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Relations between fusion cross sections and average angular momenta
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We study the relations between moments of fusion cross sections and averages of angular momentum
role of the centrifugal barrier and the target deformation in determining the effective barrier radius are clarifi
A simple method for extracting average angular momentum from fusion cross sections is demonstrated u
numerical examples as well as actual data.@S0556-2813~96!05010-8#
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I. INTRODUCTION

The suggestion that the barrier distributions in subbarr
fusion reactions could be determined directly from the cro
section data@1# has led to a renewed experimental activity
the field@2–6#. Since barrier distributions are proportional t
d2(Es)/dE2, very accurate measurements of excitati
functions at closely spaced energies are required. Even w
excellent data, smooth barrier distributions can only be o
tained under certain model dependent assumptions@7# ~i.e.,
well-chosen energy spacing for calculating the second
rivatives!. Recently, it has been suggested that analyses
ing integrals over fusion data@8# provide model independen
results, so these should be preferred over analyses that
on differentiation of data. Specifically, the incompletenth
moments of the energy times the cross section,

f n~E!5n~n21!E
0

E

dE8~E2E8!n22E8s~E8!, n>2,

~1.1!

were proposed as an alternative for comparing model ca
lations with data. Unfortunately, these moments are not
rectly related to observables so it is difficult to give a phys
cal interpretation for them. In addition, one of the ma
advantages of using barrier distributions is that they bri
out important features in the data, but thenth moments in
Eq. ~1.1! are even more featureless than the data from wh
they are calculated.

The purpose of this paper is to point out how the avera
angular momentum, which is a measurable quantity@9#, is
related to moments of the fusion cross section. In order
turn these relations into a practical tool to extract avera
angular momentum directly from fusion data, we study t
angular momentum and deformation dependence of the
fective barrier radius used in the formalism. In Sec. II, w
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review the relation between cross section and average ang
lar momentum and introduce an expression for calculatin
the effective barrier radius. We derive improved relations i
Sec. III by using a better approximation for the transmissio
probability for thel th partial wave. This provides a satisfac-
tory description of the relation between the cross section an
average angular momentum for a spherical target. In Sec. I
we present a qualitative discussion of deformation effec
and propose a simple way to include it in the effective ra
dius. As a practical application of the method, we obtain th
average angular momentum from the fusion cross sectio
data in the16O1154Sm system and compare the results with
the experiment. Finally, we draw conclusions from this
work.

II. THE GENERAL METHOD

The idea of expressing average angular momenta in term
of integrals over functions of cross sections dates back
Ref. @10#. Due to absence of sufficiently good subbarrier fu
sion data, the full potential of this idea was not explored a
that time. To introduce the concepts involved, we first review
the general relations between moments of fusion cross se
tions and averages of powers of angular momenta in a on
dimensional barrier penetration picture. Although this i
strictly valid only for spherical systems, it will provide the
basis for extension to deformed systems. In the usual part
wave expansion, the total fusion cross section at the cent
of-mass energyE is written as

s~E!5 (
l 50

`

s l ~E!, ~2.1!

where the cross section for thel th partial wave is

s l ~E!5
p\2

2mE
~2l 11!Tl ~E!, ~2.2!

Tl (E) the transmission probability for that partial wave, and
m the reduced mass. For energies near the Coulomb barri
1853 © 1996 The American Physical Society
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1854 54A. B. BALANTEKIN, A. J. DeWEERD, AND S. KUYUCAK
one can approximate thel dependence inTl by using the
s-wave penetrability at a shifted energy@11#,

Tl ~E!5T0SE2
\2l ~ l 11!

2mR2~E! D , ~2.3!

wheremR2(E) is the effective moment of inertia of the sys
tem. The energy shift simply accounts for the change in
height of the barrier resulting from the centrifugal potentia
Note that the effective radius is allowed to vary as a functi
of energy. In Sec. III, we will demonstrate how this approx
mation for the transmission probability can be improve
Substituting Eqs.~2.2! and ~2.3! into Eq. ~2.1!, converting
the sum overl into an integral, and changing variables to

E85E2
\2l ~ l 11!

2mR2~E!
, ~2.4!

we obtain the expression

s~E!5
pR2~E!

E E
0

E

dE8T0~E8!. ~2.5!

We will use Eq.~2.5! to study the energy dependence of th
effective radius from numerical calculations.

The average angular momentum after fusion is assum
to be

^l &5
1

s~E! (l 50

`

l s l ~E!. ~2.6!

