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Anharmonicities of g vibrations in odd-mass deformed nuclei
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The g vibrational states in odd-mass deformed nuclei are studied within the multiphonon method. Sp
attention is paid to low-energy multiphonon states in order to see if the anharmonicities observed in even
nuclei, in which the first vibrational stateKp521 appears well below the energy gap, are also found in t
odd-A neighboring nuclei.@S0556-2813~96!03907-6#

PACS number~s!: 21.10.Re, 21.60.Ev, 27.70.1q
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I. INTRODUCTION

In most of the rare earth even-even nuclei, wi
162<A<168, one observes only one intrinsic excited st
well below the energy gap. This state is ofg vibrational
nature and interpreted as a ‘‘one-phonon’’ state. This sit
tion arises since, in these nuclei, pairs of single-particle
bits, of same parityp, with quantum numbers (VpNnzL)
satisfying the asymptotic selection rules

DN5Dnz50,

DV5DL562 ~1!

are available near the Fermi surface. All experimental
tempts to look for the ‘‘two-g-phonon’’ vibrational statesin
an energy region of twice that of the one-phonon statehave
failed. It was therefore concluded either that the ‘‘tw
phonon’’ states do not exist or that the considered vibratio
may exhibit rather strong anharmonicities. A lot of theore
cal work @1–4# has been devoted to this subject. The pred
tions of the quasiparticle phonon nuclear model~QPNM!
developed by Soloviev and his co-workers@1# are in favor of
the first alternative. Practically all other theories agree w
the second, which has been confirmed experimentally
least in168Er, by Börneret al. @5# who measured the lifetime
of theKp541 state at 2.55 MeV, candidate for an interpr
tation as a ‘‘two-g-phonon’’ state. Experimental evidenc
for the existence of other two-phonong vibrational states in
other mass regions have also been given in@6–8#.

Among the microscopic theories dealing with this top
the multiphonon method~MPM! @3# has been systematicall
applied @9# to the even-even nuclei of this mass region.
was found that theg vibrational spectrum is anharmonic an
dilated. Furthermore, it was concluded that, in some fav
able conditions, the ‘‘two-phonon’’Kp541 states conserve
some collective character, whereas theirKp501 partners,
which are always predicted to have higher energy, lose t
collectivity.

The aim of the present paper is to see how these con
sions extrapolate to the neighboring odd-mass nuclei.
these, one expects intrinsic one quasiparticle states
quantum numberK5V, two ‘‘one-phonon’’ states with
K22 and K12, respectively, and three ‘‘two-phonon’
states withK24, K, andK14 ~respectively!. It is of inter-
est to study the relative positions of the states of suc
546/54~1!/189~12!/$10.00
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family and their collectivity. In particular, it will be instruc
tive to compare the properties of the vibrational states b
on different single-particle orbitals, e.g., those which contr
ute strongly to theg vibration in even-even nuclei@see Eq.
~1!# and those of unique parity, present in this region.

In Sec. II, we briefly sketch the version of the MPM
suited for such a study. Some representative results are
sented in Sec. III. Finally, a few interesting conclusions a
drawn in a last section.

II. SKETCH OF THE MPM FOR ODD-MASS DEFORMED
NUCLEI WITH TWO BASIC PHONONS

A. General principles

The general principles and formulas of the MPM ha
been explicitly given for even-even nuclei in@3# and for
odd-mass nuclei in@10#. Here only the version of the MPM
which uses two phonons as building blocks is needed.
the even case this simplified method has been studie
detail in @9#. Hereafter, the important points of this approa
for odd-mass nuclei will be given.

First, one introduces the quasiparticle creationam
† and an-

nihilation am operators wherem summarizes all quantum
numbers needed to identify the quasiparticle.

Second, phononsQi
† of the Tamm-Dancoff~TDA! type

Qi
†5

1

2(mn
~Xi !mnam

† an
† , ~2!

are considered. Note that the matricesXi are antisymmetric.
These phonons fulfill the following commutation rule:

@Q1 ,Q2
†#52

1

2
Tr~X1X2!1(

mn
~X2X1!mnam

† an . ~3!

Note that in the usual quasiboson~and harmonic! approxi-
mation only the first term of Eq.~3! is retained, whereas in
the MPM the full commutation relation is taken into accou

Third, one builds multiphonon states. In even-even nuc
a state withp phonons of the first type andq phonons of the
second type reads

upq&5
1

p!q!
Q1
†pQ2

†qu0&. ~4!

Similarly, in odd-mass nuclei one considers the states:
189 © 1996 The American Physical Society
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upql&5al
†upq&, ~5!

where a quasiparticlel has been added to the phonons.
Eq. ~4! the denominatorp!q! has been introduced for nu
merical convenience andu0& is the phonon vacuum, which
by construction, coincides with the fermion vacuum. T
sets of states~4! or ~5! do not form an orthonormalized bas
in the mathematical sense. Therefore the first problem
countered in the MPM is the determination of the over
matrix of the multiphonon states. Due to the Pauli princip
this is by no means an easy task. Similarly, the second p
lem of the MPM is the calculation of the one- and two-bo
operator matrix elements, which are needed to evaluate
eigenstates of a model Hamiltonian and the electromagn
transitions.

It has been shown@10# that all these matrix elements o
the odd case can be given in terms of the overlap ma
elements of states~4!:

F~p8q8;pq!5^p8q8upq& ~6!

~with p81q85p1q), the matrices

Amn~p8q8;pq!5^p8q8uanamupq& ~7!
For D, one gets a similar type of recursion formula:
In
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~with p81q85p1q21), the quantities

Bstuv~p8q8;pq!5^p8q8uavauatasupq& ~8!

~wherep81q85p1q22), which we had in the even nuclei,
and

Dstuvwx~p8q8;pq!5^p8q8uaxawavauatasupq& ~9!

~where p81q85p1q23) which are needed in addition.
The quantitiesA, B, andD have, of course, the symmetry
properties of the fermion operators product they contai
Note the relative indices order in both sides of these equ
tions.

The quantitiesF, A, andB are related by the following
recursion formulas:

@~11«!p81~12«!q8#F~p8q8;pq!

52Tr$X~«!A@p8~«!,q8~«!;pq#%, ~10!

where «561, X(«)5X1 if «511, and X(«)5X2 if
«521;
Amn~p8q8;pq!5(
«1

SX~«1!F@p8q8;p~«1!q~«1!#1(
«2

X~«2!A@p~«1 ,«2!q~«1 ,«2!;p8q8#X~«2! D
mn

, ~11!

Babcd~p8q8;pq!52 (
«1 ,«2

@X~«1!*X~«2!#abcdF@p8q8;p~«1 ,«2!q~«1 ,«2!#1(
«1

„$X~«1!*A@p8q8;p~«1!q~«1!#%abcd

1$A@p8q8;p~«1!q~«1!#*X~«1!%abcd…

1 (
«1 ,«2 ,«3 ,«4

(
stuv

Xas~«1!Xbt~«2!Xcu~«3!Xdv~«4!Bstuv@p~«1 ,«2 ,«3 ,«4!q~«1 ,«2 ,«3 ,«4!;p8q8#, ~12!

where« i561,

p~«1 ,«2 ,«3 ,«4 , . . . ,«n!5p2
1

2(i51

n

~11« i !,

q~«1 ,«2 ,«3 ,«4 , . . . ,«n!5q2
1

2(i51

n

~12« i !.

