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Relations between fusion cross sections and average angular momenta
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We study the relations between moments of fusion cross sections and averages of angular momentum. The
role of the centrifugal barrier and the target deformation in determining the effective barrier radius are clarified.
A simple method for extracting average angular momentum from fusion cross sections is demonstrated using
numerical examples as well as actual da&0556-28136)05010-§

PACS numbgs): 25.70.Jj, 21.60.Fw, 21.60.Ev, 25.60.Pj

[. INTRODUCTION review the relation between cross section and average angu-
lar momentum and introduce an expression for calculating
The suggestion that the barrier distributions in subbarriethe effective barrier radius. We derive improved relations in
fusion reactions could be determined directly from the crosssec. Il by using a better approximation for the transmission
section datd1] has led to a renewed experimental activity in probability for the/th partial wave. This provides a satisfac-
the field[2—6]. Since barrier distributions are proportional to tory description of the relation between the cross section and
d?(Eo)/dE?, very accurate measurements of excitationaverage angular momentum for a spherical target. In Sec. 1V,
functions at closely spaced energies are required. Even witive present a qualitative discussion of deformation effects
excellent data, smooth barrier distributions can only be oband propose a simple way to include it in the effective ra-
tained under certain model dependent assumpfighéi.e.,  dius. As a practical application of the method, we obtain the
well-chosen energy spacing for calculating the second deaverage angular momentum from the fusion cross section
rivatives. Recently, it has been suggested that analyses uslata in the®0-+ 1%4Sm system and compare the results with
ing integrals over fusion da{@] provide model independent the experiment. Finally, we draw conclusions from this
results, so these should be preferred over analyses that relork.
on differentiation of data. Specifically, the incompletth
moments of the energy times the cross section, Il THE GENERAL METHOD

_ E S ne2er e The idea of expressing average angular momenta in terms
fn(E)—n(n—l)fo dE'(E-E")" "E'a(E’), n=2, of integrals over functions of cross sections dates back to
(1.1) Ref.[10]. Due to absence of sufficiently good subbarrier fu-
sion data, the full potential of this idea was not explored at
were proposed as an alternative for comparing model calcuyhat time. To introduce the concepts involved, we first review
lations with data. Unfortunately, these moments are not dithe general relations between moments of fusion cross sec-
rectly related to observables so it is difficult to give a physi-tions and averages of powers of angular momenta in a one-
cal interpretation for them. In addition, one of the maindimensional barrier penetration picture. Although this is
advantages of using barrier distributions is that they bringgtrictly valid only for spherical systems, it will provide the
out important features in the data, but thth moments in  basis for extension to deformed systems. In the usual partial
Eq. (1.1) are even more featureless than the data from whichvave expansion, the total fusion cross section at the center-
they are calculated. of-mass energ¥ is written as
The purpose of this paper is to point out how the average
angular momentum, which is a measurable quari8y is
related to moments of the fusion cross section. In order to U(E)ZZ a,(E), 2.1
turn these relations into a practical tool to extract average -
angular momentum directly from fusion data, we study the
angular momentum and deformation dependence of the et
fective barrier radius used in the formalism. In Sec. Il, we

©

here the cross section for th&h partial wave is

E mh 2/+1)TAE 2.2
TEIectronic address: baha@nucth.physics.wisc.edu
Electronic address: deweerd@nucth.physics.wisc.edu T,(E) the transmission probability for that partial wave, and
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one can approximate th€ dependence i, by using the definitive confirmation that Eq.2.8) with a constant radius

s-wave penetrability at a shifted enerfj], works. The existing data for a variety of systems were also
examined assuming a constant effective rafiil§, but that

h2/(/+1) analysis used a fit of the cross section to the exponential of a

TAE)=To| E—- m) (2.3 polynomial so the features of the angular momenta are lost.

Higher moments of the angular momentum can be found
whereuR?(E) is the effective moment of inertia of the sys- by following similar steps. For example, the second moment
tem. The energy shift simply accounts for the change in th@f the angular momentum is given by
height of the barrier resulting from the centrifugal potential.

