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Inverse scattering for a specific resonating group model nonlocality
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An inverse scattering method of Lipperheide and Fiedeldey@Z. Phys. A286, 45 ~1978!; 301, 81 ~1981!# has
been used to construct an energy-dependent potential from the elastic-scattering phase shifts of the r
developedK model of Kaneko, LeMere, and Tang@Phys. Rev. C44, 1588 ~1991!; 46, 298 ~1992!# for the
n2a andn240Ca systems. The local momentum of the inversion potential is subsequently used to recov
Wigner transforms of theK model. The results obtained indicate that it is possible to find, via inversion,
l -independent Wigner transform, which, when calculated at all energies, can provide us with the full n
cality. @S0556-2813~96!02010-9#

PACS number~s!: 24.10.2i, 03.80.1r, 21.30.Fe, 25.40.Dn
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I. INTRODUCTION

There are nowadays many applications of the inver
scattering problem with potential scattering theory, i.e., t
determination of a potential from its phase shifts, in the l
erature. Although some of them refer to nonlocal potenti
of diverse type@1#, the majority deal with local potentials. In
nuclear scattering, however, the underlying interaction
general is nonlocal the form of which depends upon the
ture of the problem. For example, in nucleon-nucleus a
nucleus-nucleus reactions the optical model potentials
nonlocal, when they are derived microscopically, but the
are diverse approaches to specify those nonlocal interact
@2#. Whatever their form, however, those nonlocal intera
tions usually have a quite complicated structure. That ma
them cumbersome to use and thus one resorts either to
struction of local equivalent potentials or to other simplific
tions, a typical example of which is theK model of Kaneko
et al. @3#. That is a simplified version of the resonating grou
model~RGM!, but it has analytic properties that enable it
be used in a straightforward way to study several aspect
nucleon-nucleus scattering@4,5#.

An initial attempt to apply inverse-scattering techniqu
to retrieve information on the underlying nonlocality of th
scattering potential was made by Fiedeldeyet al. @1#. In that
work then2a nonlocal interaction of Lassaut and Vinh Ma
@6# was employed to obtain the phase shifts, which then w
used to construct a local potentialVL(E,r ) by inversion, the
energy dependence of which reflected the associated no
cality. This procedure can be used only when the nonloca
is independent of energy. Fiedeldeyet al. @1# had shown that
a nonlocal energy-independent potential of the Frah
Lemmer type can be determined from its phase shifts if th
are given at all angular momenta and at all energies. T
method represents a solution of the inverse-scattering pr
lem for a specified class of nonlocal interactions within t
WKB approximation. But if the nonlocality intrinsically is
energy dependent, the phase shifts do not contain eno
information for the implementation of the scheme. In th
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present work we investigate whether or not a similar inve
sion procedure can reproduce the nonlocality of theK model
from its phase shiftsd l(k). For this purpose we use the phas
shifts to generate by inversion a local energy-dependent p
tential VI(E,R) and from its local momentump(E,R) we
obtain the Wigner transformVW@R2,p2(E,R)#. For compari-
son purposes we also construct the equivalent local poten
VL(E,R) obtained via the Horiuchi WKB approximation@7#.
The subscriptsI andL designate ‘‘inversion’’ and ‘‘local,’’
respectively. The inversion scheme has been applied in t
cases, namely, the scattering of neutrons froma particles
and 40Ca nuclei for which analytical expressions for theK
model are available. We note that then2a system with a
nonlocality derived in the antisymmetrized folding mode
was treated along the same lines in Ref.@1#.

We mention here that several works on nucleon-nucle
scattering have appeared recently utilizing complex nonloc
potentials. In particular we refer to the works of Karataglidi
et al. @8#, which gave excellent fits to elastic and inelasti
proton scattering on12C, 14N, and 16O. In these analyses
both the elastic-scattering optical model potentials and t
inelastic scattering amplitudes were evaluated fully micro
scopically using an effective nucleon-nucleon~NN! interac-
tion developed from the mapping of theNN gmatrices of the
Paris potential for diverse infinite nuclear matter densitie
The optical potentials resulting from folding the effective
interaction with the target density were nonlocal and the a
sociated nonlocal Schro¨dinger equation was solved. Never-
theless, although the reported results are excellent, there
much more effort involved in these calculations than, fo
example, in theK-model applications of Ref.@5#.

