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Radii of halo nuclei from cross section measurements
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The root mean square matter radii of halo nuclei provide a basic measure in constructing, constraining, and
assessing theoretical models of halo structures. We consider corrections to static (@@tis#y limit) Glauber
model calculations of reaction cross sections of such nuclei at high energy giving careful consideration to their
intrinsic few-body structure and the adiabatic nature of the halo nucleus-target interaction. We take as impor-
tant examples the loosely bound two- and three-body systéBes ®He, *'Li, and 1“Be. The contribution of
the valence particles to the calculated reaction cross sections are shown to be significantly reduced, requiring
increased halo radii to reproduce experimental data. The implications of these changes for structure models of
extended two- and three-body systems are discu§S€856-28186)04810-9

PACS numbgs): 21.10.Gv, 11.80.Fv, 25.18s, 27.20+n

[. INTRODUCTION gated related few-body effects for light-ion composite pro-
jectiles.

Interaction cross section measurements at high energies The accuracy of static density calculations of reaction
have been used to estimate the extent of matter densities 6foss sections for'Li was considered also by Takigawa
exotic nuclei produced in high energy fragmentation reacet al. [13] using a simplified two-body model of the halo
tions [1-3]. The accuracy of the experimental cross sectiordensity. That work demonstrated clearly the convergence of
data involved is in many cases extremely impressive hominéwo-body and static density descriptions in the limit of tight

out the possibility of placing quite stringent limits upon thesevalence nucleon binding, and that the two-body correlations

nuclear sizes. At secondary beam energies of several huha_ad to a reduction in the calculated reaction cross sections.

dred MeV per nucleon the static densfg or optical limit € model failed however to account for the very special
of the Glauber mod€l5—7] has been the basis for determin- three-body correl_atlons present 'HI_" and similar Bor-

ing empirical radii. Analyses of data for a range of projec_romean_[14]_nuclel, with no _boun_d binary §ubsyst_ems. The_
tiles on a2C target have shown deduced radii to be quiteoverest|mat|on of cross sections in the static dgnsny model is
: " i ; . . ~also commented upon by Chulket al.[8] and discussed by
insensitive to the precise radial shapes of the density distr

but g 'Ogawaet al.[15].
utions assumefs,8]. We examine quantitatively the implications of such a few-

This static density model neglects correlations betweefy,qy gescription upon the deduced matter radii of halo nu-
the projectile(and targejtconstituent$6] and has been found  ¢|ei "We concentrate on the one- and two-neutron halo nuclei

to work well for spatially localized nucl€i9]. For weakly 11Be 6He 11 and Be. Cross section data are available
bound systems however the intrinsic few-body character, ofor each of these composite nuclei and for their associated
granularity, of the projectiles imply strong spatial correla-core subsystems'®e, “He, °Li, and 12Be) on a 1°C target
tions between the constituents. For such systems reactiqqt energies of order 800 MeV/nuclegh,3,16, as are data
models[5,10,1] make an adiabatic approximation, freezing for the nucleont’C system[17]. Having considered the re-
the position coordinates of the few-body projectile constitu-sults of calculations at 800 MeV/nucleon we will also apply
ents during the interaction. Physical observables are then olthe model to thellLi system at 400 MeV/nucleon where
tained by suitably averaging the resulting position dependent
reaction amplitudes over the relevant position probability
distributions of these constituents. This approach forms the
basis of the calculations of the present paper. A shorter dis-
cussion of these ideas has been presented elseyiere

Consider a three-body projectile comprising a pair of neu-
trons weakly bound to a more massive core. For an impact
parameterb of the projectile, Fig. 1, at which its density
(shaded circlg overlaps the target, many configurations of
the three constituent bodies will not in fact overlap the target.
The cross section calculation therefore requires a summation
over all possible configurations of the three bodies with each
weighted according to the best available few-body descrip- FiG. 1. Schematic representation of the static den@haded
tions of the systems involved. The expectation is that theircle) and few-body(frozen coordinatetreatments of the three-
contribution to the cross section from large impact paramiody projectile- P) target (T) collision at impact parametdr. In
eters will be reduced. Support for this expectation comeshe spatial configuration drawn the few-body projectile does not
from the work of Nishioka and Johnsdd2] who investi-  overlap the target.
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there are experimental data for the composite nucleus but not P
for the core. A key ingredient in our description is to use the
static density approximation to each projectile constituent-
target subsystem. Additionally, the adiabdfi®zen coordi-
nate treatment of these constituents allows us to study care-
fully the implications for calculated cross sections of a
realistic treatment of the two- and three-body nature of the
projectile structures through the use of realistic few-body
wave functions.