Following a procedure similar to the one used to obtain E
~2.5!, the average angular momentum can be written as

^l &5
pR2~E!

Es~E!
E
0

E

dE8T0~E8!

3H F2mR2~E!

\2 ~E2E8!1
1

4G1/22 1

2 J . ~2.7!

Integrating by parts and using Eq.~2.5!, we arrive at the
desired expression,

^l &5
mR4~E!

\2Es~E!
E
0

E

dE8
E8s~E8!

R2~E8!

3F2mR2~E!

\2 ~E2E8!1
1

4G21/2

, ~2.8!

which relates the average angular momentum to a momen
the fusion cross section. Note that the factor of 2 in Eq.~2.8!
is missing in Ref.@10#. For practical applications of Eq
~2.8!, it is important to note that, in order to obtain the d
tailed features of the average angular momentum reliab
the cross section should be interpolated rather than fit g
bally. We have found that a spline fit to the logarithm of th
cross section works quite well for this purpose. This integ
method with the assumption that the effective radius is co
stant, has been applied to some nearly spherical syst
@12#. The results are in agreement with the data within t
experimental errors which, however, are rather large fo
-
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definitive confirmation that Eq.~2.8! with a constant radius
works. The existing data for a variety of systems were als
examined assuming a constant effective radius@13#, but that
analysis used a fit of the cross section to the exponential o
polynomial so the features of the angular momenta are lo

Higher moments of the angular momentum can be foun
by following similar steps. For example, the second mome
of the angular momentum is given by

^l ~ l 11!&5
2mR4~E!

\2Es~E!
E
0

E

dE8
E8s~E8!

R2~E8!
. ~2.9!

A similar expression for̂ l 2& was given in Ref.@14#, but
^l & was neglected andR was assumed to be a constan
Under these assumptions,f 2 in Eq. ~1.1! can be related to
^l 2& through

^l 2&;
mR2

\2Es
f 2~E!. ~2.10!

However, as has been pointed out previously@10,15#, taking
R to be a constant is not a good approximation, especially f
deformed nuclei. Therefore, Eq.~2.10! does not result in a
reliable physical interpretation forf 2. There is little experi-
mental data for higher moments ofl due to the difficulty of
these measurements, so we do not pursue them here.
procedure for calculating them should be clear from the pr
ceding discussion.

In order to put Eq.~2.8! into use, we would like to under-
stand the origin of the energy dependence in the effecti
radius better. For this purpose, we use Eq.~2.5! as the defin-
ing relation forR(E) and study its deviation from a constan
value. We use values ofs andT0 generated by the computer
code IBMFUS @16# which uses the interacting boson mode
~IBM ! @17# to account for nuclear structure effects and evalu
ates transmission probabilities numerically in the WKB ap
proximation. For fusion reactions involving rare-earth nucle
IBMFUS has been shown to reproduce very well cross secti
and barrier distribution systematics@18#, and average angular
momentum data@19#. It is important to note that the centrifu-
gal energy is treated exactly in the WKB calculations@i.e.,
approximations such as Eq.~2.3! are not used#. In order to
emphasize the effects of nuclear structure, we kept t
masses of the projectile (16O! and target (154Sm! fixed and
varied the quadrupole coupling parameter. Figure 1 sho
the results obtained forR(E) in three cases corresponding to
the target nucleus being spherical~no coupling!, vibrational
~intermediate coupling!, and deformed~strong coupling!.
These results demonstrate that the effective radius is not c
stant even for the spherical case and deviates more as
coupling to structure increases. The sharp increase in rad
below the barrier with increasing deformation is obviousl
due to selective sampling of the longer nuclear axis. Th
origin of the energy dependence of radius in the spheric
system is not that clear at this point, but the approximatio
used in Eq.~2.3! is an obvious suspect. In view of the dem
onstrated energy dependence of the effective radius, extra
ing the average angular momentum from Eq.~2.8! by assum-
ing that R(E) is constant will not accurately predict^l &
across a wide range of energies.
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Attempts have been made to parametrizeR(E), but they
have not been very successful. For example, a linear com
nation of the position of the barrier peakRB and the Cou-
lomb turning point

RC5Z1Z2e
2/E, ~2.11!

has been suggested as a plausible choice@11#

R~E!5hRB1~12h!RC . ~2.12!

