _ (P1—Pa)*
Pa-k  (P1—Pa)-k
Py _(Pl_pa)“
p1-k (p1—p3)-k

P (P1—pa)*
ps-k (p1—p3)-k
pf _ (P1—P4)*
pi-kK  (P1—Ps)-K
P2 (P2—pa)*
p2-K  (P2—p4)-k

MT?‘IL'Ts:e A'(U14,t24)+ A/(U23,t13)

}A'(tzmum) +

A’ (tp4,Uz3)

A'(t131U23)_[ }A’(Uzsytzzl)_

A’(u14,t13)—[ }A'(tlg,um))- (27)

Consistent with our previous definition éf () we have, for  tion from external legg18], this must mean that this pre-
example, A’(tpq,U1) =A(S;m’—t,y—Uy4,U) where scription in effect adds in som@(k/k) terms which are not
A(s,t) is the nonsymmetrized amplitude for the nonradiativeallowed by the analyticity requirements of the soft photon
process. Again there is difficulty because the radiative amapproach. We have found no way to express the correct ex-
plitude is not expressed in terms of the symmetrized nonrapression, Eq(27), solely in terms of the measurable symme-
diative amplitude, which is all that can be measured. Thdrized nonradiative amplitudé\*(s,t), other than simply ex-
terms in the square brackets of the fopyik-p; can in fact  panding aboutu,t and thus recovering the original Low
be factored leaving a correctly symmetrized combination ofamplitude Eq.(4), up to corrections o(k).

theA’ as an overall factor. However, the problem arises with  Since the problem arises with the; ¢ p;)“/k- (p;—p;)

the (p;—p;)*/k- (p;—p;) terms, which were added to make terms which were added to make the amplitude gauge invari-
the amplitude gauge invariant. The momenta are such thant, an alternative approach would be to try to find some
these terms cannot be factored leaving just the symmetrizedifferent gauge term to add which does not suffer from these

amplitude. problemq 20]. To explore this possibility rewrite E¢26) as
The procedure followed in Refl3] is to take for the
symmetrized radiative amplitude the original unsymmetrized Pt P
TuTTs amplitude with the function®\’() replaced by their —— » =eQ( 3 — A% A (Upg,th0) + &—Aff
counterparts from the symmetrized elastic process. This pré- VT ps-k Pa-k
scription would give the result p#
! 1 !
u X A'(Uz3,t13) — .k_A/f A’ (Uz3,t24)
eQ([ Pz (pz_ps)”}A,S(u t) P1
Porkt (P27Pa) K o P2 AGIA (Ugy,t )) (30)
i . - —A3 Ug,l13) |-
PY  (pi—pa)* P2k

1S

" [Pa-K  (P1—Pa)- k_A (Uzs 13

C o o Here theA# are structures of the general for/k-V,

| P (P1~P4) A"S(Uya, o) whereV is some vector, and originate in the term added to

[P1-k  (P1—Pa)-K| 28,724 ensure gauge invariance. In accord with general principles

C o Cw] this gauge term must b&(1) and cannot contain terms

P2 (P2~ P3) A'S(Ugyt 3)) (29) O(k/K). To determine the conditions imposed on thé by

[P2-k  (P2—Pp3) K| v this analyticity requirement we expand ti¢() about the
single points,t,u. The result is that all the\*, or more

where, for example, precisely, alle-A;, must be equal. One can see from Eq.

(26) that for the M.,@mplitude this is satisfied.

Next we defineA/ to beA; with ps<p, and symmetrize
=A(4M?— Ugg—toy,t00) the amplitude by adding in a piece with« p, as was done
5 in going from Eq.(26) to Eq.(27). Then the requirement that

+A(AM"— Uzg— Ly, Uz3) we be able to express the full symmetrized amplitude in
= AS(AM2— Ups—toy,toa). (29 terms of the symmetrized elastic amplitudes of E29),
which are the measurable quantities, requires that A;,
This expresses the result in terms of measurable nonradiativ,=A5, Az=Aj, andA,=Aj;. This condition is not satis-
amplitudes, but is not completely symmetric under the interfied by theA; of the symmetrized UTTs amplitude of Eq.
change of particle labels 3 and 4 because of the kinemati27) and that is the reason that theTTs amplitude cannot
factors multiplyingAS. be written in a correctly symmetrized form.

