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Intermittent and multifractal behaviors of multiplicity distributions
in 800 GeV p-nucleus interactions

G. Das, S. Dheer, and R. K. Shivpuri
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India

S. K. Soni
Department of Physics, S.G.T.B. Khalsa College, University of Delhi, Delhi-110007, India
(Received 10 January 1996; revised manuscript received 11 April) 1996

We use scaled factorial momen(@FM'’s) to analyze pseudorapidity fluctuations of nonstatistical origin in
p-nucleus interactions at 800 GeV. The SFM’s are found to exhibit a power-law dependence on the pseudo-
rapidity interval size. The anomalous dimensiafs have been calculated up to order 5. The fractional
dimensionsD, have been extracted from the slopes of the multifractal plots. Both the multifractal and inter-
mittency approaches have been found to be complementary to each other. The beh&jcanafd, with
order q indicates a possible self-similar random cascading mechanism for multiparticle production.
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Recently, the observation of large density fluctuations ofpattern of nonstatistical fluctuations in the interactions, have
nonstatistical origin in small regions of phase space, calletbeen extracted and compared with the fractional dimensions
intermittency[1], has triggered considerable interest, bothD, obtained from the corresponding multifractal analysis.
theoretical and experimental. Bialas and Peschafiskin ~ The behavior of these dimensions with ordeclearly indi-
their pioneering work gave an attractive formalism to studycates the presence of multifractal geometry, suggestive of a
these multiplicity fluctuations in terms of noise-suppressedascading phenomenon in the emission of these shower par-
scaled factorial moments. They suggested that if a power-lawicles.
dependence of scaled factorial moments on the rapidity bin The scaled factoral momen(SFM'’s) offer the most di-
size exists, it is clearly indicative of the presence of intermit-rect approach to investigate fluctuations in high energy mul-
tency. Several theories have been propounded to explain ifiparticle production processes. The pseudorapidjjyspace
termittency, some of which are the formation and decay obf individual events is divided into bins of varying sizes, and
jets in a self-similar patterfl—3], phase transition and the the presence of intermittency in such interactions is reflected
formation of a quark-gluon plasm], hadronic-@renkov by the power-law dependence of SFM’s upon bin size.
radiation[5], Ising model[6], and multiparticle correlations The SFM’s can be defined in two ways, viz., the horizon-
[7—11]. Intermittent behavior of secondary particles has alsdal and the vertical momen{d]. The qth order horizontal
been confirmed in several experiments involving differentand vertical moments are, respectively, defined as
projectiles and targets, namely/ e [12], up [13], hadron-
hadron[14], hadron-nucleu§l5], and r)ucleu_s—nucle'L[QG]. _lNev . M Kmi(Kmi—1) - (Kmi—q+1)

A concept very closely related to intermittency is that of (Fq)n=Ngy E M E Ny /M@ ,
multifractals because self-similarity of the system over a =1 m=1 ((NY/M) 1
range of scales is a characteristic of fractal geometry. In a (13
multifractal analysis, it has been observed that the well-
known G, moments[17-19 show departure from a pre-
dicted linear behavior in a log-log plot @&, vs bin size.
Takagi[20] has argued that this may be due to the fact that
the number of pointdparticles in experiments does not
strictly approach infinity. He has proposgzD] a simple and 1.0
more attractive multifractal analysis which overcomes this
limitation. In an earlier work, following Takagi's approach, %lgo.e
we have performed a multifractal analysis for medium en- - g
ergy particles inp-AgBr interactions at 800 GeVY21] and
have now extended this analysis to the shower partidlg}, ( 0.4
which contribute the most to the total cross section. In this
work, we investigate intermittency and multifractality for the 0.2
shower particles ip-nucleus interactions at 800 GeV, which
is presently the highest energy for fixed targets. Details about 0.5 1.0 1.5 2.0 25 3.0 35 40 45 50 55
the data can be seen in RE22], although the present analy- n
sis uses data with larger statisti@O00 events The anoma-
lous dimensionsl,, which are a measure of the intermittent FIG. 1. Pseudorapidity distribution for GZ5;<5.5.
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FIG. 2. Plot of InF vs —Iné7 for q=2-5. Solid lines indicate
least squares fit in the linear region.
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where

Nev
(Km)¥=Ney' 2, K el
is the average content afith bin of size §n over the en-
semble of eventsM is the number of bins into which the
pseudorapidity window is divided\ is the multiplicity in
the total 5 interval, andN,, is the number of events in the
sample. The two definitiong1a) and(1b)] become identical
if the single-particley distribution is flat. However, if the
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FIG. 3. Distribution of fractional dimensior3, and anomalous
dimensiongd,, as a function ofy. Solid line indicates least squares
fit for 0<g<0.9.

The experimental data have also been analyzed in terms
of multifractals. Following Takagi[20], we have used
(n In n)/{n) and In% moments of multiplicity distributions
in limited intervals of pseudorapidity, whereis the multi-
plicity in a single interval of then space. They are plotted
against increasing {m), i.e., increasing interval size. In case
of nonstatistical, self-similar density fluctuatiofraultifrac-
tility ), this should yield a straight line behavior. Fractional
dimensionsD, for q=1,2,... aredetermined from the
slopes

q=2,3,...,

Dq=(Bq—1)/(a—1), (5

D1=By, (6)

distribution is not flat, one should either consider the verti-whereBy is the slope of Ign) vs I(n) andB, is the slope

cally averaged moments or apply a correction fa&8# to

of (n In n)(n) vs In{n).

the horizontal moments. The vertical analysis, where normal-

ization is done locally in each bin, is a particularly simple

way of analyzing the SFM’s. In the present work, we have

studied the vertical factorial moments, which for conve-
nience we will denote by, instead ofF), in the follow-
ing. A log-log plot ofF, versus 167 yields the intermittency
index

bq=— 3)

which is related to the anomalous dimenstnthrough the
relation

9 InFq/d Insy,

dg=oq/(q—1). (4)

TABLE I. Values of slopesp, from least squares fits of E(B)
to the data. The errorén parenthesgsare standard.