In the spherical case, Eq.~2.12! provides a good description
of R(E) in Fig. 1 withh50.78. However, is not clear how to
include deformation effects in Eq.~2.12! in a physically
meaningful way. Another expression for the effective radiu
derived by assuming the nuclear potential to be an expon
tial tail in the region of the barrier, is given by@15#

R~E!5 1
2 RC@11~124a/RC!1/2#, ~2.13!

wherea is the nuclear surface diffuseness. This expressi
gives an energy dependence which is too strong for values
a in the range 0.6–1.2 fm. Also it does not make any allow
ance for inclusion of deformation effects, which are seen
have a significant influence on the shape ofR(E). Clearly, a
better understanding ofR(E) is needed to make further
progress.

III. AN IMPROVED EXPRESSION
FOR THE PENETRABILITY

The prescription given in Eq.~2.3! for approximating the
l -wave penetrability by thes-wave penetrability at a shifted
energy utilizes only the leading term in what is actually a
infinite series expansion inL5l (l 11). In this section, we
derive the next term in this expansion and show the result
corrections to the calculations presented in the Sec. II. W
also demonstrate how this can explain the part of the ene

FIG. 1. The effective radiusR(E) extracted from fusion calcu-
lations for the16O1154Sm system using Eq.~2.5!. The curves cor-
respond to spherical, vibrational, and deformed nuclei with quad
pole coupling strengthsv250, 0.13, and 0.26, respectively.
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dependence of the effective radius which arises from the ce
trifugal potential.

The effect of the angular momentum on the penetrabili
is usually taken into account by the shift it makes in th
height of the potential barrier. The total potential for th
l th partial wave is given by

Vl ~r !5VN~r !1VC~r !1
\2l ~ l 11!

2mr 2
, ~3.1!

whereVN andVC are the nuclear and Coulomb potentials
respectively. Letr l denote the position of the peak of the
l -wave barrier which satisfies

]Vl ~r !

]r U
r5r l

50 ~3.2!

and

]2Vl ~r !

]r 2 U
r5r l

,0, ~3.3!

then the height of the barrier is given byVBl5Vl(r l ). We
make the ansatz that the barrier position can be written as
infinite series,

r l 5r 01c1L1c2L
21•••, ~3.4!

where theci are constants. Expanding all functions in Eq
~3.2! consistently in powers ofL, we find that the first coef-
ficient is

c152
\2

mar 0
3 , ~3.5!

wherea is the curvature of thes-wave barrier

a52
]2V0~r !

]r 2 U
r5r0

. ~3.6!

Substituting the leading order correction in the barrier pos
tion r l into Eq. ~3.1!, we find that to second order inL the
l -wave barrier height is given by

VBl5VB01
\2L

2mr 0
2 1

\4L2

2m2ar 0
6 . ~3.7!

Therefore, an improved approximation for thel dependence
in the penetrability is given by

Tl ~E!5T0SE2
\2L

2mr 0
2 2

\4L2

2m2ar 0
6D . ~3.8!

We give an alternative derivation of this expansion and di
cuss its validity in the Appendix.

To examine the consequences of the improved express
for the penetrability, we repeat the steps outlined in Sec.
using Eq.~3.8! instead of Eq.~2.3!. To the leading order in
1/a, this introduces the following correction to Eq.~2.5!:

ru-
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s~E!5
pr 0

2

E E
0

E

dE8T0~E8!F12
4

ar 0
2 ~E2E8!G . ~3.9!

Comparing Eq.~2.5! with Eq. ~3.9!, we find that the energy-
dependent effective radius can be expressed as

R2~E!5r 0
2F12

4

ar 0
2

*0
EdE8T0~E8!~E2E8!

*0
EdE8T0~E8! G . ~3.10!

This predicts the decrease inR(E) as the energy increase
that was shown in Fig. 1. The calculation of the avera
angular momentum with the modified equations introduce
similar leading order correction,

^l &5
mr 0

2

\2Es~E!
E
0

E

dE8E8s~E8!

3F2mr 0
2

\2 ~E2E8!1
1

4G
21/2F12

7

ar 0
2 ~E2E8!G .

~3.11!

Since we have included a correction tor l , this expression
takes into account the shifts in both the height and posit
of the barrier for different partial waves.

It is easy to show that the expression for effective rad
given in Eq.~3.10! is consistent with the result obtained b
weighted averaging over the barrier positions of all of t
partial waves using Eq.~3.4!,

^r l &5
( l s l r l
( l s l

5r 02
\2

2mar 0
3 ^L&1•••. ~3.12!