A detailed comparison between the symmetrized ampli- Putting these requirements on thetogether, we find that
tude of Eq.(27) and the form of Eq(28) shows them to be the A; must all be the same and must be symmetric in the
unequal. They differ in this case by terms@tk/k). Since interchanggs« p4. That is not true for thé; of the TUTTS
the O(k/k) terms are uniquely determined in a soft photonamplitude, but it is easy to find such . For example, con-
approach and can come only from the diagrams with radiasider the following fourA; :

A"S(Ugs,tog) = A" (Uns,tog) + A (tog,Uza)
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p5+py AA(s,t)=A[ 12— 34]— A[ 12— 43]
K-(P3+pa)’

1 w © © u
_( P1 N P2 + P3 N Pz ),
4\k-p; kepy kips K-pg

5
= 2, Fa(s,O[UstaUy][Ust U]

5
- 2, Fa(swlUatourl[Ust®uz]. (33
1( p5— P4 pi—p5 ) “

= +
2\k-(p3—pa) Kk-(p1—p2)/’ Using the Fierz relatiofi21]
5
1 pi—pjs pi—ps )
5 + . 31 to) gor t W Ca t v th T0 34)
z(k'(pl_p4) K-(p1—P3) 3D (ta) g (1) le oltg) (1) (

Any of these, when used in the symmetrized version of Eqwith
(30), will produce an amplitude\+,,Which is gauge invari-

ant, satisfies the analyticity and other requirements of a soft 1 1 : : :

photon theorem, is properly symmetric in the interchange of 6 -2 0 0 6

ident_ical par_ticles so that o_nIy the m_easurable syr_nmetrized c :E 4 0 _9 2 —4 (35)
elastic amplitudes are required, and is expressed in terms of @B 4 '

the same kinematic variables as the origindt ... All of 4 0 2 -2 -4

these amplitudes will be equivalent, as is generally true of 1 1 -1 -1 1

various different soft photon amplitudes, in the sense that
they will differ by terms which are(k).
The arguments above have shown that tr&fT6 and  the antisymmetrized expressi&f(s,t) can be put back into
original TuTTs amplitudes for a spin-0 scattering processthe form of the unsymmetrize8[ 12— 34,
cannot be made correctly symmetric under interchange of

identical particles while maintaining the necessary link to the ° 5 .
symmetric nonradiative amplitude. For theTFs case we AN =2 | Fu(S,)— X CpaF a(S,U) | [UgtaUs]
found the failure in symmetrization to arise @(k) in the at Pt

amplitude, but for the TTTs case it arises aD(k/k) . In the X[ ugt®u,]. (36)

next section we extend the derivation of the Losyt],

TsTTs, and TUTTs amplitudes to spi- identical particle The correctly antisymmetrized amplitude is then identical to
scattering, and consider the calculation of proton-protorthe unsymmetrized amplitude but wih,(s,t) replaced by
bremsstrahlung. We thus show that exactly the same prob-
lems which arose in this section in symmetrizing a spin-0 A
amplitude arise also in antisymmetrizing a spiamplitude. Fa(S,t)EFa(S,t)—;l CpaF p(s,u), (37)

5

V. EXTENSION TO SPIN- 3 wheres+t+u=4m?. It is these functionsl,:’;(s,t), and not

In thi i i ider th i on b the unsymmetrize& ,(s,t) which are experimentally acces-
n this section we will consider the proton-prolon breéms-;, through study opp elastic scattering. We must there-

strahlung process. This requires the extension of the splnle§8re ensure that the antisymmetrized forms of our soft pho-

formalism of Sec. Il to the scattering of spifi-particles.  ton approximations to the proton-proton bremsstrahlung

Care must also be taken to write th@ elastic and the@p  amplitude can be expressed purely in terms of Fjés,t),

bremsstrahlung amplitudes such that they are antisymmetrigther than thd=(s,t).

under interchange of final state protons. We now consider the form of the three soft photon am-
The unsymmetrized amplitude for elastic proton—protonp"tudes of Sec. Il extended to spif-identical particle scat-

scattering may be written tering. The unsymmetrizedp bremsstrahlung soft photon

5 amplitudes may be written in the form
A[12-34]= X F,(s,)[Ust,usllUst®uz], (32 5
a=1 _ _ — I
Mte,= > eQusX e U Ut Uyt Ust UiU, Y e4us]
a=1

where (39)

with the functionsX? andY}; taking on a different form for
each of the Low-§,t), the TsTTS, and the TTTs ampli-
tudes. Using the notation of R4fL3]

