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h-deuteron scattering lengths are calculated. A summation of the multiple scattering series is carried ou
the result is checked against more involved calculations. The necessity to go beyond the fixed nucleo
proximation is emphasized. It is shown that a quasibound or virtual state in theh-deuteron system may occur
within the range ofh-nucleon scattering lengths suggested by other experiments.@S0556-2813~96!00609-7#
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I. INTRODUCTION

Few-body interactions of theh meson may complement
our knowledge on theh-nucleon interaction. Of related in-
terest is the possibility ofh-nuclear quasibound states. Suc
states have been predicted by Haider and Liu@1# and Liet al.
@2#, when it was realized that theh-nucleon interaction is
attractive. In few-nucleon systems these states are expe
to be narrow, and thus easier to detect. So far, there has b
no direct experimental verification of this hypothesis. On t
other hand, Wilkin@3# has suggested that an indirect effect o
such a state is seen in the rapid slope of thepd→h3He
amplitude detected just above theh-production threshold
@4#. Another indication of the strong three-bodyhpp corre-
lations follows from the recent measurement ofpp→pph
cross sections in the threshold region@5#.

The h deuteron is the easiest few-body system to d
scribe. In this paper a simple formula is given to provide t
hd scattering matrix at energies below the deuteron break
Detailed calculations are done for the scattering leng
Ahd , where theh-nucleon scattering lengthahN is consid-
ered as an input. In the limiting case of fixed nucleons, th
formula is found to be consistent with earlier calculations
Ref. @6#. However, our model includes corrections involvin
effects of the continuum in thehpp system, which are found
to be necessary.

For large values of ReahN in the region of 0.7 to 1.0 fm,
suggested by some models, we find thehd system to be
close to binding. In this regionAhd becomes large and de
pends on details of thehN interaction model. In particular,
one finds strong dependence on the way thehN scattering
matrix is extrapolated to the region below the threshold.
the actualAhd turns out to be sizable, it will be detected from
the analysis of the final state interactions in thepd→pdh
scattering experiment performed at Celsius recently@7#.
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II. A FORMULA FOR THE ETA-DEUTERON
SCATTERING MATRIX

The purpose of this section is to derive a simple formula
that relates the low-energy meson-deuteron scattering amp
tude to the meson-nucleon scattering length. The former
found by summation of a multiple scattering series and i
expressed in terms of a few basic multiple scattering inte
grals. In order to motivate the method we recall a simple
formula for the scattering length of a meson on a pair o
fixed nucleons@8,9#

Ahd5
2ahNj

12~ahN /Rd!j
, ~1!

whereahN is the meson-nucleon scattering length andRd is
the nucleon-nucleon distance. Equation~1! is obtained in a
simple way by setting a boundary condition for the meson
wave functionc at each scattererc8/c51/ahN . In the sim-
plest version of genuinely fixed scatterersj51, but a simple
correction j5mhd /mhN is easy to implement. Here, the
meson-deuteron reduced massmhd corrects for the meson
propagator (1/Rd), which has to be referred to theNN
center-of-mass system. The reduced meson-nucleon ma
mhN is necessary to relate the meson-nucleon scatterin
lengths to the meson-nucleon potentials.

Already at this stage, Eq.~1! is a fair representation of
Ahd for ReahN of about 0.3 fm or less. In principle, it
handles also situations ofAhd→`, i.e., the cases of meson-
deuteron bound or virtual states close to threshold. The latt
may already occur at ReahN'1 fm, which is close to the
range of theh-nucleon scattering lengths allowed by some
models @10#. However, for such large ReahN Eq. ~1! be-
comes rather inaccurate. In the rest of this section we fin
necessary corrections, determine the virtual or quasiboun
state singularities, and discuss other related calculations
Ahd .

Let us begin with a multiple scattering expansion tha
follows from the three-body Faddeev equations for a meso
interacting with a pair of nucleons labeled 1,2. For the situ
1970 © 1996 The American Physical Society
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54 1971h-DEUTERON SCATTERING
ation of meson-deuteron scattering below the deuter
breakup, the series for theh-deuteronT matrix is

Thd5t11t21t1G0t21t2G0t11t2G0t1G0t21t1G0t2G0t1

1~ t11t2!GNN~ t11t2!