To a first approximation,̂L& is given by Eq.~2.9! with
R(E)5r 0. Substituting Eq.~2.5! for E8s(E8), Eq. ~3.12!
becomes

^r l &5r 02
2pr 0
aEs E0

E

dE8E
0

E8
dE9T0~E9!. ~3.13!

After integration by parts, Eq.~3.13! becomes

^r l &5r 02
2pr 0
aEs E0

E

dE8T0~E8!~E2E8!. ~3.14!

Substituting Eq.~2.5! with R(E)5r 0 for s and squaring the
result, we recover an expression that is consistent with
~3.10! to the first order in 1/a.

The effect of the correction to the barrier position on th
distribution of barriers is straightforward in the form give
by Ackermann@20#, which is in terms of first derivatives of
the angular momentum distribution. This expression can
written as

D~E8!5
4m2R2E

~2l 11!2p\2

ds l ~E!

dl
, ~3.15!

where the shifted energy is

E85E2
\2l ~ l 11!

2mR2 . ~3.16!
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Knowledge of the angular momentum distribution at an e
ergyE allows the calculation of the barrier distribution be
tweenE2\2l max(l max11)/2mR2 andE, wherel max is the
largest angular momentum for which the partial cross secti
is measured. The first-order correction to Eq.~3.15! is ob-
tained by substituting the position of thel -wave barrier for
the effective radius of the associated partial-wave cross s
tion

R→r l 'r 01c1L. ~3.17!

When the angular momentum distribution is determined
65 MeV for the 16O1154Sm system, the correction to
D(E8) is about 12% at 55 MeV and it will be less for highe
energies. The other errors involved in calculating the barri
distribution are typically larger than that, so this correctio
can be safely ignored.

In order to check whether or not the correction in Eq
~3.8! is sufficient to account for the shift in the peak of the
barrier due to the angular momentum of the system, we c
culatedr 0 as a function of energy for a spherical target usin
Eq. ~3.9!. The same numerical values ofs(E) and T0(E)
obtained fromIBMFUS as in Fig. 1 and the known value of
a for the potential barrier were used in this calculation. Th
results for thes-wave barrier radiusr 0 are shown in Fig. 2
and the effective radiusR(E), extracted using Eq.~2.5!, is
shown for comparison. The results forr 0 are nearly indepen-
dent of energy as we expect.

We would like to extractr 0 and a directly from cross
section data. Equation~3.9! can be rewritten as

Es~E!5pr 0
2E

0

E

dE8T0~E8!2
4p

a
EE

0

E

dE8T0~E8!

1
4p

a E
0

E

E8dE8T0~E8!. ~3.18!

FIG. 2. Thes-wave barrier positionr 0 ~solid curve! extracted
from fusion calculations for the16O1154Sm system with no cou-
pling using Eq.~3.9!. For comparison, the values ofR(E) ~dashed
curve! calculated for the same reaction using Eq.~2.5! are also
shown.
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Using partial integration, the two integrals can be expres
as

E
0

E

dE8T0~E8!5ET0~E!2E
0

E

E8dE8
dT0
dE8

~3.19!

and

E
0

E

E8dE8T0~E8!5
E2T0~E!

2
2E

0

E E82

2
dE8

dT0
dE8

. ~3.20!

For E@VB0, the right-hand sides of Eqs.~3.19! and ~3.20!
becomeE2q1 andE

2/22q2, respectively, where

q15E
0

E

E8dE8
dT0
dE8

~3.21!

and

q25
1

2E0
E

E82dE8
dT0
dE8

. ~3.22!

For energies above the barrier,dT0 /dE8 goes to 0, soq1 and
q2 become constants. Therefore, for high energiesEs(E) is
a quadratic inE,

Es~E!52S 2p

a DE21S pr 0
21

4p

a
q1DE

2S pr 0
2q11

4p

a
q2D . ~3.23!

Classically,

dT0
dE

5d~E2VB0!, ~3.24!

where VB0 is the barrier height, soq15VB0 and
q25VB0

2 /2. Quantum mechanically, these expressions
q1 andq2 are also approximately true for energies above t
barrier. Using the values ofT0 generated from the code
IBMFUS @16# in Eqs.~3.21! and~3.22!, we have found that the
error in these approximations at an energy of 70 MeV a
both less than 0.05% for an O1Sm system with no coupling
whereVB0'59 MeV. Therefore, the product of the cros
section and the energy can be fit at high energies with
expression

Es~E!52S 2p

a DE21S pr 0
21

4pVB0

a DE
2S pr 0

2VB01
2pVB0

2

a D
5pr 0

2~E2VB0!2
2p

a
~E2VB0!

