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Inverse scattering for a specific resonating group model nonlocality

G. Pantis and S. A. Sofianos
Department of Physics, University of South Africa, Pretoria, South Africa
(Received 6 March 1996

An inverse scattering method of Lipperheide and Fiede|deyhys. A286, 45(1978; 301, 81(1981)] has
been used to construct an energy-dependent potential from the elastic-scattering phase shifts of the recently
developedk model of Kaneko, LeMere, and Tanghys. Rev. C44, 1588(1991); 46, 298 (1992] for the
n—a andn—“*°Ca systems. The local momentum of the inversion potential is subsequently used to recover the
Wigner transforms of th& model. The results obtained indicate that it is possible to find, via inversion, an
I-independent Wigner transform, which, when calculated at all energies, can provide us with the full nonlo-
cality. [S0556-28186)02010-9

PACS numbg(s): 24.10—i, 03.80+r, 21.30.Fe, 25.40.Dn

[. INTRODUCTION present work we investigate whether or not a similar inver-
sion procedure can reproduce the nonlocality ofkhemodel
There are nowadays many applications of the inversefrom its phase shiftg, (k). For this purpose we use the phase
scattering problem with potential scattering theory, i.e., theshifts to generate by inversion a local energy-dependent po-
determination of a potential from its phase shifts, in the lit-tential V|(E,R) and from its local momenturp(E,R) we
erature. Although some of them refer to nonlocal potentialobtain the Wigner transforid*'[ R?,p?(E,R)]. For compari-
of diverse typd 1], the majority deal with local potentials. In son purposes we also construct the equivalent local potential
nuclear scattering, however, the underlying interaction inV_(E,R) obtained via the Horiuchi WKB approximatidi].
general is nonlocal the form of which depends upon the naThe subscriptd andL designate “inversion” and “local,”
ture of the problem. For example, in nucleon-nucleus andespectively. The inversion scheme has been applied in two
nucleus-nucleus reactions the optical model potentials areases, namely, the scattering of neutrons frenparticles
nonlocal, when they are derived microscopically, but thereand 4°Ca nuclei for which analytical expressions for tke
are diverse approaches to specify those nonlocal interactiomsodel are available. We note that the- « system with a
[2]. Whatever their form, however, those nonlocal interac-nonlocality derived in the antisymmetrized folding model
tions usually have a quite complicated structure. That makewas treated along the same lines in Héi.
them cumbersome to use and thus one resorts either to con- We mention here that several works on nucleon-nucleus
struction of local equivalent potentials or to other simplifica-scattering have appeared recently utilizing complex nonlocal
tions, a typical example of which is the model of Kaneko potentials. In particular we refer to the works of Karataglidis
et al.[3]. That is a simplified version of the resonating groupet al. [8], which gave excellent fits to elastic and inelastic
model (RGM), but it has analytic properties that enable it to proton scattering ont’C, N, and %0. In these analyses
be used in a straightforward way to study several aspects dfoth the elastic-scattering optical model potentials and the
nucleon-nucleus scatteririg,5|. inelastic scattering amplitudes were evaluated fully micro-
An initial attempt to apply inverse-scattering techniquesscopically using an effective nucleon-nucle@iN) interac-
to retrieve information on the underlying nonlocality of the tion developed from the mapping of théN g matrices of the
scattering potential was made by Fiedeldgl.[1]. In that  Paris potential for diverse infinite nuclear matter densities.
work then— « nonlocal interaction of Lassaut and Vinh Mau The optical potentials resulting from folding the effective
[6] was employed to obtain the phase shifts, which then wereteraction with the target density were nonlocal and the as-
used to construct a local potentM (E,r) by inversion, the sociated nonlocal Schdinger equation was solved. Never-
energy dependence of which reflected the associated nonltheless, although the reported results are excellent, there is
cality. This procedure can be used only when the nonlocalitynuch more effort involved in these calculations than, for
is independent of energy. Fiedeldetal.[1] had shown that example, in theK-model applications of Ref5].
a nonlocal energy-independent potential of the Frahn- The situation becomes even more involved for higher tar-
Lemmer type can be determined from its phase shifts if thesget nuclei or for nucleus-nucleus reactions. Examples for this
are given at all angular momenta and at all energies. Thiare the semimicroscopic works of Pantis and Peaf8bfor
method represents a solution of the inverse-scattering prolthe 2C-°C, 1%0-1%0, and *2C-1®0 reactions in which the
lem for a specified class of nonlocal interactions within theinteractions were based upon a fit to tR8&l scattering am-
WKB approximation. But if the nonlocality intrinsically is plitudes by a sum of Yukawa potentials and of Bohletal.
energy dependent, the phase shifts do not contain enoughO] for the °0-%0 and *°C-?Ne reactions where an over-
information for the implementation of the scheme. In thesimplistic picture of the underlyingg matrices for folded
potentials is used. The same is true for the fully microscopic
calculation in the nuclear matter approach of Réfl] for
“Permanent address: Department of Physics, University of loanthe 12C-1%C reaction that required the inclusion of polariza-
nina, 45110, loannina, Greece. tion potentials arising from the excitation of the ®reakup
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states to improve the agreement with the experimental datgram. We will instead demonstrate its feasibility for two
In the present work it will be shown that the nonlocal different systems with different characteristics and at two