Note that

p~«1 ,«2 ,«3 ,«4 , . . . ,«n!1q~«1 ,«2 ,«3 ,«4 , . . . ,«n!,p1q

and that

~ f * g!abcd5 f abgcd2 f acgbd1 f adgbc .
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Dabcde f~p8q8;pq!5 (
«1 ,«2 ,«3

@X~«1!!X~«2!!X~«3!#abcde fF@p8q8;p~«1 ,«2 ,«3!q~«1 ,«2 ,«3!#

2 (
«1 ,«2

$A@p8q8;p~«1 ,«2!q~«1 ,«2!# ^ @X~«1!*X~«2!#%abcde f

1(
«1

$X~«1! ^B@p8q8;p~«1!q~«1!#%abcde f

2 (
«1 ,«2 ,«3 ,«4 ,«5 ,«6

(
stuvwx

Xas~«1!Xbt~«2!Xcu~«3!Xdv~«4!Xew~«5!Xfx~«6!

3Dstuvwx@p~«1 ,«2 ,«3 ,«4 ,«5 ,«6!q~«1 ,«2 ,«3 ,«4 ,«5 ,«6!;p8q8#, ~13!

where

@ f!g!h#abcde f5 f ab~g* h!cde f2 f ac~g* h!bde f1 f ad~g* h!bce f2 f ae~g* h!bcd f1 f a f~g* h!bcde ~14!

and

@ f ^g#abcde f5 f abgcde f2 f acgbde f1 f adgbce f2 f aegbcd f1 f a fgbcde1 f bcgade f2 f bdgace f1 f begacd f2 f b fgacde1 f cdgabe f

2 f cegabd f1 f c fgabde1 f degabc f2 f d fgabce1 f e fgabcd. ~15!
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From the quantitiesF andA one can calculate the overla
matrix through:

^p8q8l8upql&5dll8F~p8q8;pq!

1(
«1

$X~«1!A@p~«1!q~«1!;p8q8#%l8l .

~16!

In the special case which is under consideration in this pa
the two phonons 1 and 2 correspond tog and ḡ, respec-
tively. As a consequence, the matrixX2 can be deduced from
X1 by time reversal properties. To go further on, one nee
to choose a model Hamiltonian. The main aim of this pa
is to look for the general trends of theg motion in odd-mass
nuclei and not to look for a fine agreement between the
and experiment. Therefore, we chose the simplest mo
Hamiltonian containing the interactions known to play t
major roles in the considered nuclei. We assume an axi
deformed nuclear potential (Hsp) of the Nilsson or Woods-
Saxon type, a constant monopole pairing force of stren
Gt for each kindt of particles~protons and neutrons!, and a
charge independent quadrupole-quadrupole (QQ) interaction

H5Hsp1HP1HQQ .

As usual, the pairing is treated by introduction of the cano
cal Bogolyubov-Valatin transformation, which separates
model Hamiltonian into its different parts:

H5H001H111H221H228 1H311H131H401H04,

whereHi j containsi creation operatorsa
† and j annihilation

operatorsa. Similarly, the electromagnetic operators sp
into four parts

T5T001T111T201T02.
er,
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The contribution of the constant termT00 to nondiagonal
matrix elements vanishes. It has been shown in@10# that the
matrix elements of the one-body operatorsH11 andT11 can
be deduced from the knowledge of the quantitiesF, A, and
B, whereas forT20 andT02 only A andB are needed. For the
evaluation of the matrices of the two-body parts of the mod
Hamiltonian the quantitiesD are required in addition. The
recursion formulas for these matrix elements are rather s
phisticated and their explicit form will be postponed to the
Appendices. To summarize, the MPM is anexactdiagonal-
ization of thecompletemodel Hamiltonian within the space
spanned by the multiphonon states~5!. Note also that, in
contrast to the case of theg motion in even-even nuclei, the
partsH31 andH13 of H contribute in odd-mass nuclei.

B. The different steps of the MPM in realistic calculations

Once the model Hamiltonian has been chosen, the diffe
ent steps of the MPM go as follows.

~1! Using some physical arguments, one has to select t
multiphonon ‘‘basis.’’ This includes first the choice of the
phonons which are expected to play a major role in the co
lective subspace. In the present paper, we restrict ourselv
to the two phononsg and ḡ. As a consequence, the version
of the MPM used here can only be applied with confidenc
in a mass region where theg vibration is much lower in
energy than any otherintrinsic excitation below the energy
gap, observed in even-even nuclei. To build the retained ph
non ~2! one has to fix the numbernl of active, two times
degenerate, single-particle orbitals for each kind of partic
~protons and neutrons!. One generally chooses the same
number of levels~e.g.,nl520) for each kind, equitably dis-
tributed on each side of the Fermi surface. A Tamm-Danco
calculation gives then a reasonable choice for the matric
X1 andX2 .
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192 54J. C. DURAND AND R. PIEPENBRING
~2! The second step consists of calculating and storing
quantitiesF, A, B, andD using the recursion formulas up t
some given maximum numbernph of phonons. To minimize
the effort only nonequivalent~i.e., quantities which canno
be deduced by symmetry properties from a previous ca
lated one! are evaluated and only nonzero values are sto
To give a rough idea of this first problem, if one conside
two types of phonons,nl520 and nph58, one has
33855255 quantitiesB each of which has a maximum o
(2320)4 elements, leading to a total number of.6.53108

elements. If one eliminates those which vanish and calcu
only the nonequivalent quantities one remains w
.53105 elements. In this counting, the factor 3 comes fro
the following three possibilities: either four protons, or fo
neutrons, or two protons and two neutrons, can app
among the four operatorsa in the definition~8!. The second
factor, 85, results from the sum over the current numbe
initial n and finaln8 phonon numbers of all combined po
sible partitions ofn betweenp andq andn8 betweenp8 and
q8, with the constraintn85p81q85n225p1q22. In a
completely similar way, and in the same conditions fornph
and nl , one gets 4339451576 entitiesD, each of which
having (2320)6 elements, leading to a total amount
.6.531012 elements. Fortunately, here too a lot of the
elements vanish according to the conservation of pa
and/orK quantum numbers or to the Pauli principle. O
remains however with.23107 nonequivalentD values. It
appears therefore that their evaluation is very time cons
ing, even on modern computers. Furthermore, the comp
memory needed to store all what one has to keep for fur
calculations is of the order of 285 megaoctets.

~3! The next step is the determination, for each cho
Kp value, of the overlap matrix and the Hamiltonian mat
in the nonorthonormalized MPM basis~5!, by an extensive
use of the recursion formulas given in~16! and in the Ap-
pendices. Then follows the diagonalization of the obtain
H matrix within an appropriate method for non
orthonormalized bases. Special attention is paid to the low
eigenvalues. According to the numerous contributionsHi j
entering the model Hamiltonian, this step constitutes a s
ond rather tremendous numerical task.

