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We use scaled factorial moments~SFM’s! to analyze pseudorapidity fluctuations of nonstatistical origin in
p-nucleus interactions at 800 GeV. The SFM’s are found to exhibit a power-law dependence on the pse
rapidity interval size. The anomalous dimensionsdq have been calculated up to order 5. The fractiona
dimensionsDq have been extracted from the slopes of the multifractal plots. Both the multifractal and int
mittency approaches have been found to be complementary to each other. The behavior ofDq anddq with
order q indicates a possible self-similar random cascading mechanism for multiparticle producti
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Recently, the observation of large density fluctuations
nonstatistical origin in small regions of phase space, cal
intermittency @1#, has triggered considerable interest, bo
theoretical and experimental. Bialas and Peschanski@1# in
their pioneering work gave an attractive formalism to stud
these multiplicity fluctuations in terms of noise-suppress
scaled factorial moments. They suggested that if a power-
dependence of scaled factorial moments on the rapidity
size exists, it is clearly indicative of the presence of interm
tency. Several theories have been propounded to explain
termittency, some of which are the formation and decay
jets in a self-similar pattern@1–3#, phase transition and the
formation of a quark-gluon plasma@4#, hadronic-Čerenkov
radiation@5#, Ising model@6#, and multiparticle correlations
@7–11#. Intermittent behavior of secondary particles has al
been confirmed in several experiments involving differe
projectiles and targets, namely,e1e2 @12#, mp @13#, hadron-
hadron@14#, hadron-nucleus@15#, and nucleus-nucleus@16#.

A concept very closely related to intermittency is that o
multifractals because self-similarity of the system over
range of scales is a characteristic of fractal geometry. In
multifractal analysis, it has been observed that the we
known Gq moments@17–19# show departure from a pre-
dicted linear behavior in a log-log plot ofGq vs bin size.
Takagi @20# has argued that this may be due to the fact th
the number of points~particles! in experiments does not
strictly approach infinity. He has proposed@20# a simple and
more attractive multifractal analysis which overcomes th
limitation. In an earlier work, following Takagi’s approach
we have performed a multifractal analysis for medium e
ergy particles inp-AgBr interactions at 800 GeV@21# and
have now extended this analysis to the shower particles (Ns),
which contribute the most to the total cross section. In th
work, we investigate intermittency and multifractality for th
shower particles inp-nucleus interactions at 800 GeV, whic
is presently the highest energy for fixed targets. Details ab
the data can be seen in Ref.@22#, although the present analy
sis uses data with larger statistics~3500 events!. The anoma-
lous dimensionsdq , which are a measure of the intermitten
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pattern of nonstatistical fluctuations in the interactions, ha
been extracted and compared with the fractional dimensio
Dq obtained from the corresponding multifractal analysi
The behavior of these dimensions with orderq clearly indi-
cates the presence of multifractal geometry, suggestive o
cascading phenomenon in the emission of these shower p
ticles.

The scaled factoral moments~SFM’s! offer the most di-
rect approach to investigate fluctuations in high energy m
tiparticle production processes. The pseudorapidity~h! space
of individual events is divided into bins of varying sizes, an
the presence of intermittency in such interactions is reflect
by the power-law dependence of SFM’s upon bin size.

The SFM’s can be defined in two ways, viz., the horizon
tal and the vertical moments@1#. The qth order horizontal
and vertical moments are, respectively, defined as

^Fq&H5Nev
21(

i51

Nev

M21 (
m51

M
Km,i~Km,i21!•••~Km,i2q11!

~^N&/M !q
,

~1a!

FIG. 1. Pseudorapidity distribution for 0.5<h<5.5.
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where

^Km&q5Nev
21(

i51

Nev

Km,i ~2!

is the average content ofmth bin of sizedh over the en-
semble of events,M is the number of bins into which the
pseudorapidity window is divided,N is the multiplicity in
the totalh interval, andNev is the number of events in the
sample. The two definitions@~1a! and~1b!# become identical
if the single-particleh distribution is flat. However, if the
distribution is not flat, one should either consider the ver
cally averaged moments or apply a correction factor@23# to
the horizontal moments. The vertical analysis, where norm
ization is done locally in each bin, is a particularly simp
way of analyzing the SFM’s. In the present work, we hav
studied the vertical factorial moments, which for conv
nience we will denote byFq instead of̂ Fq&v in the follow-
ing. A log-log plot ofFq versus 1/dh yields the intermittency
index

fq52] lnFq /] lndh, ~3!

which is related to the anomalous dimensiondq through the
relation

dq5fq /~q21!. ~4!

FIG. 2. Plot of lnFq vs2lndh for q52–5. Solid lines indicate
least squares fit in the linear region.

TABLE I. Values of slopesfq from least squares fits of Eq.~3!
to the data. The errors~in parentheses! are standard.

Order fq

2 0.121~0.005!
3 0.364~0.018!
4 0.828~0.035!
5 1.364~0.063!
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The experimental data have also been analyzed in ter
of multifractals. Following Takagi@20#, we have used
^n ln n&/^n& and ln̂ nq& moments of multiplicity distributions
in limited intervals of pseudorapidity, wheren is the multi-
plicity in a single interval of theh space. They are plotted
against increasing ln^n&, i.e., increasing interval size. In case
of nonstatistical, self-similar density fluctuations~multifrac-
tility !, this should yield a straight line behavior. Fractiona
dimensionsDq for q51,2, . . . aredetermined from the
slopes

Dq5~Bq21!/~q21!, q52,3, . . . , ~5!