interactions obtained for both scattering systems yieldifferent energies. For completeness, in Secs. Il A and Il B,

equivalent local potentials, in good agreement with the in-brief reviews are given of the Wigner transforms for te

version results, at least for the energies at which the invermodel and of the inversion scheme used.

sion has been carried out. In fact, for the 4°Ca system the

equivalent local potentials are almost identical. Our work

therefore complements and generalizes that of REf.in A. The K model

which the inversion scheme was applied to a nonlocal poten- |n the K-model approximation to the RGM nonlocality,

tial of the Frahn-Lemmer type. In Sec. Il we briefly outline recoil effects are neglected and only direct and knock-on

our formalism and present the localization procedures, th@xchange effects are taken into account. Using a local
Wigner transform of th& model, and the inversion method nucleon-nucleon potential of the form

used.
In Sec. Ill we present our results and the discussions of V;;= —Voexq—Kr?j)(w—mPﬁP{jerPﬁ—hPfj)
them. Finally, in Sec. IV we summarize our conclusions. 1
= 57 VaeXH— A (ai+ 0) - (=) X (P =),
Il. FORMALISM
Resonating group method calculatidrig lead to optical )
potentials for nuclear scattering that are nonlocal with the
nonlocality being energy dependent in general and th
Wigner transform of the typ&/"[R?,p?,(p-R)?] being |
dependent. Global inverse scattering theories, when appli

Svhereinx and\ are inverse square ranges dﬁ@ are the
usual spin and isospin projection operators, the resulting

. ) ; -_K-model nonlocal interaction consists of three terms: the di-
with the scattering phase shifts found from such potentlal%ct termVp(R), the exchange terid (r.r'), and the spin-
however, yield energy-dependent local interactions from_ . . . el
which anl-independent Wigner transform results. The RGMorblt termVso(R). The expressions for the nonlocal kernels

. . for the systems under consideration are given in Ref.
pf Kanekget al.[3,4], deslgnated as the model_herelnafter, Fere we note that their Wigner transforms are defined by
is a special case for which the nonlocality is independent o
energy. Furthermore, the Wigner transform is independent of
[. With the K model, therefore, a direct comparison of the 1 1
two nonlocalities, namely, the origin&l model and the one VW[R,p(R)]Ef dsex;iis-p/ﬁ)vex( R—ES,R-I- >S
obtained by inversion, is possible.

Using the stationary Hamilton-Jacobi equat|at, in the ®
semiclassical approximation in zeroth orderigfthe Wigner
transform enters the energy equation by and are derived as outlined in the Appendix of R&g]. In
) our applications, Eq(6) has been used with the exchange
p_+VW(R2’p2):E_ (1) potentials obtained from th& model and for which the