These steps are repeated for successive increasing v
of the maximum numbernph of phonons. The procedur
stops once a reasonable numerical stability of the lowes
genvalues is observed. It is worthwhile to note that the va
of nph depends mainly on the collectivity of the buildin
phonons, i.e., on the choice of the antisymmetric matri
X1 and X2 . In practical situations, where these are tak
from the Tamm-Dancoff approximation, the value ofnph is
of the order of 8 when realistic values of theQQ strength
x are used. We emphasize that the whole procedure
described has to be repeated from the very beginning if
wants to change any of the parameters entering the m
Hamiltonian ~e.g., deformation of the single-particle fiel
pairing strengthGt , or quadrupole-quadrupole interaction!.
The same holds if one wants to select another numbernl of
active orbitals entering the pairing and TDA calculation
We may remark here that there is,a priori, no fundamental
reason to use the same value of the quadrupole strength
rameterx in the model Hamiltonian and in the resolution
the secular TDA equation. According to this, if one on
the
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wants to study the effect of the variation of theQQ interac-
tion strengthx, one may restart the procedure only at th
third step.

It is necessary to add a few words concerning the inte
pretation of the eigenstates resulting from the MPM calcul
tion. After the diagonalization of theH matrix, the eigenvec-
tors appear as superpositions of the multiphonon states~5!
and one can no longer speak about states containing a fi
number of phonons. According to the nonorthogonality o
the MPM ‘‘basis’’ their interpretation may not be easy. It ha
therefore appeared to be worthwhile to study theE2 transi-
tions with uDKu52 between the obtained eigenstates, in o
der to detect possible collective transitions. Two states
lated by a collective transition will therefore be considered
‘‘differing by one phonon.’’ As a consequence, we sha
speak in our further analyses about ‘‘one-phonon’’ or ‘‘two
phonon’’ states~with quotes! built on a given ‘‘Kp state.’’
Note that, since we have to restrict ourselves to a defin
number of active levels for each kind of particle, some e
fective chargeep5e(11e) anden5ee ~wheree is a small
free parameter! have to be introduced in the evaluation of th
E2 matrix elements.

III. SOME REPRESENTATIVE RESULTS

In the considered mass region, 162<A<168, two kinds
of single-particle states can be found in the neigborhood
the Fermi surface.

The first kind contains the states originating from th
‘‘unique parity’’ subshelli 13/2 for neutrons orh11/2 for pro-
tons. Since the coupling to theg and ḡ phonons conserves
the parity, the single-particle orbitals to be considered in t
MPM basis arise mainly from the same spherical subshe
As a consequence, no pairs of orbitals satisfying~1! exist
among the unique parity states and one may,a priori, expect
rather pure vibrational excited states.

The second kind concerns the orbitals of ‘‘natural pa
ity.’’ Among those one finds several pairs of states whic
fulfill the asymptotic selection rules~1! and contribute there-
fore strongly to theg phonon. For the proton field one has
near the Fermi surface, the pairs 1/21411 and 5/21413, or
2(1/21411) and 3/21411, whereas for the neutrons the pair
1/22521 and 5/22523 or2(1/22521) and 3/22521 are ex-
pected. It is therefore of interest to study the blocking effe
of an odd quasiparticle of such pairs on the collectivity of th
vibrational states in odd-mass nuclei.

For a consideredKp, we study first the ‘‘one-phonon’’
states withK22 andK12. Special attention will be paid to
the energy splittingDE5E(K12)2E(K22) and to the
E2 transitions with uDKu52, which relay these ‘‘one-
phonon’’ states to theKp state. In a second step, we searc
for the ‘‘two-phonon’’ states withK24, K, andK14, re-
spectively, by careful analysis of theirE2 decay to the ‘‘one-
phonon’’ states.

Since we are not aimed at looking for a fine adjustme
between theory and experiment, we shall use for the stud
odd-A nuclei the parameter sets of their doubly even core
given in @9#. More precisely, we use a Nilsson potential with
a fixed quadrupole deformation parameter for each co
BCS gap parameters deduced from the experimental mas
@12#, and a quadrupole strength parameterx, fitted, within
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54 193ANHARMONICITIES OF g VIBRATIONS IN ODD-MASS . . .
the MPM, to the one-phonon state in the core when 20 act
levels are introduced. With such a choice, one has a para
eter free problem in the considered odd-mass nuclei, wh
allows one to go only once through the different steps of t
MPM described in Sec. II B. As a consequence, it is cle
that only the general trends of theg vibrational motion in
odd-mass nuclei can be reached. According to the status
the experimental information available at the present tim
this seems sufficient.

A. Unique parity vibrational states

The K57/22 orbital originating from theh11/2 proton
subshell appears as the ground state for the Ho isotop
Concerning the neutron subshelli 13/2, theK57/21 member
is the ground state for167Er, whereas theK55/21 is found
as such in 161Dy. Preliminary results for theK57/2 in
167Er and 167Ho have been published recently in@11#. Rep-
resentative results for three nuclei, where the ground stat
of unique parity, are given below.

In 165Ho, the ground state is 7/22523. All the other orbit-
als originating from the subshellh11/2are found in the chosen
single-particle proton field as well as the 1/22541,3/22532,
and 1/22530 orbitals. The quasiparticle energies of the
unique parity states are all lower than 3.5 MeV. Table I giv
the calculated absolute energies of the first 15 levels ver
the maximum numbernph of the phonons introduced in the
MPM basis~5!.

The displayed results show clearly that a general and r
sonable stability of the energies is obtained whennph58 is
used. As expected, the binding energy of the ground st
gets larger with largernph. The ground state energy stay
stable fornph56 and nph57, whereas the ‘‘one-phonon’’
states withK53/2 andK511/2 keep stable fornph57 and
nph58. This result, which is similar to that obtained in th
doubly even nuclei@9#, shows that the partsH40 andH04 of
H, which couple multiphonons states whereDn562, play a
dominant role. As for even-even nuclei, it is also found tha

TABLE I. Absolute energies of the first lowest negative parit
states in165Ho. The last column indicates the nature of the level,
deduced from analysis of theE2 transtions.

