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We present a new and simple method of calculating the occupation probability of the number of to
harmonic-oscillator quanta for a microscopic cluster model wave function. Examples of applications are giv
to the recent calculations including ana1n1n model for 6He, ana1t1n1n model for 9Li, and an
a1a1n model for 9Be as well as the classical calculations of ana1p1n model for 6Li and ana1a1a
model for 12C. The analysis is found to be useful for comparing various model wave functions by quantifyin
the amount of excitations across the major shell.@S0556-2813~96!03510-8#
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The microscopic cluster model~MCM! is a many-nucleon
theory which provides a unified picture of bound-state pro
erties of nuclei and nuclear reactions.~See, for example,@1#.!
It is based on the assumption that the nucleons in the nu
form substructures, called clusters, and solves a ma
nucleon Schro¨dinger equation with the variational method
Though the MCM is capable of describing a variety of stru
ture, its application has mostly been limited to a two-
three-cluster system. Recent advances in the MCM ha
however, enabled one to treat systems containing more t
three clusters and thereby give a detailed description of li
nuclei including halo nuclei@2–5#. This extension of the ap-
plicability has been made possible by the inclusion of clu
ters other than thea particle and by the use of the stochast
variational method@2,6#.

The MCM wave function is an antisymmetrized produ
of the intrinsic wave functions of the clusters and the fun
tions of relative motions. The intrinsic wave functions a
usually approximated by a simple harmonic-oscillator~HO!
configuration, or a linear combination of such states. T
functions of relative motions are expanded in terms of som
suitable functions, such as nodeless HO functions or shif
Gaussians, for example. In the latter case, an explicit angu
momentum projection is necessary. As this brief descripti
shows, a large variety of cluster models exist and in gene
the MCM wave functions take quite different form. Thes
facts make it difficult to compare the wave functions in di
ferent calculations even within the family of MCM. The dif
ficulty is further enhanced if one wants to compare the c
culations which employ different cluster partitions.

The utility, understanding, and appreciation of MCM
would considerably increase if its wave function and mod
space are easily related to other nuclear models and calc
tions. The MCM has relationship to the widely used nucle
shell model. Efforts have been made to relate the MC
wave function to the SU~3! @7# or symplectic@8# shell-model
wave function. Such efforts were limited to the two-clust
case. It is hard to analyze a general MCM wave function
terms of shell-model configurations. Although in principle
is possible to expand the MCM wave function in shell-mod
terms, such a calculation would be very tedious and even
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usefulness of the presumably small coefficients of the lar
number of shell-model configurations is unclear. We wi
show instead that it is easy to calculate the percentage of
HO excitations contained in the MCM wave function. Thi
presents a useful and economic way for a comparision
MCM and shell-model wave functions, and opens the pos
bility of comparing different MCM wave functions as well.
The new technical elements of the formalism are construc
in the spirit of MCM.

The occupation probabilityPQ of a definite number of
total HO quantaQ for theA-nucleon system is obtained by
calculating the expectation value of the operatorO:

O5
1

2pE0
2p

du expH iuF(
i51

A

PiSHHO~ i !2
3

2D 2QG J . ~1!

HereHHO( i ) is the three-dimensional HO Hamiltonian di-
vided by\v5 (2\2/m) g andPi projects out either protons
or neutrons. The unit operator is set when one calculates
number of total quanta occupied by both protons and ne
trons.

The MCM wave function is conveniently generated from
the Slater determinants of the Gaussian wave-packet sing
particle ~sp! functions,ws

n(r )5(2n/p)3/4e2n(r2s)2,

fk~s1 , . . . ,sA!5AH)
i51

A

wsi
n ~r i !x~1/2! s i

X~1/2! t iJ . ~2!

Here A is the antisymmetrizer andk5(s1t1 , . . . ,sAtA)
stands for the set of the spin-isospin quantum numbers of
nucleons. Thesi parameter or ‘‘generator’’ coordinate is a
variational parameter in the generator coordinate method c
culations or it is used in an integral transformation@6,9# to
derive the matrix elements between the Gaussian basis fu
tions @10#.