Note that the effective radius is allowed to vary as a function 2uRYE) E'a(E")
of energy. In Sec. lll, we will demonstrate how this approxi- (7 (/+ 1)>:h2E0'(E)J dE’ RAE')
mation for the transmission probability can be improved.
Substituting Eqgs(2.2) and (2.3 into Eq. (2.1), converting
the sum over” into an integral, and changing variables to

(2.9

A similar expression fof/2) was given in Ref[14], but
(/) was neglected an® was assumed to be a constant.

h2/(/+1) Under these assumptionf, in Eq. (1.1) can be related to
e — 7 72
E'=E 2uRE(E) (2.4 (/?) through

we obtain the expression o MR
P (/2)~ e ta(E). 2.10

h°Eo

wR%(E) (E
o(E)= f dE'To(E’"). (2.5 _ ) _

E 0 However, as has been pointed out previoi4#,15, taking

_ R to be a constant is not a good approximation, especially for
We will use Eq.(2.5) to study the energy dependence of thedeformed nuclei. Therefore, ER.10 does not result in a

effective radius from numerical calculations. reliable physical interpretation fdfr,. There is little experi-
The average angular momentum after fusion is assumeghental data for higher moments sfdue to the difficulty of
to be these measurements, so we do not pursue them here. The

procedure for calculating them should be clear from the pre-
ceding discussion.

In order to put Eq(2.8) into use, we would like to under-
stand the origin of the energy dependence in the effective
Following a procedure similar to the one used to obtain Eqradius better. For this purpose, we use E45) as the defin-
(2.5), the average angular momentum can be written as  ing relation forR(E) and study its deviation from a constant

m2 value. We use values af andT, generated by the computer
, R(E )f dE'T-(E’ code IBMFUS [16] which uses the interacting boson model
(/)= Eo(E) o(E") (IBM) [17] to account for nuclear structure effects and evalu-
ates transmission probabilities numerically in the WKB ap-
proximation. For fusion reactions involving rare-earth nuclei,
o (2.7 IBMFUS has been shown to reproduce very well cross section
and barrier distribution systematigs8], and average angular
Integrating by parts and using E¢R.5), we arrive at the momentum datf19]. It is important to note that the centrifu-

(/Y= —= 2 /o ,(E). (2.6

(E)

2/.LR2( ) 1/2

72 (E— E)+

desired expression, gal energy is treated exactly in the WKB calculatidins.,
approximations such as E(R.3) are not usefl In order to

y uRYE) f  E'o(E") emphasize the effects of nuclear structure, we kept the
(/)= #2Eo(E) dE RE) masses of the projectilet§0) and target ¥°*sm) fixed and

varied the quadrupole coupling parameter. Figure 1 shows
the results obtained fdR(E) in three cases corresponding to
the target nucleus being spheri¢ab coupling, vibrational
(intermediate coupling and deformed(strong coupling
which relates the average angular momentum to a moment dthese results demonstrate that the effective radius is not con-
the fusion cross section. Note that the factor of 2 in @) stant even for the spherical case and deviates more as the
is missing in Ref.[10]. For practical applications of Eq. coupling to structure increases. The sharp increase in radius
(2.9), it is important to note that, in order to obtain the de-below the barrier with increasing deformation is obviously
tailed features of the average angular momentum reliablydue to selective sampling of the longer nuclear axis. The
the cross section should be interpolated rather than fit gloerigin of the energy dependence of radius in the spherical
bally. We have found that a spline fit to the logarithm of thesystem is not that clear at this point, but the approximation
cross section works quite well for this purpose. This integralused in Eq(2.3) is an obvious suspect. In view of the dem-
method with the assumption that the effective radius is conenstrated energy dependence of the effective radius, extract-
stant, has been applied to some nearly spherical systenirsg the average angular momentum from E8) by assum-
[12]. The results are in agreement with the data within theng that R(E) is constant will not accurately predi¢y’)
experimental errors which, however, are rather large for across a wide range of energies.

1 -1/2

2
X M(E—E’)+Z

72 , (2.9
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12 T T dependence of the effective radius which arises from the cen-
trifugal potential.