D15B1 , ~6!

whereBq is the slope of ln̂n
q& vs ln̂ n& andB1 is the slope

of ^n ln n&/^n& vs ln̂ n&.

FIG. 3. Distribution of fractional dimensionsDq and anomalous
dimensionsdq as a function ofq. Solid line indicates least squares
fit for 0,q,0.9.

FIG. 4. Plot of ln̂nq& vs ln̂ n& for q50.6 andq52–5. Solid
lines indicate least squares fits in the linear region.
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We started with the analysis of data in the central regi
in the pseudorapidity range 0.5<h<5.5. Theh distribution
in this interval is shown in Fig. 1. We have varieddh from
5.0 to 0.125 by increasingM from 1 to 40. In order to extract
most of the statistically significant information, SFM’s up t
order 5 were calculated. Figure 2 exhibits the dependence
Fq on dh in a log-log plot which shows a linear behavior
From the least squares fits to this plot, the values of t
slopesfq were obtained and are given in Table I. Th
anomalous dimensionsdq were determined using Eq.~4! and
Fig. 3 shows the dependence ofdq on orderq. This behavior
clearly signals nonstatistical, self-similar density fluctuatio
in the production of shower particles. Another remarkab
result can be drawn from the scaling relationdq5q(d2/2),
which holds to a good degree of approximation. We c
conclude that all of the statistically significant information
already present in the second-order moments@24#. Higher
order moments do not contribute much to new informatio

Following Takagi@20#, we reduced sizeDh of theh space
~0.5<h<5.5! symmetrically in steps of 0.05 from both ends
Thus the largest interval had sizeDh55.0 and was decreased
in 50 such steps until it becameDh50.1. We calculated the
quantity ln̂ nq& whereq52–5 for each of the intervals and
studied its dependence on ln^n&. These plots are shown in
Fig. 4 along with least squares fits for the linear region. A
can be seen, all the moments show a remarkably linear
havior with resolution according to the relation

ln^nq&5Aq1Bqln^n&. ~7!

Table II lists the slopesBq and interceptsAq . The fractional
dimensionsDq have been obtained using Eq.~5!, and their
dependence on orderq is illustrated in Fig. 3. This behavior
clearly favors multifractality and self-similar cascading i
the present interactions.

We have found that a simple statistical model with a mu
tinomial distribution @21# gives a trivial resultBq5q or
Dq51. Hence the value of 12Dq , which is a measure of
nonstatistical fluctuations in the interaction processes,
ceives no contribution from the background.

In order to calculate the fractal dimensionD0 of the set,
we have extended the above analysis toq values~0,q,0.9!.
ln^nq& vs ln̂ n& plots for theseq values were studied, and
Fig. 4 shows one of the plots corresponding toq50.6. From
the slopesBq @Eq. ~7!#, we determinedDq using Eq.~5!,
which are shown in Fig. 3. TheDq vs q behavior is found to
satisfy the linear relation

Dq5a1bq; q50.1, . . . ,0.8. ~8!

TABLE II. Values of slopesBq and interceptsAq from least
squares fits of Eq.~7! to the data. The errors~in parentheses! are
standard.

Order Bq Aq

2 1.809~0.002! 0.838~0.005!
3 2.580~0.004! 2.029~0.008!
4 3.331~0.005! 3.477~0.011!
5 4.071~0.057! 5.123~0.013!
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The least squares fit is indicated by the solid line in Fig. 3
The values of the intercept~a! and slope~b! parameters are
0.868 and22.99931022, respectively. The standard errors
are found to be very small as the fit is extremely good. In
tercepta of Eq. ~8! yields the fractal dimensionD0 also
shown in Fig. 3. The information dimensionD1 was ex-
tracted using Eq.~6!. Figure 5 shows the linear behavior of
^n lnn&/^n& vs ln̂ n&. The value ofD1, which is equal to the
slope of Fig. 5, is included in Fig. 3. From the behaviors o
Dq anddq with increasingq, it is observed that the following
relation @25#

Dq1dq51 ~9!

holds to a good approximation. Hence we can conclude th
the multifractal and intermittency approaches are compl
mentary to each other and this result is in agreement with t
results of other authors@22,26#.

In the intermittency analysis, we observe the linear beha
ior of lnFq as a function of2lndh. The observedq depen-
dence of anomalous fractal dimensions,dq , shows that~a!
self-similar cascading in the underlying multiparticle dynam
ics and~b! the dominant contribution to nonstatistical fluc-
tuations come from the second order moment.

Linear relations are found to hold between ln^nq& and
ln^n& as well as between̂n ln n&/^n& and ln̂ n&. This clearly
points to the existence of fractality in the emission of thes
fast produced shower particles. The plot of fractional dimen
sionDq vs q for q,1 shows a linear relation, which can be
extrapolated toq50 to give a value of fractal dimensionD0
close to unity. Forq.1, Dq does not vary linearly withq,
suggesting a cascading mechanism in the present inter
tions.

The intermittency and multifractal approaches used
analyze multiplicity fluctuations are found to be complemen
tary to each other.

We thank Dr. R. Stefanski and Dr. R. Wilkes, FNAL. We
also thank U.G.C. and C.S.I.R.~India! for financial assis-
tance.

FIG. 5. Plot of ^n lnn&/^n& vs ln̂ n&. Solid lines indicate least
squares fits in the linear region.
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