Il. FORMALISM

In the limit of large orbital angular momenta, the reaction

cross section for a projectile incident upon a targefl can
be written[5] FIG. 2. Representation of the few-body Glaulediabati¢
treatment of a three-body projectileP) target (T) collision at

. * _ _ * el P center of mass impact parametershowing the assumed straight
or(P)= ZWL dbb 1 Tp(b)]—27rfo dbbl1—|Sp(b)[*], line trajectories of each constituent at its own impact parameter.
()
n n
whereTp(b), the squared modulus of the elasHenatrix for S(”)zexp{iz Xj(by) | = H Si(b)). 4
the projectile-target system, is the projectile transparency. i=1 i=1

Tp(b) determines the probability, at impact parameieof (M ] ) )

the projectile center of mass, that the projectile survives th&tere|®¢") is the state of relative motion of the constitu-
collision to emerge in the elastic channel. At incident enernts in the projectile and the bra-ket denotes integration over
gies such that Glauber theol§] is appropriate, the calcula- these relative coordinates. In the present work we are par-
tion of this elasticS matrix is particularly elegant. For in- ticularly interested in systems comprising a heavy localized
stance, if the projectile-target effective interactitoptical ~ core of Ac nucleons and r{—1) loosely bound valence

potentia) Vp were known then nucleons. For those of the bodies which are nucleons, the
Sj(b;) are the Glaube® matrices for the nucleon-target sys-
S‘E.'(b)zexdiXp(b)], tem, subsequently denot&j(b;), and should be consistent

with independent empirical data for the nucleon-target sys-

1 (= tem. If these interact via a potentid),, then of course, for
Xp(b):—%ﬁ dzVe(\VbZ+7?), (2 j=1,...n-1,
with v the relative velocity of the two nuclei. Sj(bj)=Sy(bj) =exdiXn(b;)],
Of particular interest is the case when the projectile
nucleus is a composite of mags.. In addition, for halo N s
nuclei, we are dealing with systems with structures which An(bj) =— hv _deJ'VN( by +2)). ®)

have a more natural physical description in terms of a

strongly correlatech-body system. Here, the number of - \when j=C, a composite core cluster with internal state
constituents, which can be individual nucleons or clusters of 4 .y the Glauber core-targed matrix is, by analogy with
nucleons, is usually less thap and depends upon the pro- gqgg (3) and (4),

jectile involved and the model assumed. Two-body=Q)

and three-bodyr{=3) models are commonly used and each Sj(b))=Sc(be)=(¢c|S|dc), (6)
body is assumed to interact with the target through a two-

body interaction. In all cases, for a composite projectile wheres is theS-matrix operator for the core constituents. To
Glauber theory first freezes the constituent particle positionshe extent therefore that the core statk:) in the halo

the adiabatic approximation. Each constitugris then as-  nycleus is reliably represented by the ground state of the free
sumed to follow its individual straight line path at impact core nucleusSc(bc) will describe free core-target elastic
parameteb; (Fig. 2) through the interaction region with the scattering and should also be consistent with experimental

target. The projectile elasti€ matrix, entering Eq(1), is  gata for that system. In the case of suchnabody [core +
then computed by projecting and/or averaging these differenty — 1) nucleorj projectile therefore

component-target amplitudes over the projectile ground state

|<I>§)”)). Thus, for a givem-body projectile and wave func- (n-1)
tion, we derive the elastic amplitudes S2M(b)={ ®5"|Sc(be) I Su(bp|@§”). (D
j=1
Sp"(b)=(@g"|S™|DgY). 3

The explicit treatment of the composite nature of the target
Since the interaction operator of the constitugntsith the  nucleus, of mas#é, can of course be carried out in a per-
target is the sum of two-body interactions, tBenatrix op-  fectly symmetric manner with obvious generalization of the
eratorS™ can be written notation.
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T_his few—body proje_ctilg d_escription is not the philosophy SE,'(z)(b)=<<1>E)2>|S(S;D(bc)ﬁD(bl)M)gz)), (12)
behind the static density limit, which is derived on the basis
of the combinedAp + At nucleon system and an approxi- and, for a two-valence nucleofa core system,
mate description of the pairwise effectinéN amplitudes.
The derivation of the static density approximation to the SE3(b)= (DS (be) SSP(by) S{P(b,) [ D). (13)
nucleus-nucleus elasti matrix, and hence the projectile
transparency, is formulated from a number of different view-This is the model used here. We note that the required physi-
points in the literaturd5,6,18 and will not be reproduced cal inputs are theoretical few-body wave functions for the
here. The simplest version, in the context of E2), is the relative motions of the projectile constituents and the core-
use of a ‘tpp” single scattering approximatiofi8] to relate  target and valence nucleon-target elaSimatrices. At the
the nucleus-nucleus optical potential to the target and projegnergies of the present analysis, several hundred MeV/
tile ground state densities; that is retaining the leading ordefucleon, the latter are taken from the static density limit.
term in the cumulant expansion of the multiple scatteringTheseS matrices must be consistent with experimental data
serieq19]. The resulting elasti® matrix, having made zero- for these independent binary systems at the same incident
range and forward scattering approximations toké am-  energy/nucleon. Such data currently comprise the reaction
plitude, and then retained only its imaginary part, is cross sections, but th® matrices could be more stringently
tested if elastic differential cross section angular distributions
were also available. Our choice BFN cross sectionsgyy,
SED(b):eXF{ f dxpi([x)pP([b=x))|, (®) (i=P,C,N), used in the static density calculations will be
discussed later. In addition one often replacgg, by
where?ﬁ{, is the isospin weighted nucleon-nucleon cross}",\'[N(l—ia), with « the ratio of the real and imaginary parts
section appropriate for the specific projectile and targetof the forward scatteringdN amplitude, to account for the
evaluated at the appropriaéN relative energy. The ground fact that theN N amplitude is not entirely absorptive, even at
state matter distributiongp and pr of the projectile and high energy[18,20. While the structure of the static density