The effect of the angular momentum on the penetrability
is usually taken into account by the shift it makes in the
height of the potential barrier. The total potential for the
/'th partial wave is given by

h2/(/+1)

VA(r)=Vn(r)+Ve(r)+ T oar?

(3.9

whereVy and V. are the nuclear and Coulomb potentials,
respectively. Letr , denote the position of the peak of the
/-wave barrier which satisfies

IV (1)
=0 3.2
ar r=r, (32
E (MeV)
and
FIG. 1. The effective radiuR(E) extracted from fusion calcu- 2

lations for the!®0+ 5Sm system using Eq2.5). The curves cor- IV AT) <0 3.3

respond to spherical, vibrational, and deformed nuclei with quadru- ar? ' '

pole coupling strengths,=0, 0.13, and 0.26, respectively.

then the height of the barrier is given Mg, =V,(r ). We
Attempts have been made to parametii{&), but they 516 the ansatz that the barrier position can be written as an
have not been very successful. For example, a linear combjxinite series,

nation of the position of the barrier ped&dg and the Cou-

lomb turning point r,=rotCiA+CcoA%+- .-, (3.4
— 2
Re=2,Z,€°lE, (2.1 where thec; are constants. Expanding all functions in Eq.
(3.2 consistently in powers ok, we find that the first coef-
ficient is
R(E)=7Rg+(1-n)Rc. (2.12 52
C1=——73, (3.5

In the spherical case, ER.12 provides a good description parg

of R(E) in Fig. 1 with »=0.78. However, is not clear how to

include deformation effects in Eq2.12 in a physically —wherea is the curvature of the-wave barrier
meaningful way. Another expression for the effective radius,

derived by assuming the nuclear potential to be an exponen- o 3PVo(r)

tial tail in the region of the barrier, is given B{5] Y

has been suggested as a plausible chidid¢

(3.6
r=rq
-1 _ 1/
R(E)= 2 Re[1+(1-4a/Rc)™), (2.13 Substituting the leading order correction in the barrier posi-
tionr . into Eq.(3.1), we find that to second order ik the

wherea is the nuclear surface diffuseness. This expression, "_wave barrier height is given by

gives an energy dependence which is too strong for values of
a in the range 0.6-1.2 fm. Also it does not make any allow- 72\ 74A2
ance for inclusion of deformation effects, which are seen to Vg1=Vgot+
have a significant influence on the shapdRgE). Clearly, a
better understanding oR(E) is needed to make further
progress.

—=t-—>%- 3.
2u r 2u° aro S

Therefore, an improved approximation for tHedependence
in the penetrability is given by

Ill. AN IMPROVED EXPRESSION 52A BAA2
FOR THE PENETRABILITY TA(E)=To| E— — — 57 6/ (3.8
2 ro 2ucarg
The prescription given in Eq2.3) for approximating the
/-wave penetrability by the-wave penetrability at a shifted We give an alternative derivation of this expansion and dis-
energy utilizes only the leading term in what is actually ancuss its validity in the Appendix.
infinite series expansion ih=/(/+1). In this section, we To examine the consequences of the improved expression
derive the next term in this expansion and show the resultindor the penetrability, we repeat the steps outlined in Sec. Il
corrections to the calculations presented in the Sec. Il. Weaising Eq.(3.8) instead of Eq(2.3). To the leading order in
also demonstrate how this can explain the part of the energ¥/«, this introduces the following correction to E@.5):
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12 T T

. (39

E —TrrngdE’T E' 4 E-E’

a( )—?0 o(E") _a_r(z)(_ )

Comparing Eq(2.5) with Eq. (3.9), we find that the energy-
dependent effective radius can be expressed as

L 4 [EAE'TH(E')(E-E")
ary  JGAETH(E")

R%(E)=r3 . (3.10

Radius (fm}

This predicts the decrease R(E) as the energy increases
that was shown in Fig. 1. The calculation of the average

angular momentum with the modified equations introduces a A TSI
similar leading order correction, | T

~—e

(/) L fEdE E'o(E')
/N = 'E' o(E’ . . R
h°Ea(E) Jo 1052 60 65 70
E (MeV)
ZMrg E—E’ . - 1 —7 E—E’'
52 (E— )+Z - arg( —E")|.