I1 nph54 nph55 nph56 n ph57 nph58 Identification

(7/2)1 2480 2489 2565 2566 2574 7/22523
(3/2)1 405 106 93 48 47 (7/2)11ḡ
(11/2)1 500 181 174 126 126 (7/2)11g
(9/2)1 437 437 367 367 361 9/22514
(5/2)1 501 474 410 406 400 5/22532
(1/2)1 585 564 491 487 480 1/22541
(1/2)2 1106 903 851 821 815 (5/2)11ḡ
(3/2)2 1173 997 947 918 913 (1/2)11ḡ
(5/2)2 1418 1106 1105 1060 1060 (9/2)11ḡ
(13/2)1 1438 1127 1127 1081 1081 (9/2)11g
(9/2)2 1504 1217 1200 1159 1157 (5/2)11g
(5/2)3 1584 1270 1257 1210 1209 (1/2)11g
(3/2)3 1395 1298 1237 1220 1214 3/22541 ?
(1/2)3 1590 1455 1292 1272 1252 (7/2)11ḡḡ
(15/2)1 1747 1724 1465 1460 1430 (7/2)11gg
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for spaces restricted tonph,5, some states~in fact the vibra-
tional states! have strongly overestimated energies. As a co
sequence, model calculations restricted to a too small m
tiphonon basis may not be considered as really meaning
On the other way round, the variation of the absolute ene
gies withnph may give a serious indication on the nature o
the eigenstates. Energies which vary by<100 keV corre-
spond to states of rather pure quasiparticle nature; energ
which are stable fornph57 andnph58 indicate a main com-
ponent with ‘‘one phonon.’’ These indications on the natur
of the different excited levels are to be checked through t
analysis of theE2 transitions withuDKu52. Table II gives
the values ofu^Kf uE2uKi&u matrix element for different val-
ues of the effective chargee and nph58, for some typical
transitions.

First, it is found that theu^Kf uE2uKi&u vary linearly with
e. Second, it is easy to separate the collective transitio
from the noncollective ones. Consequently, it becomes cle
that the ‘‘one-phonon’’ states built on the ground sta
(7/2)1 are (3/2)1 and (11/2)1 , the ‘‘one-phonon’’ states built
on the (9/2)1 are (5/2)2 and (13/2)1 while the ‘‘one-
phonon’’ states built on the (5/2)1 are (1/2)2 and (9/2)2 .
Concerning theK64 ‘‘two-phonon’’ states built on the
ground state, the candidates are (1/2)3 and (15/2)1 . None of
the first three excited states withK57/2 are linked to the
(3/2)1 and (11/2)1 by a collectiveE2 transition. Therefore,
no candidate for the label ‘‘two-phonon’’ state withK57/2
clearly appears. It is also quite interesting to have a look
the splitting DE5E(K12)2E(K22) of the two ‘‘one-
phonon’’ states for several values ofK. All calculated values
of DE are positive: e.g., one gets 79, 21, and 342 keV, r
spectively, for (7/2)1 , (9/2)1 , and (5/2)1 . For the two last
cases it is clear that these splittings are~rather strongly! in-
fluenced by the repulsion of the states (9/2)1 and
(5/2)11g on one hand and (5/2)1 and (9/2)11ḡ on the
other hand. For well-defined ‘‘two-phonon’’ states, built o
the sameK state, one may also evaluate the anharmonic
ratios

R6~K !5
E~K64!2E~K !

E~K62!2E~K !
.

y
as

TABLE II. Calculated values of some typicalu^Kf uE2uKi&u ma-
trix elements for different values of the effective chargee and
nph58 in 165Ho and unique parity.

e50 e50.2 e50.4

~3/2!1→~7/2!1 2.69 3.93 5.18
~11/2!1→~7/2!1 2.65 3.90 5.15
~5/2!1→~9/2!1 0.006 0.008 0.011
~5/2!2→~9/2!1 2.57 3.79 5.02
~13/2!1→~9/2!1 2.55 3.78 5.00
~1/2!1→~5/2!1 0.026 0.041 0.057
~1/2!2→~5/2!1 2.57 3.72 4.87
~9/2!2→~5/2!1 2.67 3.92 5.17
~15/2!1→~11/2!1 2.94 4.30 5.66
2~1/2!1→~3/2!1 0.14 0.22 0.30
2~1/2!2→~3/2!1 1.01 1.47 1.92
2~1/2!3→~3/2!1 2.70 3.93 5.16
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For the ground stateK57/2, one getsR1.R2.2.9. An-
other instructive quantity, which concerns theE2 transitions
is

Q6~K !5
u^K62uE2uK64&u

u^KuE2uK62&u
.

It appears thatQ1(K) is stable versus variation ofe and
practically independent ofK. Its value, 1.1, is slightly larger
than 1. This last property shows that the vibrational charac
of theK14 states is somehow larger than that of theK12
as expected from the absence of highK quasiparticle levels
in the mean field. No general conclusions can be given
Q2(K).

For 167Er, the ground state is 7/21633. The other positive
parity single-particle states present among the 20 retai
active neutron levels are 1/21660, 3/21651, 5/21642,
9/21624, and 11/21651 from thei 13/2 subshell to which the
3/21402, which is known to pseudocross with 3/21651, is
added. All these orbitals have quasiparticle energies low
than 3.3 MeV. Table III gives the calculated energies of t
first 13 excited positive parity levels relative to the groun
state versus the maximumnph of the phonons introduced in
the MPM basis. The last column gives the experimental e
ergy ~which contains some rotational and Coriolis contribu
tions! when available. As for the case of165Ho, a reasonable
stability of the energies is obtained fornph58. It is interest-
ing to notice that within 2.3 MeV all expected levels ar
found. First, one finds candidates for the ‘‘one-phonon
states withK53/2 andK511/2 and for the ‘‘two-phonon’’
states withK521/2, 7/2, and 15/2 built on theK57/2
ground state. Second, one also finds the ‘‘quasiparticl
states corresponding to 5/21642 and 9/21624 and candidates
for the ‘‘one-phonon’’ states built on these orbitals wit
K51/2 and 9/2, 5/2, and 13/2. Two additional levels wit
K51/2 and 3/2 are also obtained. It is worthwhile to no
that for a completely parameter free calculation the compa
son with the available experimental results are rather go
Again, the nature of the different excited levels can b
checked by the analysis of a few typicalE2 transitions with
uDKu52 given in Table IV fornph58 and different values

TABLE III. Relative energies of the first excited positive parit
states in167Er.

I1 nph54 nph55 nph56 nph57 nph58 Expt.

~3/2!1 866 607 657 617 621 531
(11/2)1 1017 720 780 735 741 711
~5/2!1 755 734 741 737 738 810
~1/2!1 1303 1134 1147 1121 1122
~9/2!1 1021 1034 1039 1042 1042 1253
~3/2!2 1637 1521 1542 1522 1524
~9/2!2 1795 1518 1567 1528 1532
~1/2!2 1766 1773 1766 1757 1751
~5/2!2 2043 1749 1820 1776 1783
~13/2!1 2088 1796 1867 1824 1831
~1/2!3 2057 1858 1843 1826 1824
~15/2!1 2355 2323 2140 2133 2109
~7/2!2 2544 2269 2287 2244 2243
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of the effective chargee. From the displayed results it is
clear that the transitions from the first 3/2 and 11/2 states
the ground state are collective. TheE2 transitions also indi-
cate that the (9/2)1 is of ‘‘quasiparticle’’ nature, whereas the
(9/2)2 is a ‘‘one-phonon’’ state based on the (5/2)1 state.
The (15/2)1 state is clearly theK14 ‘‘two-phonon’’ state
built on the ground state. The decay of the 7/2 excited sta
by E2 to the ‘‘one-phonon’’ state (3/2)1 and (11/2)1 are not
really of collective character. Another interesting result deal
with the 1/2 states for which theE2 transitions to the state
(23/2)1 and (5/2)1 are compared. It is seen that (1/2)1 cor-
responds to the ‘‘one-phonon’’ state built one the (5/2)1
state. The collectivity of the transition between the ‘‘one-
phonon’’ state (3/2)1 and a ‘‘two-phonon’’ state (21/2) is
shared between (1/2)2 and (1/2)3 . Here too, one gets an
anharmonic dilated vibrational spectrum since
R1.R2.2.8, if one adopts (1/2)2 for the ‘‘two-phonon’’
state. The analysis ofQ1(K) leads to similar conclusions
than for 165Ho. Roughly speaking, the results obtained for
the 7/21 system in 167Er are very similar to that of the
7/22 system in165Ho , except for a parity change.