The matrix element of the operatorO between the Slater
determinants is given by

^fk~s1 , . . . ,sA!uOufk8~s81 , . . . ,sA8 !&

5
1

2pE0
2p

duexp~2 iQu!det$B%, ~3!

where the element of the matrixB is defined by
Bi j5^ŵsis it i

n uexp(iuP@HHO23/2#)uŵs8 js j8t
j8

n
& ~i, j 5 1, . . . ,
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A). The ŵsis it i
n stands forwsi

n x (1/2)s i
X(1/2)t i. Since the con-

stants,n and g, are in general different, the calculation o
Bi j may seem difficult at first sight but in fact can be easi
performed with the use of the following formulas:

ws
n~r !5S ng3

p2~n2g!2D
3/4E dt expS 2

ng

g2n
~ t2s!2Dw t

g~r !,

~4!

expS iuFHHO2
3

2G Dw t
g~r !5expS 2

g

2
~12z2!t2Dwzt

g ~r !, ~5!

where z5eiu. One can prove Eq.~5! by noting that the
w t

g(r ) is the generating function for three-dimensional H
functions. Using Eqs.~4! and ~5! yields the needed matrix
element

Kŵsst
n UexpF iuPS HHO2

3

2D GUŵs8s8t8
n L

5S 4ng

~n1g!22~n2g!2z̄ 2
D 3/2

3expS 2ng
n1g1~n2g!z̄ 2

~n1g!22~n2g!2z̄ 2
~s21s82!

1
4n2g z̄

~n1g!22~n2g!2z̄ 2
s•s8D ds,s8dt,t8, ~6!

where z̄5z or 1 in accordance witĥtuPut&51 or 0. The
value ofn is usually chosen to give an appropriate size f
the cluster, while the value ofg is determined by the size of
the whole nucleus. Hence the value ofn is usually larger
than that ofg. The integral in Eq.~4! then does not converge
but even in this case one can show that Eq.~6! may safely be
used.

The sp matrix element ofHHO itself

K ŵsst
n UPFHHO2

3

2GUŵs8s8t8
n L

5S 3~n2g!2

4ng
2

n22g2

4g
~s21s82!1

n21g2

2g
s•s8D

3e2~n/2!~s2s8!2ds,s8^tuPut8& ~7!
is enough to calculate the average number of total HO qua
contained in the wave function. Recently this quantity
used in Ref.@11#.

The summation in the exponent of Eq.~1! runs over all
the nucleons and the probability calculated with it in gene
contains the contribution from the center-of-mass~c.m.! mo-
tion unless the wave function is free from the spurious c.
motion. In fact our MCM wave functions generated from th
Slater determinants of Eq.~2! by an integral transformation
do not contain the c.m. motion@6#. The probability calcu-
lated below is thus a purely intrinsic quantity.

A generalization to a combined occupation probability
straightforward. For example, the probabilityPQ1 ,Q2

that

protons haveQ1 quanta and neutronsQ2 quanta or spin-up
nucleons haveQ1 quanta and spin-down nucleonsQ2 quanta
is obtained by using Eq.~1! twice and noting the commut-
ability of the corresponding operators.

As an illustrative example let us consider Brink’sa1a
model for 8Be @12#. The intrinsic wave function of thea-
f
ly

O

or

,

nta
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particle is constructed from the Slater determinant of a 0s
HO function with a size parametern. When the twoa par-
ticles are separated byS and their relative orbital angular
momentum isL, PQ is calculated by

PQ5
1

2p i R uzu51dz
f ~z!

zQ11 ,

f ~z!5
1

e22d~ i L~2d!24i L~d!13dL,0!

3S 4r

~11r!22~12r!2z2D
12

3expS 24rd
11r1~12r!z2

~11r!22~12r!2z2D
3F i LS 8rdz

~11r!22~12r!2z2D
24i LS 4rdz

~11r!22~12r!2z2D13dL,0G , ~8!

wherer5g/n, d5nS2, and i L(z)5Ap/2zIL11/2(z) are the
modified spherical Bessel functions of the first kind. Sinc
f (z) is analytic in the unit circle, Cauchy’s integral formula
can be applied to yieldPQ5 f (Q)(0)/Q!. The function f (z)
has a leading term proportional tozmax(L,4) nearz50. Hence
PQ vanishes forQ,max(L,4), which is the consequence of
the Pauli principle. Figure 1 shows thePQ values (Q54, 6,
and 8! for L50, 2, 4, and 6 as a function ofS, with a choice
of n50.25 fm22 and g50.15 fm22. The PQ values for
differentL values are not the same at eachS particularly in
the interval of 2–4 fm. A maximum ofPQ54 appears around
S;2.9 fm in the case ofL50, while it shifts to a smaller
separation ofS;2.2 fm in case ofL54. The diagonal energy

