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Anharmonicities of y vibrations in odd-mass deformed nuclei
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The vy vibrational states in odd-mass deformed nuclei are studied within the multiphonon method. Special
attention is paid to low-energy multiphonon states in order to see if the anharmonicities observed in even-even
nuclei, in which the first vibrational stat€”=2"* appears well below the energy gap, are also found in the
odd-A neighboring nuclei[ S0556-28186)03907-9

PACS numbeps): 21.10.Re, 21.60.Ev, 27.70q

[. INTRODUCTION family and their collectivity. In particular, it will be instruc-
tive to compare the properties of the vibrational states built
In most of the rare earth even-even nuclei, withon different single-particle orbitals, e.g., those which contrib-
162<A=<168, one observes only one intrinsic excited stateute strongly to they vibration in even-even nucl¢see Eq.
well below the energy gap. This state is ¢fvibrational  (1)] and those of unique parity, present in this region.
nature and interpreted as a “one-phonon” state. This situa- In Sec. Il, we briefly sketch the version of the MPM
tion arises since, in these nuclei, pairs of single-particle orsuited for such a study. Some representative results are pre-
bits, of same parityr, with quantum numbers{}"Nn,A) sented in Sec. lll. Finally, a few interesting conclusions are
satisfying the asymptotic selection rules drawn in a last section.

AN=An,=0, Il. SKETCH OF THE MPM FOR ODD-MASS DEFORMED
NUCLEI WITH TWO BASIC PHONONS
AQ=AA==*2 (1) .
A. General principles

are available near the Fermi surface. All experimental at- The general principles and formulas of the MPM have
tempts to look for the “twoy-phonon” vibrational state;n  been explicitly given for even-even nuclei (18] and for
an energy region of twice that of the one-phonon steteée  odd-mass nuclei ifi10]. Here only the version of the MPM
failed. It was therefore concluded either that the “two- which uses two phonons as building blocks is needed. For
phonon” states do not exist or that the considered vibrationghe even case this simplified method has been studied in
may exhibit rather strong anharmonicities. A lot of theoreti-detail in[9]. Hereafter, the important points of this approach
cal work[1-4] has been devoted to this subject. The predicfor odd-mass nuclei will be given.
tions of the quasiparticle phonon nuclear mod@PNM) First, one introduces the quasiparticle creatidpand an-
developed by Soloviev and his co-workétg are in favor of  pihilation a,, operators wheren summarizes all quantum
the first alternative. Practically all other theories agree withhymbers needed to identify the quasiparticle.

the second, which has been confirmed experimentally, at second, phonon®; of the Tamm-Dancoff TDA) type
least in1°%Er, by Baneret al.[5] who measured the lifetime

of theK™=4" state at 2.55 MeV, candidate for an interpre- 1 -

tation as a “twoy-phonon” state. Experimental evidence Qi 25% (Xi) mn@man @
for the existence of other two-phonanvibrational states in

other mass regions have also been give[6ing|. are considered. Note that the matri¢gsare antisymmetric.

Among the microscopic theories dealing with this topic, These phonons fulffill the following commutation rule:
the multiphonon metho@PM) [3] has been systematically

applied[9] to the even-even nuclei of this mass region. It N 1 N

was found that they vibrational spectrum is anharmonic and [Q1,Qz]=—5Tr(XXz) + % (XX mrman. ()

dilated. Furthermore, it was concluded that, in some favor-

able conditions, the “two-phononK™=4" states conserve Note that in the usual quasiboséand harmonig approxi-

some collective character, whereas th€if=0" partners, mation only the first term of Eq(3) is retained, whereas in

which are always predicted to have higher energy, lose theithe MPM the full commutation relation is taken into account.

collectivity. Third, one builds multiphonon states. In even-even nuclei
The aim of the present paper is to see how these conclu state withp phonons of the first type argiphonons of the

sions extrapolate to the neighboring odd-mass nuclei. IBecond type reads

these, one expects intrinsic one quasiparticle states with

quantum numberK=(), two “one-phonon” states with Ll oAt

K—2 and K+2, respectively, and three “two-phonon” |pq)—mQ1 Q2%0). )

states withK —4, K, andK+4 (respectively. It is of inter-

est to study the relative positions of the states of such &imilarly, in odd-mass nuclei one considers the states:
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|pq)\>:aI|PQ>: (5) (with p’+q’'=p+g—1), the quantities

where a quasiparticle has been added to the phonons. In Bstw(P'Q’;pa)=(p’q’|a,a,a:as|pa) (8)
Eq. (4) the denominatop!q! has been introduced for nu-
merical convenience an@®) is the phonon vacuum, which, (wherep’ +q’ =p+q—2), which we had in the even nuclei,
by construction, coincides with the fermion vacuum. Thegnd
sets of state&4) or (5) do not form an orthonormalized basis
in the mathematical sense. Therefore the first problem en- Dewws(P'Q’;P9) =(p'q’|a@aya,a,aaspa) (9)
countered in the MPM is the determination of the overlap
matrix of the multiphonon states. Due to the Pauli principle,(where p'+q’=p+g—3) which are needed in addition.
this is by no means an easy ta;sk. Similarly, the second probrpe quantitiesA, B, andD have, of course, the symmetry
lem of the MPM is the calculation of the one- and two-body yrgperties of the fermion operators product they contain.
operator matrix elements, which are needed to evaluate th§ste the relative indices order in both sides of these equa-
eigenstates of a model Hamiltonian and the electromagnetig, o
transitions. _ The quantitiess, A, andB are related by the following

It has been showfl0] that all these matrix elements of .o rsion formulas:
the odd case can be given in terms of the overlap matrix

elements of state@): [(1+8)p’+(1—&)q IF(p'q’;pq)
F(p'a’;pa)=(p'd’|pa) (6) =—Tr{X(e)Alp'(2),qd’(e);pql}, (10

(with p’ +q'=p+q), the matrices _ .
where e==*1, X(e)=X; if e=+1, and X(&)=X, if

Amr(P'0";pa)=(p"q’|anam| Q) 7  e=-1;

|
Amn(P'0 ;) =2, | X(e1)F[P'q’;p(e1)q(e1) ]+ > X(£2)A[P(e1,82)0(e1,62);p q" 1X(82) | 11
h 2 mn

Babed P'Q';PA)=— >, [X(Sl)*X(Sz)]abch[p’q,;p(slysz)q(slasz)]_"; (X(e1)*ALp'q’;p(e1)q(e1) I}abed

£1,€2

+{Alp'q’;p(e1)q(e1)]* X(£1) }abcd

+ 2 2 Xade)Xol#2) Xeu(€3) Xap(£4)Bstw P(e1,82,83,84)0(e1,62,63,64);p'0'],  (12)

€1,80,63,84 StWw

whereg;=*1,

1 n
P(€1,62,83,84, ... ,8n)=P— _; (1+ey),

1 n
q(e1,82,83,84, .. .,8n) =0~ 521 (1—g).