target appear in E(8) asz-integrated densities, S matrices are such that this modification has no effect on
static density cross section calculations, the foldings present

z) b)= d b2+ 22 9 in Egs. (12) and (13) mean that calculations based on the

(b) f_ 2i( ), © few-body description are sensitive, in principle, to such a

modification. We comment upon this sensitivity in the results

or thickness functions. The crucial aspect of this static densection.
sity limit is that only the projectile ground state densities The connection between calculated cross sections and
enter the calculation and few-body correlatigtiee granular  projectile matter radii is transparent in the static density ap-
nature of the projectilgsdoes not enter explicitly. Equation proximation, through the associatpd(r) entering Eq.(8).
(8), when substituted in Eq1), generates the static density The connection in the few-body method is however less di-
approximation to the reaction cross secti@ED(P) which  rect and the matter radii must be computed separately from
has formed the basis of previous analyses of experimentdhe few-body wave function together with an assumed core
cross section data and of deduced halo and core nucleus maticleus matter distribution. The structure of the two- and
ter radii. The model has been shown to work well when thethree-body wave functions used in evaluating these expres-
projectile and target are regular nuclei, in the sense that thesions are outlined in the next section.
are spatially localized and all nucleons occupy a well-defined Because of the folding over the internal wave function of
mean field volumé¢9]. the projectile in Egs(12) and (13), the contributions of the

When considering halo nuclei, it is the constituent core-valence and core particles to the calculated cross section are
target and valence particle-target two-body systems whichot readily decoupled. In the static density limit however,
have this localized nature. It is expected therefore that thesgince the projectile density appears in an exponential func-
binary systems can be treated reliably in the static densityion then, upon separating the core and valence particle con-

limit. Thus, to describe the core-target system we will usetributions to the projectile density, i.e.,
the static density elasti® matrix, analogous to E(8), pp(r)=pc(r)+p,(r), one can decompose the integrand of
the reaction cross section in Ed.) as[21]
(bC) eXF{_—j dZXpC)(|X|)p(Z)(|bC—X|)}, b[l_TgD(b)]:b[l_TgD(b)]+bT(S-:D(b)[l—TfD(b)]

(10) (14
with p¢ the density of the core. Similarly, for each valence In this expression the transparerity” due topc, includes
nucleon ), the effects of the convolution of the intrinsic core density

pc with that for its center of mass motion in the projectile
_NT . . . . . 238D
SSO(b,) = x;{ —Mp“ (b: )} (11) and is defined in the following sectiofig™ is not therefore
T the transparency of the free core-target system and will not

generate the free core-target reaction cross section. The de-
which will generate cross sections3°(C) and o5°(N).  composition is nevertheless helpful in clarifying the impor-
Therefore, for a one-valence nucleencore projectile, la- tance of the valence nucleon contributions to the reaction
beling the nucleon 1, cross section and we shall later compare the deviations of the
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projectile-target cross section integrands, calculated in the
static density and few-body approaches, from this core con-
tribution b[1—TZP] to elucidate the essential differences in
the results of the two calculations.

Ill. WAVE FUNCTION MODELS

Here we discuss the general structure of the wave func-
tions used. Calculations which use specific or published
wave function models will refer clearly to the model in ques-
tion in the later text.

A. Three-body projectile systems

We consider the two-neutron halo nucke, Li, and
Be as three-bodycore + n+n) systems, the main ap-
proximation being to neglect explicit consideration of the
internal degrees of freedom of the 4-, 9-, and 12-nucleon
cores. These are treated approximately in the model calcula- 1
tions through the use of phenomenological nucleon-core ef-
fective interactions. The total wave functions are the sum of
the three Faddeev component®)=d ,+dc+ Dy,
where each component is labeled by the interacting particle
pair. Antisymmetrization implies thab., and &, are re-
lated by permutation of labels 1 and 2. Following the nota-
tion of [22],

DY =Dy rﬁlz(c) 12+ (1+Pp)®cy(rey, F(Cl)Z)- (15

The total wave functiorb$) can be transformed into either
set of coordinates, so that

‘I)E)S):q)g)(rlz((:) ,r12)=<1>g1)(rc1,r(c1)2), (16)
_ FIG. 3. Definition of position coordinates, in the plane perpen-
Wherecb((f‘) and eachd® has unit normalization. dicular to the beam direction, in the case(af a three-bodytwo-
For the purposes of the static density calculations,(8¢. Vvalence nucleon- core projectile andb) a two-body(one-valence
and to compute the projectile rms radius, we require the probucleon+ corg projectile.
jectile single-particle density corresponding to these Faddeev

wave functions. This can be written Where matter rms radii of three-body systems are quoted,
. they are calculated from the projectile ground state density
pp(r)=pc(r)+p,(r), (17 Eq.(17) and thus assume a given core density distribution

- - pc(r).
where pc(r) andp,(r) are the contributions from the core "oy the few-bodyS-matrix calculations from Eq(13) on

and valence neutrons in the center of mass of the projectil T (3) 0 > N2
It follows that for a mas#\ system the two-valence neutron T)rlz_oktehterr] Qgt‘i?)'nwi%iil:ﬁq:ﬁég rvlvif)sﬂ,lnﬁL%ﬁ'“ﬁfﬁ?fww

density is neutron spin variables. Details of the angular momentum
A \3 2 structure of the three-body wave function and the probability
pv(F)zz(_) j dre; , (18)  density, and of its expression in terms of cylindrical polar
A-1 coordinates to facilitate the integrations over impact param-
. ) ] R . eters, can be found in Rdfl1]. Explicitly,
and, assuming a core internal density(r), thenpc(r) is

obtained by folding withp.,(r), the distribution for the

motion of the core’s own center of mass, i.e.,

— s A .
q’@(%l,mr)