Order ?q
2 0.121(0.005
3 0.364(0.018
4 0.828(0.035
5 1.364(0.063

18.0

16.0

14.0

LINEAR REGION
1 ! | ! i
14 18 22

-2.0 1 1 ! 1 1
-.0 -0.6 -0.2 0.2 0.6 1.0

In<n>

FIG. 4. Plot of Ifn9) vs Inkn) for q=0.6 andq=2-5. Solid
lines indicate least squares fits in the linear region.
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TABLE Il. Values of slopesBy and interceptsAq from least
squares fits of Eq(7) to the data. The errorén parenthesgsare
standard.

Order By A

2 1.809(0.002 0.838(0.009
3 2.580(0.009 2.029(0.008
4 3.331(0.0059 3.477(0.01)
5 4.071(0.057 5.123(0.013

We started with the analysis of data in the central region

in the pseudorapidity range G5<5.5. The » distribution

in this interval is shown in Fig. 1. We have variég from
5.0 to 0.125 by increasinigl from 1 to 40. In order to extract
most of the statistically significant information, SFM’s up to
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order 5 were calculated. Figure 2 exhibits the dependence of

Fq on o7 in a log-log plot which shows a linear behavior.

From the least squares fits to this plot, the values of thé

slopes ¢, were obtained and are given in Table I. The
anomalous dimensiortk, were determined using E() and
Fig. 3 shows the dependencedyfon orderqg. This behavior

in the production of shower particles. Another remarkable

result can be drawn from the scaling relatidg= q(d,/2),
which holds to a good degree of approximation. We ca
conclude that all of the statistically significant information i
already present in the second-order momégg#. Higher

order moments do not contribute much to new information.

Following Takagi 20], we reduced sizA 5 of the 7 space
(0.5=%=<b5.5 symmetrically in steps of 0.05 from both ends.
Thus the largest interval had siae)=5.0 and was decreased
in 50 such steps until it becamen=0.1. We calculated the
quantity Inn%) whereq=2-5 for each of the intervals and
studied its dependence on{ir}. These plots are shown in

FIG. 5. Plot of(nInn)/(n) vs In{n). Solid lines indicate least
quares fits in the linear region.

The least squares fit is indicated by the solid line in Fig. 3.

clearly signals nonstatistical, self-similar density fluctuations! "€ values of the interceys) and slope(b) parameters are

0.868 and—2.999<10 2, respectively. The standard errors
are found to be very small as the fit is extremely good. In-

fercepta of Eq. (8) yields the fractal dimensio®, also
g shown in Fig. 3. The information dimensidd, was ex-
tracted using Eq(6). Figure 5 shows the linear behavior of

(n Inn)/(n) vs In{n}). The value oD, which is equal to the
slope of Fig. 5, is included in Fig. 3. From the behaviors of
D, andd, with increasingy, it is observed that the following
relation[25]

Dyt dq=1 ©)

Fig. 4 along with least squares fits for the linear region. Asholds to a good approximation. Hence we can conclude that
can be seen, all the moments show a remarkably linear behe multifractal and intermittency approaches are comple-

havior with resolution according to the relation

In(n%)=A,+BgIn(n). (7)
Table Il lists the slopeB, and interceptg\,. The fractional
dimensionsD, have been obtained using E@), and their
dependence on orderis illustrated in Fig. 3. This behavior
clearly favors multifractality and self-similar cascading in
the present interactions.

We have found that a simple statistical model with a mul-

tinomial distribution [21] gives a trivial resultB;=q or
D4=1. Hence the value of 1D,, which is a measure of

nonstatistical fluctuations in the interaction processes, re2

ceives no contribution from the background.

In order to calculate the fractal dimensi@n, of the set,
we have extended the above analysig tmlues(0<q<0.9).
In(n%) vs In{n) plots for theseq values were studied, and
Fig. 4 shows one of the plots correspondingjte0.6. From
the slopesB, [Eq. (7)], we determined, using Eq.(5),
which are shown in Fig. 3. ThB vs g behavior is found to
satisfy the linear relation

Dy=a+bg; g=0.1,...,0.8. (8

mentary to each other and this result is in agreement with the
results of other authol2,26.

In the intermittency analysis, we observe the linear behav-
ior of InF, as a function of-Iné»n. The observed) depen-
dence of anomalous fractal dimensiods, shows that(a)
self-similar cascading in the underlying multiparticle dynam-
ics and(b) the dominant contribution to nonstatistical fluc-
tuations come from the second order moment.

Linear relations are found to hold betweenrf) and
In{n) as well as betwee¢n In n)/{n) and In(n). This clearly
points to the existence of fractality in the emission of these
fast produced shower particles. The plot of fractional dimen-
sionDg vs g for g<1 shows a linear relation, which can be
extrapolated t@=0 to give a value of fractal dimensidh,
close to unity. Fog>1, D, does not vary linearly wity,
suggesting a cascading mechanism in the present interac-
tions.

The intermittency and multifractal approaches used to
analyze multiplicity fluctuations are found to be complemen-
tary to each other.
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