1~ t11t2!GNN~ t11t2!GNN~ t11t2!1 . . . , ~2!

wheret i is a meson-nucleon scattering matrix,G0 is the free
three-body propagator, andGNN5G0TNNG0 is that part of
the three-body propagator which contains the nucleo
nucleon scattering matrixTNN . This expansion is performed
in momentum space and appropriate integrations over
intermediate momenta are understood. The detailed nota
and normalization will be given later. Now, the partial sum
mation of the series for the scattering amplitude is pe
formed. The latter is determined by an average

^fdchuThd~E!ufdch&[^Thd~E!&, ~3!

wherefd is the deuteron andch is the free-mesons-wave
function in the relative meson-deuteron momentum va
ables. We define thehd scattering length as

Ahd52~2p!2mhd^Thd~0!&. ~4!
on
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A partial summation of the series~2! for ^T& is obtained by

^Thd
1 &5

^Thd
0 &

12V12S1
, ~5!

where^Thd
0 &5^t11t2& is the impulse approximation and

V15
^t1G0t21t2G0t1&

^Thd
0 &

, ~6!

S15
^Thd

0 GNNThd
0 &

^Thd
0 &

. ~7!

This partial sum is already equivalent to formula~1! as it
contains terms of the orderl5^t&/Rd in the denominator.
The expansion parameterl does not need to be small to
guarantee the success of Eq.~5!, which works even for
ulu.1, when the multiple scattering is divergent. In th
hd case ulu falls into the 0.1–0.3 range. Corrections fo
higher orders ofl in the denominator of Eq.~5! may be
obtained by comparing higher orders in Eq.~2! with a series
expansion of Eq.~5! with respect toS1 andV1. In this way
the next approximation is obtained
^Thd
2 &5

^Thd
0 &

12V12S12@V22~V1!
2#2@S22~S1!

2#2@D22V1S1#
, ~8!
th
u-
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or
e

g

where

V25
^t1G0t2G0t11t2G0t1G0t2&

^Thd
0 &

, ~9!

S25
^Thd

0 GNNThd
0 GNNThd

0 &

^Thd
0 &

, ~10!

and

D252
^Thd

0 GNN~ t1G0t21t2G0t1!&

^Thd
0 &

. ~11!

This procedure may be continued into a systema
method to include higher powers ofl in the denominator.
The main advantage is a strong cancellation in t
S22(S1)

2 term and also higher orderSn terms, as was dem-
onstrated in the optical model calculations of Ref.@11# for
He nuclei. As we show numerically in the next section, al
for the h-deuteron system there is a strong cancellation
the second~and indeed also in the higher orders! term of the
partial sum~8!. This causes the method to converge mu
more rapidly than the directln series.

Before going further, we write down and discuss the ba
quantities entering this formalism. Momentum variables a
used everywhere. These are the momenta canonical to
Jacobi coordinates,qWNN the relativeNN momentum,pW h the
relativeh-NN momentum, and the corresponding variabl
tic
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for the other possible pairs like (qW hN ,pWN). The normalization
is chosen so that a ‘‘volume’’ element isdpWdqW , the propa-
gatorG05@E2ENN(q)2Eh(p)#

21, and the scattering ma-
trices are thN1@qhN1 ,qhN18 ,E2E(pN2)#d(pWN22pWN28 ), i.e.
they conserve the spectator momentum. ThethN are normal-
ized in such a way that

thN~0,0,0!52
ahN

~2p!2mhN
~12!

with the standard convention ImahN>0. Later, a separable
form thN5vh(qhN)ahN(E)vh(qhN8 ) is used with a Yamagu-
chi form factorvh5(11qhN

2 /kh
2)21. TheNN scattering ma-

trix TNN(qNN ,qNN8 ,E2Eh(ph)… is normalized with a differ-
ent ~standard! sign convention that requires

TNN~0,0,0!5
aNN

~2p!2mNN
. ~13!

Also here a Yamaguchi separable form is used wi
kNN51.41 fm21 and the strength fitted to reproduce the de
teron binding energy, the scattering lengthaNN55.405 fm.

Calculation of the multiple scattering integrals is straigh
forward although tedious and the formulas are lengthy. F
simplicity, we reproduce a few dominant quantities in th
zero meson momentum and zero rangeh-nucleon force
limit, although actual calculations are performed also takin
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TABLE I. Convergence of theAhd expansion for two values ofāhN5ahN . Units are fm and
khN53.316 fm21. The first four lines show the convergence of the ‘‘static nucleon’’ approximation and ma
be compared to the results of Ref.@6#. Ahd is our final result, given in Eq.~19! and including the free
three-body effect.