2u Wigner transform takes the fortdV(R?,p?). For the two
) . ) cases of interest, the results are given next.
This relation gives the local momentup{E,R) as a func- For then— « system, the various terms resulting from use

tion of the radiusR at a given energyE. A semiclassical of the K model are
equivalent local potentia¥, (E,R) can be found iteratively
using the Wigner transform of the original nonlocal interac-

tion akK
VD(R)z—voy(4w—m—2b—2h)exp( —mRZ),
VL(E.R)=V"(R?,p?), @ )
with
p2 VW(R?,g%) = — VoB(—w+4m—2b+2h)
5. ~[E-VL(ER)]. 3 2
M 24
xexp{—aR _E)’ ©)]
Then if the inversion potential,(E,R) produces equivalent
localized functionp?(E,R) as does use of the potential
VL(E,R), and
Vi(E,R)=VW(R?2u[E~V,(E,R)]). 4
VsoR) = —2J, a%%exp — aR?), 9)

Thus a numerical evaluation of the Wigner transform from

Eq. (4) for a sufficiently large number of energies can pro-

vide, via Fourier transformation, the nonlocality of the origi- whereq?=p?%/%2. For then—*%Ca scattering, th& model
nal potential. In this work we do not carry out the full pro- yields[5]
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Vo(R)= —Vgy(dw—mi 2b—2m)| 2+ 222
o(R)=—Voy(4w—m )E 2atr)?
N 10a°k? 2, 2a’k* R aK R?
(a+ k)3 (a+k)? ex a+k '
(10

VW(R?,g%) = —VoB(—wW+4m—2b+2h)

2
xex;{ — aR?— q—)

4B
" 5 3 q°
27 "2 2B
q2 2
A 2
+2a ( 88+R +(4B)2)
-3 q2
“\2@B)2 " 228)3/ ||
and
VsoR) = —2J, a¥(2a?R*— 4aR?—5/2)exp( —aR?).
11
The parametera is the RGM oscillator parameter,

y=[al(a+«)]1*? B=(alB)®? and B=a+4k. The pa-

rameterd, =V, \¥2is derived on the basis of the zero-range Jost functions behaving as”

1827

function such as the rational parametrization, which is simi-
lar to the Bargmann class of solvable potentials at fixed an-
gular momentum. A convenient representation is

L N-B

2_ 20
=1 N —a

SAN)=SP(\) (16)

where SO()\) represents a backgrourf function corre-
sponding to a potentiaVy(r) (e.g., the Coulomb potential
for a charged spheyeOther, more general, parametrizations
are the “nonrational” and the “mixed rational and nonra-
tional” schemeg14]. This rational form ofS function re-
lates to a potential
V(E,r):VN(E,r), (17)

whereV\(E,r) is obtained by the recursion formula

V,(E,r)=V,_(E,r)+V™(E,r), n=12,...N,
(18)
which involves the residue
- 2, ,df1 1
VIRE N =—(Br—anyg, FLfB‘)<”‘1)+L(+)(”_l> '
n @n
(19

The functionsL{*"(r) are logarithmic derivatives of the
kr asr—o. They satisfy a

approximation for the spin-orbit force and is determined pheRiccati equation

nomenologically. Note that as the Wigner transforms for

both systems do not depend on the prodydR, the corre-
sponding equivalent local potentials will béndependent.

B. The inversion scheme

To construct the inversion potentid,(E,R) from the

(20

The task then is to find a set of complex pole and zero pairs
from the scattering data. One finds those by using the phase

phase shifts we employ the fixed-energy inversion scheme afnifts 5,(k) or equivalently, theS function, as described in

Lipperheide and Fiedeldej3]. In this scheme the Schro
dinger equation for a complex angular momentnris writ-
ten as

d2 \N2— 1L

—— = —U(r) |u(\ k1) =0,

ar 123

whereU(r)=2u/%2V(r), V(r) is the potential, ang is the
effective mass. The associated scattering functios famc-
tion is given by
F(N,—Kk)
S(A,k)=—f()\ 0 (13
where the Jost functiorf is related to the Jost solutions
f(N, £k, r) Zexp(=ikr) (14
via

F(NK)=—2Nlimr* Y28 (N k;r)

r—0

(19

the Appendix.