Note that
p(81!82!83!84! e ,8n)+q(81,82,83,84, e ,sn)<p+q
and that

(f* D abca= fandcd— FacOpat fadbe -

For D, one gets a similar type of recursion formula:
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Dabcde{P'q";pQ) = 2 [X(e1)*xX(g2)*X(&3)]labcdef [P'A";P(e1,82,83)0(E1,82,83)]

€1.€2,€3

— > {Alp'q’;p(e1,e2)a(81,82)1®[X(£1)* X(82) L avcder

€1,82

+§ {X(e1)®B[p'q’;p(1)d(e1) Y abcder

- X 2 Xas(e1)Xor(£2) Xou(£3) Xan(£) Xew(£5) X1x(6)
£1.69,63,64.65.8¢ SLIWX
X Dstwwd P(£1,82,83,84,85,86)0(£1,82,€3,84,85,86);0'0" ], (13
where
[fxg*h]apcder fan(9% M) cder™ Fac(9* pdert fad(9* hpcer— fael@* Npcart far(9* Npede (14
and

[f®g]abcdet: fabgcdef_ facgbdef+ fadgbcef_ faegbcdf+ fafgbcde+ fbcgadef_ fbdgacef+ fbegacdf_ fbfgacde+ fcdgabef

- fcegabdf+ fcfgabde+ fdegabcf_ fdfgabce+ fefgabcd- (15)

From the quantitie$ and A one can calculate the overlap The contribution of the constant terifyyy to nondiagonal

matrix through: matrix elements vanishes. It has been showfildj that the
. matrix elements of the one-body operatéts, and T,; can
(P'a’N'[parn)= oy F(p'a’;pa) be deduced from the knowledge of the quantifiesA, and
B, whereas foil,p and Ty, only A andB are needed. For the
+2 {X(e)Alp(e1)d(1);p' A Thon - evaluation of the matrices of the two-body parts of the model
&1

Hamiltonian the quantitie® are required in addition. The
(16) recursion formulas for these matrix elements are rather so-
Phisticated and their explicit form will be postponed to the

In the special case which is under consideration in this papeAppendices. To summarize, the MPM is aractdiagonal-

:ir\]/eeI:/\{VZspQ(z:gcr)lrs]Z qlu einci,%hzong)?; 223 Eingejc/j'uéizpﬁgm ization of thecomplete_model Hamiltonian within the space
X1 by time reversal properties. To go further on, one need§panned by the multiphonon _Stat,@' Note also tha?’ in
to choose a model Hamiltonian. The main aim of this papef°ntrast to the case of themotion in even-even nuclei, the
is to look for the general trends of themotion in odd-mass PartsHa; andHy3 of H contribute in odd-mass nuclei.
nuclei and not to look for a fine agreement between theory
and experiment. Therefore, we chose the simplest model ) ) o ]
Hamiltonian containing the interactions known to play the B. The different steps of the MPM in realistic calculations
major roles in the considered nuclei. We assume an axially Once the model Hamiltonian has been chosen, the differ-
deformed nuclear potentiaH(,) of the Nilsson or Woods- ent steps of the MPM go as follows.
Saxon type, a constant monopole pairing force of strength (1) Using some physical arguments, one has to select the
G, for each kindr of particles(protons and neutropsand a  multiphonon “basis.” This includes first the choice of the
charge independent quadrupole-quadrup@®)J interaction  phonons which are expected to play a major role in the col-
lective subspace. In the present paper, we restrict ourselves
H=Hg+Hp+Hqq- to the two phonong andy. As a consequence, the version
| th S d by introducti fh .of the MPM used here can only be applied with confidence
Asl lésua ’It Epal\rllnlgtl_s t{eatef y '?.tm ucr:!og ofthe Ctanot?]'"m a mass region where the vibration is much lower in
ca (l)go yu_l ov-vaiatin _rans_,fforma on, W Ich separates eenergy than any othéntrinsic excitation below the energy
model Hamiltonian into its different parts: gap, observed in even-even nuclei. To build the retained pho-
_ / non (2) one has to fix the numbar, of active, two times
H=Hoo* Hurt Hopt Hapt Hart Hagt Haot Hoa, degenerate, single-particle orbitals for each kind of particle
whereH;; containsi creation operatora’ andj annihilation ~ (Protons and neutrons One generally chooses the same

operatorsa. Similarly, the electromagnetic operators split 'umber of levelge.g.,n=20) for each kind, equitably dis-
into four parts tributed on each side of the Fermi surface. A Tamm-Dancoff

calculation gives then a reasonable choice for the matrices
T=T00+ T11+ T20+ Toz. X1 andXZ.
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(2) The second step consists of calculating and storing thevants to study the effect of the variation of tReQ interac-
quantitiesk, A, B, andD using the recursion formulas up to tion strengthy, one may restart the procedure only at the
some given maximum number,, of phonons. To minimize third step.
the effort only nonequivalent.e., quantities which cannot |t is necessary to add a few words concerning the inter-
be deduced by symmetry properties from a previous calcupretation of the eigenstates resulting from the MPM calcula-
lated on¢ are evaluated and only nonzero values are storegjon, After the diagonalization of thid matrix, the eigenvec-
To give a rough idea of this first problem, if one considers;g,g appear as superpositions of the multiphonon st&es
two types of phonons,n =20 and n,,=8, one has anq one can no longer speak about states containing a fixed
3><85:4255 quantitiesB each of which has a maximum of n,mper of phonons. According to the nonorthogonality of
(2x20)" elements, leading to a total numbere6.5x10°  the MPM “basis” their interpretation may not be easy. It has
elements. If one eliminates those which vanish and calculatg,grefore appeared to be worthwhile to study B transi-
only the nonequivalent quantities one remains Withtions with |AK|=2 between the obtained eigenstates, in or-
=5x10° elements. In this counting, the factor 3 comes fromger to detect possible collective transitions. Two states re-
the following three possibilities: either four protons, or four |ateq by a collective transition will therefore be considered as
neutrons, or two protons and two neutrons, can appealiffering by one phonon.” As a consequence, we shall
among the four operatoesin the definition(8). The second speak in our further analyses about “one-phonon” or “two-
factor, 85, results from the sum over the current number Obhonon” statewith quote$ built on a given ‘K™ state.”
initial n and finaln" phonon numbers of all combined pos- Note that, since we have to restrict ourselves to a definite
sible partitions oh betweerp andq andn’ betweerp’ and  number of active levels for each kind of particle, some ef-
q’, with the constrainn’=p’+q’'=n—2=p+q—2. In @  fective charges,=e(1+ €) ande,=ee (wheree is a small
completely similar way, and in the same conditionsfigi  free parametemave to be introduced in the evaluation of the
andn;, one gets 4394=1576 entitiesD, each of which E2 matrix elements.