ahN 0.271 i0.22 0.551 i0.30

Ahd
0 0.661 i0.54 1.351 i0.74 s i50 v i50

Ahd
1 0.661 i0.83 1.561 i1.96 s1Þ0 v i50

Ahd
2 0.641 i0.85 1.371 i2.14 s2Þ0 v i50

Ahd
3 0.641 i0.85 1.371 i2.14 s3Þ0 v i50

Ref. @6# 0.651 i0.85 1.381 i2.15

Ahd 0.571 i0.97 0.611 i2.73 s iÞ0 v iÞ0
s
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into account a finite force range. Then, the impulse appro
mation term becomeŝThd

0 &522āhN /@(2p)2mhN#, where

āhN5E dpWahNSE2
p2

2mN,hN
D uf̃d~q!u2 ~14!

is the scattering matrix averaged over some energy reg
generated by the recoil of the spectator nucleon. The rang
the latter is given by the Fourier transform of the deuter
wave functionf̃. In a more general nonzero meson mome
tum case the average is given by the momentum distribut
of thehN pair.

The quantity of interest is the scattering length at thres
old Ahd . Hence,E52Ed , whereEd is the deuteron binding
energy, and the energies in Eq.~14! extend down to the
subthreshold region. This means an extrapolation into
unphysical region by a few MeV. Therefore, a model is r
quired for this extrapolation and some possibilities are d
cussed later. In general, due to the short range ofhN forces,
the absence of nearby singularities or anhN quasibound
state, the energy dependence ofahN(E) in the narrow sub-
threshold region is apparently smooth. In all multiple sca
tering integrals of interest the average valueā is used. In this
way the dominant termS1 becomes

S1522āhNE dpW

~2p!2mhN
TNNSE2

p2

2mhd
D @F~p!#2

[2āhNs1 ~15!

with

F~p!5E dqW
f̃d~q!vNN~qW 2 1

2pW !

E2ENN~qW 2 1
2pW !2Eh~p!

, ~16!

wherevNN is the Yamaguchi form factor for theNN sepa-
rable potential. In the low energy region theTNN matrix is
dominated by the deuteron pole. ForE52Ed , the integra-
tion in Eq. ~15! extends from the pole down to negativ
energies. WhenTNN is limited to the pole term, and the
NN recoil energyENN is neglected in Eq.~16!, expression
~15! reduces to a simple form
xi-
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mhd

mhN
E E drWdrW8fd

2~r !
1

urW2rW8u
fd
2~r 8! ~17!

with a clear physical interpretation. The higher order term
for Sn have the same structure corresponding to (n11) scat-
terings on the optical potentialVhd522ahNfd

2(r )/
(2pmhN) at zero incident energy.

Similar to Refs.@11,12#, it can be expected that the series
for Thd

0 ,Thd
1 ,Thd

2 , . . . converges so rapidly thatThd
2 would

be precise on the 1% level even in the case of a bound st
at threshold. Indeed, the effectiveness of this expansion
confirmed in Table I for two particular values of thehN
scattering lengths and anhN form factor allowing compari-
son with the calculation of@6#. The latter one uses a rather
involved set of integral equations for theh scattering on
fixed nucleons corrected later for the effect of the deutero
wave functions, but no allowance is made for a freeNNh
spectrum in the intermediate states. This assumption wou
correspond to our model withV i50. The agreement be-
tween these two calculations is rather good, with small di
ferences probably due to two factors: first, Gaussian wa
functions are used in Ref.@6#, while ours come naturally in
the Hulthen form; second, theTNN used here contains more
than the deuteron pole.

The effect of the free three-body spectrum in the interme
diate states is still missing. To lowest order inahN it is given
by theV1 term of Eq.~6!. Within the averageāhN approxi-
mation it becomes

V15āhNE E dqW 8dqW

~2p!2mhN

f̃d~qW !f̃d~2qW 8!

ENN@~qW 2qW 8!/2#1Eh~qW 1qW 8!2E

[āhNv1 . ~18!

This quantity is real below the deuteron breakup, which
the region of our interest. In a similar way, one obtain
higher order termsV2, etc., which are also real in this re-
gion.

Now, the final formula to be used in the applications i
presented as
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Ahd52
mhd

mhN

āhN

12āhN~v112s1!2āhN
2 @~v22v1

2!14~s22s1
2!14~d22v1s1!#

, ~19!