Ill. RESULTS

The K model was used to specify nonlocat-« and
n—4Ca potentials and the nucleon-nucleon potential param-
eters used werew=m=0.4075, b=h=0.0925, and
«k=0.46 fm 2, while the depth of the potential was taken to
beV,=72.98 MeV. For than— a system the RGM oscillator
parameter was fixed ate=0.685 fm 2 and the spin-orbit
parameter], was set to zero. For the—*%Ca system, we
useda=0.253 fm 2 andJ, =50 MeV fnP. The parameters
employed in Ref[5] were readjusted to take into account
dispersive corrections to the optical potential. There the os-
cillator parameter giving the best fit to the cross sections was
found to bea=0.231 fm 2. The resulting optical potential
[5] has an energy-dependent depth stemming from the vol-
ume and surface dispersive corrections. It will be seen that
the equivalent local potential obtained in this work has al-
most the same depth.

The phase shifts that result by using tiemodel poten-
tials, the S-function fits, and from the inversion studies are

for ReA>0. To proceed in the Lipperheide-Fiedeldey inver-given in Tables |-IV. It is seen that the reproductions of the
sion, one chooses a particular parametrized form forShe input (K-mode) phase shiftsy by theS-function parametri-
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TABLE I. n—a phase shifts, in degrees, at incident neutron TABLE Ill. Same as Table | for then—*°Ca system at
energyE,=50 MeV. The §¢ are the input phase shifts of the E,=100 MeV.
model; thedy; is the reproduction by the parametrization of e

function, while &, is the reproduction by the inversion potential | Sk St Sk — Ot 1 O— 9
VIER). 0 -59.273  -57.554 1.719 -57.815  -1.458
| 5 50 P 5 S, 1 -58.467  -59.608  1.140  -60.107  -1.640
2 -63.472 -63.753 -0.281 -64.647 -1.175
0 73.987 76.231 2.244 70.873 -3.114 3 -70.696 -70.269 0.427 -71.413 -0.717
1 58.846 58.138 -0.708 57.922 -0.924 3 -79.800 -79.282 0.517 -80.358 -0.558
2 27 179 26.232 -0.947 28.018 -0.839 4 89.333 89.251 -0.082 88.566 -0.767
3 8.237 8.102 -0.135 8.587 0.350 5 76.651 75.718 -0.933 75.444 -1.206
3 2.133 2.379 0.247 2.182 0.049 6 60.841 60.666 -0.175 60.045 -0.196
4 0.490 0.635 0.165 0.495 0.005 7 44.925 44.923 -0.002 44,925 0.000
5 0.100 0.168 0.068 0.100 0.000 8 30.177 30.152 -0.024 30.177 0.000
6 0.018 0.370 0.022 0.018 0.000 9 18.354 18.242 -0.112 18.354 0.000
7 0.030 0.008 0.005 0.003 0.000 10 10.303 10.177 -0.125 10.303 0.000
8 0.000 0.001 -0.001 0.000 0.000 11 5.452 5.376 -0.076 5.452 0.000
9 0.000 0.000 0.000 0.000 0.000 12 2.710 2.680 -0.031 2.710 0.000
13 1.236 1.278 -0.008 1.236 0.000
14 0.504 0.503 -0.001 0.504 0.000
zation (8;;) and by those obtained from the solution of the 15 0.181 0.182 0.001 0.181 0.000
Schralinger equation containing the inversion potentiall6 0.057 0.057 0.000 0.057 0.000
(8,) are all quite good. The differences specified in columnsl? 0.016 0.010 0.000 0.010 0.000
4 and 6 in the tables are very small except at low values o8 0.001 0.001 0.000 0.004 0.000
I, which is due to ah dependence of thik-model potential, 19 0.000 0.000 0.000 0.001 0.000
which is averaged out by olirindependent inversion proce- 20 0.000 0.000 0.000 0.000 0.000

dure. As expected, the differences are most pronounced f6t

then— « system at an incident neutron eneigy=50 MeV.

In all cases considered, the phase shiftsIfoi7 are almost the Schrdinger equation with the inversion potential

identical. V,(E,R) and with the Wigner transforrdV(E,R) are shown
The equivalent local potentia (E,R),V |, (E,R) as well in Figs. 3 and 4 foE,=50 MeV andE,=100 MeV, respec-

as the one obtained from the Wigner transform via @&g. tively. The results are displayed by the solid and dashed

[hereafter identified a¥"(E,R)] for the n—a system at

E,=50 MeV are shown in Fig. 1. They are displayed therein  tagLE |v. Same as Table | for then—“%Ca system at

by the solid, dot-dashed, and dotted curves, respectively. Ig_— 150 MeV.