FIG. 2. Thes-wave barrier positiorr, (solid curve extracted
(3.1)  from fusion calculations for thé®0+*'Sm system with no cou-
pling using Eq.(3.9). For comparison, the values B{E) (dashed
Since we have included a correctionrtg, this expression curve calculated for the same reaction using EB.5 are also
takes into account the shifts in both the height and positiorshown.
of the barrier for different partial waves.

It is easy to show that the expression for effective radiuKnowledge of the angular momentum distribution at an en-
given in Eq.(3.10 is consistent with the result obtained by ergy E allows the calculation of the barrier distribution be-
weighted averaging over the barrier positions of all of thetweenE—#%2/ {7 maxt 1)/2uR? and E, where/ ., is the
partial waves using Eq3.4), largest angular momentum for which the partial cross section

5 is measured. The first-order correction to KE8.15 is ob-

(r )= E/U/r/:r _ (A)+- - (3.12 tained by substituting the position of théwave barrier for
’ 2,0, 0 2uarg ' ' the effective radius of the associated partial-wave cross sec-
tion
To a first approximation{A) is given by Eq.(2.9 with
R(E)=rq. Substituting Eq.(2.5 for E'a(E’), Eq. (3.12 R—r, ~ro+ciA. (3.17

becomes S )
When the angular momentum distribution is determined at

2mro (B (e 65 MeV for the O+1%Sm system, the correction to

(rp)=ro— EJO dE JO dE"To(E"). (313  p(E’) is about 12% at 55 MeV and it will be less for higher
energies. The other errors involved in calculating the barrier

After integration by parts, E¢3.13 becomes distribution are typically larger than that, so this correction

can be safely ignored.

2mrg (E In order to check whether or not the correction in Eq.

(r)=ro— aEO'f dE'To(E")(E—-E"). (3.14 (3.9 is sufficient to account for the shift in the peak of the
0 barrier due to the angular momentum of the system, we cal-

Substituting Eq(2.5) with R(E) = for o and squaring the culatedr, as a function of energy for a spherical target using

result, we recover an expression that is consistent with EcEq' (3.9. The same numerical values of E) and To(E)
(3.10 to the first order in . btained fromiBMFUS as in Fig. 1 and the known value of

The effect of the correction to the barrier position on the® for the potential barrier were used in this calculation. The

distribution of barriers is straightforward in the form given "€SUlts for thes-wave barrier radius, are shown in Fig. 2
by Ackermann{20], which is in terms of first derivatives of and the effective radiuR(E), extracted using Eq2.5), is

the angular momentum distribution. This expression can b&"own for comparison. The results foy are nearly indepen-
written as dent of energy as we expect.

We would like to extractry and « directly from cross
4p°R’E do (E) section data. Equatiof8.9) can be rewritten as

I VA (313

D(E’)

E 4 E
Eo(E)= rzf dE'To(E’ ——Ej dE'To(E’
where the shifted energy is o(B)=mry 0 oE") @ 0 olE)

h2/(/+1) 477J'E
r—po 2V +—| E'dE'T4(E’). 3.1
E'=E 2R (3.16 Pl o(E") (3.18
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Using partial integration, the two integrals can be expressed 20 T T
as

E ! ’ E ! /dTO
fo dE'To(E ):ETO(E)—fO E'dE 77 (319 .
and
J'EE’dE'T . E2T,(E) jE E’sz, dT, 30 410
0 oEV=o ), 2 e B

For E>Vjg,, the right-hand sides of Eq$3.19 and (3.20
becomeE —q, andE?/2—q,, respectively, where

E dT,
9= | E'dE'—; (3.2
0 dE . . .
55 60 65 70
and E (MeV)
12 ’ dTO
4%2=3], E'“dE T (3.22 FIG. 3. Comparison of average angular momenta in units of

calculated using Eq(3.1) (solid curve and Eq.(2.8) (dashed
curve to the values calculated bysmrFus (pointg for the