2 ~3.25!

in order to determinea andr 0. Of course, this requires high
precision fusion data for energies above the barrier wh
may be difficult to obtain due to the competing processes

As a test of the formalism, we apply the results derived
this section to the fusion cross section ‘‘data’’ generated
sed

for
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s
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IBMFUS for a the system of16O1154Sm, where both nuclei
are taken to be spherical. First,a andr 0 are determined from
Eq. ~3.25! by a fit to thes ‘‘data.’’ Then these values are
employed in Eq.~3.11! and the average angular momenta ar
extracted from thes ‘‘data’’ through numerical integration.
Figure 3 shows a comparison of the average angular m
menta calculated using Eq.~3.11! with those obtained from
IBMFUS directly. The agreement is very good at all energie
For reference, results obtained from Eq.~2.8! assuming a
constant radius are also shown~dashed line!. As expected,
the modified expression~3.11! leads to a clear improvement
at high energies where the effective radius varies most~cf.
Fig. 2!. This example gives confidence that one can use E
~3.11! in extracting average angular momenta directly from
the fusion data for spherical systems.

IV. TARGET DEFORMATION EFFECTS

Now that we have an improved description of the effec
due to the centrifugal barriers, we consider the effects
target deformation. The shape of an axially symmetric d
formed nucleus can be described by

Rt~u!5Rt0@11bY20~cosu!#, ~4.1!

whereRt0 is the radius for an undeformed target. In order t
qualitatively study deformation effects, we approximate th
target with a simple two-level system which displays th
important features. As shown in Ref.@21#, fusion of a de-
formed nucleus with finite number of levels (n) can be de-
scribed by samplingn orientations of Eq.~4.1! with their
respective weights. For a two-level system, the orientatio
u1570.12° andu2530.55° contribute with the weight fac-
torsw150.652 andw250.348, respectively.

To proceed, we need to find out how the barrier positio
and height changes with orientation, which can be calculat
from the total potential in a straightforward manner. For th

FIG. 3. Comparison of average angular momenta in units of\
calculated using Eq.~3.11! ~solid curve! and Eq. ~2.8! ~dashed
curve! to the values calculated byIBMFUS ~points! for the
16O1154Sm system with no coupling.
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nuclear potential, we use the usual Woods-Saxon form w
the target radius given by Eq.~4.1!

VN~r ,u!52VN0F11exp S r2Rp2Rt~u!

a D G21

.

~4.2!

The Coulomb potential can be calculated from a multipo
expansion and, to leading order inb, is given by

VC~r ,u!5
Z1Z2e

2

r S 11
3

5

bRt0
2 Y20~cosu!

r 2 D
5
A

r S 11
3

5

Rt0~Rt~u!2Rt0!

r 2 D , ~4.3!

whereA5Z1Z2e
2. Using the notation of Sec. III, the equa

tion for finding the peak of thes-wave barrier is

2
A

r 2
2
9

5

ARt0~Rt2Rt0!

r 4
1
VN0

a

3
exp@~r2Rp2Rt!/a#

$11exp@~r2Rp2Rt!/a#%2
U
r5r0

50, ~4.4!

and the height of thes-wave barrier is

VB05
A

r 0
S 11

3

5

Rt0~Rt2Rt0!

r 0
2 D

2VN0F11expS r 02Rp2Rt

a D G21

. ~4.5!

The u dependence is suppressed in the above equations
convenience, but bothr 0 andVB0 depend on the target ori-
entation.

The rate of change in the barrier height due to the defo
mation is given by

dVB0
dRt

5
dVB0
dr0

dr0
dRt

1
3ARt0

5r 0
3 2

VN0

a

3
exp@~r 02Rp2Rt!/a#

$11exp@~r 02Rp2Rt!/a#%2
. ~4.6!

In Eq. ~4.6!, dVB0 /dr050 by definition and using Eq.~4.4!,
the second term can be simplified to give

dVB0
dRt

U
Rt5Rt0

52
A

r 0
21

3ARt0

5r 0
3 . ~4.7!