having (2x<20)° elements, leading to a total amount of
=6.5x 10*? elements. Fortunately, here too a lot of these Ill. SOME REPRESENTATIVE RESULTS
elements vanish according to the conservation of parity
and/or K quantum numbers or to the Pauli principle. One In the considered mass region, ¥62<168, two kinds
remains however with=2x 10" nonequivalenD values. It  of single-particle states can be found in the neigborhood of
appears therefore that their evaluation is very time consunthe Fermi surface.
ing, even on modern computers. Furthermore, the computer The first kind contains the states originating from the
memory needed to store all what one has to keep for furthetunique parity” subshelli 3/, for neutrons othy,, for pro-
calculations is of the order of 285 megaoctets. tons. Since the coupling to thg and y phonons conserves
(3) The next step is the determination, for each choseithe parity, the single-particle orbitals to be considered in the
K™ value, of the overlap matrix and the Hamiltonian matrix MPM basis arise mainly from the same spherical subshells.
in the nonorthonormalized MPM bas(§), by an extensive As a consequence, no pairs of orbitals satisfyjthy exist
use of the recursion formulas given (f@6) and in the Ap- among the unique parity states and one naagriori, expect
pendices. Then follows the diagonalization of the obtainedather pure vibrational excited states.
H matrix within an appropriate method for non-  The second kind concerns the orbitals of “natural par-
orthonormalized bases. Special attention is paid to the lowedy.” Among those one finds several pairs of states which
eigenvalues. According to the numerous contributithg fulfill the asymptotic selection ruled) and contribute there-
entering the model Hamiltonian, this step constitutes a sedore strongly to they phonon. For the proton field one has,
ond rather tremendous numerical task. near the Fermi surface, the pairs 1441 and 5/2413, or
These steps are repeated for successive increasing value§1/2"411) and 3/2411, whereas for the neutrons the pairs
of the maximum numbeng, of phonons. The procedure 1/27521 and 5/2523 or —(1/27521) and 3/2521 are ex-
stops once a reasonable numerical stability of the lowest epected. It is therefore of interest to study the blocking effect
genvalues is observed. It is worthwhile to note that the valuef an odd quasiparticle of such pairs on the collectivity of the
of n,, depends mainly on the collectivity of the building vibrational states in odd-mass nuclei.
phonons, i.e., on the choice of the antisymmetric matrices For a considere&™, we study first the “one-phonon”
X; and X,. In practical situations, where these are takenstates withK—2 andK+ 2. Special attention will be paid to
from the Tamm-Dancoff approximation, the valuergf, is the energy splittingAE=E(K+2)—E(K—2) and to the
of the order of 8 when realistic values of tggQ strength E2 transitions with |AK|=2, which relay these ‘“one-
x are used. We emphasize that the whole procedure jugthonon” states to th&™ state. In a second step, we search
described has to be repeated from the very beginning if onor the “two-phonon” states withK—4, K, andK+4, re-
wants to change any of the parameters entering the modspectively, by careful analysis of thét2 decay to the “one-
Hamiltonian (e.g., deformation of the single-particle field, phonon” states.
pairing strengthG ., or quadrupole-quadrupole interactjon Since we are not aimed at looking for a fine adjustment
The same holds if one wants to select another numpef between theory and experiment, we shall use for the studied
active orbitals entering the pairing and TDA calculations.odd-A nuclei the parameter sets of their doubly even core as
We may remark here that there & priori, no fundamental given in[9]. More precisely, we use a Nilsson potential with
reason to use the same value of the quadrupole strength pa-fixed quadrupole deformation parameter for each core,
rametery in the model Hamiltonian and in the resolution of BCS gap parameters deduced from the experimental masses
the secular TDA equation. According to this, if one only [12], and a quadrupole strength paramegerfitted, within
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TABLE I. Absolute energies of the first lowest negative parity = TABLE Il. Calculated values of some typicHIK|E2|K;}| ma-
states in'®*Ho. The last column indicates the nature of the level, astrix elements for different values of the effective chargeand

deduced from analysis of tHe2 transtions. New==8 in **Ho and unique parity.

[ Noh=4 Npn=5 Nny;=6 ny=7 ny,=8 Identification e=0 e=0.2 e=0.4
(7/2), —480 —489 —565 -566 —574  7/2523 (312),—(712), 2.69 3.93 5.18
(3/2), 405 106 93 48 47 (TR}y (112,72, 2.65 3.90 5.15
(11/2), 500 181 174 126 126 (72}~ (5/2);—(9/2), 0.006 0.008 0.011
(9/2), 437 437 367 367 361 97514 (5/2,—(9/2), 2.57 3.79 5.02
(5/2), 501 474 410 406 400 51532 (13/2,—(9/2), 2.55 3.78 5.00
(1/2), 585 564 491 487 480 17541 (1/2)1—(5/2), 0.026 0.041 0.057
(1/2), 1106 903 851 821 815 (5/2}y  (1/2,—(52, 2.57 3.72 4.87
(3/2), 1173 997 947 918 913 (Uy  (9/2,-(5/2 2.67 3.92 5.17
(5/2), 1418 1106 1105 1060 1060 (927  (15/2;—(11/2, 2.94 4.30 5.66
(13/2), 1438 1127 1127 1081 1081 (942)y —(1/2),—(3/2), 0.14 0.22 0.30
(9/2), 1504 1217 1200 1159 1157 (52 y —(1/2),—(312) 1.01 1.47 1.92
(5/2), 1584 1270 1257 1210 1209 (142)y —(1/2)5—(312), 2.70 3.93 5.16