For 161Dy, the ground state is 5/21642. The other unique
parity states present in the considered neutron field a
1/21660, 3/21651, 7/21633, and 9/21624, to which one adds
the deep hole states 1/21400 and 3/21402 known to
pseudocross with 1/21660 and 3/21651 ~respectively!. It is
rather easy to follow the vibrational chainK,K12,K14, by
looking to the involvedE2 transitions ~for e50 and
nph58 for instance!.

u^(9/2)1uE2u(5/2)1&u52.72 and u^(13/2)1uE2u(9/2)1&u
53.02. The ratioR1 is 2.6 andQ151.11. However, the
lower value ofK55/2 ~compared to the 7/2 systems studied
before! allows for more mixing of the MPM basic states on
the K,K22,K24 side, resulting in lowerE2 matrix ele-
ments: u^(1/2)1uE2u(5/2)1&u52.39; u^(23/2)2uE2u(1/2)1&u
51.69; u^(23/2)4uE2u(1/2)1&u52.48 and some sharing of
the collectivity at the ‘‘two-phonon’’ level. The identifica-
tion of theK24 ‘‘two-phonon’’ state, and consequently the
evaluation ofR2 andQ2 are therefore less obvious. If one
retains the more plausible candidate, (3/2)4 , one gets a very

y TABLE IV. Values of u^Kf uE2uKi&u matrix element for different
values of the effective chargee and nph58 in 167Er and unique
parity.

e50 e50.2 e50.4

(3/2)1→(7/2)1 2.67 3.89 5.11
(11/2)1→(7/2)1 2.75 3.99 5.23
(1/2)1→(23/2)1 0.96 1.40 1.84
(1/2)1→(5/2)1 2.41 3.56 4.72
(9/2)1→(5/2)1 0.24 0.36 0.48
(9/2)2→(5/2)1 2.75 4.01 5.28
(1/2)2→(23/2)1 1.89 2.74 3.58
(1/2)2→(5/2)1 0.85 1.22 1.59
(1/2)3→(23/2)1 1.57 2.31 3.05
(1/2)3→(5/2)1 0.63 0.89 1.16
(15/2)1→(11/2)1 3.01 4.37 5.73
(7/2)2→(3/2)1 1.11 1.58 2.05
(7/2)2→(11/2)1 0.40 0.65 0.90
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large ~and may be unrealistic! R2 ratio value of 3.6.A for-
tiori , no 5/2 state with significantE2 transitions to both
‘‘one-phonon’’ states, (1/2)1 and (9/2)1 can be found~e.g.,
one finds E2@(5/2)3→(1/2)1#51.78 and E2@(5/2)3
→(9/2)1]50.40). In conclusion, it appears that the situatio
for the K55/2 unique parity system is somehow less cle
than that discussed earlier for the twoK57/2 cases. Appar-
ently, the reason of this comes from the lowerK values~1/2,
3/2, and 5/2! involved on theK22,K24 side.

B. Natural parity vibrational states

We shall restrict ourselves to two typical examples, on
for each kind of particle.

In 163Tb, the adopted ground state label is 3/21411. Near
the Fermi surface, one expects also the two orbita
5/21413 and 1/21411, which form with the ground state two
pairs of orbitals fulfilling relation~1!. Experimentally, one
observes threeKp51/21 bandheads at 674, 994, and 122
keV, the properties of which indicate a complex structure.
is therefore of fondest interest to look for the predictions
the MPM calculation.

Table V gives the most importantE2 transitions needed
for the analysis of the natural parity states in153Tb, with
special attention paid to the vibrational states built on t
3/21 ground state and the first excited 5/21 state. The first
four E2 transitions allow one to follow nicely theK,K12,
andK14 chain built onK5(3/2)1 andK5(5/2)1 , where
the collective nature of the transitions is clear. The corr
sponding anharmonicity ratios areR1(3/2)52.4 and
R1(5/2)52.7, i.e., somewhat lower than for the unique pa
ity studied before. For theE2 ratios one gets again stable
values versus e. The values Q1(3/2).1.32 and
Q1(5/2).1.28 are larger than for the unique parity case
and they increase slightly with decreasingK. The six next
E2 are given in order to discuss the nature of the three fi
K51/2 excited states. The first excited 1/2 state obtain
within the MPM shows some~relatively medium! collectiv-
ity in its transition to the ground state. The calculate
(1/2)2 is very weakly related to the (3/2)1 and (5/2)1 and
must, thus, be of individual nature~probably a rather pure

TABLE V. Typical u^Kf uE2uKi&u matrix elements, obtained in
the MPM for 163Tb, natural parity,nph58, and several values of the
effective chargee.

e 50 e 50.2 e50.4

(7/2)2→(3/2)1 2.80 4.13 5.46
(11/2)2→(7/2)2 3.77 5.49 7.21
~9/2!1→~5/2!1 2.61 3.86 5.10
~13/2!1→~9/2!1 3.38 4.94 6.51
2~1/2!1→~3/2!1 1.52 2.34 3.16
2~1/2!2→~3/2!1 0.40 0.57 0.75
2~1/2!3→~3/2!1 2.87 4.01 5.14
~1/2!1→~5/2!1 0.27 0.54 0.82
~1/2!2→~5/2!1 0.50 0.77 1.05
~1/2!3→~5/2!1 3.01 4.26 5.51
~5/2!4→~1/2!3 3.94 5.75 7.56
~5/2!4→~9/2!1 2.16 2.97 3.79
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1/21411). The calculated (1/2)3 level has the most complex
structure since it presents collective decay as well to t
(5/2)1 excited state as to the ground state. As a consequen
it seems meaningless to really speak about ‘‘one-phono
K22 states built on the (5/2)1 and (3/2)1 levels. The last
two E2 given in Table V concern state (5/2)4 which decays
by collective transitions to (1/2)3 and to (9/2)1 . It would be
a good candidate for the ‘‘two-phonon’’K25K55/2 state
built on the (5/2)1 level if the (1/2)3 could be considered as
the ‘‘one-phonon’’ state built on this (5/2)1 state. With such
a questionable interpretation, the anharmonicity ratio wou
be 1.7 on theK,K22,K way and 2.0 on theK,K12,K side.