S2(b) = [ 025 [ a%8605.8)5P(be)SPbY Sy,
el [ @pelF=R)pem(X) (19 @

where whereo ands are the components of the vectafrﬁ(c) and

2 r1, in the plane normal to the incident beam direction, see

A
(20 Fig. 3(@), and thez-integrated probability density

. (A L= [AL
Pc.m.(r):<§) fdrlzq)(lsé)(gryrﬂ)
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R % % - R TABLE I. Core and halo nucleus matter rms radii deduced from
5(3)(0,s)=f leZ(C)f dz | P (Mac) 1121 spin the static densitySD) and few-body(FB) models, respectively.
o m The references are to the experimental interaction cross section
(22 data, all at 800 MeV/nucleon.

is written explicitly in Eqs.(28)—(31) of [11].

Nucleus rms radiu¢fm) o (expd (mb) Ref. Method
B. Two-body projectile systems “He 1.58+0.04 503:5 [2] SD
6 4
We also consider the one-neutron halo nuclédBe He 2.710.04 7225 (2] FB (free 4He)
2.69+0.04 FB(scaled”He)

(*%Be+n). Wave functions for this system are derived from ;

two sources. In the first, simplesi, °Be+n cluster model B€ 2.31£0.05 73859 [1]  SD (from [4])
wave functions of the"'Be ground state are constructed as B 2.50+0.04 798-6  [35] FB (from[4))
bound states in Woods-Saxon potential wells of differing - 2.30+0.02 796:6  [1] SD
geometries, the potential strength being adjusted to repro-Li 3.53+0.10 1066-10  [16] FB
duce the empirical®Be+ n separation energy. Such a model ‘e 2.280.02 813-10  [1] SD
is flexible and simple and allows one to genersi@e struc-  “'Be 2.90:0.05 942:8 [3] FB
tures with a range of matter rms radii. Our second source of’Be 2.54£0.05 92718  [3] SD
two-body wave functions is from more microscopic coupled**Be 3.20-0.30 110&69  [29] FB

channels bound state calculations which include core excite
tion degrees of freedonj23]. These calculations predict
1Be level spectra and spectroscopic amplitudes in addition A. Static density calculations
to the ground state wave functions and also make specific
predictions for the rms matter radius of the ground state. , ; ) — ) X

Using wave functions from either source, for the staticlastg* In sta;’gc density approximation, the glaél;gnatrlces,
density calculations, E48), we need to evaluate the projec- S¢_ and Sy~ and the reaction cross sections; (C) and
tile density. As with the three-body systems, the neutronog (N), for all the required core- and nucleon-target sub-
core relative motion wave functions are used to construct theystems. The& matrices are then input to the few-body cal-
valence particle density component, and to fold the free coreulations for the one- and two-neutron halo nuclei. The core

density pc(r). Writing pp(r)=pc(r)+ps(r) thenpe(r) is  nucleus cross sectionss’(C) are required to determine the

We first apply the formalism developed above to calcu-

given by Eq.(19) but where now core matter rms radii consistently. For all projectile nuclei
A 3 A 5 we initially consider reactions on &C target at 800 MeV/
Pl(F):[— q,%2>( F) i nucleon. The choice of energy and target is dictated by our
A-1 A-1 wish to validate the theoretical description of each binary

R 3 (D A |2 (23 subsystem by comparison with experiment. For comparison
Pem(r) =A% D7 (Ar)|%. later with the few-body calculations, and for comparison

. . with earlier work, we also calculate the compositelo)
For the few-bodyS-matrix calculations, E(12), we re- nucleus cross sectiortsﬁD(P) within the static density ap-

quire<|<1>§)2)(rlc)|2>spin where, in common with the notation proximation.
for the three-body projectiles, we have summed over the o o) these static density calculations we use the param-

nucleon and core spin variables. Now etrization of the fredNN cross sectiongpy, (i =P,C,N), of
Charagi and Gupté24]. A Gaussian matter distribution is
Sﬁl(z)(b)=f d%s£2)(5)SP(be) Sy0A(by), (24 assumed for'®C in all cases with rms matter radius
(r?)32=2.32 fm[3].

With these inputs, and assuming Gaussian matter distri-
butions for the core nuclei, we find the core radii
(r3)3?2=1.58 fm, (r?)a?=2.30 fm, (r3}¥?=2.28 fm, and

2 [* 25 2 (r®)12=254 fm, generate reaction cross sections for the
& (S)—f_mdzlcﬂ‘bo (r10)1) spin- (29 core-target subsystenfig] of oSP(*He)=503 (503t 5) mb,
o2P(°Li) =796 (796-6) mb, o3°(*%Be)=813 (813+10)

mb, andoRP(*?Be)=927 (927- 18) mb. The empirical val-
ues, in parentheses, are taken from a number of references.