FIG. 1. The occupation probability of the number of oscillato
quantaQ for the L5026 states of8Be. The wave functions of
8Be are assumed to be given by Brink’s 2a model@12# with a mean
separationS.
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TABLE I. The occupation probability of the number of harmonic-oscillator quanta for microscopic multicluster model wave func
The probabilities for nucleons, protons, and neutrons are given in percentages in the upper, middle, and lower rows, respectiv
function of oscillator excitations. When the probability for neutrons is the same as that for protons, only the proton case is shown. An
indicates the probability of less than 1% and dashed line represents the vanishing probability. The average number of oscillator ex
is given in the column labeled̂Qexc&. The details of the wave functions are referred to Ref.@4~b!# for 6He and6Li, to Ref. @5# for 7Li,
8Li, 9Li, and 9C, and to Ref.@14# for 9Be.

State rms radius Qexc ^Qexc&

~model! ~fm! 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

6He~01) rm52.51 60 — 14 — 12 — 5 — 3 — 2 — 1 — * 2.2
(a1n1n) r p51.87 74 10 11 2 1 * * * * * * * * * * 0.5

r n52.78 67 3 8 5 7 2 2 1 1 * * * * * * 1.7

6Li ~11) rm52.44 62 — 16 — 10 — 5 — 3 — 2 — * — * 1.9
(a1p1n) r p52.44 69 8 10 4 4 2 1 * * * * * * * * 1.0

7Li ~3/22) rm52.34 63 — 20 — 9 — 4 — 2 — * — * — * 1.4
(a1t) r p52.28 77 2 16 * 4 * * * * * * * * * * 0.6

r n52.38 73 1 17 * 5 * 1 * * * * * * * * 0.8

8Li ~21) rm52.45 61 — 18 — 11 — 4 — 2 — 1 — * — * 1.7
(a1t1n) r p52.19 79 6 11 1 2 * * * * * * * * * * 0.4

r n52.60 67 3 14 2 7 1 2 * 1 * * * * * * 1.3

8Be~01) rm53.27 36 — 18 — 12 — 7 — 5 — 4 — 3 — 2 7.6
(a1a) r p53.27 47 — 21 — 11 — 6 — 4 — 3 — 2 — 1 3.8

9Li ~3/22) rm52.40 66 — 17 — 11 — 4 — 2 — * — * — * 1.3
(a1t1n1n) r p52.10 82 6 9 1 1 * * * * * * * * * * 0.4

r n52.54 71 3 12 2 6 1 2 * * * * * * * * 1.0

9C~3/22) rm52.52 60 — 17 — 12 — 5 — 3 — 1 — * — * 1.8
(a1h1p1p) r p52.68 65 4 12 3 7 1 2 * 1 * * * * * * 1.4

r n52.16 79 8 9 2 1 * * * * * * * * * * 0.4

9Be~3/22) rm52.50 54 — 21 — 12 — 5 — 3 — 2 — * — * 2.1
(a1a1n) r p52.39 71 3 17 1 5 * 1 * * * * * * * * 0.8

r n52.58 65 2 18 1 8 * 3 * 1 * * * * * * 1.3

12C~01
1) rm52.20 54 — 30 — 11 — 3 — * — * — * — * 1.4

(a1a1a) r p52.20 70 5 19 1 4 * * * * * * * * * * 0.7

12C~02
1) rm53.75 * — 11 — 12 — 12 — 10 — 8 — 7 — 6 16.1

(a1a1a) r p53.75 5 7 15 7 11 6 8 5 6 4 4 3 3 2 2 8.2
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curve of 8Be as a function ofS is expected to have a loca
minimum around the point wherePQ54 reaches a maximum.
Then the behavior of thePQ values with respect toL and
S is in accord with the antistretching@13# that the minimum
of the diagonal energy curve appears at a smaller clus
separation asL increases to the value of a band terminatio

