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Effective meson-exchange potentials in the SU6 quark model for NN and YN interactions
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We investigate characteristic properties of effective meson-exchange potentials to achieve a simultaneous
description of the nucleon-nucleon (NN) and hyperon-nucleon (YN) interactions in the (3q)-(3q) resonating-
group formulation of the spin-flavor SU6 quark model. The quark Hamiltonian includes a phenomenological
confinement potential ofr 2 type, the full Fermi-Breit interaction with explicit quark-mass dependence, and the
central, spin-spin, and tensor components of the meson-exchange potentials generated from the scalar and
pseudoscalar meson nonet exchanges. A small number of parameters are determined to fit theS- and
P-waveNN phase shifts and the low-energy cross-section data forYN scattering. Satisfactory agreement with
experiment is obtained, including theNN phase shifts up toJ54 partial waves, the deuteron properties, the
effective-range parameters, and the total and differential cross sections of theLN andSN systems. In the
intermediate-energy region withplab> 400–500 MeV/c, some discrepancies from the one-boson exchange
potentials, such as the Nijmegen and Ju¨lich models, are found for theYN scattering observables. In particular,
the total nuclear cross sections ofS1p elastic scattering show a smooth decreasing behavior in this energy
region. In Lp elastic total cross sections, the cusp structure appearing at theSN threshold through the
one-pion tensor force is influenced by the antisymmetricLS(2) force generated from the Fermi-Breit interac-
tion. @S0556-2813~96!01111-9#

PACS number~s!: 13.75.Cs, 12.39.Jh, 13.75.Ev, 24.85.1p
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I. INTRODUCTION

In spite of its basic importance in the study of hypernuc
and strangeness physics@1#, the hyperon-nucleon (YN) in-
teraction is not well known, in contrast with the nucleo
nucleon (NN) interaction. In the light of quantum chromo
dynamics~QCD!, theNN andYN interactions both originate
from rather complicated nonperturbative dynamics of qua
and gluons. Nevertheless the difference betweenYN and
NN interactions has its origin merely in the differences of t
flavor degree of freedom. Since the hyperon and the nucl
belong to the same class of the spin-flavor SU6 supermulti-
plet 56 @2#, one can anticipate that quark models can affor
possible framework to understand theYN interaction on the
same basis as theNN interaction.

The composite nature of the nucleon and hyperon is ta
into account most straightforwardly in the resonating-gro
method~RGM!. In the simplest RGM formulation@3# for the
NN interaction, the nucleon is assumed to be a (3q) cluster
described by a product of (0s)3 harmonic oscillator wave
functions, the symmetric SU4 spin-isospin wave function,
and the antisymmetric color-singlet wave function. T
relative-motion function between the (3q) clusters is deter-
mined by solving the integrodifferential equation~RGM
equation! which incorporates the nonlocal quark-exchan
kernel generated by the effect of antisymmetrization w
respect to all six quarks. The Hamiltonian is composed of
nonrelativistic kinetic-energy term and the effective qua
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quark (qq) interaction, which is usually built by combining a
phenomenological quark-confining potential with a one
gluon exchange potential through the color analog of t
Fermi-Breit~FB! interaction. Besides the quark confinemen
mesonic effects are most important among the nonpertur
tive aspects of QCD. It is therefore natural that the applic
tion of this framework to theNN system does not give any
medium-range attraction@4#. Since the long-range terms of
the interaction are particularly dominated by meso
exchange effects, any RGM description in the simple (3q)-
(3q) model must comprise effective meson-exchange pote
tials ~EMEP! introduced by some appropriate means.

The first realistic quark-model~QM! study of theNN in-
teraction was carried out by supplementing the we
established one-pion exchange potential~OPEP! and phe-
nomenological medium-range potentials of the central a
tensor types in the Schro¨dinger-type equation equivalent to
the RGM equation@5#. The most successful calculation o
the NN interaction in this kind of approach is the one b
Takeuchi, Shimizu, and Yazaki@6#, in which the spin-spin
and noncentral terms of the OPEP are introduced by assu
ing that the pions directly couple with quarks in the quar
core. An alternative approach is to assume OPEP betwe
quarks in the RGM formalism and to calculate the quar
exchange kernel explicitly@7#. This program was carried out
by the Tübingen group in@8,9#. Their approach includes a
pseudoscalar~PS! meson exchange between quarks as w
as a phenomenologicals-like potential at the baryon level. A
complete microscopic calculation incorporating both PS- a
s-meson exchange potentials acting between quarks has
cently been undertaken by the Salamanca group@10,11# for
theNN interaction and by the Beijing group for theYN and
NN interaction@12–14#.
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In the microscopic approach of the EMEP, two point
have to be clarified:~i! What kind of difference does the
EMEP produce depending on whether it is calculated at t
quark levelor at thebaryon level? ~ii ! What is the minimum
set of mesons indispensably needed ? An advantage of in
ducing the EMEP at the quark level lies in the stringen
relationship of the flavor dependence on variousNN or YN
channels, as well as of the relative strength between the
rect and exchange terms in the RGM treatment. This featu
is particularly important when one attempts to describe t
NN andYN interactions in a single framework and to mini
mize the ambiguity of theYN interaction by utilizing the rich
knowledge of theNN interaction. The utility of introducing
the EMEP must, however, be examined by careful analy
against experiment. In a recent Physical Review Letter@15#,
we have proposed a possible framework to introduce t
EMEP for a simultaneous description of theNN and YN
interactions, and have shown some of the main results. H
we will detail this model and its slightly extended versio
and show more comprehensive results.

In our recent QM study of theNN andYN interactions
@16#, we have carried out a detailed analysis of the medium
range central attraction required for a simultaneous descr
tion of theNN, LN, andSN interactions. It is found that the
YN systems should have much weaker attraction than t
NN system and that the needed EMEP which leads to th
feature is conveniently generated from the scalar- (S-! meson
nonet exchange in the Nijmegen model-F potential@17#. Fur-
thermore, we have shown that, with only two adjustable p
rameters determined in theNN sector, the model-F meson
parameters incorporated into our QM can yield a reasona
reproduction of all the low-energy cross section data of th
YN systems@18,19#. This model called RGM-F introduces
besides theS-meson nonet only the tensor component ge
erated from thep- andK-meson exchanges, and uses som
approximations in evaluating the spin-flavor factors of th
quark-exchange RGM kernel. Since the major part of th
vector-meson exchange potential is short-ranged and co
possibly be considered as an alternative description to
quark-exchange mechanism, no vector-meson exchange
invoked in accordance with the discussion given in@20#.
This assumption seems to be plausible in view of the findin
that theNN andYN spin-orbit force generated from the FB
interaction already has an appropriate strength to reprodu
the empirical behavior of the3O phase shifts@21#. One of
the unsatisfactory points in RGM-F is, however, that th
strength of the EMEP has to be chosen differently dependi
on the spin-flavor exchange symmetry of the two-baryo
system. Another problem is that the threshold energy of t
SN channel is not reproduced well in the
LN2SN(I51/2) coupled-channel system. As we will se
in this paper, the correct reproduction of the threshold ener
is essential for a quantitative description of the coupling fe
tures, particularly, the coupling through the antisymmetr
spin-orbit (LS(2)) force.

In this study we upgrade the EMEP of the RGM-F@18,19#
in two respects. One is to calculate the spin-flavor facto
exactly at the quark level, and the other is to include th
spin-spin terms originating from all the PS mesons. We sho
that it is possible to reproduce the availableNN andYN data
simultaneously in the standard (3q)-(3q) formulation, if one
s
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assumes the full PS- and S-meson nonet exchanges at
quark level and properly introduces the flavor symmetr
breaking in the quark sector. An explicit evaluation of quark
exchange kernels for the EMEP sets a strong constraint
characterizing the flavor dependence of eachNN and YN
channel. The SU3 relation of the coupling constants emerge
as a natural consequence of the SU6 quark model. For scalar
mesons, one of the SU3 parameters, theF/(F1D) ratio,
turns out to take the SU6 value of purely electric type. This
is not always convenient for the detailed reproduction of th
existing experimental data for the low-energyYN cross sec-
tions. We will avoid this situation in two ways; one is to
change the mixing angle of the flavor-singlet and octet scal
mesons, and the other is to employ the same approximati
as RGM-F solely for the isoscalar S-mesons,e andS* . We
call these models FSS and RGM-H, respectively. Since pr
dictions of these two models are not much different exce
for the roles of theLS(2) force in theLN2SN(I51/2)
coupled-channel system, we will discuss mainly the result b
FSS in this paper. The main difference of the three mode
RGM-F, FSS, and RGM-H, is summarized in Table I.

In the next section we will formulate the (3q)-(3q) RGM
incorporating the EMEP at the quark level. Special attentio
is paid to the evaluation of the spin-flavor factors of th
meson-exchange potentials. This serves to clarify the diffe
ence between the previous model RGM-F and the two mo
els, FSS and RGM-H. Some simple spin-flavor factors a
given in the Appendix. Section III deals with results and
discussions. We first discuss the procedure of the parame
search employed in FSS and RGM-H in Sec. III A. The re
sultant meson parameters are compared with one of the st
dard one-boson exchange potential~OBEP! models for the
NN and YN interactions. Section III B discusses theNN
phase-shift behavior with respect to FSS. The deuteron pro
erties and the effective-range parameters of theNN system
are discussed in Sec. III C. Sections III D and III E deal with
the phase-shift behavior of theS1p andLN2SN(I51/2)
systems, respectively. TheYN cross sections in the low- and
intermediate-energy region are discussed in Sec. III F. T
final section is devoted to a summary.

II. FORMULATION

A. „3q…-„3q… RGM

The RGM wave function for the (3q)-(3q) system can be
expressed as

C5(
a
A8$faxa~R!%, ~2.1!

TABLE I. The interaction types and mesons employed in eac
model. RGM-H deals withe andS* mesons in an approximate way
as in RGM-F.

Model Interaction type Mesons

RGM-F S central e, S* , d, k
PS tensor p, K

S central e, S* , d, k
FSS, RGM-H PS spin-spin h8, h, p, K

PS tensor h8, h, p, K
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where the channel wave functionfa5f (orb)ja
SFjC is com-

posed of the orbital part of the internal wave functio
f (orb)5f (orb)(123)f (orb)(456), the isospin-coupled basi
ja
SF of the spin-flavor SU6 wave functions, and the color-
singlet wave functionjC5C(123)C(456). Forf (orb)(123)
we adopt a simple (0s)3 configuration with a common har-
monic oscillator constantb. The center-of-mass~c.m.! mo-
tion is eliminated with the use of the usual definition of th
c.m. coordinateXG5(x11x21x3)/3. Namely, the orbital
functions for the (3q) clusters are assumed to be flavor in
dependent and are taken to be the same for all the o
baryons. The isospin-coupled basisja

SF incorporates the gen-
eralized Pauli principle, (21)L1SP51, with respect to the
eigenvalue P of the flavor-exchange operato
P0
F5P14

F P25
F P36

F namely,

P0
Fja

SF5Pja
SF, ~2.2!

where the subscripta specifies a set of quantum numbers o
the channel wave function,a5@1/2(11)a1 ,1/2(11)a2#
SSzY IIz ;P. Here 1/2(11)a denotes the spin, the SU3 quan-
tum number in the Elliott notation (lm), and the flavor label
YI of the octet baryons, respectively. For exampl
YI51(1/2) for N, 00 for L, and 01 forS. The explicit
expression ofja

SF is given in Eqs.~2.5! – ~2.8! of @16#. The
antisymmetrization operatorA8 in Eq. ~2.1! makesC totally
antisymmetric under the exchange of any quark pairs and
be reduced to the formA8→(1/2)(129P36)(12P0) with
P05P14P25P36 being the core-exchange operator of the tw
(3q) clusters.
n
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The QM Hamiltonian consists of the nonrelativistic
kinetic-energy term, the quadratic confinement potential, t
full FB interaction with explicit quark-mass dependence, an
the S- and PS-meson exchange potentials acting betw
quarks:

H5(
i51

6 Smi1
pi
2

2mi
D 1(

i, j

6 SUi j
Cf1Ui j

FB1(
b

Ui j
Sb

1(
b

Ui j
PSbD . ~2.3!