1
t,=11, EG””J vs¥", vH s

with summation over the Lorentz indices of tihg being 1 )
implied. The antisymmetrizegp elastic amplitude is then = 1Kp
defined as R(P)-e=7[£KI+ g {[£K]. B},
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where k=1.79 andm are the proton anomalous magnetic one must be careful about the ordering of thdactors, and

moment and mass, we may write the and Y7, functions
for each case as follows:

(i) Low-(s,t) amplitude:
P3- €+ R(p3)-€
p3-k

P1-€+R(p1)-€
p1-k

X9 e= t°F ,(s,t)

J
+D’L(p3)rpg

d —
—ta — DM —_—
(1) Fu(SD,

Ps-€+R(Pg)-€ d N
Y% e=s|—— +D* —tF (s,t

“e+R . d
P2 e+ R(P2)-€ F. (5T,

_ta _D/‘f _
p2-k (p2)(7plf

(39
(ii) TsTTs amplitude:

X% e= ps.E;f(kps).G_EgziEi;:qt“l:a(sﬂ.tm)
—t® pl-e;f(kpl)-f_zg;gz;:; Fo(Saa:t24),

Y% e= p4.Ej;f(kpll).E‘EzziEji:ﬂt“Fa(Slz,tls)
_ta pz-e;fipz).e_ggigji F(Suutsa).

(40)
(iii) TUTTs amplitude:

X e= p3'6;fip3)'€—ggiigz;:; t7F 1 (Usg,t00)
—t¢ p1~6;fl((p1)‘€_zgiigj;:; Fa(Uz3,t24),

e B e T
—t¢ pz.E—;f(kpZ)-G_EEE:EE;:;}FQ(UM.M:&).

(41)

of course include the spinors as in E§8). The important
point though is that the dependence on kinematic factors and
on the scalar variables appearing in the amplitudes is essen-
tially the same as in the spin-0 case.

The phase space problem noted for the spinless case in
Sec. lll depends only on kinematics, not on the particles’
spins, and so carries over directly to proton-proton brems-
strahlung. The physical region of radiative variables pairs
such as $34,t,4) can still lie outside of the measurable re-
gion in the @,t) plane of nonradiative phase space.

The amplitudes given above must be antisymmetrized if
we are to treat identical spihiparticle scattering. The anti-
symmetrization of the spig-amplitudes is no different in
principle than the symmetrization of spin-0 amplitudes given
in the preceding section and the results are identical: the
Low-(s,t) amplitude can be successfully antisymmetrized
while still being expressed solely in terms of the measured
elastic phase shifts; thesTTs and TUTTS amplitudes cannot
be so expressed. We now show these attempts at antisymme-
trization explicitly and demonstrate how the problems arise.

As has been shown previously for example by Fearing
[10], one can antisymmetrize the Low;{) amplitude using
an analogous procedure to that shown abovepforelastic
scattering. One would take the amplitude of E@8) and
(39), exchangeps«—pj, and apply the Fierz manipulation.
The result is then in the same form as E89), but with
F.(s.t) replaced by=3_,Cp,F 5(s,u). The final antisymme-
trized form is then also identical to Eq39) but with
F.(s,t) replaced byFA(-") (s t) where

5

FQ(LOW)(S_'HE Fa(S_,U_ ;1 CpaF g(s,u), (42

and s,t,u satisfy the radiative phase space constraint
's+t+u=4m?. By their identical definitions we see that
FALW=FA Operationally, therefore, one only has to take
the antisymmetrizecFﬁ from a phase shift analysis ¢fp
elastic scattering data and insert these functions in the un-
symmetrized Low-§,t) amplitude of Eq.(39) in order to
ensure the correct antisymmetrization of this radiative ampli-
tude.

When we attempt the same procedure for tls# 76 am-
plitude a problem arises. The calculation goes just as with
the (s,t) case except for the definition of the four antisym-
metrizedF , functions. To obtain the antisymmetrizedTirs
amplitude we must replace the, of the unsymmetrized
amplitude of Eq(40), in analogy with Eqs(23) and(24), as

For the TUTTS expressions we have defined the functionsfg|lows:

Fl(u,t)=F,(s,t) under thepp elastic phase space con-

straints+t+u=4m?.
One can easily see by comparison of E@8), (40), and

F o(S34,t00)— Fg(l)(534,t24, Uz3)
5

(41) with Egs. (16), (22), and (26), respectively that these
results are very similar to those obtained for the spin-0 case.
They each contain the extra factB{p) which arises from
the magnetic moment part of the electromagnetic coupling. A2)
The scalar amplitudes of the spin-0 cases are replaced by a Fa(S34:t19 = F 4 7' (Sza:t13,U10)
sum over terms involving the scalar amplitudes, which 5
are functions of the same variablesfastimes a momentum = _

independent matrix factdy, . Because of the Dirac structure, Fa(Seataa) le CpaF s(Saa,Una).