We consider the calculated cross sections and deducekhese values and references are collected in Table I. These
rms matter radii for the one-neutron halo nuclédBe and deduced core radii agree with those of Tanihatal. [3]
the two-neutron halo nucldiHe, 11Li. and “Be. A consid-  Wwithin error bars. The calculated nucledf€ cross section
eration of 8B, a candidate for a one-proton halo structure,at 800 MeV,a3>(N) =231 mb, also agrees with experiment
can be found irf4]. In common with previous analyses of [17] within quoted errors. Thus the calculat8dnatrices for
the experimental data we calculate reaction cross sectioreach projectile constituent-target system, and the core
and make comparison with the experimental interaction crossucleus sizes input to the few-body calculations, are each
sections. This procedure has been shown to be accurate foonsistent with available empirical data for that binary sys-
halo nuclei[15]. tem.

wheres is the component owFlC in the plane normal to the
incident beam, Fig. ®), and

IV. CALCULATIONS
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FIG. 4. Calculated static density and few-body reaction cross FIG. 5. Calculated integrands of the reaction cross section im-

sections at 800 MeV/nucleon incident energy fdiri projectiles as ~ pact parameter integral from the static density and few-body analy-
a function of projectile rms matter radius, fof%C target. The lines ~ ses, using the P3'Li wave function, for the reaction on &C

and symbols are described in the text. target at 800 MeV/nucleon. The dot-dashed curve shows the core
contribution and the solid and dashed curves the valence contribu-

B. Few-body calculations for two-neutron halo nuclei tions in the few-body and static density calculations, respectively.
1. Calculations for *'Li acter, however, now suggests a more extended halo

Figure 4 shows the results of static density and few-bodyir 2)11~3.53+0.10 fm, in the middle of the band of values
calculations for 1Li+ 12C using a number of*lLi wave generated by intruder state wave function models. Such wave
functions. We show the calculated cross sections versus ttfgnctions, with significans-wave admixtures in their ground
matter rms radii calculated from the wave functions. TheState, lead naturally to a more extended matter distribution.
horizontal band shows the experimental interaction cross AS was discussed in Sec. Il, a consideration of the fact
section datumy(*!Li) =1060+ 10 mb[16] and the vertical that theNN amplitude is not entirely imaginary at high en-
dashed line the matter radiye?)12=3.05 fm obtained if we €7@y has no implications for the static density cross section
adopt the static density approximation and a Gaussian deg@lculations. Replacingyy by oyy(1—ia) will however
sity for the projectile; in the spirit of3,7]. The value is affect the cross sections calculated in the few-body descrip-
within error bars of the previously quoted value tion where the binary phanns matrices are multiplied and
(r)¥2=3.10+0.17 fm[3]. averaged over the projectile wave function before the square

The (lowen full symbols and open squares are the resultgnodulus is taken. We have therefore repeated the few-body
of the few-body calculations. Th@ippe) open symbols are calculgthns for the PO, P3, _and P5 wave functions using the
the results of the static density calculations using the groun@rescription for theNN amplitude of Ray(Table I of [20])
state density calculated from the same wave function modeldith & nonvanishing, energy dependeat, The isospin av-
The rms radii are computed assuming the core matter dens@rage of the tabulated oy appropriate for the’Li and
ties deduced above. The reduction in the calculated crog¥eutron-target systems is taken. We obtain results for these
sections, or increased transparency of the projectile in thwave functions shown by the open square symbols in Fig. 4,
former case, is immediately evident. From left to right theWith changes in the calculated cross sections of less than 8
diamond symbols correspond to the PO through P4 intrudeib, and only very minor effects for deduced radii. We return
s-wave (Faddeey model wave functions of Thompson and 1O this effect in considering the energy dependence of the
Zhukov[25], with increasing rms radius. The extreme right- *Li cross section.
hand point is a continuation of these model wave functions TO clarify the origin of the increased transparency of the
(P5 with a 1s-state scattering length ef 44 fm and an 80%  collision process, we show in Fig. 5 the integrands of the
(1s1,)? probability. The upright triangles denote calcula- Cross section expression, Hd), from the static density and
tions using the L6A pairing model wave functi¢6] (with ~ few-body calculations. The P3 wave function[@6] is used
rms radius 3.02 finwhich, in the static density picture, re- in these calculations. As discussed earlier, there is no way to
produces the experimental cross section. The inverted trEXtract precisely the core and valence particle contributions
angles are the predictions of thes-ave intruder wave tO the cross section in the few-body model. To provide in-
function (denotedG1 in [25]), generated in a very shallow Sight into these roles however we plot the quantities
binding potential, from the early work of Johannsen, Jenserl,c=b[1—T2"] (dot-dashed curyethe static density “core”

and Hansen27]. The straight lines through these different component discussed in Sec. Il, and the quantities
wave function models are linear least squares fits to the thed{1—|S57?]— I (dashed curveand b[1—|SZ®)?]—1.
retical calculations. (solid curve, being the remainder of the integrand in the

The difference between the two approaches is large. Thstatic density and the few-body approaches, respectively.
static density calculations, even using Faddeev wave funcFhese remainders will be identified with the valence particle
tions, suggest a matter rms radius of order 3.1 fm, as reportecbntributions. Their localization to large impact parameters
previously. A correct treatment of theLi three-body char- suggests they do indeed represent dominantly valence par-
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FIG. 6. As for Fig. 4 but for**Be projectiles. FIG. 7. As for Fig. 4 but for®He projectiles. The open square

points and dot-dashed line are the few-body calculations when the
core size is scaled by 1.5% in the calculation of the core-target
ticle effects. Figure 5 shows clearly the increased transpastatic densityS matrix.