To find a similar expression for the barrier position, we di
ferentiate Eq.~4.4! with respect toRt

F2Ar 03 1
36A

5

Rt0~Rt2Rt0!

r 0
5 G dr0dRt

1
9ARt0

5r 0
4 1S dr0dRt

21D
3
VN0

a2
exp@~r 02Rp2Rt!/a#

$11exp@~r 02Rp2Rt!/a#%2
ith

le

-

for

r-

f-

3F12
2exp@~r 02Rp2Rt!/a#

$11exp@~r 02Rp2Rt!/a#%G50. ~4.8!

Using Eq.~4.4!, we can solve for the rate of change in the
s-wave barrier position due to the change in the target radiu

dr0
dRt

U
Rt5Rt0

5
Q29aRt0 /5r 0

2

Q12a/r 0
, ~4.9!

where

Q5
2

VN0
S Ar 0 2VB0D21. ~4.10!

For a given orientationu, the shift in thes-wave barrier
height is given approximately by

dVB05
dVB0
dRt

U
Rt5Rt0

dRt

5S 2
A

r 0
2 1

3ARt0

5r 0
3 DA 5

4p
bRt0Pl~cosu!,

~4.11!

and, similarly, the shift in thes-wave barrier position is ap-
proximately

dr 05
dr0
dRt

U
Rt5Rt0

dRt5
dr0
dRt

U
Rt5Rt0

A 5

4p
bRt0Pl~cosu!.

~4.12!

These expressions account for the changes due to deform
tion fairly accurately as can be seen in Fig. 4.

FIG. 4. The solid curve is the total potential for the
16O1154Sm system when the target is taken to be spherical. Th
dashed (l520.327) and dot-dashed (l50.613) curves are the po-
tentials for two-level approximation withb50.25. The arrows
show the shifts predicted for the barrier peaks by Eqs.~4.11! and
~4.12!.
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The total fusion cross section for a two-level system
given by @21#

sT~E!5w1s~E,l1!1w2s~E,l2!, ~4.13!

wheres(E,l i) is the cross section for thei th orientation and
l i5P2(cosui). To simplify the notation, we introduce

F5A 5

4p

dr0
dRt

U
Rt5Rt0

Rt0 , ~4.14!

so that, for a given orientation, the peak of thes-wave barrier
in Eq. ~3.9! is replaced by

r 0→r 01Fbl i . ~4.15!

After this substitution, the cross section for each level b
comes
is

e-

s~E,l i !5
p

EE0
E

dE8$r 0
2T0~E8,l i !1Fbr 0l iT0~E8,l i !

1F2b2l i
2T0~E8,l i !%

2
4p

aEE0
E

dE8T0~E8,l i !~E2E8!, ~4.16!

whereT0(E,l i) is the transmission probability for thei th
orientation. The curvature of the barrier,a, is expected to
have a second-order dependence onb, hence it is assumed to
be constant in this leading order calculation. Defining th
coupleds-wave transmission probability as

T0
C~E!5w1T0~E,l1!1w2T0~E,l2!, ~4.17!

the total cross section becomes
sT~E!5
p

E H r 0212Fbr 0
*0
EdE8@w1l1T0~E8,l1!1w2l2T0~E8,l2!#

*0
EdE8T0

C~E8!

1F2b2
*0
EdE8@w1l1

2T0~E8,l1!1w2l2
2T0~E8,l2!#

*0
EdE8T0

C~E8! J E
0

E

dE8T0
C~E8!2

4p

aEE0
E

dE8T0
C~E8!~E2E8!. ~4.18!

The cross section can be written in the form of Eq.~2.5! as

sT~E!5
p

E
RC
2 ~E!E

0

E

dE8T0
C~E8!, ~4.19!

so that the effective radius with coupling is

RC
2 ~E!5r 0

212Fbr 0
*0
EdE8@w1l1T0~E8,l1!1w2l2T0~E8,l2!#

*0
EdE8T0

C~E8!
1F2b2

*0
EdE8@w1l1

2T0~E8,l1!1w2l2
2T0~E8,l2!#

*0
EdE8T0

C~E8!

2
4

a

*0
EdE8T0

C~E8!~E2E8!

*0
EdE8T0

C~E8!
. ~4.20!
be-
n.
w
it
l-
he
a

o-

s.
Sincew1l1;2w2l2 and bothT0(E8,l1) and T0(E8,l2)
approach one very quickly for energies above the barrie
the second term in Eq.~4.20! becomes zero for high ener
gies. On the other hand, the third term of that equation
always positive, so by comparison with Eq.~3.10! it is easy
to see that the effective radius is slightly higher at lar
energies for the deformed case than for the uncoupled c
This argument also holds for multilevel systems, since

E Pl~cosu!d~cosu!50. ~4.21!