HereUi j
Cf52(l i

C
•l j

C)acr
2 with r5uru5uxi2xj u is the con-

finement potential of quadratic power law, which is know
to give a vanishing contribution to the interaction in th
present formalism. Theqq FB interactionUi j

FB is composed
of the following pieces:

Ui j
FB5Ui j

CC1Ui j
MC1Ui j

GC1Ui j
sLS1Ui j

aLS1Ui j
T , ~2.4!

where the superscript CC stands for the color-Coulombic
(l i

C
•l j

C)/r piece, MC for the momentum-dependent Bre
retardation term or (l i

C
•l j

C)$(pi•pj )1r(r•pi)•pj /r
2%/

(mimjr ) piece, GC for the combined color-d and color-
magnetic or (l i

C
•l j

C) $1/(2mi
2)11/(2mj

2)12/(3mimj )
3(si•sj )%d(r) piece,~sLS! for the symmetricLS, ~aLS! for
the antisymmetricLS, and~T! for the tensor term. For the S-
and PS-meson exchange potentials, we adopt the lowe
order central, spin-spin, and tensor terms originating fro
the flavor-singlet and octet mesons labeledb:
in

tion
change,
Ui j
Sb52wi j

SbmbY~x!, Ui j
PSb5wi j

PSbS mb

mp1
D 2mb

3 H ~si•sj !FY~x!2cd

4p

mb
3 d~r!G1S12FZ~x!2

4p

mb
3 d~r!G J , ~2.5!

wherewi j
Sb andwi j

PSb are appropriate flavor operators andcd is a reduction factor, both of which will be discussed in detail
the next subsection. Furthermore,Y(x)5e2x/x, Z(x)5(113/x13/x2)Y(x) with x5mburu, and S1253 (si• r̂ )(sj• r̂ )
2(si•sj ) is the tensor operator.

The RGM equation is derived from the variational principle

^dCuE2HuC&50, ~2.6!

with respect to the relative wave functionxa(R) of Eq. ~2.1!. The standard procedure yields

F«a1
\2

2ma
S ]

]RD 22(
b

VaD
~CN!b~R!2(

b
VaD

~SS!b~R!2(
b

VaD
~TN!b~R!S12Gxa~R!

5(
a8

E dR8F(
V
Maa8

~V!
~R,R8!2«aMaa8

N
~R,R8!Gxa8~R8!, ~2.7!

whereS12 is now the tensor operator at the baryon level. The relative energy«a in the channela is defined by subtracting the
internal energies of the clusters from the total energyE. The quark-exchange kernelsMaa8

(V) (R,R8) on the right-hand side of
Eq. ~2.7! include a sum overV5K for the kinetic-energy term, CC, MC, GC, sLS, aLS, T for each piece of the FB interac
in Eq. ~2.4!, as well as CN for the central term of the S-meson exchange, SS for the spin-spin term of the PS-meson ex
and TN for the tensor term of the PS-meson exchange corresponding to Eq.~2.5!. The direct potentialsVaD

(V)b(R) of Eq. ~2.7!
are given by
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VaD
~CN!b~R!52~X0D1

~CN!b!aambYa0
~x!, VaD

~SS!b~R!5~X0D1

~SS!b!aaS mb

mp1
D 2mb

3
@Ya0

~x!2cd Da0
~x!#,

VaD
~TN!b~R!5~X0D1

~TN!b!aaS mb

mp1
D 2mb

3
@Za0

~x!2Da0
~x!#, ~2.8!

whereYa0
(x), Za0

(x), andDa0
(x) with x5mbuRu anda05(mbb)

2/3 are the standard OBEP functions with a Gaussian for

factor F(q2)5exp$2(bq)2/6%, and their forms are given in Eq.~A2! of @18#. The spin-flavor-color factors (X0D1

(V)b)aa in Eq.

~2.8! are defined through more generaln-quark-exchange factors depending ona-a8 channels:

H XnT
~CN!b

XnT
~SS!b J

aa8

5Cn^znjau (
~ i , j !PT H wi j

Sb

wi j
PSb~si•sj !J uja8&,

~XnT
~TN!b!aa85Cn^znjai (

~ i , j !PT
wi j
PSb@si3sj #

~2!ija8&^1i@sB1
3sB2

#~2!i1&21. ~2.9!
y
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Here ja5ja
SFjC, sB is the baryon spin operator, and

C051,C1529, z051, andz15P36
SFP36

C come fromA8. The
subscriptT specifies five different interaction types,E, S,
S8, D1 , andD2 @22,23#. The internal-energy factor with
T5E and the direct-potential factor withT5D1 are only
possible for the direct term withn50.

In Eq. ~2.3!, we should note that the total kinetic-energ
operator is not subtracted from the full Hamiltonian. This i
purposely done since Galilean invariance is not respected
our formalism. The appearance of the Galilean noninvaria
terms like the momentum-dependent retardation termUi j

MC is
a direct consequence of the more strict Lorentz invariance
the relativistic level, and their RGM kernel should be explic
itly evaluated in the total c.m. system@16#. Even if one in-
cludes theUi j

MC term and takes account of its contribution to
the relative kinetic-energy term, the calculated reduced ma
of theSN system is degenerate with that of theLN system.
This is one of the limitations of the nonrelativistic quark
model, in which the inertia masses~of S and L in the
present case! are not always reproduced correctly. In order t
use the correct reduced masses in the coupled RGM eq
tion, we make the following replacement only for the ex
change kernelsMaa8

(K) (R,R8) andMaa8
(MC)(R,R8) @19#:

Maa8
~V!

~R,R8!→M̃aa8
~V!

~R,R8!5A mama8

ma
exptma8

exptMaa8
~V!

~R,R8!

for V5K and MC. ~2.10!

This prescription does not spoil the Pauli principle in th
single-channel system likeNN andS1p @16#. In theLN-
SN(I51/2) coupled-channel system, this procedure caus
only a slight inaccuracy with respect to the treatment of th
Pauli principle except for the1S0 state, in which a complete
Pauli-forbidden state with (0s)6 configuration exists in the
spin-flavor SU6 coupling 1/2~11! 3 1/2 ~11! → 0 (11)s .
The treatment in this case is carefully spelled out in@19#.
With this procedure we can employ the empirical reduce
mass without impairing the major part of the Pauli principle
s
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thus avoiding the kinematical ambiguity which influences th
subtle features of theLN2SN coupling.

Another nice property of the present RGM formalism
that the internal-energy contribution is already subtracted
the exchange kernel. Namely,Maa8

(V) (R,R8) for the central
componentsV5K, CC, MC, GC, CN, and SS is defined
through its corresponding original exchange kern
Maa8

(V)exch(R,R8):

Maa8
~V!

~R,R8!5Maa8
~V!exch

~R,R8!

2~Ea1
~V!1Ea2

~V!!Maa8
N

~R,R8!, ~2.11!

whereEa
(V) denotes theV-term contribution to the internal

energy of the octet baryon specified by the flavor labela.
Owing to this subtraction, the mass term of the kineti
energy operator in Eq.~2.3! as well as the confinement po
tential withV5Cf exactly cancels out between the first an
the second terms on the right-hand side of Eq.~2.11!. We
consider this feature one of the advantages of the RGM f
malism, because the present quark model is independen
the strength of the confinement potential and is insensitive
the details of the confinement phenomenology.

The scattering matrixSaa8 is calculated by solving the
coupled-channel RGM equation of Eq.~2.7! by a variational
technique developed by Kamimura@24#. It can be expressed
as

Saa85haa8e
2idaa8, ~2.12!

wherehaa85uSaa8u are the reflection and transmission co
efficients fora5a8 andaÞa8, respectively. The Coulomb
force is entirely neglected in theLN2SN(I51/2) coupled-
channel system when theLp channel is an incident channel
The scattering amplitudes in the particle basis are then giv
by
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^LpuM uLp&5^LNuM ~ I5 1
2 !uLN&,

^S0puM uLp&52
1

A3
^SNuM ~ I5 1

2 !uLN&,

^S1nuM uLp&5A2

3
^SNuM ~ I5 1

2 !uLN&. ~2.13!

If the S2p channel is an incident channel, we include th
Coulomb attraction in theSN(I51/2) and SN(I53/2)
channels separately by neglecting the isospin symme
breaking. Namely, we first calculate the scattering matric
of theSN(I51/2)2LN andSN(I53/2) systems by assum-
ing the Coulomb attraction for theS2p system. The scatter-
ing amplitudes fromS2p to S2p, S0n, andLn channels
are then generated by employing the isospin relations:

^S2puM uS2p&5
1

3
$^SNuM ~ I5 3

2 !uSN&

12^SNuM ~ I5 1
2 !uSN&%,

^S0nuM uS2p&5
A2
3

$^SNuM ~ I5 3
2 !uSN&

2^SNuM ~ I5 1
2 !uSN&%,

^LnuM uS2p&52A2

3
^LNuM ~ I5 1

2 !uSN&. ~2.14!

The spin-flavor-color factors of the exchange Coulomb ke
nel are explicitly calculated only for thepp system and they
are given in the Appendix. For the other systems they a
assumed to be proportional to the factors of the exchan
normalization kernel, as in Eq.~A9! of @18#. In this approxi-
mate treatment of the Coulomb force, at most four chann
specified by2S11LJ couple for a given total angular momen
tum J and parity. The 1LJ and 3LJ partial waves with
J5L couple to each other by the antisymmetricLS(2) force,
and its coupling is incorporated in theYN systems.

B. Effective meson-exchange potentials

The flavor operatorswi j
Sb andwi j

PSb in Eq. ~2.5! are gen-
erated from the SU3-scalar combination of the extende
Gell-Mann matrix, l (00)521/A6 and l (11)a
5(1/2)$l1,l2, . . . ,l8%:

wi j
~ll!54 f 0

2(
a

l~ll!a
† ~ i !l~ll!a~ j !

5 f 0
2H 2/3

~l i•l j !
for ~ll!5H ~00!,

~11!.
~2.15!