Our second example of natural parity deals with the od
neutron nucleus163Er, where the 5/22523 appears as the
ground state. At 104 keV one observes the 3/22521 level and
at 346 keV the 1/22521. As for the odd-proton case studied
before these orbitals form two pairs satisfying the selectio
rules~1!, but here they appear in a different order, compare
to the first given example.

The presentation of Table VI is similar to the precedin
one. Again it is easy to follow theK,K12,K14 chain built
on the ground state and the firstK53/2 excited level, with
the anharmonicity ratioR1(5/2)52.6 andR1(3/2)52.5.
The E2 ratios areQ1(5/2).0.99 andQ1(3/2).1.08. On
the other hand, the analysis of the first three 1/2 states is
obvious. If the (1/2)1 has a strongE2 to the ground state, no
clear candidate for the ‘‘one-phonon’’K22 state appear for
the (3/2)1 state. The (3/2)3 may be a suitable candidate for
the K24 ‘‘two-phonon’’ state built on the ground state,
whereas the (5/2)4 presents some character of theK ‘‘two-
phonon’’ state, but only through its decay via the (1/2)1 state
@and not via the (9/2)1 state#. Note that the identification of
the different calculated 1/2 states within the MPM does n
correspond to that adopted in experimental compilation. Th
fact should not be considered as surprising, since our para
eter free MPM calculation does not at all pretend to lead to
fine description of the observed energy spectrum. It is inde
sure that, for the natural parity states, slight modifications
the adopted mean field may have some consequences on

TABLE VI. Typical u^Kf uE2uKi&u matrix elements, obtained in
the MPM for163Er, natural parity,nph5 8, and several values of the
effective chargee.

e50 e50.2 e50.4

(9/2)1→(5/2)1 2.83 4.12 5.40
(13/2)1→(9/2)1 2.77 4.09 5.40
(7/2)3→(3/2)1 2.53 3.64 4.75
(11/2)3→(7/2)3 2.70 3.96 5.22
(1/2)1→(5/2)1 2.09 3.04 3.99
(1/2)2→(5/2)1 0.03 0.002 0.03
(1/2)3→(5/2)1 0.34 0.42 0.50
2(1/2)1→(3/2)1 0.56 0.72 0.88
2(1/2)2→(3/2)1 1.07 1.54 2.00
2(1/2)3→(3/2)1 0.72 1.02 1.31
(5/2)4→(1/2)1 1.32 1.84 2.37
(5/2)4→(9/2)1 0.01 0.02 0.06
2(3/2)3→(1/2)1 2.17 3.17 4.16
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MPM results more for odd-mass nuclei than it had for eve
even nuclei.

IV. CONCLUSIONS

In this paper theg vibrational states have been studied i
odd-mass deformed nuclei, neighbors of even nuclei whe
one can assume that theg state is energetically well sepa
rated from all other intrinsic levels.

A first general~and empirically expected! result concerns
the two ‘‘one-g-phonon’’ states which can be built on the
ground state withK quantum number. The MPM explains, in
a microscopic way, that theK22 vibrational level has al-
ways an energy lower than itsK12 partner. However, no
general rule can be given for the positive energy splitting

DE5E~K12!2E~K22!.

It depends somehow on the presence, in the energy regio
the ‘‘one-g-phonon’’ state, of other intrinsic states with
K22 and/orK12 quantum numbers. As an example, th
~rather often! presence of an intrinsic~one quasiparticle
state! with K22 a little higher than theK62 vibrational
states may enlargeDE considerably. Note however that for
some natural parity orbitals it appears difficult~if not impos-
sible! to identify theK22 ‘‘one phonon’’ state.

A second conclusion concerns the three expected ‘‘tw
g-phonon’’ states withK15K24, K25K and K35K14.
Among these three ‘‘two-g-phonon’’ states, theK35K14 is
the purest vibrational state. This is particularly true for th
unique parity states, since no intrinsic quasiparticle state w
K5K3 arises in the level scheme. Furthermore, in all cas
n-

n
re

of

e

o-

e
ith
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the E2 transitions from theK14 to theK12 states and
from K12 to K keep a real collective character, withQ1

ratio generally greater than one. The vibrational spectrum
as in the even nuclei, strongly anharmonic and dilated.

The situation of the ‘‘two-g-phonon’’ state with
K15K24 is somehow similar forK57/2 and unique parity.
When lowerK values are involved~which is the case in
particular for the natural parity states! more mixing among
the basic multiphonon states appear. As a consequence
possible sharing of the collectivity of theE2 transition be-
tween the identifiedK22 ‘‘one-g-phonon’’ state and differ-
ent possibleK24 states may be obtained.

Finally, it is practically impossible to assign with confi-
dence the ‘‘two-g-phonon’’ label to anyK25K state. The
possible candidates are generally predicted higher in ener
than their identifiedK24 andK14 partners and theirE2
transitions to the established ‘‘oneg phonon’’ lose practi-
cally their collective character.

In some sense, the situation is rather similar to the eve
even core. One finds that for the ‘‘two-g-phonon’’
Ki5K64 states in odd-mass nuclei the situation ressembl
that of theK54 ‘‘two-g-phonon’’ states in even-even nu-
clei, i.e., an anharmonic dilated energy spectrum and a c
lective character~may be a little less pronounced for
Ki5K24 states!. Similarly, the noncollective character of
theK50 ‘‘two-phonon’’ states in even-even nuclei is found
again in theK25K states in odd-mass nuclei. There is no
great chance to identify these poor collectiveK25K states
whereas, in some favorable cases~e.g., unique parity states!,
one should find some evidence for the collective character
the Ki5K64 ‘‘two-g-phonon’’ states in odd-mass nuclei.
Experiments in this direction are therefore especially desire
and

ntities

e

APPENDIX A: MATRIX ELEMENTS FOR THE SINGLE-QUASIPARTICLE HAMILTONIAN

For the partH11 of the model Hamiltonian one has

^p8q8l8uH11upql&5Eldll8F~p8q8;pq!2dll8(
«1

Tr$A@p~«1!q~«1!;p8q8#EX~«1!%

1~El1El8!(
«1

$X~«1!A@p~«1!q~«1!;p8q8#%l8l1(
«1

$X~«1!EA@p~«1!q~«1!;p8q8#%l8l

2(
«1

(
i , j ,t

Ei
t@X~«1!# i j

t (
l ,«2

@X~«2!#l8l Bi j ll @p~«1 ,«2!q~«1 ,«2!;p8q8#, ~A1!

whereEi is the energy of the quasiparticlei . In this equation, and hereafter, the trace Tr is evaluated over protons
neutrons, the sum overi , j ,t means thati and j are of kindt. On the other hand the sum overl runs over particle states of
the same kind thanl. The summation over integers has the same meaning than in the recursion formulas for the qua
F,A,B, andD, the summation overt indicates a sum over the two kinds of particles~protons and neutrons!.