most of the interaction region the potentials have similar.

behavior, but they differ considerably at short distances. The S Sit Sk — St 8 Sx— 6
variation of the inversion potential reflects the inherede-
pendence of the phase shifts. In Fig. 2 the potentials foP -77.488  -76.618 0.870 -77.089  0.0399
n— « scattering are shown &,=100 MeV and it is evident : -77.937  -78.266 -0.330 -78.525 -0.589
that the differences are less pronounced, a result not une- -80.900  -81.047 -0.147 -81.397 -0.497
pected since the energy is relatively high for a light nuclear’ -85.252  -85.246 0.006 -85.638 -0.386
system. 3 89.063  89.097 0.036 88.756  -0.306
The s-wave wave functions obtained from the solution of 82.175 82.096 -0.079 81.884 -0.291
5 74.096 73.810 -0.286 73.757 -0.340
TABLE Il. Same as Table | aE,,=100 MeV. 6 64.622 64.501 -0.120 64.564 -0.057
7 54.469 54.374 -0.095 54.469 0.000
I Sk St Sk — St 8 Sx— 6 8 43.946 43.873 -0.073 43.946 0.000
9 33.595 33.556 -0.039 33.595 0.000
0 50.672  50.619 -0.052 40416  -1.252 ,, 24207 24177  -0.030 24207  0.000
1 43718 43718 0.000 42.804 0854 16483 16425  -0.058 16483  0.000
2 30.234  30.187 -0.048 30.446 0.211 15 10.618  10.546  -0.072  10.618  0.000
3 16.744 16.735 -0.010 17.218 0.474 13 6.508 6.442 -0.066 6.508 0.000
3 7.794 7.759 -0.035 7.981 0.187 14 3.837 3.768 -0.068 3.837 0.000
4 3.178 3.157 -0.021 3.223 0.045 15 2.170 2.095 -0.075 2.170 0.000
5 1.160 1.145 -0.015 1.169 0.009 16 1.152 1.083 -0.050 1.152 0.000
6 0.382 0.352 -0.031 0.384 0.002 17 0.559 0.509 -0.050 0.559 0.000
7 0.115 0.081 -0.034 0.115 0.000 18 0.242 0.214 -0.029 0.242 0.000
8 0.031 -0.005 -0.036 0.031 0.000 19 0.093 0.080 -0.014 0.093 0.000
9 0.008 -0.030 -0.038 0.008 0.000 20 0.032 0.026 -0.006 0.032 0.000
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4
R (fm)

1

FIG. 3. Comparison of thewave wave functions obtained from
the solution of the Schabinger equation with the Wigner transform
VW(E,R) (solid curvg and with the inversion potential,(E,R)
(dashed curvefor the n—a system at an incident neutron energy
E,=50 MeV.

-s0l .
0 2 R ¢ 4 6 cellent agreement. For the—“%°Ca system, the behavior of
m) the potentials and the wave functions is quantitatively and
qualitatively better than for the— « results. The potentials
FIG. 1. Equivalent local potentials obtained by inversion gre shown in Figs. 5 and 6 and the correspondiin@ wave
V|(E,R) (solid curve, by the Horiuchi methodv,(E,R) (dot- g nctions in Figs. 7 and 8 foE,=100 MeV andE,= 150
dashed curve and via the Wigner transforv"(E,R) (dotted 1o\ respectively. FoE, =150 MeV, the potentials and the
K/lue%e)’ for then—a system at an incident neutron energy=>50 5 /¢ functions are identical for all practical purposes.
' The better quality of the results for both systems at higher
. _ ) _energies is not unexpected and is due to the fact that the
curves, respectively. It is seen that the large differences '”—independent inversion scheme and the WKB approxima-
Fhe potentials at _short distances are not manifested stronglyon’ on which our method is based, are better justified. With
in the characteristics of the wave functions. BL=100  teqpact to the different systems, the overall better quality of
MeV the two wave functions beyonB>1.5 fm are in €x-  he results for then—*°Ca system can be attributed to the
fact that, in that case, thke dependence of the starting
' model is weak and the quality of the WKB approximation is

o
better. We also note that the validity of tie model im-
proves as the mass of the target nucleus increases.