Here (l i•l j )5(c51
8 l i

cl j
c is the Casimir operator in the

usual notation. The flavor indexb is assigned to the SU3
label (ll)5(00) or ~11! corresponding to the flavor-single
or octet meson. The spin-flavor-color factors,XnT

(V)(00) and
XnT
(V)(11) (V5CN, SS, and TN!, defined through Eq.~2.9! are
e

try
es

r-

re
ge

els
-

d

t

easily calculated by using the properties of the exchange o
erators in the spin and flavor SU3 spaces, and are expresse
by the SU6 unit vectors,e(ll)

e ande(ll)
m , for the SU6 cou-

pling @3#3@214#→@415#;@3#. ~See@25,26# for the operator
representation technique of the spin-flavor factors.! TheD1

factors for the direct term withn50 are particularly simple
since one only needs to replace the quark operatorl (ll)( i )
in Eq. ~2.15! with the SU6 unit vectors (1/6)e(ll)

e and
(1/6)e(ll)

m of each (3q) cluster, corresponding to the spin-
involved and noninvolved cases, respectively:

X0D1

~CN!~ll!5 f 0
2e~ll!

e† e~ll!
e , X0D1

~TN!~ll!5 f 0
2e~ll!

m† e~ll!
m ,

~2.16!

where a simplified notation,

e~ll!
t† e~ll!

t [(ae~ll!a
t† ~B1!e~ll!a

t ~B2! ~t5e or m!,

is employed. From Eq.~2.16! one can immediately see that
the SU3 relations are naturally incorporated in the prese
formalism. The tensor and spin-spin factors withn50 are
related to each other by

X0D1

~SS!b5X0D1

~TN!b~sB1
•sB2

!. ~2.17!

This implies that we only need to calculate spin-flavor-colo
factors of the tensor term for PS mesons as far as the dir
term is concerned. Equation~A1! of the Appendix lists the
spin-flavor-color factors for the choice ofwi j

(00)51 and
wi j
(11)5(l i•l j ), where the trivial numerical factors (2/3)f 0

2

and f 0
2 of Eq. ~2.15! are omitted.

In the SU3 approximation of the EMEP the coupling con-
stant f 0 at the quark level is chosen for each of the fou
combinations; S-meson singlet and octet, and PS-meson s
glet and octet. These coupling constants are most transp
ently expressed in terms of the SU3 coupling constants at the
baryon level, f 1

S, f 8
S, f 1

PS, and f 8
PS, which appear in the

vertex Lagrangian functions for the baryon-baryon-meso
couplings. The spin-flavor-color factors of Eq.~2.16! for the
direct terms are factorized into the desired form by taking th
matrix elements of the SU6 unit vectors with respect to the
flavor wave functions of the octet baryons. By employin
e(00)
e 52A6, e(00)

m 52A2/3, and the SU3 standard matrix el-
ementseNNd

e 51, eNNp
m 55/3 ~see Table I of@25#!, we easily

find that

~ f 0!
S~00!5

1

A6
f 1
S, ~ f 0!

S~11!5 f 8
S,

~ f 0!
PS~00!5A3

2
f 1
PS, ~ f 0!

PS~11!5
3

5
f 8
PS. ~2.18!

We also introduce the singlet-octet meson mixing for th
isoscalar mesons. As is discussed in@16#, this process is
essential to reproduce the necessary flavor dependence of
central attraction generated from thee-meson exchange po-
tentials forNN andYN channels. We introduce this mixing
in Eq. ~2.15! by employing a simple rotation
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l~00!→l~00!cosu2l~11!000sinu,

l~11!000→l~00!sinu1l~11!000cosu. ~2.19!

One needs to introduce two mixing angles,uS anduPS, for S
and PS mesons, respectively. Furthermore, we decomp
nonisoscalar components ofwi j

(11) in Eq. ~2.15! into isovector
(I51) and I51/2 components, since the isovector meso
and the strange mesons usually have different masses. W
all these relations, the flavor operatorswi j

Sb andwi j
PSb in Eq.

~2.5! are assumed to be

wi j
e 5S 13 f 1ScosuS1 f 8

SsinuSl i
8D

3S 13 f 1ScosuS1 f 8
SsinuSl j

8D ,
wi j
S*5S 2

1

3
f 1
SsinuS1 f 8

ScosuSl i
8D

3S 2
1

3
f 1
SsinuS1 f 8

ScosuSl j
8D ,

wi j
d 5~ f 8

S!2(
c51

3

l i
cl j

c , wi j
k 5~ f 8

S!2(
c54

7

l i
cl j

c ~2.20!

for S mesons and

wi j
h85S f 1PScosuPS1 3

5
f 8
PSsinuPSl i

8D
3S f 1PScosuPS1 3

5
f 8
PSsinuPSl j

8D ,
wi j

h 5S 2 f 1
PSsinuPS1

3

5
f 8
PScosuPSl i

8D
3S 2 f 1

PSsinuPS1
3

5
f 8
PScosuPSl j

8D ,

wi j
p5S 35 f 8PSD

2

(
c51

3

l i
cl j

c , wi j
K5S 35 f 8PSD

2

(
c54

7

l i
cl j

c ,

~2.21!

for PS mesons. The isoscalar spin-flavor factors in Eq.~2.8!
are given by
ose

ns
ith

X0D1

~CN!e5~ f 1
ScosuS1 f 8

SsinuSe~11!000
e† !

3~ f 1
ScosuS1 f 8

SsinuSe~11!000
e !,

X0D1

~TN!h85S f 1PScosuPS1 3

5
f 8
PSsinuPSe~11!000

m† D
3S f 1PScosuPS1 3

5
f 8
PSsinuPSe~11!000

m D . ~2.22!

The factor forX0D1

(CN)S* ~ X0D1

(TN)h ! is obtained by replacing

uS ~ uPS! with uS2p/2 ~ uPS2p/2) in the above expres-
sions. Those for the isovector andI51/2 mesons are ob-
tained by the corresponding partial sum overa of e(11)a

t in
Eq. ~2.16!.

We here remark on the characteristic features of th
EMEP in the present model. In RGM-F@18,19# we first as-
sumed pure flavor-singlet mesons to avoid the calculation o
the spin-flavor-color factors, and then introduced the explici
flavor dependence of the Nijmegen model-F potential for the
products of the coupling constants. This procedure is pos
sible because the direct potentials of Eq.~2.8! have the same
structure as the standard OBEP with Gaussian form factors
X0D1

(V)b are replaced with the products of baryon-meson cou

pling constants. The result of Eqs.~2.16! and ~2.22! implies
that a similar correspondence to the OBEP models is sti
possible even if we start from an original flavor-dependen
qq interaction as in Eqs.~2.20! and ~2.21!. The parameters,
f 1
S, f 8

S, uS, and f 1
PS, f 8

PS, uPS, at the baryon level can be
used to specify the SU3 parameters of the originalqq inter-
action. We note that the present model has the short-rang
part arising from the exchange kernel. This short-range effec
of the EMEP is of purely microscopic origin, and is not
incorporated in OBEP models. Furthermore, another SU3

parameter,a5 f 8
F/( f 8

D1 f 8
F), is no longer a free parameter in

the present framework, but takes the pure SU6 values,
a51 ~for S mesons! anda52/5 ~for PS mesons!, as is seen
from Eq. ~2.16! with (ll)5(11). Namely, thee(11)

e† e(11)
e de-

pendence inX0D1

(CN)(11) implies pure electric-type coupling for

the scalar mesons, whilee(11)
m† e(11)

m in X0D1

(SS)(11) andX0D1

(TN)(11)

implies pure magnetic-type coupling for the PS mesons. A
we will see in the next section, this turns out to be a rathe
severe restriction of the SU6 quark model.

Another essential difference between RGM-F and the
present improved models lies in the internal energy contri
bution from the EMEP. In RGM-F the approximation for the
products of the coupling constants is made after the interna
energy subtraction of Eq.~2.11! is carried out. Thus theL
and S mass difference,DEL2S

M 5ES
M2EL

M , has vanishing
contribution from the EMEP. On the other hand, the value o
DEL2S

M can be calculated by usingX0E
(CN)b andX0E

(SS)b in the
present framework. The contribution of the EMEP to
DEL2S

M is divided between the S-meson and PS-meson part
DEL2S

M 5DEL2S
CN 1DEL2S

SS They are given by
DEL2S
CN 5~ f 8

S!2$24mdYa
E
d ~0!14mkYa

E
k~0!%,
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DEL2S
SS 5DWL2S

SS ~uPS!S mh8
mp1

D 2mh8
3

@Ya
E
h8~0!2cdDa

E
h8~0!#1DWL2S

SS ~uPS2p/2!S mh

mp1
D 2mh

3
@Ya

E
h~0!2cdDa

E
h~0!#

1S 35 f 8PSD
2H 28S mp

mp1
D 2mp

3
@Ya

E
p~0!2cdDa

E
p~0!#14S mK

mp1
D 2mK

3
@Ya

E
K~0!2cdDa

E
K~0!#J , ~2.23!

whereaE
b5(mbb)

2/2 andDWL2S
SS (u) is defined by

DWL2S
SS ~u!54 S 35 f 8PSD sinuSA3 f 1PScosu1

3

5
f 8
PSsinu D . ~2.24!
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Before discussing the contribution of the EMEP to th
L2S mass difference, we discuss the reduction factorcd
introduced in the spin-spin term of the PS-meson EMEP
@See Eq.~2.5!.# The d-function-type contact term is usually
ignored in OBEP for point nucleons by anad hocprocedure.
The inclusion of the term induces rather vigorous repulsiv
behavior in the short-range region of theNN interaction.
~See @7,27# for OPEP.! We includeh and h8 mesons to
make it possible to choose a unique set of the scalar-mes
coupling constants for the flavor-symmetric and antisymme
ric configurations of theNN andYN systems. The full in-
clusion of this term withcd51 strongly hinders the role of
h andh8 mesons, and makes it very difficult to find a simul
taneous fit to the S-wave andP-waveNN phase shifts. With-
out this term the pion gives a negative contribution to th
L2S mass difference@see Eq.~2.23!#, and the reproduction
of the SN threshold energy becomes very hard in th
LN2SN(I51/2) coupled-channel system. We therefore a
sume a single reduction factorcd around 0.3–0.4 common to
all theNN andYN channels.

Table II shows the contributions of the various terms t
theL2S mass difference for the models, RGM-F, FSS, an
RGM-H. The explicit parameter values of FSS and RGM-H
will be given in the next section, after the difference of th
models is clarified. We find that the mesonic contribution
are by no means small, and should be properly taken in
account in the RGM formalism. The pion does not make
dominant contribution partly because of the reduction fact
cd . There is a large cancellation among the contributions

TABLE II. Quark and meson contributions toL2S mass dif-
ference (DEL-S) in MeV for RGM-F, FSS, and RGM-H. The mass
ratio of strange to up-down quarks,l5(ms /mud)51.25, 1.526, and
1.490, are employed to calculate the quark contribution in RGM-
FSS, and RGM-H, respectively. See Table III for the other param
eters.

b RGM-F FSS RGM-H

Quark 39 67 43
d 0 2100 252
k 0 76 58
h8 2 213 28
h 2 15 13
p 2 25 15
K 2 7 8
Total 39 77 77
e

.

e

on
t-

-

e

e
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various mesons. As Eq.~2.23! shows, the isoscalar S meson
do not contribute toDEL2S

CN , while d and k contributions
largely cancel, as well ash andh8 contributions. The can-
cellation betweend andk becomes perfect whenmd5mk .
As a result, the pion contribution might be a good estima
for the total meson contribution. However, this is very sen
sitive to the particular values of parameters such asf 8

S,
mk , andmd . Since it is very important to reproduce the
correct threshold energy in theL2S(I51/2) coupled-
channel problem, we will make the parameter search und
the constraint that the correct mass differenc
DEL2S577.49 MeV is always reproduced.

So far we have discussed only the mass difference of t
octet baryons, but not their absolute values. The absolu
masses are not reliably calculated because they strongly
pend on the strength of the confinement potentialac . The
nucleon mass can be fitted withac595.61 MeV fm22 in
FSS, and then theL, S, andJ rest masses are calculated to
be 1158, 1236, and 1399 MeV, respectively. Although the
values are a little too large compared to the empirical one
the discrepancies do not affect the QM interaction since t
cluster internal energies are already subtracted. A simi
evaluation in RGM-H yieldsac556.82 MeV fm22, and
1103, 1180, and 1344 MeV for theL, S, andJ masses,
respectively.