For energies above the barridT,/dE’ goes to 0, sa@|; and 160-+ 15%m system with no coupling

g, become constants. Therefore, for high energiegE) is

a quadratic irg, IBMFUS for a the system of®0+1%%Sm, where both nuclei

20 A are taken to be spherical. First,andr are determined from
Eo(E)= —<—) E2+| 7§+ —ql) E Eqg. (3.25 by a fit to theo “data.” Then these values are
@ @ employed in Eq(3.11) and the average angular momenta are
5 A extracted from ther “data” through numerical integration.
—(wr0q1+ 7%)- (3.23 Figure 3 shows a comparison of the average angular mo-
menta calculated using E¢3.11) with those obtained from
Classically, IBMFUS directly. The agreement is very good at all energies.
For reference, results obtained from E.8) assuming a
dT, constant radius are also showaiashed ling As expected,
dE ~ S(E—Vao), 324 the modified expressio(8.11) leads to a clear improvement

at high energies where the effective radius varies ncfst
where Vg, is the barrier height, soq;=Vg, and Fig. 2. This example gives confidence that one can use Eq.
0,=V2,/2. Quantum mechanically, these expressions fof3.11) in extracting average angular momenta directly from
g, andq, are also approximately true for energies above théhe fusion data for spherical systems.
barrier. Using the values of; generated from the code
IBMFUS [16] in Egs.(3.21) and(3.22, we have found that the IV. TARGET DEFORMATION EEEECTS
error in these approximations at an energy of 70 MeV are
both less than 0.05% for an4Bm system with no coupling Now that we have an improved description of the effects
where Vgo~59 MeV. Therefore, the product of the cross due to the centrifugal barriers, we consider the effects of

section and the energy can be fit at high energies with théarget deformation. The shape of an axially symmetric de-
expression formed nucleus can be described by

E2+

(277 5 47TVBO) Ri(6)=Ryo[ 1+ BY0(cOH) ], 4.1
Eo(E)=—|— o+ E
whereR,q is the radius for an undeformed target. In order to
27TV§0 qualitatively study deformation effects, we approximate the
target with a simple two-level system which displays the
important features. As shown in RdR1], fusion of a de-
formed nucleus with finite number of levelg)(can be de-
scribed by samplingh orientations of Eq.4.1) with their
respective weights. For a two-level system, the orientations
in order to determinex andr . Of course, this requires high 6,=70.12° andd,=30.55° contribute with the weight fac-
precision fusion data for energies above the barrier whichiors w;=0.652 andw,=0.348, respectively.
may be difficult to obtain due to the competing processes.  To proceed, we need to find out how the barrier position
As a test of the formalism, we apply the results derived inand height changes with orientation, which can be calculated
this section to the fusion cross section “data” generated byfrom the total potential in a straightforward manner. For the

- ( Wr%VBo‘l‘

2 2m 2
:WrO(E_VBO)_F(E_VBO) (3.29
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nuclear potential, we use the usual Woods-Saxon form with 65
the target radius given by E¢4.1)

r—Rp—Ri(0)\] !
Vn(r,8)=—Vyol 1+exp —a .
4.2
The Coulomb potential can be calculated from a multipole 3
i i is Qi 255}
expansion and, to leading order ) is given by =
=4
Z,7,62( 3 BREY(cosh)
Ve(r,0)= —— (1+ e
r 5 r
A 3 Rio(Ri(0)—R
:_(1+_ to( Rl 2) t0)>' 4.3
5 r
. . 45 L
whereA=Z,7,e2. Using the notation of Sec. Ill, the equa- 5 1f° s
tion for finding the peak of the-wave barrier is r ()
A 9AR(Ri—Rio) Vno FIG. 4. The solid curve is the total potential for the
275 P + a 160-+1%4sm system when the target is taken to be spherical. The
dashed X = —0.327) and dot-dashed & 0.613) curves are the po-
o _ tentials for two-level approximation with3=0.25. The arrows
X expL(r Rp Ry/a] 2’ =0, (4.9 show the shifts predicted for the barrier peaks by Edsl1) and
{1+exd(r—R,—Ry)/al} |r=r0 (4.12.
and the height of the-wave barrier is
|1 2exf (ro—Rp—Ry/a] o @9
VBO:ré( 1+§M) Irexd(ro-Ry-Rofal|
0 0 . :
L Using Eq.(4.4), we can solve for the rate of change in the
ro—Rp— R\ |~ - i iti ' i
Vgl 1+ exp( 0 ap t) 4.5 s-wave barrier position due to the change in the target radius
drg _Q—9aRy/5r} o
The ¢ dependence is suppressed in the above equations for dRy|,_,  Q+2alry “.9
convenience, but both, and Vg, depend on the target ori- to
entation. where
The rate of change in the barrier height due to the defor-
mation is given by 2 [A
Vo \lo