(3/2); 1395 1298 1237 1220 1214 3/341°?
(1/2); 1590 1455 1292 1272 1252 (7k%7yy

(15/2), 1747 1724 1465 1460 1430 (742 vy for spaces restricted tu,;<5, some state§n fact the vibra-
tional stateshave strongly overestimated energies. As a con-
sequence, model calculations restricted to a too small mul-
the MPM, to the one-phonon state in the core when 20 activéiphonon basis may not be considered as really meaningful.
levels are introduced. With such a choice, one has a parann the other way round, the variation of the absolute ener-
eter free problem in the considered odd-mass nuclei, whicgies withng, may give a serious indication on the nature of
allows one to go only once through the different steps of theéhe eigenstates. Energies which vary #1100 keV corre-
MPM described in Sec. Il B. As a consequence, it is cleaispond to states of rather pure quasiparticle nature; energies
that only the general trends of the vibrational motion in  which are stable fon,,=7 andn,,=8 indicate a main com-
odd-mass nuclei can be reached. According to the status @onent with “one phonon.” These indications on the nature
the experimental information available at the present timeof the different excited levels are to be checked through the
this seems sufficient. analysis of theE2 transitions withl AK|=2. Table Il gives

the values of(K;|E2|K;)| matrix element for different val-
ues of the effective charge and n,,=8, for some typical
transitions.

The K=7/2" orbital originating from theh,,,, proton First, it is found that the(K;|E2|K;)| vary linearly with
subshell appears as the ground state for the Ho isotopes. Second, it is easy to separate the collective transitions
Concerning the neutron subshilk,,, theK=7/2" member from the noncollective ones. Consequently, it becomes clear
is the ground state fot®’Er, whereas th& =5/2" is found that the “one-phonon” states built on the ground state
as such in'%Dy. Preliminary results for theK=7/2 in  (7/2), are (3/2) and (11/2), the “one-phonon” states built
187Er and *"Ho have been published recently[ihl]. Rep- on the (9/2) are (5/2) and (13/2) while the “one-
resentative results for three nuclei, where the ground state ghonon” states built on the (5/2)are (1/2) and (9/2).
of unique parity, are given below. Concerning theK=4 “two-phonon” states built on the

In %o, the ground state is 7/523. All the other orbit-  ground state, the candidates are (3/2hd (15/2). None of
als originating from the subshdil;, are found in the chosen the first three excited states with=7/2 are linked to the
single-particle proton field as well as the 1841,3/2 532, (3/2); and (11/2) by a collectiveE2 transition. Therefore,
and 1/2 530 orbitals. The quasiparticle energies of theseno candidate for the label “two-phonon” state wik=7/2
unique parity states are all lower than 3.5 MeV. Table | givesclearly appears. It is also quite interesting to have a look to
the calculated absolute energies of the first 15 levels versube spliting AE=E(K+2)—E(K—2) of the two "“one-
the maximum numben,;, of the phonons introduced in the phonon” states for several valuesiéf All calculated values
MPM basis(5). of AE are positive: e.g., one gets 79, 21, and 342 keV, re-

The displayed results show clearly that a general and reaspectively, for (7/2), (9/2),, and (5/2). For the two last
sonable stability of the energies is obtained wingp=8 is  cases it is clear that these splittings &rather strongly in-
used. As expected, the binding energy of the ground statduenced by the repulsion of the states (9/2and
gets larger with largen,,. The ground state energy stays (5/2);+vy on one hand and (5/2)and (9/2)+y on the
stable forn,,=6 andny,=7, whereas the “one-phonon” other hand. For well-defined “two-phonon” states, built on
states withK =3/2 andK =11/2 keep stable fon,,=7 and the sameK state, one may also evaluate the anharmonicity
npn=_8. This result, which is similar to that obtained in the ratios
doubly even nuclej9], shows that the partd .o andHg, of
H, which couple multiphonons states whére= * 2, play a
dominant role. As for even-even nuclei, it is also found that,

A. Unique parity vibrational states

 E(K£4)—E(K)

Ri(K)_E(Ktz)—E(K)'



194 J. C. DURAND AND R. PIEPENBRING 54

TABLE Ill. Relative energies of the first excited positive parity ~ TABLE IV. Values of|{K;|E2|K;)| matrix element for different

states int®7Er. values of the effective charge and n,,=8 in '®Er and unique
parity.
I* Nph=4 Npr=5 Np=6 nyK=7 ny=8 Expt.
e=0 e=0.2 e=04
(312), 866 607 657 617 621 531
(11/2), 1017 720 780 735 741 711 (312),—(712), 2.67 3.89 5.11
(5/2), 755 734 741 737 738 810 (11/2),—(712), 2.75 3.99 5.23
(1/2), 1303 1134 1147 1121 1122 (1/2),—(—3/2), 0.96 1.40 1.84
(9/2), 1021 1034 1039 1042 1042 1253  (1/2);—(5/2), 241 3.56 4.72
(312), 1637 1521 1542 1522 1524 (9/12),— (5/2), 0.24 0.36 0.48
(9/2), 1795 1518 1567 1528 1532 (9/12),— (5/2), 2.75 4.01 5.28
(1/2), 1766 1773 1766 1757 1751 (1/2),—(—312), 1.89 2.74 3.58
(5/2), 2043 1749 1820 1776 1783 (1/2),— (5/2), 0.85 1.22 1.59
(13/2, 2088 1796 1867 1824 1831 (1/2)3—(—3/2), 1.57 2.31 3.05
(1/2) 2057 1858 1843 1826 1824 (1/2)3—(5/2), 0.63 0.89 1.16
(15/2, 2355 2323 2140 2133 2109 (15/2),—(11/2), 3.01 4.37 5.73
(712, 2544 2269 2287 2244 2243 (712),—(312), 1.11 1.58 2.05
(7/2),— (11/2), 0.40 0.65 0.90

For the ground stat&=7/2, one getR,=R_=2.9. An-
other instructive quantity, which concerns B2 transitions  of the effective charge. From the displayed results it is

IS clear that the transitions from the first 3/2 and 11/2 states to
the ground state are collective. TEQ transitions also indi-
Q. (K)= [(K=2|E2[K=4)| cate that the (9/3)is of “quasiparticle” nature, whereas the
* (K|E2|[K£2)| (9/2), is a “one-phonon” state based on the (5/Xtate.