The situation becomes even more involved for higher ta
get nuclei or for nucleus-nucleus reactions. Examples for th
are the semimicroscopic works of Pantis and Pearson@9# for
the 12C-12C, 16O-16O, and 12C-16O reactions in which the
interactions were based upon a fit to theNN scattering am-
plitudes by a sum of Yukawa potentials and of Bohlemet al.
@10# for the 16O-16O and 12C-20Ne reactions where an over-
simplistic picture of the underlyingg matrices for folded
potentials is used. The same is true for the fully microscop
calculation in the nuclear matter approach of Ref.@11# for
the 12C-12C reaction that required the inclusion of polariza
tion potentials arising from the excitation of the 3a breakup
n-
1825 © 1996 The American Physical Society
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1826 54G. PANTIS AND S. A. SOFIANOS
states to improve the agreement with the experimental d
In the present work it will be shown that the nonloc

interactions obtained for both scattering systems yie
equivalent local potentials, in good agreement with the
version results, at least for the energies at which the inv
sion has been carried out. In fact, for then240Ca system the
equivalent local potentials are almost identical. Our wo
therefore complements and generalizes that of Ref.@1#, in
which the inversion scheme was applied to a nonlocal pot
tial of the Frahn-Lemmer type. In Sec. II we briefly outlin
our formalism and present the localization procedures,
Wigner transform of theK model, and the inversion metho
used.

In Sec. III we present our results and the discussions
them. Finally, in Sec. IV we summarize our conclusions.

II. FORMALISM

Resonating group method calculations@1# lead to optical
potentials for nuclear scattering that are nonlocal with t
nonlocality being energy dependent in general and
Wigner transform of the typeVW@R2,p2,(p•R)2# being l
dependent. Global inverse scattering theories, when app
with the scattering phase shifts found from such potenti
however, yield energy-dependent local interactions fro
which anl -independent Wigner transform results. The RG
of Kanekoet al. @3,4#, designated as theK model hereinafter,
is a special case for which the nonlocality is independent
energy. Furthermore, the Wigner transform is independen
l . With the K model, therefore, a direct comparison of th
two nonlocalities, namely, the originalK model and the one
obtained by inversion, is possible.

Using the stationary Hamilton-Jacobi equation@7#, in the
semiclassical approximation in zeroth order of\, the Wigner
transform enters the energy equation by

p2

2m
1VW~R2,p2!5E. ~1!

This relation gives the local momentump(E,R) as a func-
tion of the radiusR at a given energyE. A semiclassical
equivalent local potentialVL(E,R) can be found iteratively
using the Wigner transform of the original nonlocal intera
tion

VL~E,R!5VW~R2,p2!, ~2!

with

p2

2m
5@E2VL~E,R!#. ~3!

Then if the inversion potentialVI(E,R) produces equivalent
localized functionp2(E,R) as does use of the potentia
VL(E,R),

VI~E,R!5VW
„R2,2m@E2VI~E,R!#…. ~4!

Thus a numerical evaluation of the Wigner transform fro
Eq. ~4! for a sufficiently large number of energies can pr
vide, via Fourier transformation, the nonlocality of the orig
nal potential. In this work we do not carry out the full pro
ata.
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gram. We will instead demonstrate its feasibility for tw
different systems with different characteristics and at tw
different energies. For completeness, in Secs. II A and II
brief reviews are given of the Wigner transforms for theK
model and of the inversion scheme used.

A. The K model

In the K-model approximation to the RGM nonlocality
recoil effects are neglected and only direct and knock-
exchange effects are taken into account. Using a lo
nucleon-nucleon potential of the form

Vi j52V0exp~2kr i j
2 !~w2mPi j

sPi j
t 1bPi j

s 2hPi j
t !

2
1

2\
Vlexp~2lr i j

2 !~s i1s j !•~r i2r j !3~pi2pj !,

~5!

whereink andl are inverse square ranges andPi j
x are the

usual spin and isospin projection operators, the result
K-model nonlocal interaction consists of three terms: the
rect termVD(R), the exchange termVex(r ,r 8), and the spin-
orbit termVSO(R). The expressions for the nonlocal kerne
for the systems under consideration are given in Ref.@3#.
Here we note that their Wigner transforms are defined by

VW@R,p~R!#[E dsexp~ is–p/\!VexSR2
1

2
s,R1

1

2
sD

~6!

and are derived as outlined in the Appendix of Ref.@12#. In
our applications, Eq.~6! has been used with the exchang
potentials obtained from theK model and for which the
Wigner transform takes the formVW(R2,p2). For the two
cases of interest, the results are given next.

For then2a system, the various terms resulting from us
of theK model are

VD~R!52V0g~4w2m22b22h!expS 2
ak

a1k
R2D ,

~7!

VW~R2,q2!52V0b~2w14m22b12h!