We have also examined the EMEP contribution to theN
and D mass difference,DEN2D5ED2EN . Only the non-
strange mesons contribute to this quantity and thed contri-
bution is partly canceled with the additive PS-meson cont
butions. This cancellation is also very sensitive to th
particular values of the meson parameters, and ourDEN2D

values are generally too small; i.e.,DEN2D5 222 MeV in
FSS and 165 MeV in RGM-H compared with the empirica
value of 293 MeV. Since theD particle does not appear
explicitly in our framework, we have not attempted to fi
DEN2D in the present calculation.

III. RESULTS AND DISCUSSIONS

A. Determination of the parameters

In addition to four QM parameters,b, mud , aS, and
l5(ms /mud), we have to determine several meson param
eters includingf 1

S, f 8
S, uS, f 1

PS, f 8
PS, uPS, and the reduction

factor cd in the PS-meson spin-spin term. The range of th
QM parameters is largely constrained by properties of th
ground-state baryons; i.e., generally accepted values
b50.520.6 fm,mudc

253002400 MeV, andl&1.69. The

F,
-
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strength of the FB interactionaS usually becomes rather
large, aS5122, compared to the QCD coupling constan
When the meson contribution is not taken into account, t
N2D mass difference is usually used to determineaS

throughA2/paS(\/mudcb)
3mudc

25440 MeV. The value of
aS is determined from this equation in FSS. We hope that t
meson parameters do not deviate much from those of
standard OBEP. In particular we hope that the SU6 relation
of Eq. ~2.18!

f 1
S5A6 f 8S, f 1

PS5
A6
5
f 8
PS, ~3.1!

is not severely violated. One may use theNNp coupling
constant of the standard OBEP approach in order to de
mine f 8

PS. However, we need a careful consideration to fin
a relationship betweenf NNp and f 8

PS. The use of the Gauss-
ian form factor withb50.520.6 fm corresponds to a rathe
low cutoff mass of aboutA3/b;600 MeV, and brings about
a fairly large modification of the Yukawa tail of the direc
potentials of Eq.~2.8!, even in the asymptotic region. We
require that the direct potential for the pion exchange co
cides with the OPEP used in the hard-core model
uRu→`. This leads us to set

f 8
PS5 f NNp

expt e2a0/2 with a05
1

3
~mpb!2. ~3.2!

This procedure is equivalent to assuming that thef NNp
expt used

in the hard-core model is the momentum-dependent coupl
constant at the pole positionq252mp

2 @28#. We employ
f NNp
expt 50.278 43 following the Nijmegen model-F@17#,
which leads to f 8

PS50.269 94 in FSS. We determine th
S-meson masses to fit available experimental data for
NN andYN systems, considering that the S mesons are
well-established mesons but some substitutes for more co
plicated meson-exchange processes like 2p exchange,r2 p
exchange, andD excitations of nucleons. On the other han
we use the experimental masses for the PS mesons. O
cd is determined in theNN system, then it is used in the
YN systems without alteration.

We stress that no one has ever successfully introduced
EMEP both for the S and PS mesons at the quark level e
for the NN interaction. For example, in their QM study o
theNN interaction Takeuchiet al. @6# had to introduce dif-
ferent potentials for each state of1E, 3E, 1O, and 3O. Both
Zhanget al. @12# and the Salamanca group@10# find that the
NN phase shift of the1S0 state is too repulsive, once the
3S1 phase shift is fitted to experiment. The origin of th
difficulty lies in the imbalance of the color-magnetic repu
sion for the 1S and 3S states as discussed in our previou
paper@16#: If we properly take into account the effect of th
very strong one-pion tensor force compatible with the one
the standard OBEP approach, the color-magnetic repuls
of theNN 3S state is always too weak compared with that
the 1S state. The assumption of such a common potential,
given by a flavor-singlet scalar meson, is insufficient to gi
a full account of the central attraction of theNN 1S and
3S states. In order to overcome this difficulty, we introduc
the spin-dependent or/and isospin-dependent effect into
t.
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framework of our model. Our previous model RGM-F show
that the isospin-dependent effect~i.e., d meson effect! alone
cannot solve this problem, but we need to take two differe
values for the central reduction factor of the S-meson pote
tials; c50.4212 for 3E and 1O, and c50.56 for 1E and
3O states. This effect is taken care of by the EMEP of th
h, h8 PS mesons and thed meson in the present approach

We should also mention the mechanism of introducing th
flavor dependence in the EMEP of thee meson. The baryon-
meson coupling constants for the direct potentials are o
tained from Eq.~2.22! by employing the SU3 relations of the
SU6 unit vectors,e(11)000

e ande(11)000
m , given in Table II of

@26#. ~Note that the definition of a in @26# is
a5D/(F1D), and it corresponds to 12a here.! The
e-meson coupling constants are given by settinga51 in

f NNe5 f 1
ScosuS1 f 8

SsinuS
1

A3
~4a21!,

fLLe5 f 1
ScosuS1 f 8

SsinuS
2

A3
~a21!,

f SSe5 f 1
ScosuS2 f 8

SsinuS
2

A3
~a21!. ~3.3!

The coupling constants for theS* meson are obtained by
changinguS to uS2p/2 ~with an extra overall sign!. We see
that the direct potentials for theLN andSN systems become
identical for a51. Under this constraint it is not easy to
ensure an appropriate relative strength of the central attr
tion betweenLN andSN channels. In particular the central
attraction of theS1p channel is usually too strong, if we fix
that of theLN channel to fit the low-energyLp cross sec-
tions. We avoid this difficulty in two ways. One is to in-
crease the value ofuS only for theSN(I53/2) channel, and
the other is to employ Eq.~3.3! with a being an extra pa-
rameter. We call the former model FSS and the latt
RGM-H. The latter model does not make a full microscopi
treatment for the isoscalar S mesons,e andS* , but applies
the same approximation as used in RGM-F for the evaluati
of the spin-flavor-color factors of these mesons. Note that t
nonisoscalar mesons,d and k, satisfy the SU6 rule with
a51 even in this case.

The procedure used to fix the model parameters of FSS
composed of two steps. The first step is to reproduce t
NN phase shifts as well as possible. The second is to op
mize the fit to the low-energyYN cross sections by varying
those parameters which are insensitive to theNN phase
shifts. We first determinef 1

S to reproduce correctly the deu-
teron binding energyed and the spin-singlet scattering length
as of thenp system. These two conditions give two solution
for f 1

S in general, so thatf 1
PS is varied to yield a unique set

under some appropriate value forf 8
S. Since the result is not

sensitive to the parameteruPS, we assumeuPS5223° for
simplicity. Even if we can reproduceNN S-wave phase
shifts in this way,P-wave phase shifts are not usually wel
reproduced. Thus we selectf 8

S andcd to obtain a good fit to
the S-wave andP-wave phase shifts simultaneously. Sinc
the S* meson does not contribute too much because of
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FIG. 1. TheNN phase shiftsd and mixing parameterse predicted by FSS as a function of the laboratory energy:~a! d for 3S1 and
3D1 channels, ande1, ~b! d for 1S0,

3D2, and
1D2, ~c! d for 3PJ(J50,1,2) and1P1, ~d! d for 3D3,

3G3,
3G4, and

1G4, ande3, ~e! d for
3F2,

3F3,
1F3,

3F4,
3H4, ande2, e4. The Coulomb force is neglected. Solid circles denote the recent phase-shift analysis by the Nij

group @31# for thenp system.
e

re
,
t

very large mass, we may at first determineuS to set f NNS*
zero; tanuS5(A3 f 8

S/ f 1
S). A small deviation of f NNS* from

zero does not impair the nice fit to theNN system. The main
effect of changinguS through f NNS* lies in adjusting the
relative strength of the medium-range attraction between
NN andYN systems. The magnitude off 8

S is also very im-
portant to control this difference. Iff 8

S is too small, one can-
not get enough suppression of theYN central attraction~see
the discussion in@16#!. The overall fit to theNN S- andP-
wave phase shifts is achieved also by searching for an o
mum set for the QM parameters,b andmud , and less exten-
sively for the S-meson masses,me andmd .

The next step is to fixuS, l, andmk to reproduce the
low-energyYN cross-section data and theL2S mass dif-
ference. IfuS is changed,f 1

S is readjusted to give the same
the

pti-

f NNe coupling constant through Eq.~3.3!. Since this change
also affectsf NNS* , we can use it to determineuS. If f NNS*
increases from zero, thenuS decreases and one can increas
the overall attraction in theYN systems, keeping that of the
NN system almost unchanged. The difference ofLN 1S0
and 3S1 phase shifts and the mass differenceDEL2S are
very sensitive to the variation ofl andmk . Increasingl
from one and decreasingmk both lead to largerDEL2S and
smallerLN cross sections through the less attractive natu
of theLN 3S1 phase shift. This tendency is not favorable
becauseLp cross sections are usually too small if we fi
S1p cross sections. We would rather fit theLp cross sec-
tions and reduce the attraction of theS1p system by taking
a large value ofuS only for theSN(I53/2) system. In this
process we also pay attention to theSN(I51/2) 3S1 phase
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shift, because both theI51/2 andI53/2 phase shifts have a
crucial influence on theS2p elastic,S2p→S0n charge ex-
change, andS2p→Ln reaction cross sections.

The procedure to find a parameter set for RGM-H is
most the same as the above except for some small a
ations. We employ an additional parametera to control the
relative strength of theLN andSN attraction. If we increase
a from one, the attraction of theYN systems is strongly
hindered as a whole. We therefore use the two-pole appr
mation for thee-meson exchange potential.~See Table I of
@28#.! We employ thepp data to fit the S- andP-wave phase
shifts and the scattering lengthas in the NN system, after
incorporating the ‘‘pion-Coulomb’’ corrections@28#. We will
discuss this Coulomb problem in Secs. III B and III C. Th
aS value is also varied to obtain the optimal fit in theNN
system.

Table III shows the result of the parameter search. T
values ofb, mud , andl in FSS and RGM-H turn out to be
relatively large compared with those in RGM-F. The lar
value ofb may be related to omitting the vector mesons
the present model. If we takeb smaller than 0.6 fm, it is not
easy to reproduce theNN 3P2 phase shift, even when th
other S-wave andP-wave phase shifts are reproduced we

TABLE III. Quark-model parameters, SU3 parameters of the
EMEP, S-meson masses, and the reduction factorcd for FSS and
RGM-H models. The parametera denotes theF/(F1D) ratio for
the flavor-octet SU3 coupling constants. Thee mass denoted by
‘‘two-pole’’ indicates two-pole approximation, for whichm1c

2

(b1) andm2c
2 (b2) are shown below the table. The meson para

eters of the Nijmegen soft-core potential@29# are also shown as
NSC for comparison.

b ~fm! mudc
2 ~MeV! aS l5ms /mud

FSS 0.616 360 2.1742 1.526
RGM-H 0.667 389 2.1680 1.490

f 1
S f 8

S uS ~deg! a

FSS 2.89138 1.07509 27.78a 1
RGM-H 2.95388 0.86906 36.018 1.32b

NSC 3.75548 1.27734 40.895 1.28555

f 1
PS f 8

PS uPS ~deg! a

FSS 0.21426 0.26994 223 2/5
RGM-H 0.16118 0.26851 223 2/5
NSC 0.18455 0.27204 223 0.355

mec
2 ~MeV! mS*c

2 ~MeV! mdc
2 ~MeV! mkc

2 ~MeV!