ency of the halo resulting from the more accurate treatment ) 6
of the correlated three-body structure Bti. The contribu- 3. Calculations for °He
tion to the cross section froig is 866.4 mb, to be compared Figure 7 shows the static density and few-body calcula-
with the free®Li value of 796 mb. The valence contribution tions for the ®He+°C system at 800 MeV/nucleon, pre-
is 305 mb in the static density approach. In the few-bodysented as in Figs. 4 and 6. The horizontal band shows the
calculation the valence contribution is reduced by 35% witheported cross section datun{®He)=722+5 mb[31]. The
respect to this static density value, generating only 200 mbvertical dashed line shows the rms matter radius we obtain,
(r?)¥2=2.38 fm, if we adopt the static density approxima-
tion and assume a single Gaussian density distribution for the
three-body projectile.

Figure 6 shows the results of static density and few-body The (lower) full diamond and open square symbols show
calculations for the**Be+'%C system at 800 MeV/nucleon. the few-body calculations and th@ppe) open diamond
As in Fig. 4, we show the calculated cross sections versus th&ymbols the static density calculations using the projectile
matter rms radii of a series of theoretical wave function mod-ground state density calculated from the same wave function.
els[28]. The horizontal band shows the experimental inter-The few-body results are again reduced relative to the static
action cross section datunr(“Be)=1109+69 mb [29] densnydrT;odeI. From Ietft tt_o r|ghtI tht(_e dlarpct)r?d Iiyrgé)ols cor-
which currently has large experimental uncertainty. The ver/®SPONd 10 a reépresentative selection of the raddeev wave
tical dashed I)i/ne shovss thg rms matter radius we obtainfunCtIon m_odels of Ta_\ble I, r_nodels P1, _GB3, FC, FC6, F.B’
<r2>iﬁ12=2.98 fm, if we adopt the static density approxima- K, and C, in order of increasing rms radius, calculated using

) . ) T the methods described id4]. As for all systems considered,
tion and assume a Gaussian density distribution for the pro- e compute thes€He matter radii assuming a core matter
jectile; in the spirit of[ 3,7].

radius of (r2)¥?=1.58 fm, consistent with the calculated
The (lower) full symbols are the results of the few-body o30(*He) <an<>14the data
calculations for each wave function model. Tl@pe) open RThe wave functions. shown span the full range of rms
symbols are the results of the static density calculations s,

. o ) dii. Those not plotted lie on the same straight lines. The
ing the projectile ground state density calculated from th%ave functions are all orthogonal to an occupiesiegen-
same wave function models. The results again show the ©%iate assumed to be at20 MeV in then-*He interaction.

pected reduction in the calculated cross sections, or increasgfe include now the results of using parity-dependent
t_ransparen_cy of the projectile, in the latter case. From left tq, 46 interactions derived32] from inverse scattering
right the diamond symbols correspond to the C4, C7, D4pyethods tan—*He elastic scattering data at around 1.2 MeV
and C9 Faddeev wave functions of Thompson and Zhukoyp1 and PBand over the range 0-20 Me{@1 and Q3. A
[28]. The results are very similar, qualitatively, to th&i  common feature of all the remaining three-body calculations
case but somewhat smaller in magnitude due to the increasesl that using interactions consistent with elastic scattering
empirical (1.31 MeM30]) and theoretical two-neutron sepa- leads to larger and slightly too weakly bound structures. The

ration energy for'“Be in the wave functions of28]. It is  C model uses the Woods-Saxon potentia[38], and the K
clear that the experimental datum does not currently permitnodel the Gaussian potential [&4].

an accurate determination of the projectile matter radius. We To approach the empirical three-body binding of 0.97
estimate(r2)172=3.20+0.30 fm. We note however that, for MeV, these models all require adjustment of théHe in-
cross sections in the range of the current experimental errdgeraction from that which reproduces freé'He elastic scat-
bars, the few-body calculations result in a deduced rms matering. The way chosen to do this was to increase the range
ter radius greater than that of the corresponding static densiyf the n-a core interactione.g., by 2% and 2.5% for GB3
value by up to 0.35 fm. and FC, respectivelyto account for possible core polariza-

2. Calculations for 1*Be
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TABLE II. Different ®He ground state wave function models,
rms radii, and two-neutron separation enerdé2n). Then-n po-
tentials used are the super soft cp8SQC)] [36], Reid soft core
(RSO [37], ands-wave GaussiariG) [38] interactions. Then-a
potentials used are two-parity]-dependent inverse-scattering po-
tentials[32] obtained from two energy range®:( 1.2 MeV and
Q: 0—-20 MeV), the Woods-SaxoiWS) potential of[33], and the
/-dependent Gaussigd®BB) potential of[34]. rms radii are com-
puted assuming &He core radius of 1.58 fm of Table I.

oy (mb)