dR; B dro dR; 5rg a For a given orientatiors, the shift in thes-wave barrier
height is given approximately b
exd (ro—Rp—Ry/a] J I PP y oy

X{l‘l‘exq(ro_Rp_Rt)/a]}z. (46) :dVBO
o - BO th » =,Rt t
In Eq. (4.6), dVgo/dry=0 by definition and using Ed4.4), t o
the second term can be simplified to give A 3AR, 5
:(__2+—5 3 ) 4_/3Rt0P|(C039),
% :_é_i_ 3AR(O (47) rO r0 ™
AR | r, re 5ry ' (4.1)

] o ) ] - _and, similarly, the shift in thes-wave barrier position is ap-
To find a similar expression for the barrier position, we dif- yoximately

ferentiate Eq(4.4) with respect taR,

drg drg /5
2A 36A RtO(Rt_RtO) dro gARto dro 5I’0=— t— I _BRt0P|(CO$).
BT Jar s ldr, Pilromg — Phlrong * 47
0 0 ' 0 ' (4.12
Vo exd(ro—Rp—Ry/a] These expressions account for the changes due to deforma-

% {1+exf(ro—R,—Ry/al}? tion fairly accurately as can be seen in Fig. 4.
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The total fusion cross section for a two-level system is a (E )
given by[21] o(E,\)= Efo dE'{rgTo(E",\j) +FBro\To(E’,\))

O'T(E):W]_O'(E,)\l)+W20’(E,)\2), (413) +F2B2)\i2TO(E,y)\i)}

wherea(E,\;) is the cross section for thi¢h orientation and

A (E
\i=Py(coss). To simplify the notation, we introduce — —Zf dE'To(E' ) (E—-E'), (4.1
ak Jo
Rio, (4.14 where To(E,\,;) is the transmission probability for thigh
Re=Ryo orientation. The curvature of the barriet, is expected to

5 drg
F=\/-—"7
47T th
. . _ _ have a second-order dependenceBphence it is assumed to
so that, for a given orientation, the peak of thave barrier  be constant in this leading order calculation. Defining the
in Eq. (3.9 is replaced by coupleds-wave transmission probability as

r0—>r0+FB)\i. (415)

TE(E)=w;To(EN) +W,To(ENp),  (4.17)
After this substitution, the cross section for each level be-
comes the total cross section becomes

JGAE [Wik1To(E' A1) + Wk, To(E' A 5)]
JGdE'TG(E")

T 2
or(E)= E ro+2Fprg

JEAE TWINATo(E N y) +WoNSTo(E/ \5)]
JodE'TG(E)

E 4 E
+F2p? “0 dE’TOC(E’)—a—EJO dE'TS(E')(E—E’). (4.18

The cross section can be written in the form of E25) as
™ 2 E r7C ’
or(E)= ERC(E) . dE'TG(E’), (4.19

so that the effective radius with coupling is

JEAE' TWiA 1 To(E' A1)+ Wk, To(E' N2)] JEAE [WINITO(E' N g) +WoASTo(E' \2)]
R%(E):r(z)+2|:18r0 fng/TOC(E/) +F2182 j‘ngrTg(E/)
4 [EdE'TS(E')(E-E")
a JGdE'TS(E")