=F (S34,t24) — le CpaF p(S34,U23),
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Fo(S12,t20 = F2¥ (512,24, U19) S1o togt Uys=4m?+ 2k- pg# 4m?
5 in general. Thus these2(234 cannot be simply replaced
=F (S12,t24) _1321 CgaF p(S12,U14), by theF(s,t) of pp elastic scattering as defined in E§7).

The functions are not identically defined. To make such a
A4) replacement will result in the radiative amplitude having im-
Fa(S12,129) = F " (S12,t13,U23) proper symmetry properties. As in the spin-0 case, however,
5 one can calculate the error introduced by such a replacement.
= _ Again the naive estimate of the error is too pessimistic, due
FalSi2:t29 521 CoaFp(S12:U29) (43) to cancellation, and the actual error is only@fk).
While attempting to antisymmetrize thesTTs amplitude
The various Lorentz variables in these definitions do not satwe find another difficulty, just as we did in the spin-0 case.
isfy the same internal constraints as do thg,u of  After replacing p4«—p# in the unsymmetrized version of
FA(s,t)—for example, inFA®)(s,,t,4,U14) We have that  TuTTs and applying the Fierz manipulation we find

5

5
PaptRu(Ps) (P2~ Pag)

M3-i=e ca(F't u T[ BB k

" ngl 321 pal Foltia:Uzallls P4k (P2—pa)-k

t,UoUgteuy
P1utRu(P)  (P1—P3)u
p1-K (P1—P3)-k

P2yt Ru(P2) _ (P2—Pa),
p2-k (P2—pa)-k

, — P3ut Ru(Ps)
u;+ Fp(t24aU14)U4taU2lT3[%

—F j(t24,Up3) Ust U U5t

_ (P1=P3)u
(P1—P3)-k

uzu_gtaul) . (44)

t*u; — F(t13,Uzg) Ugt,

The full antisymmetrized amplitude is then obtained by subwe have used as input the recent analysis of the Nijmegen
tracting this from the amplitude obtained from E(®8) and  group, Refs[22—-24. The relationship between these phase
(41). The factorsR(p) involving the magnetic moments shifts and the invariant functiorié’;(s,t) is straightforward
cause no problem. They can be separated, along with thsut rather algebraically involved, and is set down explicitly
pi/k- p; pieces, from thé=!, which can then be put in a form in Ref.[25]. In order to investigate the work of Liou, Tim-
analogous to Eq37). The (p;—p;)*/k-(p;—p;) terms mix  mermans, and Gibsofl3] we have inserted thesléﬁ in
up the momenta however, just as for the spin-O case anglace of the unsymmetrized functiofs, in the soft photon
prevent the radiative amplitudes from being put into theamplitudes of Eqs(39), (40), and(41). As shown above this
original form given in Eqs(38) and (41), except with the  will give rise to the correctly antisymmetrized radiative am-
antisymmetrizedr, . Thus it is impossible to express the plitude only for the Low-6,t) case of Eq(39).
TuTTts amplitude purely in terms of the antisymmetrized In Fig. 3 we have shown the differential spectrum
FA functions which are the measurable quantities. The amd®a/dQ3d(,d6, as a function of the laboratory frame pho-
plitudes TTTs and TUTTS could be correctly antisymme- ton angledy for one of the kinematic choices studied by the
trized by computingVl ,— M ,(p3<p,) directly in terms of ~ Harvardpp bremsstrahlung experiment of Rg26]—that is,
the unsymmetrized functions (s,t). As stated previously with beam kinetic energy of 157 MeV, with final state pro-
however, the= ,(s,t) cannot be derived fromp elastic scat- tons detected at 10° on either side of the beamline direction,
tering data alone. Thus we would lose the direct connectioand with all particles coplanar. Shown are the Lost) and
between a process and its radiative counterpart which giveBuTTs soft photon calculations using the Nijmegen phase
the soft photon theorem its utility. Alternatively, one could shift data set as input. From the symmetry of this experimen-
modify the original WTTs amplitude by changing the terms tal setup it is clear that the photon angular spectrum must be
added to give gauge invariance, just as was discussed for tigmmetric under reflection about the beamline axis. This is
spin-0 case. the case for the Lows(t) spectrum, while the TTTS spec-
From Ref.[13] we see that Liotet al. seem to have used trum does not have this symmetry property. Since the au-
the antisymmetrid:’j,(s,t) pp elastic functions directly in thors of Ref.[13] give their results only in the region
their unsymmetrized 3TTs and TUTTS amplitudes. Their re- 6,=0°—180° this cannot be checked directly from their
sults cannot have the correct symmetry properties, and agajeper. We obtain results shown in Fig. 3 which agree very
the error will be of O(k) for the TsTTs amplitude and of well with their results for that range @, but are not mirror
O(k/k) for the TUTTS. symmetric aboutd,=180°, which they should be. This is
We shall now illustrate these ideas with some numericconsistent with an error in the antisymmetrization of the
results for thepp bremsstrahlung soft photon spectrum. Low TUTTS amplitude.
energy proton-proton elastic scattering data are usually pa- Due to the phase space problem described in Sec. Il we
rameterized in terms of a phase shift fit. For our calculationsannot present a result for thesTirs amplitude without ex-
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ton spectrum are uniquely predicted. The authors of [Hé&l.