FSS 800 1250 970 1145
RGM-H Two-polec 1250 980 920
NSC Two-poled 975 980 1000

cd

FSS 0.381
RGM-H 0.339

auS565° is used in theSN(I53/2) channel.
ba51 for nonisoscalar mesons.
c487.818 MeV~0.16900! and 1021.14 MeV~0.61302! @28#.
d500.45 MeV~0.18719! and 1047.14 MeV~0.60105! @30#.
l-
ter-
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e

he
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The SU3 parameters of the EMEP are given together wi
those of the Nijmegen soft-core potential~NSC! @29#. The
F/(F1D) ratio a is not an adjustable parameter, except f
the e- andS* -exchange potentials of RGM-H. The SU3 pa-
rameters of our model are similar to those of NSC. The d
viation of the SU3 coupling constants from the SU6 relations
of Eq. ~3.1! is 10 – 60 %. The model FSS usesuS565° only
for theSN(I53/2) channel anduS527.78° otherwise, while
RGM-H usesa51.32 fore- andS* -exchange potentials and
a51 for d- andk-exchange potentials.

B. NN phase shifts

Figures 1~a!–1~e! compare thenp phase shifts predicted
by FSS with the recent phase-shift analysis by the Nijmeg
group@31#. The 1P1 phase shift and the low-energy behavio
of the 1S0 phase shift demonstrate remarkable improveme
over the previous RGM-F result@18#, owing to the correct
treatment of the long-range OPEP tail in the spin-spin ter
For the same reason, the phase shifts of higher partial wa
with L52;4 are also reproduced within an accuracy o
1° to 2° atTlab5300 MeV, except for the3D2 phase shift
@see Fig. 1~b!#. The overestimation of this phase shift is 6° a
Tlab5150 MeV and 12° atTlab5300 MeV. The tensor and
quadratic spin-orbit components originating from the FB te
sor term are not sufficient to reduce the too strong one-p
tensor force in this channel. Closer examination of the pha
shift behavior still indicates a couple of insufficient points
First of all, the peak value of the3P0 phase shift in Fig. 1~c!
is about 2° too high, while the3P1 phase shift is a little too
repulsive on the high-energy side. Since the3P2 phase shift
is almost perfectly reproduced, this implies that theLS and
tensor forces are slightly too strong and the central attract
is slightly too weak. The mixing parametere2 in Fig. 1~e!
shows that its absolute value is too large by about 2°. T
tendency is already seen in RGM-F~see Fig. 4 of@18#!. A
similar feature is also seen fore3 in Fig. 1~d!. On the other
hand,e1 and e4 are almost perfectly reproduced as seen
Figs. 1~a! and 1~e!, respectively. We note that the accurat
determination ofe1 in the variational technique requires a
careful selection of the channel radiusr c because of the very
long-range tail of the OPEP. Ifr c is too small, the mixing
anglee1 is largely overestimated not only in the low-energ
region but also even atTlab5300 MeV. We have used
r c58 fm in the present calculation, and the inaccuracy
estimated to be less than 0.2°. Another problem is the beh
ior of the 1F3 and

3F4 phase shifts in Fig. 1~e! on the high-
energy side. They are too attractive in the energy ran
Tlab.200 MeV. This tendency seems to be a common fe
ture of the QM approach@6#.

For calculatingpp phase shifts we have to introduce th
‘‘pion Coulomb corrections’’ discussed in@31#. These cor-
rections are necessary since the charge independence is
ken at least by the electromagnetic interaction, by t
neutral-pion and charged-pion mass difference, and by
neutron and proton mass difference. We use a sim
1/r -type Coulomb potential between quarks and negle
small corrections induced from the mass difference of the
and down quarks. This difference is important to explain t
isospin mass splitting of hadrons, but again plays a min
role in the baryon-baryon interaction since the interna
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energy contribution is already subtracted in our RGM fo
malism@32#. The difference between the charged and neu
pion masses yields a fairly large effect because of themb

3

dependence in the pion-exchange direct potential of
~2.8!. On the other hand, the effect of the neutron-prot
mass difference is rather weak; i.e., less than 0.1% in
empirical reduced mass. Unfortunately these pion Coulo
corrections are not sufficient to reproduce thenp2pp dif-
ference of the1S0 phase shift@31#. An extra origin of the
charge dependence is clearly necessary to explain the in

FIG. 2. The S-wave@u(R)# andD-wave@w(R)# deuteron wave
functions by FSS as a function of thenp distanceR. Dashed curves
denote those of the Paris group@36#.
r-
ral
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sistency of the singlet scattering lengths of thenp and pp
systems@33#. We have observed these same features in
calculation of thepp phase shifts by FSS. The difference o
the np andpp phase shifts for the3PJ states is reasonably
reproduced only with the pion Coulomb corrections, wh
the 1S0 phase shift for thepp system is still too repulsive by
2° – 3°, compared with the empiricalnp2pp difference.
This difference is not limited to the low-energy region b
continues up to 300 MeV. In the next subsection we will
the S-wavepp scattering length by slightly decreasingf 1

S

only for the 1S0 state. The difference up to 2° in the high
energy region still remains even with this modification.

The phase-shift curves of the RGM-H are rather similar
the FSS results. The quality of the fit to thenp (I50) and
pp (I51) phase shift analysis of@31# is a little worse than
the fit tonp phase shifts by FSS; the difference in the pha
shifts sometimes exceeds 2°. The total and differential cr
sections and the spin observables calculated by RGM
seem to be rather good as a whole in comparison with th
of FSS, as will be discussed in a forthcoming paper@34#.

C. Deuteron properties and effective-range parameters

In this subsection we will discuss the deuteron propert
and the low-energy effective-range parameters of theNN
system. In principle, the deuteron properties should be
rived from the six-quark cluster-model wave function by u
ing electromagnetic currents at the quark level. It is shown
d

FIG. 3. TheS1p phase shiftsd and the mixing parametere1 as a function of the incident momentumpS : ~a! d for 1S0 and

3S1 channels,
~b! d for 3D1, ande1 for the

3S1-
3D1 coupling,~c! d for 3P0 and

3P2, ~d! d for 1P1 and
3P1. Solid curves denote the FSS result, dashe

curves denote RGM-H. Open and solid circles denote predictions by the Nijmegen soft-core potential~NSC! @29#, crosses those by the
hard-core potential model F~HC-F! @17#.
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54 2191EFFECTIVE MESON-EXCHANGE POTENTIALS IN THE . . .
@35#, however, that a simple renormalized relative wav
function,ua5(ANx)a , can be used to calculate them acc
rately in the conventional method. HereN denotes the nor-
malization kernel of the six-quark system. This is becau
the contribution of the exchange term is rather small even
the most compact (0s)6 configuration; i.e., the eigenvalue o
N is m511XN with XN51/9 forNN 3E and 1E states. We

FIG. 4. TheLN phase shiftsd and the mixing parametere1
predicted by FSS as a function of the incident momentumpL : ~a!
d for 1S0 channel,~b! d for 3S1, ~c! d for 3D1, and e1 for the
LN 3S1-

3D1 coupling. In~a! and ~b!, SN(I51/2) diagonal phase
shifts are also shown above theSN threshold atpL5638 MeV/c.
Open circles denote predictions by the Nijmegen soft-core poten
~NSC! @29#, crosses those by the hard-core potential mode
~HC-F! @17#. The HC-F predictions fore1 are negative below the
SN threshold.
e
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follow this approximation to define the relative wave func
tions of thenp system,u(R) (Swave! andw(R) (D wave!.
We also improve the incorrect asymptotic behavior of th
Gaussian trial functions, although we neglect the change
the deuteron binding energyed by this modification of the
wave function.

The deuteron wave function,u(R) and w(R), obtained
from FSS is compared in Fig. 2 with the prediction of th
Paris potential@36#. The difference of the two models is
rather small except thatu(R) of the quark model has a
slightly larger amplitude in the interior region ofR,1fm.
Correspondingly the peak positions ofu(R) andw(R) are
somewhat pushed outside. This can be understood by not
that the short-range repulsion in our quark model originat
entirely from the exchange kernel of the color-magnetic in
teraction. Yamauchi, Yamamoto, and Wakamatsu@35# ob-
tainedu(R) andw(R) which are very similar to those of the
Paris potential. They have introduced a cutoff function fo
the theoretical meson-exchange potentials in the interior
gion, while we use the S-meson potentials with no modific
tion for the whole distance.

Table IV compares various deuteron parameters calc
lated from the models RGM-F, FSS, and RGM-H. Th
D-state probability predicted by FSS is 5.9%, and is ve
close to the result of@35#. The quadrupole moment of@35# is
too small by about 2–3 %, while our FSS value agrees we
with experiment. Meson-exchange currents involving the e
change of a single pion contribute to the quadrupole m
ment. If the effect is so large asDQd50.01 fm2 in @38#, the
FSS overestimates the experimental value. The asympto
D-state to S-state ratio of the deuteron,h5AD /AS, is
0.0272 in FSS, which is compared to the recent valu
h50.025660.0004 @39#. The model RGM-H gives the
smallestD-state probability,PD55.0%, among the three
models, and predictsh, Qd , and the charge rms radius in
reasonable range. The magnetic moment is calculated fr
PD by using a formula m5(mp1mn)2(3/2)(mp1mn
21/2)PD . Precise comparison with the experimental valu
requires careful estimates of various corrections arising fro
the meson-exchange current and relativistic effect, etc.

Table V lists the S-wave effective range parameters f
the NN system. The scattering lengtha and the effective-
range parameterr for the 3S1 state are well reproduced to
within an accuracy of 1 – 2 %, since theed is fitted to the
experimental value. Underlined values ofa for the 1S0 state

tial
l-F

TABLE IV. Deuteron properties calculated by RGM-F, FSS
and RGM-H in comparison with the experimental values. Theh
value is the asymptoticD-state to S-state ratio;h5AD /AS. The
magnetic moment is calculated from a simple formula by using th
D-state probabilityPD .

Model RGM-F FSS RGM-H Expt. Ref.

ed ~MeV! 2.274 2.244 2.224 2.2246446 0.000046 @37#
PD (%) 5.391 5.879 4.998
h 0.0264 0.0272 0.0251 0.02566 0.0004 @39#
A^r 2&d
~fm!

1.933 1.966 1.986 1.96356 0.0046 @37#

Qd ~fm2) 0.2752 0.2845 0.2750 0.28606 0.0015 @40#
md (mN) 0.8491 0.8463 0.8513 0.85742
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indicate that they are fitted to experiment.~The small devia-
tion of the FSS value innp 1S0 is due to a poor choice of the
variational parameters for the phase-shift calculation.! One
has to include at least the pion Coulomb corrections, in ord
to calculate the spin-singlet S-wave effective range para
eters for thepp andnn systems. The values in parentheses
the case of FSS are calculated with these corrections for
pp system. Since the corrected value of28.61 fm is larger
in magnitude than the experimental value
27.809860.0023@37#, our pp potential is found to be too
attractive at least for the1S0 state. In RGM-H theNN pa-
rameter search for1S0 and

3PJ states is carried out by using
the pp data and the pion Coulomb corrections. Then ou
np potential for the1S0 state is found to be too repulsive.
This is seen from the value in parentheses217.23 fm for the
np scattering length, which is too small in magnitude com
pared with the empirical value,223.74860.010 fm@37#. In
both FSS and RGM-H, we definitely need some extra orig
of the charge-independence breaking. Here we follow t
suggestion of@33#, in which this breaking is attributed to the
two-pion exchange mechanism and (gp) exchanges. In
practice, f 1

S is modified to f 1
S30.9934 in FSS, and to

f 1
S31.010 35 in RGM-H. These are small modifications o
order of less than 1%, and applied only to the1S0 state. The
empirical feature of the charge dependence of the1S0 scat-
tering lengths with respect to thenp, pp, andnn systems is
reasonably reproduced by this procedure, as is seen in Ta
V.