3expS 2aR22
q2

B D , ~8!

and

VSO~R!522Jla5/2exp~2aR2!, ~9!

whereq25p2/\2. For then240Ca scattering, theK model
yields @5#
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VD~R!52V0g~4w2m12b22h!F521
15a2

2~a1k!2

1
10a2k2

~a1k!3
R21

2a2k4

~a1k!4
R4GexpS 2

ak

a1k
R2D ,

~10!

VW~R2,q2!52V0b~2w14m22b12h!

3expS 2aR22
q2

4BD
3H 521aS 2

3

2B
1

q2

~2B!2D
12a2F S 2

3

8B
1R21

q2

~4B!2D
2

2S 23

2~4B!2
1

q2

4~2B!3D G J ,
and

VSO~R!522Jla5/2~2a2R424aR225/2!exp~2aR2!.
~11!

The parametera is the RGM oscillator parameter
g5@a/(a1k)#3/2, b5(a/B)3/2, and B5a14k. The pa-
rameterJl5Vll3/2 is derived on the basis of the zero-rang
approximation for the spin-orbit force and is determined ph
nomenologically. Note that as the Wigner transforms f
both systems do not depend on the productq•R, the corre-
sponding equivalent local potentials will bel independent.

B. The inversion scheme

To construct the inversion potentialVI(E,R) from the
phase shifts we employ the fixed-energy inversion scheme
Lipperheide and Fiedeldey@13#. In this scheme the Schro¨-
dinger equation for a complex angular momentuml is writ-
ten as

F d2
dr2

2
l22 1

4

r 2
2U~r !Gu~l,k;r !50 , ~12!

whereU(r )52m/\2V(r ), V(r ) is the potential, andm is the
effective mass. The associated scattering function orS func-
tion is given by

S~l,k!5
F~l,2k!

F~l,1k!
, ~13!

where the Jost functionF is related to the Jost solutions

f ~l,6k,r !r→`
→ exp~6 ikr ! ~14!

via

F~l,k!522l lim
r→0

r l21/2f ~l,k;r ! ~15!

for Rel.0. To proceed in the Lipperheide-Fiedeldey inve
sion, one chooses a particular parametrized form for theS
e
e-
or

of

r-

function such as the rational parametrization, which is sim
lar to the Bargmann class of solvable potentials at fixed a
gular momentum. A convenient representation is

Srat~l!5S~0!~l!)
n51

N
l22bn

2

l22an
2 , ~16!

where S(0)(l) represents a backgroundS function corre-
sponding to a potentialV0(r ) ~e.g., the Coulomb potential
for a charged sphere!. Other, more general, parametrizations
are the ‘‘nonrational’’ and the ‘‘mixed rational and nonra-
tional’’ schemes@14#. This rational form ofS function re-
lates to a potential

V~E,r !5VN~E,r !, ~17!

whereVN(E,r ) is obtained by the recursion formula

Vn~E,r !5Vn21~E,r !1V~n!~E,r !, n51,2, . . . ,N,
~18!

which involves the residue

V~n!~E,r !5
2i

r
~bn

22an
2!
d

dr F1r 1

Lbn
~2 !~n21!1Lan

~1 !~n21!G .
~19!

The functionsLl
(6)(n)(r ) are logarithmic derivatives of the

Jost functions behaving ase7 ikr as r→`. They satisfy a
Riccati equation

7
d

dr
Ll

~6 !~n!2@Ll
~6 !~n!#2112Vn~r !2

l22 1
4

r 2
50 .

~20!

The task then is to find a set of complex pole and zero pai
from the scattering data. One finds those by using the pha
shifts d l(k) or equivalently, theS function, as described in
the Appendix.

III. RESULTS

The K model was used to specify nonlocaln2a and
n240Ca potentials and the nucleon-nucleon potential param
eters used werew5m50.4075, b5h50.0925, and
k50.46 fm22, while the depth of the potential was taken to
beV0572.98 MeV. For then2a system the RGM oscillator
parametera was fixed ata50.685 fm22 and the spin-orbit
parameterJl was set to zero. For then240Ca system, we
useda50.253 fm22 andJl550 MeV fm5. The parameters
employed in Ref.@5# were readjusted to take into account
dispersive corrections to the optical potential. There the o
cillator parameter giving the best fit to the cross sections wa
found to bea50.231 fm22. The resulting optical potential
@5# has an energy-dependent depth stemming from the vo
ume and surface dispersive corrections. It will be seen th
the equivalent local potential obtained in this work has a
most the same depth.