The effective radius predicted by Eq.~4.20! ~dashed curve!
and the result from the definition of Eq.~4.19! ~solid curve!
are shown in Fig. 5. That the two curves are in good agr
ment is an indication that the curvature is approximately u
changed as assumed in Eq.~4.20!. This simple model exhib-
its the main features seen in Fig. 1; at low energies
rs,
-
is

ge
ase.

ee-
n-

the

difference between the deformed and spherical cases
comes larger and this effect increases with the deformatio

The preceding argument provides an explanation of ho
the effective radius varies with the energy. Unfortunately,
is not easy to incorporate the deformation effects in the ca
culation of average angular momentum as was done for t
centrifugal barrier in Sec. III. To make progress, we take
phenomenological approach and introduce the quantity

r0
2~E!5

Es/p1~4/a!*0
EdE8T0~E8!~E2E8!

*0
EdE8T0~E8!

.

~4.22!

For a single barrier,r0(E) is simply the location of the
s-wave barrierr 0 @cf. Eq. ~3.9!#, so it is actually energy
independent. When couplings to target deformation are intr
duced, there is a distribution of barriers. In this case,r0

2(E)
is a suitable average of the location of the barrier peak
Using the values ofs andT0 generated byIBMFUS in Eq.
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~4.22! again, we calculater0(E) for the three quadrupole
coupling strengths used in the previous section. In contras
the effective radii in Fig. 1, the results shown in Fig. 6 lev
off at high energies. They can be parametrized using
simple Fermi function

r0~E!5r 01
d

11exp@~E2VB0!/W#
. ~4.23!

Here r 0 is the asymptotic value at largeE andVB0 is the
barrier height, which are determined from the fusion da
using Eq.~3.25!. r 01d corresponds to the asymptotic valu
at low energies and can be calculated from Eq.~4.1! at
u50. The only quantity in Eq.~4.23! that is not determined

FIG. 5. The effective radius from a two-level calculation for th
16O1154Sm system withb50.25. The solid curve is calculated
using the definition, Eq.~4.19!, and the dot-dashed curve using E
~4.20!, which assumesa is constant. For comparison, the dashe
curve is the result for a spherical target.

FIG. 6. r0 extracted from fusion calculations using Eq.~4.22!
for the 16O1154Sm system with quadrupole coupling strength
v250, 0.13, and 0.26, respectively.
t to
el
a

ta
e

from data is the widthW. The fits to the curves in Fig. 6
results in values around 260.3 for W with a mild depen-
dence onb ~increases withb). Since the precise value of
W makes no tangible difference, the slight uncertainty in i
value is not important for the purposes of this paper.

The averaged radius of Eq.~4.23! can now be used in Eq.
~3.11! in the place ofr 0 to obtain an improved expression for
average angular momentum,

^l &5
mr0

4~E!

\2Es~E!
E
0

E

dE8
E8s~E8!

r0
2~E8!

3H F2mr0
2~E!

\2 ~E2E8!1
1

4G21/2

3F12
7

ar0
2~E!

~E2E8!G1
4

a S 1

r0
2~E8!

2
1

r0
2~E!

D
3S F2mr0

2~E!

\2 ~E2E8!1
1

4G1/22 1

2D J . ~4.24!

Note that whenr0(E)5r 0, the last term vanishes and the
above expression reduces to Eq.~3.11!. The average angular
momentum extracted from the fusion ‘‘data’’ using Eq
~4.24! is compared to thêl & values obtained from the same
IBMFUS calculation in Fig. 7. The agreement is very good a
all energies. In contrast, the constant radius results under
timate ^l & by about one\.

To demonstrate the utility of this method in extracting
^l &, we apply it to the16O1154Sm system for which quality
cross section data exist@2#. In Fig. 8, we compare thêl &
values obtained from Eq.~4.24! andIBMFUS with the experi-
mental data@22#. The two calculations are consistent with
each other but slightly underpredict the experimental value

e

q.
d

s

FIG. 7. Comparison of average angular momenta in units of\
calculated using Eq.~3.11! with a constant value~dashed curve! and
Eq. ~4.23! ~solid curve! for r0 to the values calculated byIBMFUS
~points! for the 16O1154Sm system with the quadrupole coupling
strength v250.26. The parameters used werer 0510.6 fm,
d51.22 fm,VB0559 MeV, andW52.3 MeV.
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V. CONCLUSIONS