D. S1p phase shifts

The phase-shift behavior of theS1p system is depicted in
Figs. 3~a! – ~d! for FSS~solid curves! and RGM-H~dashed

TABLE V. The S-wave effective-range parameters for theNN
system derived from FSS and RGM-H;a ~the scattering length!,
r ~the effective-range parameter!, andP ~the shape-dependent pa-
rameter!. The experimental values are from@37#. The underlined
figures in the1S0 state indicate fitted quantities. The coupling con
stant f 1

S is modified tof 1
S30.9934 for thepp 1S0 state in FSS, and

to f 1
S31.010 35 for thenp 1S0 state in RGM-H. The figures in

parentheses are those without the modification.

Model a ~fm! r ~fm! P

FSS 5.41 1.76 20.009
np 3S1 RGM-H 5.47 1.82 20.012

Expt 5.4246 0.004 1.7596 0.005

FSS 223.64 2.62 0.028
np 1S0 RGM-H 223.75 2.74 0.017

(217.23) ~2.83! ~0.016!
Expt 223.74860.010 2.7560.05

FSS 27.81 2.63 0.036
pp 1S0 (28.61) ~2.56! ~0.036!

RGM-H 27.81 2.75 0.023
Expt 27.809860.0023 2.76760.010

FSS 216.84 2.72 0.029
nn 1S0 RGM-H 216.24 2.87 0.018

Expt 217.9 2.82
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curves!. Predictions by the Nijmegen soft-core potentia
~NSC! ~open and closed circles! and the hard-core potential
model-F~crosses! are also shown for comparison. The mos
critical issue of theS1p interaction is the strength of the
medium-range central attraction. It is particularly essential
pinpoint the phase-shift rise of the1S0 state in comparison
with that of thepp system. The behavior of the1S0 phase
shifts in Fig. 3~a! shows that the central attraction of RGM-H
is stronger than that of RGM-F given in Fig. 5 of@18#. On
the other hand, the attraction of FSS is weaker than that
RGM-F. In the 1E and 3O states,S1p and pp configura-
tions belong to the same flavor-symmetric states of SU3 rep-
resentation (lm)5(22). The phase-shift behavior in thes
states is expected to be very similar as long as the flav
symmetry breaking is not so significant. The3PJ phase
shifts in Figs. 3~c! and~d! clearly show a competition of the
central,LS, and tensor components as seen in thepp system.
In particular, the 3P2 phase shift is very sensitive to the
strength of the central attraction. The results of RGM-H an
RGM-F show a fairly attractive rise up to about 10°, simila
to that of the NSC and Nijmegen model-D~HC-D!. On the
other hand, the FSS predicts a rather moderate rise simila
that of the HC-F. This difference of the3P2 phase shift is
detectable in polarization observables at intermediate en
gies, as will be discussed in a forthcoming paper@41#.

On the other hand, the3S1 state of theS1p channel
belongs to the SU3 ~30! state which is almost forbidden by
the effect of the Pauli principle. The eigenvalue of the no
malization kernel ism52/9 @16#. The repulsive behavior of
the 3S1 phase shift in Fig. 3~a! is a consequence of this
kinematical effect arising from the quark structure of th
baryons. Since the strength of the repulsion is mainly det
mined byb, the difference of the phase-shift values by FS
RGM-H, and RGM-F is not significant in spite of the big
difference of the central attraction among these models. T
mixing parametere1 and

3D1 phase shift in Fig. 3~b! show a
behavior entirely different from theNN system.

As noted in our previous publication@18#, our quark
model predicts a1P1 phase shift which is substantially dif-
ferent from the Nijmegen hard-core models@see Fig. 3~d!#.
The prediction by HC-F shows a very strong resonance b
havior around 400 MeV/c, while our quark models always
predict a very weak rise of the phase shift as also predic
by NSC. It is very likely that the strong enhancement of th
S1p elastic ‘‘total’’ cross sections around 450 MeV/c is an
artifact of the very singular short-range behavior of th
meson-exchange potentials and some specific choice of
hard-core radius in HC-D and HC-F. On the other hand, t
NSC phase shift for the3S1 state shows a broad resonanc
behavior around 650 MeV/c, which leads to a very small
contribution of the3S1 phase shift to low-energy cross sec
tions.

Finally we summarize in Table VI the S-wave effectiv
range parameters for theS1p system derived from the vari-
ous models. We find that the1S0 state of RGM-H is too
attractive, while RGM-H and FSS give negative values fo
r t consistent with the experimental analysis@44#. A more
detailed determination ofas andat is surely necessary.

E. LN2SN„I51/2… system

We here discuss the phase-shift behavior of th
LN2SN(I51/2) coupled-channel system. The two model
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54 2193EFFECTIVE MESON-EXCHANGE POTENTIALS IN THE . . .
FSS and RGM-H, reproduce the threshold energy of t
SN channel correctly, unlike our previous model RGM-F
This is a very important ingredient of the analysis, since t
coupling feature of these two channels is quite sensitive
this condition. The Coulomb effect is neglected in this su
section.

The S-wave phase shifts of theLN channel are displayed
in Figs. 4~a! and 4~b! for FSS. The diagonal phase shifts o
theSN channel are also shown above theSN threshold. The
phase-shift curves by RGM-H are very similar to those giv
here. If we compare these with the RGM-F results~Figs. 1
and 2 in @19#!, we find that the1S0 phase shift is more
attractive, while the3S1 phase shift is less attractive. Th
maximum peak of the S-wave phase shift reaches 4
(46°) for 1S0 and 18° (17°) for3S1 in FSS~RGM-H!. On
the other hand, the RGM-F prediction is 29° for1S0 and
25° for 3S1, which is very similar to the predictions by
Nijmegen potentials, NSC~circles! and HC-F~crosses!. The
3D1 phase shift and the mixing parametere1 in the LN
channel are depicted in Fig. 3~c!. They are very similar to the
RGM-F predictions given in Fig. 3 of@19#, except that the
threshold energy is now at the correct position.

The S-wave effective range parameters given in Table V
show the strong attractive feature of theLN 1S0 state com-
pared to the3S1 state. A main reason for the difference be
tween the present and RGM-F results lies in the differe

TABLE VI. The S1p S-wave effective range parameters de
rived from RGM-H, FSS, RGM-F, and other models; Nijmege
model-D@42#, model-F@17#, and Ju¨lich models A and B@43#. The
Jülich result is without the Coulomb force. The result of an effe
tive range analysis is taken from@44#.

S1p as ~fm! r s ~fm! at ~fm! r t ~fm!

RGM-H 24.21 3.28 0.84 20.83
FSS 22.15 4.93 0.95 20.66
RGM-F 22.26 2.70 0.79 0.59
Model D 23.66 3.52 0.34 27.31
Model F 23.20 3.87 0.70 22.11
Model A 22.26 5.22 20.76 0.78
Model B 21.09 10.20 20.90 21.24
Expt @44# 22.4260.30 3.4160.30 0.70960.001 20.78360.003

TABLE VII. The LN S-wave effective-range parameters de
rived from RGM-H, FSS, RGM-F, and other models; Nijmege
model D@42#, model F@17#, and Ju¨lich models A and B@43#. Two
results of the effective-range analysis are taken from@45#, @46#.

LN as ~fm! r s ~fm! at ~fm! r t ~fm!

RGM-H 25.34 2.46 21.04 4.92
FSS 25.39 2.26 21.02 4.20
RGM-F 22.03 3.05 21.66 3.26
Model D 21.90 3.72 21.96 3.24
Model F 22.29 3.17 21.88 3.36
Model D 21.56 1.43 21.59 3.16
Model B 20.56 7.77 21.91 2.43
Expt @45# 21.8 2.8 21.6 3.3
Expt @46# 22.0 5.0 22.2 3.5
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strength of the central attraction induced from the S-meso
exchange potentials. In the previous calculation ofNN phase
shifts by RGM-F, the reduction factorc of the EMEP is
c50.33 for the3S central phase shift@16#, while we need to
increase it toc50.4212 when the one-pion tensor force is
incorporated@18#. The approximate treatment of spin-flavor-
color factors adopted in RGM-F underestimates the role o
the one-pion tensor force in the short-range region. In th
present full treatment of the exchange kernel, the tensor for
of the pion exchange has the same order of magnitude as
the standard OBEP approach. This corresponds to the situ
tion which would be equivalent to takingc50.33 in RGM-F.
On the other hand, this improvement of the one-pion tenso
force does not affect theLN system, since the pions do not
contribute in this system. We therefore arrive at the conclu
sion that the3S1 phase shift of theLN system calculated by
FSS and RGM-H should be less attractive than that b
RGM-F. Another reason for this big difference in the centra
attraction is the choice of a largerl value ;1.5 than in
RGM-F (l51.25). The increase ofl and the decrease of the
k-meson mass enhance the difference of the attraction b
tween the1S0 and

3S1 states.
Another difference from RGM-F in the3S1 phase shift is

that the very sharp steplike behavior in Fig. 2 of@19# has
now turned into the cusp structure. This is due to the im
provement of the threshold as well as the weaker attractio
of the SN(I51/2) channel. This is understood from the
SN(I51/2) 3S1 and

3D1 phase shifts in Fig. 5~a!. The solid
curves denote the FSS results and the dashed curv
RGM-H. Comparing these with the solid curve in Fig. 5 of
@19#, we find that these models have rather weak centr
attraction for the SN(I51/2) channel. However, the
resonance behavior around 100 MeV/c in the 3S1 state is
rather sensitive to a small change of the attraction. For e
ample, if the Coulomb attraction is included in FSS, the
phase shift changes suddenly in the energy region of le
than 100 MeV/c: It starts to decrease slowly from 168°, then
suddenly drops down to 70° around 150 MeV/c. This is very
similar to the RGM-F result without the Coulomb force, al-
though the phase shift starts from 180° in that case. On th
other hand, the Coulomb force does not have such a lar
effect in RGM-H. The 3S1 resonance in this model has a
rather broad structure.

In spite of this rather subtle behavior of theLN2SN
coupling in the 3S1-

3D1 state, the main characteristics of
this coupling is not much different among these three mod
els. This can be seen from the reflection and transmissio
coefficients illustrated in Fig. 5~b!. ~See Fig. 6 of@19# for the
RGM-F result.! Here the channel indicesf and i of h f i are
specified as follows:~1! LN 3S1, ~2! LN 3D1, ~3!
SN(I51/2) 3S1, and ~4! SN(I51/2) 3D1. The magnitude
of h23 reaches almost 0.8 around 100 MeV/c. This strong
coupling betweenLN 3D1 andSN(I51/2) 3S1 channels is
of course due to the strong one-pion tensor force in thi
system. Although the magnitude ofh13 shows some differ-
ence among the three models, the largest transmission co
ficient at the resonance region is alwaysh23.