Model V., Ve leincr. 7, E(2n) rms radius

(%) (MeV)  (fm)
P3 SSQC) 7 dep. P) 0 spd-121 234 .
P1 SSEC) m dep. P) 0 s,p —1.15 2.36 rms radius (fm)
GB3 G WS 2 s,p —1.00 2.49
FC  SSGC) WS 25 s,p —-093 253 FIG. 8. As for Fig. 4 but for''Be projectiles.
FC6 SSCC) WS 25 s,p,d—0.93 2.56
Q3 SSCC) = dep. Q) 0 s, p,d —0.70 2.58 2.69+0.04 fm. This value remains at the upper limit of val-
Q1 SSGC) = dep. Q) 0 s,p —065 260 ues from the three-body models. It is clear however that the
FB SSGC) WS 1.5 s,p —0.63 2.62 magnitude of the few-body corrections are significantly
FA SSQC) WS 1.0 s,p —0.49 2,67 greater than effects arising from detailed consideration of the
K RSC SBB 00 s,pd—042 269 core size. The results are collected in Table I.
C SSQC) WS 0.0 s,p —0.21 2.80

C. Few-body calculations for one-neutron halo nuclei:*'Be

tion effects. The values are shown in Table Il. After such Figure 8 shows the results of few-body and static density
a scaling, all calculations with realistic potentialsith  calculations for the one-neutron halo systétBe. As previ-
3P, repulsion give matter radii around 2.55 fm. We calcu- ously, the horizontal band shows the experimental cross sec-
late the reaction cross sections from all these models in ordéion datumo(}'Be)=942+8 mb[3] and the vertical dashed
to have range ofHe model wave functions with different line the rms matter radius we obtaif1?)}?=2.67 fm, if we
matter radii, despite the variation of binding energies asadopt the static density approximation and assume a Gauss-
shown in Table II. ian density for the projectile. This value is consistent with
In common with our earlier results, the static density cal-that of Ref.[3], i.e., (r?)1/?=2.71+0.05 fm. The results are
culations suggest &He matter rms radius in agreement with qualitatively similar to those of the three-body cases. The
that obtained using a Gaussian density distribution, that is o&ngled dashed line shows the static density calculations and
order 2.38 fm. Within the few-body framework, however, the angled solid line the few-body model results. Here, both
the Faddeev wave functions discussed above now suggesiboft the lines connect calculations using simple two-body
®He matter radius of 2.740.04 fm. As for M'Li, this is  (1s,,,) cluster wave functions fot'Be using potentials with
larger than previous estimates, such as the value 2.9Bfm a range of geometries and depths adjusted to the observed
deduced on the basis of a comparison of fie and®Li  neutron separation energy 0.503 MeV.
systems. For''Li, s-wave intruder models generate larger The solid symbols are the few-body calculations using
radii in a natural way. The configuration of the two neutrons!Be ground state wave functiof®3] which include the
in ®He, however, is thought to be essentially pupg4)?, effects of core ’Be) deformation and excitation. These have
and the more extended wave functions in Table Il are obbeen calculated using different underlying diagonal interac-
tained only at the expense of underbinding of the three-bodyions for the neutront’Be system so as to generate a family
system. of structures with different radii for the purpose of the
The importance of the modification required to the present analysis. We should point out however that the wave
n-*He interaction in the bound state, to generate sufficientunction model with rms radius of 2.92 fm, whose calculated
binding in some cases, suggests that ste there is some cross section lies within experimental error bars, is that
evidence of an associated core polarization effect. This being/hich best describes the excited state spectrurtBé.
so, the core-target interaction entering the few-body descrip- These more microscopic wave functions generate cross
tion used here should also, in principle, be modified fromsections which appear to follow precisely the trends of the
that for free “He-target scattering. To investigate this effect,inert core calculations. However, this is a little too simplistic
of a modified core-targe$ matrix, we have repeated calcu- and hides some important structure implications. In particu-
lations using the few-body model increasing the rms radiugar, the ground state wave functions of the coupled channels
of the core density entering the static density calculation obound state models contain significant components in which
SP Eq. (10), by 1.5%. The resulting cross sections arethe core is excited and the nucleon is in@s orbital. Both
shown by the open square symbols and the dot-dasheaf these effects reduce the contribution to the rms radius
angled line in Fig. 7. The result is to increase the cross sedrom this component of the wave function and hence the
tion by of order 3—5 mb, comparable to the error on the crossvave functions represented by the solid points are somewhat
section datum, suggesting a slightly reduced matter radius afmaller than would be obtained using uncoupled calculations
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1300 . . _ . Additional experimental data in the energy region between
100 and 400 MeV/nucleon will certainly be needed to clarify
this connection.

1200 |
V. SUMMARY AND CONCLUSIONS

1100 | To date, matter radii of light exotic nuclei have been de-
duced using approximations to Glauber theory which neglect

particle correlations within the projectile and target. We have
presented an alternative quantitative procedure for extracting
such radii from cross section measurements at high energies.
900 . . . , We have stressed the need for a description of the reaction

200 400 600 800 which includes a proper consideration of the strong spatial

Energy (MeV) correlations in halo nuclei implied by their effective few-

body character. Use of the adiabatic nature of the collision at

FIG. 9. Experimental and calculated reaction cross sections foRigh energy while retaining the static density approximation
) j+12C as a function of the incident energy/nucleon for the P3for the description of the interaction of the valence and core
wave function. The solid and dashed lines are the few-body calcueomponents of the projectile with the target leads to a prac-

lations using theNN cross section prescriptions of Charagi and tical alternative calculation of the composite projectile cross

Gupta[24] and Ray[20], respectively. section.