The phase shifts that result by using theK-model poten-
tials, theS-function fits, and from the inversion studies are
given in Tables I–IV. It is seen that the reproductions of th
input (K-model! phase shiftsdK by theS-function parametri-
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zation (dfit) and by those obtained from the solution of th
Schrödinger equation containing the inversion potenti
(d I) are all quite good. The differences specified in colum
4 and 6 in the tables are very small except at low values
l , which is due to anl dependence of theK-model potential,
which is averaged out by ourl -independent inversion proce-
dure. As expected, the differences are most pronounced
then2a system at an incident neutron energyEn550 MeV.
In all cases considered, the phase shifts forl.7 are almost
identical.

The equivalent local potentialsVI(E,R),VL(E,R) as well
as the one obtained from the Wigner transform via Eq.~4!
@hereafter identified asVW(E,R)# for the n2a system at
En550 MeV are shown in Fig. 1. They are displayed there
by the solid, dot-dashed, and dotted curves, respectively.
most of the interaction region the potentials have simil
behavior, but they differ considerably at short distances. T
variation of the inversion potential reflects the inherentl de-
pendence of the phase shifts. In Fig. 2 the potentials
n2a scattering are shown atEn5100 MeV and it is evident
that the differences are less pronounced, a result not un
pected since the energy is relatively high for a light nucle
system.

Thes-wave wave functions obtained from the solution o

TABLE I. n2a phase shifts, in degrees, at incident neutro
energyEn550 MeV. ThedK are the input phase shifts of theK
model; thedfit is the reproduction by the parametrization of theS
function, while d I is the reproduction by the inversion potentia
VI(E,R).

l dK dfit dK2dfit d I dK2d I

0 73.987 76.231 2.244 70.873 -3.114
1 58.846 58.138 -0.708 57.922 -0.924
2 27 179 26.232 -0.947 28.018 -0.839
3 8.237 8.102 -0.135 8.587 0.350
3 2.133 2.379 0.247 2.182 0.049
4 0.490 0.635 0.165 0.495 0.005
5 0.100 0.168 0.068 0.100 0.000
6 0.018 0.370 0.022 0.018 0.000
7 0.030 0.008 0.005 0.003 0.000
8 0.000 0.001 -0.001 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000

TABLE II. Same as Table I atEn5100 MeV.

l dK dfit dK2dfit d I dK2d I

0 50.672 50.619 -0.052 49.416 -1.252
1 43.718 43.718 0.000 42.804 -0.854
2 30.234 30.187 -0.048 30.446 0.211
3 16.744 16.735 -0.010 17.218 0.474
3 7.794 7.759 -0.035 7.981 0.187
4 3.178 3.157 -0.021 3.223 0.045
5 1.160 1.145 -0.015 1.169 0.009
6 0.382 0.352 -0.031 0.384 0.002
7 0.115 0.081 -0.034 0.115 0.000
8 0.031 -0.005 -0.036 0.031 0.000
9 0.008 -0.030 -0.038 0.008 0.000
e
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the Schro¨dinger equation with the inversion potentia
VI(E,R) and with the Wigner transformVW(E,R) are shown
in Figs. 3 and 4 forEn550 MeV andEn5100 MeV, respec-
tively. The results are displayed by the solid and dash

n

l

TABLE III. Same as Table I for then240Ca system at
En5100 MeV.

l dK dfit dK2dfit d I dK2d I

0 -59.273 -57.554 1.719 -57.815 -1.458
1 -58.467 -59.608 1.140 -60.107 -1.640
2 -63.472 -63.753 -0.281 -64.647 -1.175
3 -70.696 -70.269 0.427 -71.413 -0.717
3 -79.800 -79.282 0.517 -80.358 -0.558
4 89.333 89.251 -0.082 88.566 -0.767
5 76.651 75.718 -0.933 75.444 -1.206
6 60.841 60.666 -0.175 60.045 -0.196
7 44.925 44.923 -0.002 44.925 0.000
8 30.177 30.152 -0.024 30.177 0.000
9 18.354 18.242 -0.112 18.354 0.000
10 10.303 10.177 -0.125 10.303 0.000
11 5.452 5.376 -0.076 5.452 0.000
12 2.710 2.680 -0.031 2.710 0.000
13 1.236 1.278 -0.008 1.236 0.000
14 0.504 0.503 -0.001 0.504 0.000
15 0.181 0.182 0.001 0.181 0.000
16 0.057 0.057 0.000 0.057 0.000
17 0.016 0.010 0.000 0.010 0.000
18 0.001 0.001 0.000 0.004 0.000
19 0.000 0.000 0.000 0.001 0.000
20 0.000 0.000 0.000 0.000 0.000