Figure 5~a! also shows theSN(I51/2) 1S0 phase shift. It
is noted that the two-baryon state with (lm)5(11)s includes
the SN(I51/2) 1S0 component with 90% probability and
becomes a forbidden state by the Pauli principle for th
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(0s)6 configuration@19#. The repulsion of this channel is
mainly kinematical as in the case of theSN(I53/2) 3S1
channel. The effect of the EMEP is rather small in thes
states.

Next we discuss theLN2SN(I51/2) coupled-channel
problem in the 1P1 and 3P1 channels. These two partial
waves couple together through the antisymmetric spin-or
~ LS(2) ! force @21,19#. We here again find that the strength
of the central attraction of theSN(I51/2) channel influ-
ences the coupling features of these four channels. Figu
6~a! and 6~b! show theLN phase shifts in the3P1 and
1P1 channels, respectively, and Fig. 6~c! shows the reflec-
tion and transmission coefficients. Here the channel indic
are~1! LN 1P1, ~2! LN 3P1, ~3! SN(I51/2) 1P1, and~4!
SN(I51/2) 3P1. The SN(I51/2) phase shifts calculated
with theSN channel being an incident channel are displaye
in Fig. 7. Table VIII summarizes the resonance behavior
each channel. The large steplike resonance observed
RGM-F @19# in theLN 3P1 channel turns into a wavy dis-
persionlike resonance as seen in Fig. 6~a!. On the other hand,
the LN 1P1 phase shift shows a broad resonance in FS
However, the RGM-H result shows that this resonance ca
not stay in the LN channel and goes back to the
SN(I51/2) 3P1 channel. The resonance feature of RGM-H
in Fig. 7 indicates that the phase-shift rise is at most 40° a

FIG. 5. ~a! The SN(I51/2) phase shifts for3S1,
3D1, and

1S0 channels predicted by FSS~solid curves! and by RGM-H
~dashed curves! as a function of the incident momentumpS . ~b!
The reflection and transmission coefficientsh f i for J51 even-
parity states of theLN2SN(I51/2) system. The incident channel
i (53) and the outgoing channelf are specified by~1! LN 3S1, ~2!
LN 3D1, ~3! SN(I51/2) 3S1, and ~4! SN(I51/2) 3D1. Solid
curves denote the FSS result, dashed curves denote RGM-H.
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the resonance energy is shifted to the higher-energy side
more than 100 MeV/c, in comparison with the resonance in
RGM-F ~see the dashed curve in Fig. 13 of@19#!. The 1P1

phase shift of RGM-H indicates another prominent res
nance structure around 900 MeV/c. All of these features in-
dicate that the central attraction of theSN(I51/2) channel
in RGM-H is not as strong as in FSS and RGM-F.

FIG. 6. ~a! TheLp phase shifts for the3P1 channel predicted
by FSS~solid curve! and by RGM-H~dashed curve! as a function
of the incident momentumpL . The predictions by the Nijmegen
soft-core potential~NSC! @29# and those by the hard-core potentia
model F~HC-F! @17# are also shown by circles and crosses, respe
tively. ~b! The same as~a! but for the 1P1 channel.~c! The reflec-
tion and transmission coefficientsh f i for J51 odd-parity states of
LN2SN(I51/2) system. The channelsf andi are specified by~1!
LN 1P1, ~2! LN 3P1, ~3! SN(I51/2) 1P1, and ~4! SN(I51/2)
3P1. The incident channel isLN 1P1. Solid curves denote the FSS
result, dashed curves denote RGM-H.
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The strength of the central attraction in theSN(I51/2)
channel depends on how the flavor dependence to
e-meson exchange potentials is introduced. The flavor
pendence introduced in RGM-H through theF/(F1D) ratio
results in a commone-meson exchange potential for th
S1p andSN(I51/2) systems, as far as the dominant dire
term is concerned. On the other hand, FSS assumes a
mixing angleuS only for theSN(I53/2) channel, so that the
e-meson exchange potential in theSN(I51/2) channel is
much stronger than that of theS1p channel. In order to
pinpoint the strength of the central attraction in th
SN(I51/2) channel, more accurate experimental data
needed to determine the effective-range parameters of
S2p scattering.

F. YN cross sections

The low-energy scattering and reaction ‘‘total’’ cross se
tions forS1p andS2p systems are compared in Fig. 8 wit
the experimental data@47,48#. The ‘‘total’’ cross sections are
calculated by integrating the differential cross sections fr
cosumin50.5 to cosumax520.5. The solid curves indicate th

FIG. 7. TheSN(I51/2) phase shifts for3P1 and
1P1 channels

predicted by FSS~solid curves! and by RGM-H~dashed curves! as
a function of the incident momentumpS .

TABLE VIII. The resonance behavior of the
LN2SN(I51/2) 1P1-

3P1 coupled-channel system in RGM-F
FSS, and RGM-H. The behavior of theSN phase shiftsd is also
summarized.~See Figs. 6~a!, 6~b!, and 7, and Figs. 10 and 11 o
@19#.! The SN threshold energy (DEL2S) is fitted in FSS and
RGM-H. The depth of the effective local potentialsVSN(I51/2)

C in
the 3S1 state, obtained from theP50 Wigner transform@16#, is
shown as a guidance to the strength of central attraction for
SN(I51/2) system.

RGM-F FSS RGM-H

DEL2S ~MeV! 39.11 77.47 77.46
VSN(I51/2)
C ~MeV! 238 224 218

LN 3P1 Steplike Dispersionlike Dispersionlike
LN 1P1 Dispersionlike Steplike Dispersionlike
SN 3P1 d,0 d,0 d;40°
SN 1P1 d,0 d,0 d;0→60°
the
e-

ct
arge

e
re
the

c-

m

result by FSS and the dashed curves by RGM-H. The im
provement over the RGM-F result@19#, especially in the
S2p elastic cross sections, is an outcome of the weaker ce
tral attraction of theSN(I51/2) channel in the present
model. On the other hand,S2p→Ln reaction cross sections
are overestimated especially in FSS. The agreement of t
S1p elastic cross sections in FSS is achieved because t
uS value is used to fit the data, while RGM-H predicts too
large cross sections.

The angular distribution ofS1p scattering atpS5170
MeV/c is compared with the experimental data@47# in Fig.
9~a!. A forward rise of the experimental data is reasonabl
reproduced in FSS, owing to the appreciable contribution o
P-wave components.~See Fig. 12 of@18# for comparison.!
This feature is also seen in Fig. 9~b!, where the angular dis-
tribution of S2p elastic scattering atpS5160 MeV/c is
shown with the experimental data@47#. The differential cross
sections forS2p→Ln at pS5160 MeV/c are shown in
Fig. 9~c!, together with the experimental data@48#.

The calculated total cross sections for theLp scattering
are compared with the experimental data@45,46,49# in
Fig. 10~a!. Since the threshold energy of theSN channel is
properly reproduced both in FSS~solid curve! and in
RGM-H ~dashed curve!, a cusp structure of theLN 3S1 state
appears at the incident-momentum ofpL5638 MeV/c. The
FSS result shows that the bump structure predicted b
RGM-F @19# now spreads out over a wide energy region o
pL5500–800 MeV/c, enhancing the cusp structure. This is
the consequence of theP-wave channel-coupling effect with
theSN(I51/2) channel due to theLS(2) force. On the other
hand, RGM-H predicts a rather moderate rise of the cros
sections at the cusp region, which is consistent with the e
perimental data @49#. Figure 10~b! shows calculated
Lp→S0p total cross sections compared with the experimen
tal data@49,50#. Our result appears to favor small cross sec
tions. This may be supported by Fig. 18 of@50#, because

the

FIG. 8. The low-energyS1p andS2p ‘‘total’’ cross sections as
a function of the incident momentumpS : ~a! S1p elastic, ~b!
S2p elastic,~c! S2p→S0n charge-exchange,~d! S2p→Ln reac-
tion cross sections. Solid curves denote the FSS result, dash
curves denotes RGM-H. The Coulomb force is approximately in
cluded. The experimental data are taken from@47# for ~a! and ~b!,
and from@48# for ~c! and ~d!.
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much smaller cross sections are predicted if the measu
S2p→Ln cross sections are converted intoLp→S0p cross
sections by using the isospin symmetry and the principle
detailed balance.

The energy dependence ofS1p andS2p ‘‘total’’ cross
sections predicted by FSS and RGM-H are displayed in Fig
11~a!–~d!. The S1p cross sections in Fig. 11~a! show no
bump structure at the intermediate-energy regio
(pS5400–600 MeV/c), in contrast to the Nijmegen hard-
core models@17,42#. Although RGM-H overestimates the

FIG. 9. ~a! Comparison of calculatedS1p differential cross
sections atpS5170 MeV/c with the experimental data of@47#. The
solid curve denotes the FSS result, the dashed curve deno
RGM-H. ~b! The same as~a! but forS2p differential cross sections
at pS5160 MeV/c. ~c! The same as~b! but forS2p → Ln differ-
ential cross sections. The experimental data are taken from@48#.
red

of

s.

n

low-energyS1p cross sections, the predictions of FSS an
RGM-H at higher energies of more than 400 MeV/c are very
similar to each other. This high-energy behavior is share
even in S2p elastic scattering andS2p→S0n charge-
exchange reaction cross sections. As is clear in Figs. 11~c!
and 11~d!, further efforts must be made to get reliable ex
perimental cross sections.

IV. SUMMARY

In the quark-model~QM! study of low-energy hadron
phenomena, a basic question is how to incorporate nonp
turbative aspects of QCD into the framework. Quark con
finement is certainly one of the most important nonperturb
tive aspects, but it does not seem to play a crucial role in t
baryon-baryon interaction except that hadrons are always o
served in the color-singlet form. Another important nonpe
turbative aspect of QCD is the mesonic effect. The mo
detailed description of the nucleon-nucleon (NN) interaction
has been achieved in the last several decades by employ
meson-exchange potentials. Since the naive quark model
signing (3q) states to the ground-state baryons does not ta
into account this effect, a realistic description of the baryon
baryon interaction is only possible if the meson-exchang
effect is incorporated into the simple (3q)-(3q) formalism.

tes

FIG. 10. ~a! Comparison of calculatedLp elastic total cross
sections with the experimental data of@45# ~open circles!, @46#
~closed circles!, and @49# ~crosses without circle!. The solid curve
denotes the FSS result, the dashed curve denotes RGM-H.~b! Cal-
culatedLp→S0p reaction total cross sections compared with th
experimental data of@49# ~solid crosses! and@50# ~dashed crosses!.
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FIG. 11. ~a! Comparison of calculated ‘‘total’’ cross sections forS1p elastic scattering with the experimental data of@47#. The solid
curve denotes the FSS result, dashed curve denotes RGM-H.~b! The same as~a! but forS2p elastic scattering.~c! The same as~a! but for
S2p→S0n charge-exchange reaction. The experimental data are taken from@48# ~solid circles! and @51# ~crosses without circle!. ~d! The
same as~c! but for theS2p→Ln reaction.
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The final goal of this investigation is to understand th
NN and hyperon-nucleon (YN) interaction in a consistent
framework, thus establishing a natural connection betwe
the QM description of the interaction and the effect o
meson-exchange potentials. To achieve this, we first have
answer the following two questions:~i! What kind of differ-
ence does the effective meson-exchange potential~EMEP!
produce depending on whether it is calculated at the qu
level or at the baryon level?~ii ! What is the minimum set of
mesons indispensably needed? Our quark model is form
lated in the resonating-group method~RGM! by employing a
QM Hamiltonian consisting of the quadratic confinement p
tential, the full Fermi-Breit~FB! interaction with explicit
quark-mass dependence, and the interquark meson-exch
potentials of the scalar~S! and pseudoscalar~PS! meson non-
ets. Only the leading term of the central force is introduc
for S mesons.