We have described two major reasons for the energy
pendence of the effective radius. The effects of the centr
gal barriers are described by using an improved approxim
tion for the penetration probability. This also leads to a bet
relation between the cross section and the average ang
momentum. The effects of target deformation are describ
with a simple model which reproduces the features of t
effective radius. Finally, we present a phenomenological
pression for the position of thes-wave barrier as a function
of energy and show how it can be used in extracting t
average angular momentum from the fusion cross sect
Comparison of this method with numerical calculation
shows that it predicts the average angular momentum fr
the fusion data reliably, and hence it can be used as a c
sistency check in cases where quality data are available
both quantities.
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APPENDIX: THE VALIDITY OF THE EXPANSION
OF THE PENETRABILITY

In this appendix, we discuss the validity of Eq.~3.8!
which approximates the transmission probability as a pow
series inL5l (l 11). We will do this by using the linear-
ized forms of the WKB penetration integrals. The penet
tion probability of anl wave through a one-dimensiona
barrier is given by

FIG. 8. Comparison between experimental and theoretical v
ues of the average angular momenta in units of\ for the system
16O1154Sm. The data are from@2#, the solid curve is calculated
using Eq.~4.24!, and the dashed curve is the result fromIBMFUS
@19#.
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Tl ~E!5$11exp@2Sl ~E!#%21, ~A1!

where the WKB penetration integral is

Sl ~E!5A2m

\2 E
r1l

r2l
drFV0~r !1

\2l ~ l 11!

2mr 2
2EG1/2.

~A2!

Using Abelian integrals, one can show that for energies b
low the barrier

E
E

VBl
dE8

Sl ~E8!

AE82E

5
p

2
A2m

\2 E
r1l

r2l
drFV0~r !1

\2l ~ l 11!

2mr 2
2EG ,

~A3!

whereVBl is the height of thel -wave potential;V0(r ) is the
s-wave barrier; andr 1l , r 2l are the turning points of the
l -wave barrier for energyE. In Refs. @11,23#, the energy
derivative of Eq.~A3!,

E
E

VBl
dE8

]Sl ~E8!/]E8

AE82E
52

p

2
A2m

\2 ~r 2l 2r 1l !, ~A4!

was used to find the barrier thickness. One can also take t
derivative of Eq.~A3! with respect toL to obtain another
useful identity@23#,

E
E

VBl
dE8

]Sl ~E8!/]L

AE82E
52

p

2
A\2

2mS 1

r 2l
2

1

r 1l
D . ~A5!

The last two equations can be used to check the cons
tency of an expansion of the form

Sl ~E!5S0~E2e1L2e2L
22••• !, ~A6!

wheree1 ,e2 , . . . are independent of the energy. Substitut
ing the relationship between the derivatives,

]Sl ~E!

]L
52~e112e2L1••• !

]Sl ~E!

]E
, ~A7!

into Eqs.~A4! and ~A5!, we find that the assumption in Eq.
~A6! is consistent if

~e112e2L1••• !5
\2

2mr 1l r 2l
. ~A8!

The right-hand side of this equation has a slight dependen
on energy~through the energy dependence of the turnin
points! whereas the left-hand side is independent of energ
in our approximation. Our analysis in Sec. III is equivalent to
approximating the right-hand side of Eq.~A8! by a constant,
i.e.,

r 1l r 2l ;r l
2 , ~A9!

wherer l is the position of the peak of thel -wave barrier.
This is a very good approximation at energies near the ba

al-
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rier height, but the error increases as the energy gets low
However, for the16O1154Sm system, even at 7 MeV below
the barrier~lower than the fusion cross section has yet be
measured! the error in this approximation is less than 4% fo
the bare potential used in Ref.@18#. Upon settingl 50 in
Eq. ~A9!, we recover

e15
\2

2mr 0
2 , ~A10!

in agreement with Eq.~3.8!. The higher-order terms inL
also agree with the calculations in Sec. III, so we are justifi
in expressingTl (E) as a power series inL.
er.

en
r

ed

It should be noted that althoughL is not a small param-
eter, there is a natural cutoffLcr in this parameter given by
the condition

Lcr\
2

2mR2 .E. ~A11!

For values ofL greater than this, fusion will not occur. Due
to this cutoff, the second term in Eq.~3.8! will always be
larger than the third term. Therefore, the additional term ca
be considered a correction.
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