1.00 ‘ : suggest that this large discrepancy is evidence that the
TuTTts amplitude should be preferred over theTTs ampli-
< tude for calculations of identical particle scattering. An alter-
Ng) 0.75 native explanation might be that this large discrepancy is
g simply a reflection of the fact that the elastic amplitudes,
3 which are required far outside the physical region, were ex-
.~ 0.50 - trapolated in some unphysical way.
<
% /\ VI. CONCLUSIONS
P N We have seen that problems arise in the practical applica-
© \\ tion of certain soft photon amplitudes to two-body brems-
‘ strahlung processes, in particular fp bremsstrahlung.
0.00 ; o Jo @0 240 300 sep  Sincethe variables, t, andu of radiative phase space satisfy

6 (deg) the same constraints as the Mandelstam variablés and

’ u of the corresponding nonradiative process we find that the
usual Low formulation of the approximation, which ex-

_ presses all elastic amplitudes at a single point in terms of
tion for pp bremsstrahiung for the casel=157 MeV, ihage variables, is unaffected by the phase space problem and
03=04=10°. The Low-,1) soft photon amplitude is shown by the e~ 5 ntisymmetrization problem. In contrast, neither the

dashed line. Both are computed using the most recent NijmegemTwo-u-Two-t-speciaI” (TUTTS) nor the “Two-s-Two-t-
phase shift data set. The spectra should exhibit mirror symmetry in . . .

6, about the poin¥,= 180°, since the protons are emitted at equal Zﬁ?g'aan(]ztS:T;)j amﬁgtgg? Su?tggst.en dtgr]ml:\)s(%f:aghzar%:aes r
angles on either side of the beam direction. The Levt)(result is bII y | lzed w I'I d IA%;\./_I III hesT litud u
symmetric, but the UTTs result is clearly not. This is in agreement ablepp elastic amp itude. itionally thesl'Ts amplitude

with our work of Sec. V. was found to be incalculable unless one makes a model-

dependent extrapolation of thEp elastic amplitude outside
trapolating the functioﬂFﬁ far outside of the physical region of its physical, on-shell region. We conclude that theTTs
of nonradiative phase space. In terms of the phase shift?nd [STTS soft photon amplitudes, aqd th_ose ot_her alterna-
which are parameterized by center-of-mass frame mome ive forms for t.he soft photonl approxmaﬂon W.hICh rely on
tum and seattering anglé this would correspond to Taylor expansions about radiative variable pairs other than
evaluating the nonradiativg'g'r,nplitude for 6ps.< 1. The (s,t) and share th(_a same problems, are not suitable for the
authors of Ref[13] do present results for thesTTs ampli- soft photon analysis of proton-proton bremsstrahlung.
tude. These spectra differ by large factors from other soft
photon calculations, from potential model calculations, and
from experimental data. This difference appears in spite of This work was supported in part by a grant from the Natu-
the well known result that the leading two orders of the pho+al Sciences and Engineering Research Council of Canada.

FIG. 3. The solid line shows theull'Ts soft photon approxima-
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