The (15/2) state is clearly th&K +4 “two-phonon” state

It appears thafQ, (K) is stable versus variation of and  built on the ground state. The decay of the 7/2 excited state
practically independent df. Its value, 1.1, is slightly larger by E2 to the “one-phonon” state (3/2)and (11/2) are not
than 1. This last property shows that the vibrational characteieally of collective character. Another interesting result deals
of the K+ 4 states is somehow larger than that of K¢ 2 with the 1/2 states for which thE2 transitions to the state
as expected from the absence of highlguasiparticle levels (—3/2); and (5/2) are compared. It is seen that (1/2jor-
in the mean field. No general conclusions can be given foresponds to the “one-phonon” state built one the (%/2)
Q_(K). state. The collectivity of the transition between the “one-

For *7Er, the ground state is 7/833. The other positive phonon” state (3/2) and a “two-phonon” state { 1/2) is
parity single-particle states present among the 20 retaineshared between (1/2)and (1/2. Here too, one gets an
active neutron levels are 17860, 3/2'651, 5/2642, anharmonic dilated vibrational spectrum since
9/2*624, and 11/2651 from thei 5, subshell to which the R.+=R_=2.8, if one adopts (1/2)for the “two-phonon”
3/27402, which is known to pseudocross with 3651, is  state. The analysis d@. (K) leads to similar conclusions
added. All these orbitals have quasiparticle energies lowethan for **Ho. Roughly speaking, the results obtained for
than 3.3 MeV. Table IIl gives the calculated energies of thethe 7/2° system in **Er are very similar to that of the
first 13 excited positive parity levels relative to the ground7/2” system in'®Ho , except for a parity change.
state versus the maximuny, of the phonons introduced in ~ For '°1Dy, the ground state is 5/542. The other unique
the MPM basis. The last column gives the experimental enparity states present in the considered neutron field are
ergy (which contains some rotational and Coriolis contribu-1/2*660, 3/2'651, 7/2'633, and 9/2624, to which one adds
tions) when available. As for the case &¥Ho, a reasonable the deep hole states 17200 and 3/2402 known to
stability of the energies is obtained fop,=8. It is interest- ~ pseudocross with 17860 and 3/2651 (respectively. It is
ing to notice that within 2.3 MeV all expected levels are rather easy to follow the vibrational chafiK +2,K + 4, by
found. First, one finds candidates for the “one-phonon”looking to the involved E2 transitions (for e=0 and
states withK =3/2 andK=11/2 and for the “two-phonon” ny==8 for instance
states withK=—1/2, 7/2, and 15/2 built on th&=7/2 [((9/2),]E2|(5/2),)|=2.72 and [{(13/2),|E2|(9/2),)]
ground state. Second, one also finds the “quasiparticle”™=3.02. The ratioR, is 2.6 andQ,=1.11. However, the
states corresponding to 5/842 and 9/2 624 and candidates lower value ofK=5/2 (compared to the 7/2 systems studied
for the “one-phonon” states built on these orbitals with before allows for more mixing of the MPM basic states on
K=1/2 and 9/2, 5/2, and 13/2. Two additional levels with the K,K—2K—4 side, resulting in lowelE2 matrix ele-
K=1/2 and 3/2 are also obtained. It is worthwhile to notements: |{(1/2);|E2|(5/2),)|=2.39; |{(—3/2),|E2|(1/2),)]
that for a completely parameter free calculation the compari=1.69; |{(—3/2),|E2|(1/2),)|=2.48 and some sharing of
son with the available experimental results are rather goodhe collectivity at the “two-phonon” level. The identifica-
Again, the nature of the different excited levels can betion of theK—4 *“two-phonon” state, and consequently the
checked by the analysis of a few typida® transitions with  evaluation ofR_ andQ_ are therefore less obvious. If one
|AK|=2 given in Table IV forn,,=8 and different values retains the more plausible candidate, (3/2)ne gets a very



54 ANHARMONICITIES OF y VIBRATIONS IN ODD-MASS ... 195

TABLE V. Typical [(K{|E2|K;}| matrix elements, obtained in TABLE VI. Typical [{(K;|E2|K;}| matrix elements, obtained in
the MPM for 63Th, natural parityny,=8, and several values of the the MPM for 16%r, natural parityn,,= 8, and several values of the

effective chargee. effective chargee.
e =0 € =0.2 e=04 e=0 e=0.2 e=0.4
(7/2),—(3/2), 2.80 4.13 5.46 (9/2),—(5/2), 2.83 4.12 5.40
(12/2),—(7/2), 3.77 5.49 7.21 (13/2),—(9/2), 2.77 4.09 5.40
(9/2); —(5/2), 2.61 3.86 5.10 (712);—(3/2), 2.53 3.64 4.75
(13/2),—(9/2); 3.38 4.94 6.51 (12/2)3—(7/2)4 2.70 3.96 5.22
—(1/21—(3/2); 152 2.34 3.16 (1/2);—(5/2), 2.09 3.04 3.99
—(1/2), —(3/2); 0.40 0.57 0.75 (1/2),—(5/2), 0.03 0.002 0.03
—(1/2)3—(3/2); 2.87 4.01 5.14 (1/2)3—(5/2), 0.34 0.42 0.50
(1/21—(5/2); 0.27 0.54 0.82 —(1/2),—(3/2), 0.56 0.72 0.88
(1/2,—(5/2); 0.50 0.77 1.05 —(1/2),—(3/2), 1.07 1.54 2.00
(1/2)3—(5/2), 3.01 4.26 5.51 —(1/2)3—(3/2), 0.72 1.02 1.31
(5/2)4—(112)5 3.94 5.75 7.56 (5/2),—(1/2), 1.32 1.84 2.37
(5/2),—(9/2), 2.16 2.97 3.79 (5/2),—(9/2), 0.01 0.02 0.06
—(3/2)3—(1/2), 2.17 3.17 4.16

large (and may be unrealistidR_ ratio value of 3.6.A for-

tiori, no 5/2 state with significanE2 transitions to both 1/2+411). The calculated (1/2)evel has the most complex
“one-phonon” states, (1/3)and (9/2) can be founde.g.,  structure since it presents collective decay as well to the
one finds E2[(5/2);—(1/2),]=1.78 and E2[(5/2);  (5/2), excited state as to the ground state. As a consequence,
—(9/2),]=0.40). In conclusion, it appears that the situationjt seems meaningless to really speak about “one-phonon”
for the K=5/2 unique parity system is somehow less cleary _ 5 ctates built on the (5/2)and (3/2) levels. The last

than that discussed earlier for the tioe=7/2 cases. Appar- two E2 given in Table V concern state (5{2vhich decays

g?ztlyé;[\gesr/ezﬁ?/gI\?;élhfnct(;]neqss_fzrog _tZeSIig\gewalues(ll 2, by collective transitions to (1/3)and to (9/2) . It would be