A particularly attractive feature of this approach is that it
and the same underlying two-body interactions. Our calculaMakes clear the connection between the calculated cross sec-
tions suggest a revised matter rms radius offion of the compqsne an@) 't$ thegorehcal f(_aw and/ or many-
(r2>%’12=2.901 0.05 fm. The radii obtained and used for all bt?dy wave 1;unct|ofr(anr<]j not its §|ngle—partlcle dens)ty;nd
core and composite nuclei are collected in Table I. () empirica dat_a or the scatter_mg from_ the target_of |t$ few

constituent bodies; through their associated elaStiatri-

ces. One can thus verify that each of these independent bi-
nary channel inputs to the composite projectile reaction

Reaction cross section data are available for the projeonechanism are consistent with whatever experimental data
tiles *'Li and “Be at 400 MeV/nucleofi29], which is also  are available for these systems.
within the energy range in which our model is applicable. We have reanalyzed experimental data of reaction cross
However, only the'lLi data are of sufficient accuracy for a sections for the two-neutron halo nucléHe, ''Li, and
quantitative discussion. Within the few-body model, the only**Be and the representative one-neutron halo systée,
explicit energy dependence is that of the fieM cross sec-  all on a *°C target at 800 MeV/nucleon. We have also pre-
tion which enters the calculation of all static density elasticsented calculations at 400 MeV/nucleon for the two-neutron
S matrices. In Fig. 9 we present the energy dependence dfalo projectile'!Li. By use of the adiabatic treatment of the
the 'Li cross section calculated using the few-body model.internal coordinates, we have incorporated realistic two- and
The calculations use the P3 model wave funci{i2b]. The three-body wave functions for these projectiles. We have
solid curve shows the calculations using &l cross sec- compared the few-body and static density calculations of re-
tion parametrization of Charagi and Gug#d]. The calcu-  action cross sections for these systems. We have shown that
lations show the energy dependence of the cross section the granular structure of the projectiles implied by realistic
this energy regime to be naturally reproduced by the fewfew-body wave functions reduces considerably the calculated
body calculations. reaction cross sections and thus increases significantly the

When using the prescription for tiéN amplitude of Ray ~ values of matter rms radii deduced from experimental data,
(Table | of[20]) we obtain the dashed curve. The agreemencompared to those from static density estimates. By refer-
between the few-body calculations for the thMiN descrip-  €nce to the integrands of the cross sections, we have shown
tions is good for energies in excess of 300 MeV/nucleonthis to result from a very significant increase, 35% in the case
However the calculations begin to diverge at lower energies9f “'Li, in the transparency of the valence nucleon compo-
showing sensitivity to the details of the description of thenent of the cross section as a result of few-body correlations.
NN amplitude. For this reason we do not extend the present We deduce matter rms radii for'Li and ''Be of
analysis to lower energy, where additional data exist only3.53+0.10 fm and 2.9€& 0.05 fm, respectively, increases of
below 100 MeV/nucleon. While the adiabatic approximation14.0% and 7% over previously tabulated values. Our radius
is expected to be valid to energies of perhaps as low as 3®@r ''Li is now consistent with models with a significant
MeV/nucleon, the use of the static density approximation forls-wave intruder state component. Our radius foBe is
the elasticS matrices will certainly not be appropriate. consistent with models which include core excitation and

These calculations at high energy thus cannot yet be corfeorientation. We present cross sections for a range of theo-
nected with calculations at lower energies where noneikonaetical models for the“Be structure. The error on the avail-
corrections and account of the Coulomb interaction are esable cross section measurement for this system takes in all
sential, and where the required constituent-target el&tic these models but we estimgte?)}/?= 3.20+0.30 fm. Calcu-
matrices might be better calculated from empirical opticallations show that the few-body description generates a matter
potentials, fitted to elastic scattering angular distributionsradius greater than static density estimates by up to 0.35 fm.

oy (mb)

1000

D. Energy dependence of the''Li cross section
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For ®He, using the static densityd matrix for free model is able to reproduce the observed energy dependence
“He-target scattering, few-body calculations suggest an rmwithout parameter variation, other than the energy depen-
radius of 2.710.04 fm from the reported cross section mea-dence of the fre&lN interaction. We show that the inclusion
surement. This rms radius can be obtained from current theaf the real part of the forward scatteridg\ amplitude is of
retical models only at the expense of underbinding the thredittle significance in calculated results.
body system. Taking account of a possible scaling of the
core size in this system, by of order 1.5%, required in some
structure calculations to bindHe appropriately, does not
significantly reduce this deduced value. Féte we have no The financial support of the United Kingdom Engineering
unambiguous conclusion. Our calculations show that fewand Physical Sciences Research CoutEiPSRG in the
body models offHe with the correct binding energy predict form of Grant Nos. GR/J95867 and GR/K33026 is gratefully
a reaction cross section oiC at 800 MeV/nucleon of 705 acknowledged. We would like to thank Dr. Filomena Nunes
mb. The discrepancy of this value from the experimentafor providing tabulated two-body wave functions for the
datum of 722:5 is as yet unexplained. 1Be system and Matthew Bush for providing elements of
For !Li there are also data at 400 MeV/nucleon and thethe static density Glauber model code used here.
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