APPENDIX B: MATRIX ELEMENTS FOR E2 TRANSITIONS

We restrict ourselves here to theDK512 transitions. Those withDK522 can be deduced by complex conjugation. Th
partT00 of the operator does not contribute. ForT20 one has the relation
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^p8q8l8uT20upql&5el@FA~pq;p8q8!#l8l2
1

2
dll8(

t
etTr@FA~pq;p8q8!#

2
1

2(t,«1
etFi j @X~«1!#l8l Bi j ll @p~«1!,q~«1!;p8q8#, ~B1!

whereF is the antisymmetric matrix:

Fi j5^ i ur 2Y22u j̄&~uiv j1ujv i !. ~B2!

The single-particle statej̄ is the time reversed ofj , with the conventionj%52 j . The elements ofT02 can be deduced from the
preceding by time reversal:

^p8q8l8uT02upql&5^pqluT20up8q8l8&. ~B3!

In a similar way, forT11 one has

^p8q8l8uT11upql&5elGl8lF~p8q8;pq!1el(
«1

$A@p~«1!q~«1!;p8q8#GX%ll81el(
«1

$GX~«1!A@p~«1!q~«1!;p8q8#

1X~«1!A@p~«1!q~«1!;p8q8#G%l8l2 (
t,«1 ,«2

et@GX~«1!# i j @X~«2!#l8l Bi j ll @p~«1 ,«2!,q~«1 ,«2!;p8q8#,

~B4!

where the matrixG is defined through

Gi j5^ i ur 2Y22u j &~uiuj2v iv j !. ~B5!

In Eqs. ~B1! and ~B4!, the quantityet is an effective charge. Usually one takesep5e(11e) and en5ee, wheree is a
parameter which depends on the number of active levels introduced in the single-particle field. Finally,el is the effective
charge of the same kind of particles asl.

APPENDIX C: MATRIX ELEMENTS FOR THE PAIRING HAMILTONIAN HP

Hereafter, we give the matrix elements for the partsH40,H31 and the usual contributionsH22 andH228 . The elements of
H04 andH13 may easily be deduced from those ofH40 andH31 by conjugation:

^p8q8l8uH40
P upql&5Gl(

i
f ~l8,i !Bi ı̄ l̄ 8l~pq;p8q8!1

1

2
dll8(

i , j ,t
Gt f ~ i , j !Bi ı̄ j j̄ ~pq;p8q8!

2
1

2(i , j ,t Gt f ~ i , j ! (
«1 ,l

@X~«1!#l8l Di ı̄ j j̄ ll @p~«1!,q~«1!;p8q8#, ~C1!

where

f ~ i , j !5ui
2v j

21uj
2v i

25 f ~ j ,i !,

Gt is the pairing force parameter for particles of kindt andGl is that of the same kind of particles thanl , i and j run over
all single-particle states with positiveV, whereas the orbitall may have anyV;

^p8q8l8uH31
P upql&5GlUlVl8A l̄ 8l~pq;p8q8!2Gl~Ul1Ul8!(

i
Vi (
l ,«1

@X~«1!#l8l Bi ı̄ l l @p~«1!q~«1!;p8q8#

1GlVl8 (
m,n,«1

Um@X~«1!#mnBmnl̄ 8l@p~«1!q~«1!;p8q8#

2Gl(
i
Vi (
l ,«1
Uk@X~«1!#l8l Bi ı̄ l l @p~«1!q~«1!;p8q8#

2 (
l ,«1

@X~«1!#l8l (
k,m,«2

@X~«2!#kmUk(
i ,t

GtViDi ı̄ kmll @p~«1 ,«2!q~«1 ,«2!;p8q8#, ~C2!



198 54J. C. DURAND AND R. PIEPENBRING
whereUi5uiv i andVi5ui
22v i

2 , with the same convention fori as inH40
P ;

^p8q8l8uH22
P upql&5Glg~l,l8!(

«1
$X~«1!A@p~«1!q~«1!;p8q8#% l̄ l̄ 82Gl(

i , j
g~ i , j ! (

l ,«1 ,«2
$@X~«1!# il8@X~«2!# ı̄ l

2@X~«1!# ı̄ l8@X~«2!# i l %Bj j̄ ll @p~«1 ,«2!q~«1 ,«2!;p8q8#

1Gl(
i
g~l8,i ! (

l ,«1
@X~«1!# i l (

l 8,«2

@X~«2!# ı̄ l 8B l̄ 8ll l 8@p~«1 ,«2!q~«1 ,«2!;p8q8#

1Gl(
i
g~l,i ! (

l ,«1
@X~«1!# l̄ l (

l 8,«2

@X~«2!#l8l 8Bi ı̄ l l 8@p~«1 ,«2!q~«1 ,«2!;p8q8#

1dll8(
i , j ,t

Gtg~ i , j ! (
l ,«1

@X~«1!# i l (
l 8,«2

@X~«2!# ı̄ l 8Bj j̄ l l 8@p~«1 ,«2!q~«1 ,«2!;p8q8#

1(
i , j ,t

Gtg~ i , j ! (
l ,«1

@X~«1!# i l (
m,«2

@X~«2!# ı̄m(
n,«3

@X~«3!#l8nD j J j̄ l mnl@p~«1 ,«2 ,«3!q~«1 ,«2 ,«3!;p8q8#,

~C3!

where
g~ i , j !5ui

2uj
21v i

2v j
25g~ j ,i !,

^p8q8l8uH228
Pupql&52Gldll8Ul (

l ,«1
Ul $X~«1!A@p~«1!q~«1!;p8q8#% l l 22GlUlUl8(

«1
$X~«1!A@p~«1!q~«1!;p8q8#%l8l

22Gl@Ul1Ul8#(
«1

$X~«1!UA@p~«1!q~«1!;p8q8#%l8l

1dll8(
l ,t

GtUl $X~«1!UA@p~«1!q~«1!;p8q8#% l l

1 (
l ,«1

@X~«1!#l8l (
m,n,t

Gt(
«2

UmUn@X~«2!#mnBmnll @p~«1 ,«2!q~«1 ,«2!;p8q8#

12Gl (
l ,«1
Ul @X~«1!#l8l (

m,n,«2
Um@X~«2!#mnBmnll @p~«1 ,«2!q~«1 ,«2!;p8q8#

12Gl@Ul1Ul8# (
l ,«1

@X~«1!#l8l (
m,n,«2

Um@X~«2!#mnBmnll @p~«1 ,«2!q~«1 ,«2!;p8q8#

2dll8(
t
Gt (

k,l ,«1
Uk@X~«1!#kl (

m,n,«2
Um@X~«2!#mnBkl mn@p~«1 ,«2!q~«1 ,«2!;p8q8#

1 (
l ,«1

@X~«1!#l8l (
t
Gt (

m,n,«2
Um@X~«2!#mn (

r ,s,«3
Ur@X~«3!# rs

3Dmnrsll @p~«1 ,«2 ,«3!q~«1 ,«2 ,«3!;p8q8#. ~C4!