' ' ' a good candidate for the “two-phononK,=K=5/2 state
built on the (5/2) level if the (1/2) could be considered as

B. Natural parity vibrational states the “one-phonon” state built on this (5/2)state. With such

a questionable interpretation, the anharmonicity ratio would

We shall restrict ourselves to two typical examples, on )
for each kind of particle. ebe 1.7 on th&k,K—2 K way and 2.0 on th&,K+ 2K side.

In 163Th, the adopted ground state label is‘%21. Near Our second example of natural parity deals with the odd-
the Fermi surface, one expects also the two orbitalsN€Utron nucleu$¥r, where the 5/2523 appears as the

5/2°413 and 1/2411, which form with the ground state two 9round state. At 104 keV one observes the 321 level and
pairs of orbitals fulfilling relation(1). Experimentally, one at 346 keV the 1/2521. As for the odd-proton case studied
observes thre& ™=1/2" bandheads at 674, 994, and 1226 before these orbitals form two pairs satisfying the selection
keV, the properties of which indicate a complex structure. Itrules(1), but here they appear in a different order, compared
is therefore of fondest interest to look for the predictions ofto the first given example.
the MPM calculation. The presentation of Table VI is similar to the preceding
Table V gives the most importaf2 transitions needed one. Again it is easy to follow th&,K+2,K+4 chain built
for the analysis of the natural parity states it°Tb, with  on the ground state and the filét=3/2 excited level, with
special attention paid to the vibrational states built on theéhe anharmonicity ratioR, (5/2)=2.6 and R, (3/2)=2.5.
3/2" ground state and the first excited 5/2tate. The first The E2 ratios areQ. (5/2)=0.99 andQ, (3/2)=1.08. On
four E2 transitions allow one to follow nicely th,K+2,  the other hand, the analysis of the first three 1/2 states is not
and K+4 chain built onK=(3/2); and K=(5/2),, where obvious. If the (1/2) has a strond:2 to the ground state, no
the collective nature of the transitions is clear. The correclear candidate for the “one-phonorK — 2 state appear for
sponding anharmonicity ratios ardR,(3/2)=2.4 and the (3/2) state. The (3/2) may be a suitable candidate for
R, (5/2)=2.7, i.e., somewhat lower than for the unique par-the K—4 “two-phonon” state built on the ground state,
ity studied before. For th&2 ratios one gets again stable whereas the (5/2)presents some character of tke ‘two-
values versus e. The values Q.(3/2)=1.32 and phonon” state, but only through its decay via the (1/2fate
Q. (5/2)=1.28 are larger than for the unique parity casegand not via the (9/2) statd. Note that the identification of
and they increase slightly with decreasig The six next the different calculated 1/2 states within the MPM does not
E2 are given in order to discuss the nature of the three firstorrespond to that adopted in experimental compilation. This
K=1/2 excited states. The first excited 1/2 state obtainediact should not be considered as surprising, since our param-
within the MPM shows somérelatively medium collectiv-  eter free MPM calculation does not at all pretend to lead to a
ity in its transition to the ground state. The calculatedfine description of the observed energy spectrum. It is indeed
(1/2), is very weakly related to the (3/2)and (5/2) and  sure that, for the natural parity states, slight modifications of
must, thus, be of individual naturg@robably a rather pure the adopted mean field may have some consequences on the
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MPM results more for odd-mass nuclei than it had for eventhe E2 transitions from theK+4 to the K+2 states and
even nuclei. from K+2 to K keep a real collective character, wi,
ratio generally greater than one. The vibrational spectrum is,
IV. CONCLUSIONS as in the even nuclei, strongly anharmonic and dilated.
The situation of the “twoy-phonon” state with
In this paper they vibrational states have been studied in K, =K —4 is somehow similar foK = 7/2 and unique parity.
odd-mass deformed nuclei, neighbors of even nuclei whergvhen lowerK values are involvedwhich is the case in
one can assume that thestate is energetically well sepa- particular for the natural parity stajemore mixing among
rated from all other intrinsic levels. the basic multiphonon states appear. As a consequence, a
A first general(and empirically expectedesult concerns possible sharing of the collectivity of thHg2 transition be-
the two “one-y-phonon” states which can be built on the tween the identifiedk —2 “one-y-phonon” state and differ-
ground state wittK quantum number. The MPM explains, in ent possible< —4 states may be obtained. _
a microscopic way, that th&—2 vibrational level has al- ~ Finally, it is practically impossible to assign with confi-
ways an energy lower than ité+2 partner. However, no dence the “twoy-phonon” label to anyK,=K state. The

eneral rule can be given for the positive enerav splitting POSsible candidates are generally predicted higher in energy
g g P dy spiting than their identifiedK —4 andK+4 partners and theig2

AE=E(K+2)—E(K—2). transitions to the established “ong phonon” lose practi-
cally their collective character.