In this study we have improved the following two insuf
ficient points of our previous model RGM-F@16,18,19#; one
is that the strength of the medium-range attraction of t
EMEP has to be chosen differently depending on the sp
flavor exchange symmetry of the two baryons, and the ot
is that the threshold energy of theSN channel in theLN
2SN(I51/2) coupled-channel system is not reproduc
e

en
f
to

ark

u-

o-

ange

ed

-

he
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ed

well. These difficulties are resolved by evaluating the sp
flavor-color factors explicitly at the quark level. We includ
the spin-spin and tensor terms from all the PS-meson no
exchanges. Thed-function-type contact term in the spin-spi
part is reduced by a common factorcd;0.4. The spin-spin
term ofh8 andh mesons, together with the central term
the d meson, plays an essential role in the control of t
relative strength of the medium-range central attraction
theNN 1S, 3S, 1P, and 3P states. The explicit evaluation o
the spin-flavor-color factors also makes it possible to acco
for the internal-energy contribution from the EMEP, throug
which the difference of the threshold energies betweenLN
andSN channels is calculated to fit the experimental valu

Since the flavor operator of the EMEP for octet mesons
the Gell-Mann matrix, the SU6 spin-flavor wave functions
for the (3q) baryons yields a very strong constraint to th
coupling constants of baryon-meson vertices appearing in
direct term of the RGM equation. The SU3 relations are
automatically satisfied in these coupling constants, which
prominent feature of the SU6 QM approach to theYN inter-
action. We can identify the SU3 parameters for these cou
pling constants with the SU3 parameters of the OBEP ap
proach. We write these asf 1, f 8, andu for each set of the
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S and PS mesons. The SU3 parameter in the OBEP ap
proach,a5F/(F1D), is completely determined to be th
pure SU6 values;a51 for S mesons anda52/5 for PS
mesons. The pure electric-type feature of the S-meson
change potentials turns out to be too strict to obtain a sim
taneous fit of theNN phase shifts and the low-energyYN
cross sections. We therefore relax this restriction in t
ways. In the model called FSS we increaseuS for S mesons
only for the SN(I53/2) system in order to decrease t
strength of the attraction. On the other hand, RGM-H u
approximate spin-flavor-color factors, as in RGM-F, for t
e- andS* -meson exchange potentials, acquiring the freed
of a for the isoscalar S mesons to control the relat
strength of the medium-range attraction betweenLN and
SN channels.

The QM parameters, the SU3 parameters of the EMEP
andcd are searched for to fit theNN S- andP-wave phase
shift values, under the constraint that the deuteron bind
energy and the1S0 scattering length are reproduced. So
parameters, such as the strange to up-down quark mass
and thek-meson mass, are further determined to fit the lo
energy cross section data of theYN scattering. Although the
harmonic oscillator width parameter and the up-down qu
mass turn out to be a little larger than the standard values
SU3 parameters of the EMEP have good correspondenc
the values of the Nijmegen soft-core potential@29#. We have
achieved very good reproduction of theNN phase shifts up
to J54 partial waves. The1P1 phase shift and the low
energy behavior of the1S0 phase shift are remarkably im
proved over the RGM-F result@18#. This is mainly due to the
correct treatment of the long-range OPEP tail in the spin-s
term. An only exception is the3D2 phase shift, which is
about 10° too attractive at the 300 MeV region. The quad
pole moment of the deuteron is reproduced to within an
curacy of 4%, and theD-state probability is predicted to b
5 – 6%. The effective-range parameters of theNN system
are reasonably reproduced. We find that an accurate re
duction of the1S0 scattering length would require an ext
source of the charge-independence breaking in additio
the pion Coulomb corrections@31#. Although the presen
models do not fit theNN data as well as the OBEP approac
the agreement is satisfactory at least for the purpose of
tending the present model to theYN interaction.

The main result of this paper is the simultaneous rep
duction of the low-energyS1p, S2p, andLp cross sec-
tions. The overestimation of theS2p elastic cross sections i
RGM-F is improved owing to the weaker central attract
of the SN(I51/2) channel in FSS and RGM-H. The ke
point for the present improvement is twofold. The first one
that the reproduction of theNN phase shifts by a unique s
of meson parameters has largely reduced the ambiguit
the central attraction in theSN(I51/2) channel. Among the
three models, RGM-H has the weakest central attract
FSS the next, and RGM-F the strongest. The other is
reproduction of theSN threshold energy in theLN
2SN(I51/2) coupled-channel system. TheLN and
SN(I51/2) channels are coupled by the one-pion ten
force in the 3S1-

3D1 state and by the antisymmetric spi
orbit ~ LS(2) ! force in the1P1-

3P1 state. The steplike reso
nance in theLN 3S1 state, obtained in RGM-F, is now
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turned into a cusp structure commonly predicted in th
OBEP approach. The dominant coupling betweenLN 3D1
andSN(I51/2) 3S1 is crucially influenced by the strength
of the central attraction in theSN(I51/2) channel. Since the
phase-shift rise in theSN(I51/2) 3P1 channel is strongly
hindered in the present models, the steplike resonance in
Lp 3P1 channel of RGM-F is largely suppressed especia
in RGM-H. This resonance appears in theLN 1P1 state in
FSS. The strong coupling betweenLN and SN(I51/2)
channels by theLS(2) force enhances the cusp structure
theSN threshold. This strong coupling is one of the reaso
for too largeS2p→Ln cross sections. TheS1p cross sec-
tions are too large in the low-energy region ofpS,300 MeV
in RGM-H. The angular distributions of the differential cros
sections forS1p elastic,S2p elastic, andS2p→Ln reac-
tion processes are reasonably well reproduced. In contras
the Nijmegen hard-core models@17,42# our quark models do
not predict any bump structure in theS1p elastic ‘‘total’’
cross sections.

A couple of problems still remain to be investigated. Firs
the central attraction of theS1p channel is still in general
too attractive when the total cross sections ofLp elastic
scattering are fitted to experiment in the low-energy regio
To changeuS only for theSN(I53/2) channel or to change
a only for thee andS* mesons is not completely satisfac
tory for a consistent understanding ofNN andYN interac-
tions. It will be necessary to inquire into the origin of the
S-meson exchange in order to clarify the apparent SU6 sym-
metry breaking of the S-meson exchange potentials. Seco
vector mesons are entirely neglected in the present mod
Most important short-range effects of the vector mesons su
as the central repulsion and theLS force are expected to be
taken into account by the present QM approach, but no o
has yet quantified it. The too attractiveNN 3D2 phase shift
may indicate that the cancellation mechanism between
pion andr meson contributions in the tensor force ought t
be included in the present framework. The third is that th
relative strength of the central attraction betweenLp 1S and
3S states cannot unambiguously be determined from t
present data for the low-energyLp total cross sections. The
LN spin-singlet and triplet scattering lengths should satis
the conditionuasu.uatu in order to reproduce the spin of the
L
3H ground-state@45#. A recent study on this system in the
few-body approach@52# may give a definitive answer to this
question. Finally, the strength of the central attraction of th
SN(I51/2) system should be determined more precise
This strength is crucial to predict correct coupling features
theLN andSN systems. In particular the resonance beha
ior of the SN(I51/2) 3P1 state is very sensitive to the
1P1 -

3P1 coupling features by theLS(2) force. A prelimi-
nary result@41# shows that spin observables are useful
clarify the role of the noncentral forces and to evaluate t
adequacy of various models which reproduce the low-ener
YN cross sections equally well. Further experiment is need
in order to extend our understanding of theYN interaction to
the same level as that of theNN interaction.
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APPENDIX:
SPIN-FLAVOR-COLOR FACTORS FOR EMEP

Here we show some spin-flavor-color factors for t
RGM kernel of EMEP. According to Eq.~2.9!, the basic
factors XnT

(V)(ll) (V5CN, SS, TN! for wi j
(00)51 and

wi j
(11)5(l il j ) are given by

V~ll!5CN~00!:

X0E
~CN!~00!56, X0D1

~CN!~00!59,

X1E
~CN!~00!52XN, X1S

~CN!~00!5X1D1

~CN!~00!54XN,

X1D2

~CN!~00!5XN,

V~ll!5CN~11!:

X0E
~CN!~11!524, X0D1

~CN!~11!5e~11!
e† e~11!

e ,

X1E
~CN!~11!5X1E

~SS!~00!1
2

3
XN,

X1S
~CN!~11!5X1S

~SS!~00!1
4

3
XN,

X1D1

~CN!~11!5@X1D1

~SS!~00!14XN#PsP2
8

3
XN,

X1D2

~CN!~11!52F 31
1

3
~s1•s2!G2

2

3
XN,

V~ll!5SS~00!:

X0E
~SS!~00!526, X0D1

~SS!~00!5~s1•s2!,

X1E
~SS!~00!52@ 6XN1X1S

~SS!~00!#,

X1S
~SS!~00!5

1

2 Fee†ee2 1

2
~ee†em1em†ee!G

1~s1•s2!X1S
~TN!~00!,

X1D1

~SS!~00!5@ 31~s1•s2!#X1D1

~TN!~00!,

X1D2

~SS!~00!52F13 ee†ee1XNG ,
V~ll!5SS~11!:

X0E
~SS!~11!528, X0D1

~SS!~11!5~s1•s2!X0D1

~TN!~11!,
R.
lso
ics,
rk
rch

he

X1E
~SS!~11!56XN2

5

3
X1E

~SS!~00!,

X1S
~SS!~11!512XN2

5

3
X1S

~SS!~00! ,

X1D1

~SS!~11!5@12XN2X1D1

~SS!~00!#PsP2
2

3
X1D1

~SS!~00!,

X1D2

~SS!~11!5
1

3
~s1•s2!292

2

3
X1D2

~SS!~00!,

V~ll!5TN~00!:

X0D1

~TN!~00!51,

X1S
~TN!~00!5

1

6 Fem†em2
1

2
~ee†em1em†ee!G ,

X1D1

~TN!~00!52
1

12
@~ee†ee1em†em!2~ee†em1em†ee!#,

X1D2

~TN!~00!52
1

6
em†em,

V~ll!5TN~11!:

X0D1

~TN!~11!5e~11!
m† e~11!

m ,

X1S
~TN!~11!5

4

3
X1S

~TN!~00! ,

X1D1

~TN!~11!52X1D1

~TN!~00!SP2
1

3D ,
X1D2

~TN!~11!5
1

9
em†em2

2

3
, ~A1!

where ee†ee 5 e(11)
e† e(11)

e 16, em†em 5 e(11)
m† e(11)

m 12/3,
si[sBi

( i51,2), and XN52(1/12)@ee†ee

1(s1•s2) e
m†em] is the spin-flavor-color factor of the ex-

change normalization kernel. The factorsXnS8
(V)(ll) are equal

to XnS
(V)(ll) in the present case.

The spin-flavor-color factors of the exchange Coulom
kernel are calculated only forpp system. These are em
ployed in place of Eq.~A9! of @18#:

X1S
CL5X1S8

CL
52

1

27F 41
7

9
~s1•s2!G ,

X1D1

CL 52
1

27F 101 1

9
~s1•s2!G ,

X1D2

CL 52
1

54F 171 65

9
~s1•s2!G . ~A2!
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