APPENDIX D: MATRIX ELEMENTS FOR THE QUADRUPOLE HAMILTONIAN HQ

Similarly to the pairing Hamiltonian, only the contributions ofH40, H31, H22, andH228 are given:

4^p8q8l8uH40
Q upql&52x (

i , j ,l ,t
@~F1!l8l ~F2! i j

t 1~F1! i j
t ~F2!l8l #Bi j ll ~pq;p8q8!

1xdll8(
i , j ,t

~F1! i j
t (
k,l ,t8

~F2!kl
t8Bi jk l ~pq;p8q8!

1x(
i , j ,t

~F1! i j
t (
k,l ,t8

~F2!kl
t8 (

«1 ,m
@X~«1!#l8mDi jk l lm@p~«1!,q~«1!;p8q8#. ~D1!

In this equation, and hereafter,F15F, defined in~B2! and
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~F2! i j5^ i ur 2Y222u j̄ &~uiv j1ujv i !.

For H31
Q one has

2^p8q8l8uH31
Q upql&522x(

e
@F~e!A~pq;p8q8!G~ ē!#l8l1x(

e
Tr@F~e!A~pq;p8q8!#@G~ ē!#l8l

2x(
e

(
i , j ,t

@F~e!# i j
t (
l ,«1

@@G~ ē!X~«1!# l l82@G~ ē!X~«1!#l8l #Bi j ll @p~«1!q~«1!;p8q8#

2xdll8(
e

(
i , j ,t

@F~e!# i j
t (
k,l ,t8,«1

@G~ ē!X~«1!#kl
t8Bi jk l @p~«1!q~«1!;p8q8#

1x(
e

(
i , j ,t

@F~e!# i j
t (

k
G~ ē!kl (

l ,«1
@X~«1!#l8l Bi jk l @p~«1!q~«1!;p8q8#

12x(
e,l

@F~e!#l8l (
i , j ,t,«1

@G~ ē!X~«1!# i j
t Bi j ll @p~«1!q~«1!;p8q8#

1x(
e

(
i , j ,t

@F~e!# i j
t (
k,l ,t8,«1

@G~ ē!X~«1!#kl
t8 (

m,«2
@X~«2!#l8mDi jk l lm@p~«1 ,«2!q~«1 ,«2!;p8q8#,

~D2!

where the sum overe runs from 1 to 2, andē532e; F(e)5Fe ; G(e)5Ge ; G15G defined in~B5! and

~G2! i j5^ i ur 2Y222u j &~uiuj2v iv j !.

For the two partsH22
Q andH228

Q one gets

4^p8q8l8uH22
Q upql&524x(

e,«1
$F~e!X~«1!A@p~«1!q~«1!;p8q8#F~e!%ll812x(

e,«1
Tr@F~e!X~«1!#

3$F~e!A@p~«1!q~«1!;p8q8#%l8l12x(
e,«1

Tr$F~e!A@p~«1!q~«1!;p8q8#%@F~e!X~«1!#ll8

2xdll8(
e,«1

Tr$F~e!A@p~«1!q~«1!;p8q8#%Tr@F~e!X~«1!#

2x(
e,«1

Tr@F~e!X~«1!#(
i , j ,t

@F~e!# i j
t (
l ,«2

@X~«2!#l8l Bi j ll @p~«1 ,«2!q~«1 ,«2!;p8q8#

12x (
e,i , j ,t

@F~e!# i j
t (
l ,«1 ,«2

@X~«1!F~e!X~«2!#l8l Bi j ll @p~«1 ,«2!q~«1 ,«2!;p8q8#

12x (
e,«1 ,«2

(
i , j ,t

@X~«1!F~e!X~«2!# i j
t (
l

@F~e!#l8l Bi j ll @p~«1 ,«2!q~«1 ,«2!;p8q8#

12x (
e,i , j ,t

@F~e!# i j
t (
l ,«1

@F~e!X~«1!#ll (
l 8,«2

@X~«2!#l8l 8Bi j l l 8@p~«1 ,«2!q~«1 ,«2!;p8q8#

2xdll8 (
e,i , j ,t

@F~e!# i j
t (
k,l ,«1 ,«2 ,t8

@X~«1!F~e!X~«2!#kl
t8Bi jk l @p~«1 ,«2!q~«1 ,«2!;p8q8#

1x (
e,i , j ,t

@F~e!# i j
t (
k,l ,«1 ,«2 ,t8

@X~«1!F~e!X~«2!#kl
t8 (

m,«3
@X~«3!#l8m

3Di jk l lm@p~«1 ,«2 ,«3!q~«1 ,«2 ,«3!;p8q8# ~D3!

and
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^p8q8l8uH228
Qupql&52x(

«1
$GX~«1!GA@p~«1!q~«1!;p8q8#1X~«1!GA@p~«1!q~«1!;p8q8#G%l8l

2x(
«1

$GX~«1!A@p~«1!q~«1!;p8q8#Ḡ1ḠX~«1!A@p~«1!q~«1!;p8q8#G%l8l

2x(
«1

$A@p~«1!q~«1!;p8q8#GX~«1!G1GA@p~«1!q~«1!;p8q8#GX~«1!%ll8

1xdll8(
«1

Tr$GX~«1!GA@p~«1!q~«1!;p8q8#%

1x (
i , j ,t,«1

@GX~«1!G# i j
t (
l ,«2

@X~«2!#l8l Bi j ll @p~«1 ,«2!q~«1 ,«2!;p8q8#

2x (
i , j ,t,«1

@X~«1!G# i j
t (
l ,«2

@GX~«2!# l l8Bi j ll @p~«1 ,«2!q~«1 ,«2!;p8q8#

1x (
i , j ,t,«1

@GX~«1!# i j
t (
l ,«2

@X~«2!G#l8l Bi j ll @p~«1 ,«2!q~«1 ,«2!;p8q8#

1x (
i , j ,t,«1

@X~«1!G# i j
t (
l ,«2

@GX~«2!#l8l Bi j ll @p~«1 ,«2!q~«1 ,«2!;p8q8#

2x (
i , j ,t,«1

@GX~«1!# i j
t (
l ,«2

@X~«2!G# l l8Bi j ll @p~«1 ,«2!q~«1 ,«2!;p8q8#

1x (
i , j ,t,«1

@X~«1!G# i j
t (
l

Gl l (
l 8,«2

@X~«2!#l8l 8Bi j l l 8@p~«1 ,«2!q~«1 ,«2!;p8q8#

1x (
i , j ,t,«1

@GX~«1!# i j
t (
l

Gll (
l 8,«2

@X~«2!#l8l 8Bi j l l 8@p~«1 ,«2!q~«1 ,«2!;p8q8#

2xdll8 (
i , j ,t,«1

@GX~«1!# i j
t (
k,l ,t8,«2

@X~«2!G#kl
t8Bi jk l @p~«1 ,«2!q~«1 ,«2!;p8q8#

1x (
i , j ,t,«1

@GX~«1!# i j
t (
k,l ,t8,«2

@X~«2!G#kl
t8 (

m,«3
@X~«3!#l8mDi jk l lm@p~«1 ,«2 ,«3!q~«1 ,«2 ,«3!;p8q8#,

~D4!

whereG5G1 andḠi j5Gji .
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