It depends somehow on the presence, in the energy region of In some sense, the situation is rather similar to the even-
the “one-y-phonon” state, of other intrinsic states with even core. One finds that for the “twgphonon”
K—2 and/orK+2 quantum numbers. As an example, theK;=K =4 states in odd-mass nuclei the situation ressembles
(rather often presence of an intrinsidcone quasiparticle that of theK=4 ‘“two-y-phonon” states in even-even nu-
statg with K—2 a little higher than theK =2 vibrational clei, i.e., an anharmonic dilated energy spectrum and a col-
states may enlargAE considerably. Note however that for lective character(may be a little less pronounced for
some natural parity orbitals it appears difficiftnot impos-  K;=K—4 states Similarly, the noncollective character of
sible) to identify theK—2 “one phonon” state. the K=0 “two-phonon” states in even-even nuclei is found

A second conclusion concerns the three expected “twoagain in theK,=K states in odd-mass nuclei. There is no
y-phonon” states withK,=K—-4, K,=K and K;=K+4.  great chance to identify these poor collectike=K states
Among these three “twoy-phonon” states, th&;=K+4 is  whereas, in some favorable cagegy., unique parity statgs
the purest vibrational state. This is particularly true for theone should find some evidence for the collective character of
unique parity states, since no intrinsic quasiparticle state witthe K;=K *4 “two- y-phonon” states in odd-mass nuclei.
K=Kj arises in the level scheme. Furthermore, in all casesExperiments in this direction are therefore especially desired.

APPENDIX A: MATRIX ELEMENTS FOR THE SINGLE-QUASIPARTICLE HAMILTONIAN

For the partH; of the model Hamiltonian one has

<p’ql7\’|H11|pq)\>:EMSM'F(F"CI';DQ)_5>\>u§4 Tr{A[p(e1)a(e1);p"q" ]EX(&1)}
+(Ex+ Ew)ez {X(Sl)A[p(Sl)Q(Sl)ip'q/]}wx"'82 {X(e1)EAlp(e1)a(e1);p A" T}an

-2 > Er[xm)]rj/z [X(e2)In/BijnAP(e1,82)0(81,62);p"q'], (A1)
/€9

g1 1,j,7

whereE; is the energy of the quasiparticle In this equation, and hereafter, the trace Tr is evaluated over protons and
neutrons, the sum ovérj, means that andj are of kindr. On the other hand the sum owvérruns over particle states of

the same kind thai. The summation over integers has the same meaning than in the recursion formulas for the quantities
F,A,B, andD, the summation over indicates a sum over the two kinds of particlgsotons and neutroins

APPENDIX B: MATRIX ELEMENTS FOR E2 TRANSITIONS

We restrict ourselves here to thd = + 2 transitions. Those withAK= —2 can be deduced by complex conjugation. The
part Ty of the operator does not contribute. Fbyy one has the relation
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1
(P'a'N' [Tod PN ) =& [FA(PGP' 0 ) Ihn— 5 S 2 T FA(PGP'q’)]

T

1
=52 eFj[X(e) v BijnAP(e1).a(20);p'q'], (BL)

where F is the antisymmetric matrix:
Fij=(ilr2Y Qi) (upv;+ujv;). (B2)

The single-particle statp_is the time reversed df, with the conventior]'== —j. The elements of 5, can be deduced from the
preceding by time reversal:

(P'a'N'|Tog pah ) =(pa\|Top'q’\"). (B3)

In a similar way, forT,; one has
(p'a’'N'|Tylpar)=e,Gy\F(p'a’;pa)+e, 2 {Alp(e1)q(e1);p'a' 16X} +€, 2 {GX(e1)Alp(e1)d(e1);p'q’]
&1 €1

+X(81)A[p(81)Q(81);D’Q']g}xm_Tgaz e [GX(e1) Jij[X(e2) ]/ /BijnAP(e1,82),d(e1,82);p'd" ],
(B4)
where the matridg is defined through
Gii=(ilr3Y i) (uiu;—vivy). (B5)
In Egs. (B1) and (B4), the quantitye, is an effective charge. Usually one takes=e(1+¢€) ande,=ee, wheree is a

parameter which depends on the number of active levels introduced in the single-particle field. Ejnalyhe effective
charge of the same kind of particles xas

APPENDIX C: MATRIX ELEMENTS FOR THE PAIRING HAMILTONIAN HP

Hereafter, we give the matrix elements for the paitg,Hs; and the usual contributiortd,, andH,. The elements of
Hos andHq 3 may easily be deduced from thosehdf, andH3; by conjugation:
1 1 HE — ’ !
(p'a'N'[HidPaN) =G, 2 f(\'1)Biriin(po;p'a’) + 5%/”2 G.f(i.))Biryj (paip’a’)
l HE — ! !
——HE GJ(MJ)E/ [X(e1) I\ DitjinAP(e1),a(e1);p°a"], (Cy
LT €1,/

where
f(i,j)=ufvf+ufol=1(j,i),

G, is the pairing force parameter for particles of kindindG,, is that of the same kind of particles than, i andj run over
all single-particle states with positiv@, whereas the orbitat” may have any};

(p'a’'N'HEIpAN) = G UV A (PP’ Q") — G (U + U ) vi/E [X(e1)1x/Birx AP(s1)a(e1);p'q’]
i /e
+G WV X Unl X(e1)ImBmmn[P(e1)d(£1);p'q’]
m,n,eq
—GAEi vi/ZS UL X(£1) ]/ Birs AP(e1)a(21);p'q"]

—/ES [><<sl>]wk;8 [X(sznknuk; G, ViDirkm L P(e1,82)0(81,62);p'q'], (C2
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wherelf, = uv; andV,=u?—v?, with the same convention foras inH%y;
(P'a'M [HZlP@N) =Grg(MN) 2 {X(e)ALP(e1)(e2)iP a T ~Ga 2 (D) 2 {[X(en)]n [X(e2) 7
€1 Sl €2

—[X(e) I [X(e2) i 4B AP(e1,82)d(e1,82);p"q"]

+GAE g\’ E [X(eD)]is 2 [X(e2)l7Brin s /[P(e1,82)0(e1,62);p'q']

/ey

+GAE g(X, u)E [xmm/E [X(e2)1xr Birr [P(e1,e2)a(e1,82);p'q"]

‘92

+5WE G,9(i, J)E [X(eD)]is 2 [X(e2)}7Bjj,/[P(e1,82)0(e1,62);p'q']