(4.20

Since wiA 1~ —Ww,\, and bothTo(E’,N;) and To(E',\)) difference between the deformed and spherical cases be-
approach one very quickly for energies above the barrierssomes larger and this effect increases with the deformation.
the second term in Eq4.20 becomes zero for high ener-  The preceding argument provides an explanation of how
gies. On the other hand, the third term of that equation ighe effective radius varies with the energy. Unfortunately, it
always positive, so by comparison with E8.10 it is easy is not easy to incorporate the deformation effects in the cal-
to see that the effective radius is slightly higher at largeculation of average angular momentum as was done for the
energies for the deformed case than for the uncoupled caseentrifugal barrier in Sec. Ill. To make progress, we take a
This argument also holds for multilevel systems, since phenomenological approach and introduce the quantity

, _Ea/w+(4/a)f5dE’To(E’)(E—E’)
f P,(cos9)d(cosd) =0. (4.21) Po(E)= JEAE'To(E") '
(4.22

The effective radius predicted by E@.20 (dashed curye  For a single barrierpy(E) is simply the location of the
and the result from the definition of E¢4.19 (solid curve ~ s-wave barrierr, [cf. Eq. (3.9)], so it is actually energy
are shown in Fig. 5. That the two curves are in good agreeindependent. When couplings to target deformation are intro-
ment is an indication that the curvature is approximately unduced, there is a distribution of barriers. In this casiE)
changed as assumed in E4.20. This simple model exhib- is a suitable average of the location of the barrier peaks.
its the main features seen in Fig. 1; at low energies th&Jsing the values otr and T, generated bysmFUS in Eq.
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FIG. 5. The effective radius from a two-level calculation for the
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20

15

<I>

10

0
50 55 80 65 70
E (MeV)

FIG. 7. Comparison of average angular momenta in units of

160+ 15sm system withB=0.25. The solid curve is calculated calculated using Eq3.11) with a constant valuéashed curveand
using the definition, Eq4.19), and the dot-dashed curve using Eq. Eq. (4.23 (solid curve for p, to the values calculated bgmrus
(4.20, which assumesr is constant. For comparison, the dashed (points for the *%0+%‘Sm system with the quadrupole coupling

curve is the result for a spherical target.

(4.22) again, we calculatey(E) for the three quadrupole

strength v,=0.26. The parameters used werg=10.6 fm,
6=1.22 fm,Vgy=59 MeV, andW=2.3 MeV.

coupling strengths used in the previous section. In contrast thom data is the widthw. The fits to the curves in Fig. 6
the effective radii in Fig. 1, the results shown in Fig. 6 levelresults in values around=20.3 for W with a mild depen-
off at high energies. They can be parametrized using @ence ong (increases with3). Since the precise value of

simple Fermi function

5
Po(B) =T ot 4 T (E—Vag)/W]'

(4.23

Hererg is the asymptotic value at largé and Vg, is the

barrier height, which are determined from the fusion data
using Eq.(3.29. ry+ & corresponds to the asymptotic value

at low energies and can be calculated from Ef1) at
#=0. The only quantity in Eq(4.23 that is not determined

12 T y

55 60 65 70
E (MeV)

FIG. 6. py extracted from fusion calculations using Eg.22

W makes no tangible difference, the slight uncertainty in its
value is not important for the purposes of this paper.

The averaged radius of EG1.23 can now be used in Eq.
(3.11) in the place of 4 to obtain an improved expression for
average angular momentum,

e mpo(E) [E _ E'o(E")

T hEa(BE)Jo p3(E)
2 2 E —-1/2
L?ZQ E-EV*3

1 1
+E(p§<E'>_p§<E)>

11/2 1
E .

(E-E)+

7
X{l—m(E—E )

2up5(E)

72 (4.29

Note that whenpy(E)=r, the last term vanishes and the
above expression reduces to E8.11). The average angular
momentum extracted from the fusion “data” using Eq.
(4.24) is compared to thé/") values obtained from the same
IBMFUS calculation in Fig. 7. The agreement is very good at
all energies. In contrast, the constant radius results underes-
timate (/) by about onée..

To demonstrate the utility of this method in extracting
(/), we apply it to the'®O+ >*Sm system for which quality
cross section data exig2]. In Fig. 8, we compare th¢/)
values obtained from Ed4.24) andiBMFUS with the experi-

for the %0+ %5%Sm system with quadrupole coupling strengths mental data22]. The two calculations are consistent with

v,=0, 0.13, and 0.26, respectively.

each other but slightly underpredict the experimental values.
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T(E)={1+exd2S(E)]} %, (A1)

20 T T

where the WKB penetration integral is
2w (2

SAE)=\/ 7= J dr
h "/

Using Abelian integrals, one can show that for energies be-
low the barrier

v h2/(/+1) . v
o(r)+ “om?