IV. CONCLUSIONS
=20+ -

The energy-dependent, quantal inversion scheme of Lip-

B = 100 Mev perheide and FiedelddyL3], which utilizes phase shift§) ,

1.5 T T T T
L n-a E, = 100 Mev

—40

vV (MeV)

-60

—80 ) } ! [ I 1 L | L L Il :
0 2 4 6 -1.5 N TR L IR
R (fm) 0 2 4 6 8
R (fm)

FIG. 2. Same as Fig. 1, but B,=100 MeV. FIG. 4. Same as Fig. 3, but &,=100 MeV.
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T T T
E, = 100 Mey

Up
o

vV (MeV)

R (fm)

FIG. 7. Comparison of thes-wave wave functions obtained
from the solution of the Schdinger equation with the Wigner
transformVW(E,R) (solid curvé and with the inversion potential
V,(E,R) (dashed curvefor the n+*°Ca system at an incident neu-
tron energykE,,= 100 MeV.

-80 ) ) . ! 1 ! L | 1 1 ¢
0 2 R (fm) * 6 of the microscopically derived RGM nonlocal potentials,
were used as the test cases. These interactions are a special
class of nonlocal interactions as they are energy independent
FIG. 5. Equivalent local potgntia_ls obtained by inversion 5nd have Wigner transforms that drindependent. We have
VI(E,R) (solid curve, by the Horiuchi methoa‘/L(E’R) (dot-  chosen to use these interactions because of their simplicity
dashed curve and via the Wigner transformv™(E,R) (dotted  gegpite the obvious drawback that spin-orbit effects are av-
curve, for the n+4%Ca system at an incident neutron energy eraged out and are not taken into account explicitly.

E,=100 MeV. With these limitations in mind, two systems have been
=12 N h . local potentials i d tstudied. With these systems we have demonstrated that the
— 4. oM, has given focal potentials in good agréementy, o qq works well within the limits in which the WKB ap-

W'Fh those found within the WKB approximation, as theeproximation and the&k model are valid. The results show a
W|gner_transforms of a class of nonlocql mt_elractlons.. Th good agreement of the equivalent local potentials obtained
interactions from the so-callé€dl model, a simplified version by inversion and via the Wigner transform. The agreement of
the I=0 wave functions found using the two interactions
also is good.

Of course the nonlocality has not been reconstructed, but
this can be done by an inverse Fourier transformation, which
requires implementation of the scheme at a large number of
energies, a task that is beyond the scope of this work. In a
case such aa—*%Ca, this could be done directly from the
experimental phase shifts if they are available at a suffi-

1‘0 T T T
n - “Ca E, = 150 MeV

vV (MeV)

-80 ) . 1 | 1 1 1 ] 1 1 L _1.0' | L |

R (fm) R (‘:m)

FIG. 6. Same as Fig. 5, but B,=150 MeV. FIG. 8. Same as Fig. 7, but &,=150 MeV.
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ciently large number of energies. The results could then b
compared to those of th€ model.
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APPENDIX: EVALUATION
OF THE PARAMETERS «, AND B,

In order to evaluate the complex parametafsand 3,
we rewrite theS function as

1+3N_ . Bpz"

= Al
S\ 1+3)_Anz™ A1)

whereA=1+1/2,1=0,1,...,2N; A,, andB,, are, in gen-
eral, complex coefficients; and=1/\2. The roots of the
polynomials
N
1+ >, B,z"=0 (A2)
m=1

and
N

1+ >, Az"=0 (A3)
m=1

FOR A SPECIFIC ... 1831

erovide us with the values of,. and 3,2, respectively.
The coefficientdA,, andB,, can be determined if we rewrite
Eqg. (Al) in the form

N N
S\ > A" X Bnz"=1-5,
m=1 m=1

(A4)
or in a matrix notation
2N
> MyXe=VYi, (A5)
k=1
where
An, k=m m=12,...N
= A
%=1g  k=N+m, m=12..N 1O
and
Sz k=12,... N
M= —Z* N K=N+1IN+2,...,AN. (A7)
Furthermore,
vi=1-S, 1=01,...,2N. (A8)

Thus the task of evaluating the,, and 3, is reduced to the
solution of the systerfA5) to obtain theB,, andA,,, and then
to locate the roots of the polynomial2) and(A3).
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