/7 en

+E GTgm)Z [X<sl>]./2 [X(e2) b 2 [X(£3) 0D} sj mmlP(e1,€2,62)0(e1,82,83);p'0"],

(C3)

where o
g(i,j)=u? uj 2v? v =9g(j,i),

<p,ql)\,|Hég|pq)\>:26>\5x>\/u>\21 uAX(snA[p(sl)q(sl);p'q']}//—zexuxu@l {X(21)ALp(21)a(1);p'q T
—2GA[ux+uw]821 {X(e )UALP(21)d(e1);p" A" Tho
8002 GUAX(e)UATP(21)a(20):p'd T}
+/§l [X<sl>]wm§7 GE UndA[X(£2) ImnBmm AL P(21,22)A(£1,22);p'q']
+ZG>\21 u/[xwl)]wmgsz Un[X(22) ImmBmm A P(£1,82)0(21,82);p'0']
+ZG>\[U>\+U>\']21 [X<al>]wm;€2 Un[X(£2)ImnBmmL[P(21,22)0(21,22);p'q"]
—ow Gfk/Zgl uk[xwl)]k/m;gz Un[X(£2) ImBi/md P(81,82)0(21,22):p'q']

+ 2 [X(e)h 2 Gr X Un[X(e2)lmn 24 UL X(23)]rs
€1 T m,n,eo r,s,e3

XDmnraAP(€1,82,83)0(e1,82,83);p'Q"]. (CH

APPENDIX D: MATRIX ELEMENTS FOR THE QUADRUPOLE HAMILTONIAN HQ

Similarly to the pairing Hamiltonian, only the contributionstdf,, Hs;, H,,, andH;, are given:

4<p'q'w|H?o|pqx>=2x,2 [(FO)y AF)] +(FD[(F)y 1BijA(pgip’a’)

L).ZT

+X5mui]2 (FO] 2 (F)i B Apaip'a’)
T k/,7'

+x2 (Ful,k; <F2>k/2 [X(e1) v mPijkanlP(£1),0(£1);p'q’ . (D1)

In this equation, and hereaftdf, = F, defined in(B2) and
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(F2)ij=(ilr?Yo—olj)(ujp;+ujvy).

For HS, one has
2<p'q'x'|H%|pqx>=—2er [f(e)A(pq;p’q')g<e_>]m+x26 T F(e)A(pa;p'a)I[G(E) ]x x
—xE 2 [f(e)].JE [[G(e)X(e1)]n —[G(@)X(£1) ]\ /1Bijr AP(e1)A(£1);p'q]

—xowX 2 (AN 3 [GEX(e) )i B IP(en)a(e1)ip'q’]

k./, 7" eq

+x> > [f(e)].JZ g(emE [X(e1)Inr/Bijk Ip(e1)a(e1);p'a’]

e ij,7

+2x; (A, 12” [G(&)X(e1)];;Bijn AP(e1)d(e1);p'aA']

DAL [9@X(e0)]ir 2 [X(e2) v mDikanlP(e1,22)a(e1,22):p'a’],
(D2
where the sum ovee runs from 1 to 2, an@=3—e; F(€)=F,; G(e)=G,; G,=G defined in(B5) and
(G2)ij=(i[r®Y,_lj)(ujuj—vv)).

For the two partH$, andH,3 one gets
4(p'q'\’ |H§2|pqx>——4x2 {F(e)X(1)Alp(21)d(e1);p' A" IF(€)}rn +2x2 TrF(e)X(s1)]
><{F(e)A[|o(81)0|(81);|c>’q’]}wﬁ2x;;,1 Tr{F(e)Alp(e1)d(e1);p'q" I}[F(e)X(e1)xnr
—xmgl Tr{F(e)A[p(e1)q(e1);p'q' I TIF(e)X(e1)]

—x> THF(e)X(e)1X [F(e)].,E [X(£2)]x//BijnAP(e1,62)0(e1,82);p"q']

€,eq i ] T

+2x E [F@1;, E [X(snF(e)xuezm /BijpnAP(e1,e2)0(e1,82);p'q"]

+2x 2 2 [X(e)F(e)X(ey) ].,2 [F(e)]x/Bijn AP(e1,82)a(e1,82);p'q']

e£1.,8p 1,j,7

+2x [F(e)].,E [F(e)X(e)]y, 2 [X(e2)Ihr,/Bij r [P(e1,82)a(81,82);pq']

e, /ey

—xow 2 [FOI] 2 [X(e)F(e)X(e2)]eBij p(e1.82)0(e1,22):p'q']

e, k,/\eq,60,7'

+x > [FI X [X<sl>F<e>X<sz>]§'/mE€ [X(£3)]m

ei,j, 7 K,/ eq,80,7
XDijk/)\m[p(81,82183)q(81y32183);p,q,] (DS)

and
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<|O’0|’>\’IHé‘§|r3<17\>=—)(EE1 {GX(1)GA[p(e1)q(£1);p'q' ]+ X(e1)GA[p(£1)q(£1);P' A" IG} x

—x821 {GX(£1)A[P(£1)a(£1):p'q' ]G+ GX(e1)A[p(£1)q(£1);p'q 1G} 1)

—x821 {Alp(e1)a(e1);p'q'1GX(21)G+GA[P(£1)d(21);p' Q" IGX(21) s

+x5W€21 Tr{GX(£1)GALp(21)d(z1);p'q']}

+x > [GX<sl>G].JE [X(e2) v /BijnAP(e1,82)0(e1,62);p'q']

i,j, 7,69

-X X [x<sl>GJ.,2 [GX(e2)]\/BijnAP(e1,82)q(81,82);p'q']

IJTsl

+x 2 [GX(ey) L,E [X(£2)Gly/Bijn AP(e1,62)d(e1,62);p'q']

|]T€1

+x > [X<el>G].,2 [GX(2)]y/BijnAP(e1,62)d(e1,62);p'q']

i,j,7.6q

-X X [GX<sl>J.,E [X(£2)G],\/Bijn AP(e1,82)0(81,82);p'q']

i,j.meq

+x X [X<sl>G]l,2 G, X [X(e2)1y//Bij o [P(e1,e2)d(81,82);p'q"]

|]T€1 /82

+x > [GX(ey)] .,2 GVE [X(e2)In//Bij o/ [P(e1,62)0(e1,62);p'q’]

IJTSl 82

~ X E [GX(eD)]; 2 [X(e2)Gli Bij AP(e1.62)0(e1,82);p'q’]

1,Teg k/,TI,SZ

+x 2 [GX(eD]i 2 [X(ex)Glp X [X(e3) ]y mDijk amlP(e1,62,63)0(81,62,85);p''],
m,e3

L],Teq k./\7" e
(D4)
whereG=G; andG_ij =G;j;.
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