TABLE II. The calculated integral quantities in the multiple scattering sum forAhd as a function of
khN. Units are fm21 for (s1,v1) and fm22 for (s2,v2).

kh ~fm21! ` 7.617 3.316 2.357
s1 0.4440 0.4331 0.3966 0.3679
s2 0.2315 0.2245 0.1966 0.1588
v1 0.3118 0.2958 0.2546 0.2246
v2 0.2800 0.1870 0.1045 0.0723
d2 0.1759 0.1620 0.1249 0.1001
s22s1

2 0.0180 0.0075 0.0032 20.0039
v22v1

2 0.1828 0.0874 0.0027 20.0025
d22v1s1 0.0374 0.0338 0.0239 0.0174
r
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where the second order terms are defined in analogy to E
~15! and ~18!, i.e., s25S2 /(4āhN

2 ),v25V2 /āhN
2 , and

d25D2 /(4āhN
2 ). The numerical factors 1, 2, and 4 in Eq

~19! arise from the number of independent collisions on t
successive nucleons.

Numerical results for the scattering length are given in t
next section. Before presenting these let us discuss the q
tion of the unitarity of^Thd(E)&, when it is calculated for
finite meson energies, but below the deuteron break
threshold. Imaginary contributions tov i arise only above the
deuteron breakup, but the absorptive parts ofs i already be-
gin atE.2Ed . These are generated by the deuteron pole
TNN@E2Eh(p)# in the integral~15! for s1 and in similar
formulas for the higher orders i . At E52Ed , the pole term
of G0TNNG0 contributes thefd(r )fd(r 8)/urW2rW8u term to
expression ~17! in the coordinate representation. Fo
higher energies the meson propagator becom
exp(iphdurW2rW8u)/urW2rW8u, where phd is the incident meson
momentum. Hence, for small momenta we hav
Ims1' iphdmhd /mhN . In addition, the second term
s22s1

2 generates no terms linear inphd as may be seen
from Eq. ~17! and its second order analogue. This allows
to present the low energy behavior of^Thd& as

^Thd~E!&~2p!2mhd52F 1

Ahd~E!
2 iphdG21

~20!

as required by unitarity. It also permits the use of the ser
summation method in some energy region close to t
threshold.

III. RESULTS

The formula for the meson-deuteron scattering leng
Ahd expresses it in terms of an ‘‘effectiveh-nucleon scatter-
ing length’’ āhN , which is an average of thehN scattering
matrix extrapolated by a few MeV below the threshold. Th
is our input parameter. Inherently, there is another parame
the inverse rangekhN in thehN form factor, included in the
calculated quantities multiplying powers of theāhN in the
qs.
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expansion~19! for the inverse 1/Ahd . These follow from the
three-body interactions, and they are given in Table II fo
four representative values ofkhN from the literature
@6,15,16#, which presumably cover the whole range of al
lowed values. It follows from this table that the coefficients
of the ā2 order are very small. The second order term
s22s1

2 due to the intermediateNN interactions have been
found to be already small in the optical model calculations o
hHe scattering@11#. Higher order terms are negligible as
may be seen from the results of Table I.

An additional cancellation in the second order expansio
in terms ofa may occur. As noted in Ref.@17# in the pion-
deuteron scattering the effects of the energy extrapolation
negative energies hidden here inā would be in part canceled
by the second order scattering terms. This would be true al
in our case provided theh-nucleon scattering length is small.
However, the most likely scenarios would not allow an ex
pansion ofā in terms ofa. Our case involves cancellations
leading to a situation close to binding.

As shown in Table I the static nucleon approximation i
not adequate in the region of large ReahN close to the critical
values. The effect of theNN continuum is significant. Some
care is needed with calculations of the corresponding scatt
ing integrals in the three-body continuumv i . These con-
verge slowly and depend strongly on the range of thehN
interaction. In particular, the zero range limit cannot be take
for v3 and higher orders. Provided an unphysical valu
khN5` is not used to describe the free-spectrum contribu
tions, the small weight and the cancellations inv22v1

2 re-
duce effects of the continuum to thev1 term. A similar
cancellation happens in the ‘‘mixed term’’d22v1s1 which,
although small, dominates the second order term. All th
allows the simple formula~19! to work very effectively even
under the demanding condition of a nearby singularity.

In Table III one finds values ofAhd for a number ofhN
scattering lengths that follow from several analyses of th
combinedpN,hN coupled channels and fromh photopro-
duction data. The resultingAhd may vary by an order of
magnitude, reflecting a nearbyhd quasibound state that may
arise at threshold for ReahN close to 0.8 fm. It is also clear
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TABLE III. h-deuteron scattering lengths in fm,khN53.316 fm21.