(A2)

\ S,/ (E'
fB/dE’ /(E")

5T 1 E E'-E
o 2/.Lf"2/d Vv +ﬁ2/"(/+ 1) E
i | | “2\N7z), AVt e E
55 60 65 70
E (MeV) (A3)

) ) . whereVg, is the height of the”-wave potentialVy(r) is the
FIG. 8. Comparison between experimental and theoretical Val's-wave barrier; and,,, r,, are the turning points of the

ues of the average angular momenta in unitgi dbr the system /-wave barrier for ener In Refs.[11.23. the ener
160+ 15%Sm. The data are frorf2], the solid curve is calculated derivative of Eq.(A3) 9¥. -[11.23, oy

using Eq.(4.24), and the dashed curve is the result fraamrus

[19]. v ’ ’
JS,(E")I9E 2
f > JE/ (E") o 2

V. CONCLUSIONS c =t 2 F(rz/— ri ), (A4)

We have described two major reasons for the energy dewas used to find the barrier thickness. One can also take the
pendence of the effective radius. The effects of the centrifuderivative of Eq.(A3) with respect toA to obtain another
gal barriers are described by using an improved approximadseful identity[23],
tion for the penetration probability. This also leads to a better
relation between the cross section and the average angularvg, IS, (E") /oA T [he[ 1 1
momentum. The effects of target deformation are describe E' ﬁ: ) ﬂ( )
with a simple model which reproduces the features of the
effective radius. Finally, we present a phenomenological ex- thea |ast two equations can be used to check the consis-
pression for the position of the-wave barrier as a function tency of an expansion of the form
of energy and show how it can be used in extracting the

—_— A5
Foy Ty, (A9)

average angular momentum from the fusion cross section. SAE)=Sy(E—e;A—e,A%—---), (AB)
Comparison of this method with numerical calculations
shows that it predicts the average angular momentum frorwheree;,e,, ... are independent of the energy. Substitut-

the fusion data reliably, and hence it can be used as a coing the relationship between the derivatives,
sistency check in cases where quality data are available for
both quantities. dS,(E) 3S,(E)

A =—(e;+2e,A+--+) E (A7)
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ence and Technology of Australia. The right-hand side of this equation has a slight dependence

on energy(through the energy dependence of the turning
APPENDIX: THE VALIDITY OF THE EXPANSION pointy whereas the left-hand side is independent of energy
OF THE PENETRABILITY in our approximation. Our analysis in Sec. lll is equivalent to

approximating the right-hand side of H¢\8) by a constant,
In this appendix, we discuss the validity of E(B.9 i.gi) 9 9 Eeh8) by

which approximates the transmission probability as a power

series inA=/(/+1). We will do this by using the linear- fl/fz/Nfi, (A9)

ized forms of the WKB penetration integrals. The penetra-

tion probability of an/ wave through a one-dimensional wherer , is the position of the peak of th€-wave barrier.
barrier is given by This is a very good approximation at energies near the bar-
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rier height, but the error increases as the energy gets lower. It should be noted that although is not a small param-
However, for the'®0+ 15%Sm system, even at 7 MeV below eter, there is a natural cutoff., in this parameter given by
the barrier(lower than the fusion cross section has yet beerthe condition

measurejlthe error in this approximation is less than 4% for

the bare potential used in Rdfl8]. Upon setting”/=0 in

Eq. (A9), we recover Ah?
2uR?

(A1)
ﬁZ

er=—s7,
Y our?

(A10)

For values ofA greater than this, fusion will not occur. Due
in agreement with Eq(3.8). The higher-order terms id  to this cutoff, the second term in E¢3.8) will always be
also agree with the calculations in Sec. lll, so we are justifiedarger than the third term. Therefore, the additional term can

in expressingrl ,(E) as a power series in. be considered a correction.
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