Table I lists thePQ values in percentages for nucleon
protons, and neutrons for some of the wave functions o
tained in our recent MCM calculations@4,5,14# using the
Minnesota potential@15#. A common value ofn50.26
fm22 is used to describe the intrinsic wave functions
a,t, andh clusters. The choice ofg has some influence on
the probability. It is set 0.17 fm22 (\v514.4 MeV!, a stan-
dard value used in a shell model calculation forp-shell nu-
clei. For the sake of reference the calculated root-me
square ~rms! radii for nucleons ~matters!, protons, and
neutrons are included in the table. ThePQ values are given
as a function ofQexc5Q2Qmin , whereQmin is the minimum
number of HO quanta for the lowest Pauli-allowed config
ration. The lowest 0\v component is around 50–60 % fo
most cases and the sum of 0, 2, and 4\v components accu-
mulates to about 90%. The admixtures of higher compone
l
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b-
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thanQexc54 are significant in the ground states of6Li and
9Be and also in the ground state of6He corresponding to its
extended halo structure@4~b!#. The probability distribution
spreads out to a very large number of HO quanta in8Be and
the 02

1 state of 12C, well-known cluster states. They are de
scribed as a bound state in a large basis. Our wave functi
for 12C are similar to those of Ref.@16#, which reproduces
many properties of12C in the 3a model. The parameteru of
the Minnesota potential is setu 5 0.95 to reproduce the
energy of the 02

1 state. The ground state energy becom
then about 4.5 MeV lower than experiment. The calculat
monopole matrix element is 4.0 fm2, which reasonably
agrees with the experimental value of 5.460.2 fm2. It is
noted that no component is dominant in the 02

1 state of
12C. Of course it would be possible to maximize the prob
ability with lower Q by choosing an appropriate value o
g. However, the probability distribution would then sprea
to higher HO quanta in the ground state of12C. It is also
noted that the components with oddQexc values for protons
or neutrons are generally smaller. For example, in6He
PQexc(p)51,Qexc(n)51 is about 3%, whereasP0,2 andP2,0 are 5
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and 6%, respectively, and, among the probability of 12% f
4\v excitations, the probability withQexc(p) 5 1 or 3 is
only about 4%.

Comparing the results for729Li, we see that the probabil-
ity for neutrons has a larger change in the isotopes than
for protons. The change follows that of the neutron radiu
which is consistent with the change of the neutron separat
energy. In fact the nucleus8Li has the smallest neutron sepa
ration energy among the three. Since the MCM consisten
predicts the largest neutron rms radius for8Li @17#, its aver-
age number of oscillator excitations,^Qexc&, for neutrons is
largest among the three. A comparison of our result with th
of Ref. @11# indicates that the latter wave functions, givin
generally much smaller̂Qexc& values, are rather close to
simple shell model configurations; e.g.,^Qexc& for neutrons
is about 0.1 for9Li and 0.5 even for8Be. This may not be
surprising because the model of Ref.@11# uses basically a
single Slater determinant of Eq.~2!.

It is interesting to compare those wave functions whic
are obtained in different MCM calculations. As an examp
we generate the ground state wave function of7Li in an
a1p1n1n four-body model. This model may be consid
ered equivalent to a kind of shell-model calculation whe
three valence nucleons outside the4He core are allowed to
be excited to any orbits and where no spurious c.m. probl
is nevertheless involved. Theu parameter is kept the same a
the one used in@5# which treated7Li in a simpler a1t
model. The ground state energy becomes slightly overbou
but its radius hardly changes from the previous result. T
resulting wave function is decomposed to

66%u0\v&117%u2\v&110%u4\v&14%u6\v&

12%u8\v&1•••. ~9!

The ^Qexc& value is 1.4. This distribution is very similar to
that of thea1t two-body model, as seen from Table I. Thi
indicates that thet cluster can be regarded as a useful su
structure.
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The calculational method developed here has nothing
do with the assumption of the existence of clusters and c
be applied to those precise wave functions for a few-nucle
system which are obtained with a sophisticated techniq
@6#. As an example we analyze the solution for the groun
state of 4He which is obtained in ap1p1n1n four-body
calculation with the Minnesota potential. For the sake
comparison with a recent large-basis shell-model calculati
@18#, we expand the solution in the HO basis with\v 5 14
MeV. The result is

68%u0\v&119%u2\v&18%u4\v&13%u6\v&

10.9%u8\v&1•••. ~10!

The^Qexc& value becomes 1.1. It is remarkable that our wav
function gives percentages similar to those of Ref.@18# that
uses theG matrices calculated from the Nijmegen potentia

In summary, we have presented a new and simple meth
of calculating the occupation probability of the number o
harmonic-oscillator quanta. It has been applied to the ana
sis of some of the wave functions obtained in a microscop
multicluster model calculation. The analysis is found to b
useful for comparing various wave functions by quantifyin
the amount of excitations across the major shell.
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