Ahd

ahN a(E)5ahN a(E)5ahN /(12 iqhNahN)

Bhalerao-Liu@15# 0.27 1i0.22 0.571i0.97 0.641i0.81
‘‘modified B-L’’ @15,10# 0.44 1i0.30 0.631i1.93 1.011i1.50
Bennhold-Tanabe@16# 0.25 1i0.16 0.661i0.71 0.661i0.58
‘‘modified B-T’’ @16,10# 0.46 1i0.29 0.721i2.04 1.111i1.54
Abaev-Nefkens@18# 0.62 1i0.30 0.361i3.36 1.651i2.41
Wilkin @3# 0.30 1i0.30 0.391i1.28 0.581i1.11

0.55 1i0.30 0.611i2.73 1.401i1.98
Arima @19# 0.98 1i0.37 –2.751i2.77 –0.061i6.20
Sauerman@20# 0.51 1i0.21 1.481i2.31 1.651i1.39
Batinic @10# 0.8881i0.274 –2.901i4.12 2.371i5.79

0.8761i0.274 –2.761i4.24 2.421i5.55
Tiator @14# 0.4761i0.279 0.811i2.15 1.221i1.56
Krusche@13# 0.4301i0.394 0.141i1.91 0.651i1.73

0.5791i0.399 –0.131i2.64 0.931i2.41
0.2911i0.360 0.171i1.35 0.421i1.25
fm.
-
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that the results depend on the extrapolation ofahN(E) below
the threshold. No detailed models are available in this reg
and two simple approaches have been attempted:~1! a con-
stant ahN , and ~2! a typical low-energy forma(E)
5ahN /(12 iqhNahN) as required by unitarity.

In the latter case the calculations are done using
imaginaryqhN5 i 0.367 fm21. This value follows from the
average value of the subthreshold energy argum
(2Ed2p2/2mN,hN) involved in Eq.~14! ~the recoil energy
amounts to some 4 MeV!. Such an extrapolation reduces th
effective values of ReāhN by 10–20% as compared to the
threshold ReahN values. The sensitivity on this extrapolatio
method is due to the nearby singularity. This singularity m
represent a quasiboundhd state, if ReAhd,0, or a quasiv-
irtual hd state, if ReAhd.0.

A more systematic study ofAhd is presented in Figs. 1
and 2, where plots of Imahd and Reahd are given for two
typical values of ImahN as functions ReahN . These are all
calculated forkh53.316 fm21 and for the two low-energy
presentations ofa(E). It is seen that the critical value of
ReahN , when the virtual state is formed at thehd threshold

FIG. 1. The real and imaginary parts of theh-deuteron scatter-
ing length as a function of ReahN for the constant extrapolation of
theahN below threshold and forkhN53.316 fm21. The curves are
given for Ima50.2 fm ~solid! and for Ima50.3 fm ~dashed!.
ion

an

ent

e

n
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and crosses over to the quasibound state is about 0.8
That is well within the range of expected values. If this hap
pens, one may observe very strong effects in the final st
hd interactions. These may be seen inpd→pdh scattering
experiments, if relativehd momenta as small as 10–60
MeV/c are measured.

At threshold, the scattering lengths given in Table III lea
to largeh-deuteron cross sections. For most of these leng
it even exceeds the 100 mb value calculated with a spec
model in Ref.@21#.

IV. CONCLUSION

We have applied a multiple scattering series formalis
developed earlier for theh-helium system to calculate the
h-deuteron scattering length.

The conclusions are as follows:
~a! It is possible to sum effectively the multiple scatterin

series for the inverse meson-deuteron scattering matrix
low the breakup threshold. The method has the advantage

FIG. 2. The real and imaginary parts of theh-deuteron scatter-
ing length as a function of Reah,N for the energy-dependent ex-
trapolationahN(E)5ahN /(12 iqhNahN) below threshold and for
khN53.316 fm21. The curves are given for Ima50.2 fm ~solid!
and for Ima50.3 fm ~dashed!.
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being able to incorporate both the influence ofNN scattering
and the free three-body intermediate continuum in a re
tively simple but numerically stable way without resorting t
exact Faddeev equations.

~b! For small values of ReahN<0.3 fm, the fixed nucleons
make a good approximation. For larger values of ReahN it is
necessary to take into account the intermediate three-b
continuum states. The sensitivity to otherwise small effects
due to the proximity of anhd quasibound state. For the sam
reason thehd scattering length is fairly sensitive to the sub
threshold extrapolation of thehN scattering matrix.
la-
o

ody
is
e
-

~c! A virtual or quasiboundhd system is likely to be
formed. For ReahN'0.8 fm it occurs close to the threshold.
Such a situation may be easily detected via final state inte
action studies.
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