TABLE IV. Same as Table I for then240Ca system at
En5150 MeV.

l dK dfit dK2dfit d I dK2d I

0 -77.488 -76.618 0.870 -77.089 0.0399
1 -77.937 -78.266 -0.330 -78.525 -0.589
2 -80.900 -81.047 -0.147 -81.397 -0.497
3 -85.252 -85.246 0.006 -85.638 -0.386
3 89.063 89.097 0.036 88.756 -0.306

82.175 82.096 -0.079 81.884 -0.291
5 74.096 73.810 -0.286 73.757 -0.340
6 64.622 64.501 -0.120 64.564 -0.057
7 54.469 54.374 -0.095 54.469 0.000
8 43.946 43.873 -0.073 43.946 0.000
9 33.595 33.556 -0.039 33.595 0.000
10 24.207 24.177 -0.030 24.207 0.000
11 16.483 16.425 -0.058 16.483 0.000
12 10.618 10.546 -0.072 10.618 0.000
13 6.508 6.442 -0.066 6.508 0.000
14 3.837 3.768 -0.068 3.837 0.000
15 2.170 2.095 -0.075 2.170 0.000
16 1.152 1.083 -0.050 1.152 0.000
17 0.559 0.509 -0.050 0.559 0.000
18 0.242 0.214 -0.029 0.242 0.000
19 0.093 0.080 -0.014 0.093 0.000
20 0.032 0.026 -0.006 0.032 0.000
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curves, respectively. It is seen that the large differences
the potentials at short distances are not manifested stron
in the characteristics of the wave functions. AtEn5100
MeV the two wave functions beyondR.1.5 fm are in ex-

FIG. 1. Equivalent local potentials obtained by inversio
VI(E,R) ~solid curve!, by the Horiuchi methodVL(E,R) ~dot-
dashed curve!, and via the Wigner transformVW(E,R) ~dotted
curve!, for then2a system at an incident neutron energyEn550
MeV.

FIG. 2. Same as Fig. 1, but atEn5100 MeV.
in
gly

cellent agreement. For then240Ca system, the behavior of
the potentials and the wave functions is quantitatively an
qualitatively better than for then2a results. The potentials
are shown in Figs. 5 and 6 and the correspondingl50 wave
functions in Figs. 7 and 8 forEn5100 MeV andEn5150
MeV, respectively. ForEn5150 MeV, the potentials and the
wave functions are identical for all practical purposes.

The better quality of the results for both systems at high
energies is not unexpected and is due to the fact that
l -independent inversion scheme and the WKB approxim
tion, on which our method is based, are better justified. Wi
respect to the different systems, the overall better quality
the results for then240Ca system can be attributed to the
fact that, in that case, thel dependence of the startingK
model is weak and the quality of the WKB approximation i
better. We also note that the validity of theK model im-
proves as the mass of the target nucleus increases.

IV. CONCLUSIONS

The energy-dependent, quantal inversion scheme of L
perheide and Fiedeldey@13#, which utilizes phase shiftsd l ,

n

FIG. 3. Comparison of thes-wave wave functions obtained from
the solution of the Schro¨dinger equation with the Wigner transform
VW(E,R) ~solid curve! and with the inversion potentialVI(E,R)
~dashed curve! for the n2a system at an incident neutron energy
En550 MeV.

FIG. 4. Same as Fig. 3, but atEn5100 MeV.
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1830 54G. PANTIS AND S. A. SOFIANOS
l51,2, . . . ,N, has given local potentials in good agreeme
with those found within the WKB approximation, as th
Wigner transforms of a class of nonlocal interactions. T
interactions from the so-calledK model, a simplified version

FIG. 5. Equivalent local potentials obtained by inversio
VI(E,R) ~solid curve!, by the Horiuchi methodVL(E,R) ~dot-
dashed curve!, and via the Wigner transformVW(E,R) ~dotted
curve!, for the n140Ca system at an incident neutron energ
En5100 MeV.

FIG. 6. Same as Fig. 5, but atEn5150 MeV.
nt
e
he

of the microscopically derived RGM nonlocal potential
were used as the test cases. These interactions are a sp
class of nonlocal interactions as they are energy independ
and have Wigner transforms that arel independent. We have
chosen to use these interactions because of their simpli
despite the obvious drawback that spin-orbit effects are
eraged out and are not taken into account explicitly.

With these limitations in mind, two systems have be
studied. With these systems we have demonstrated that
method works well within the limits in which the WKB ap-
proximation and theK model are valid. The results show
good agreement of the equivalent local potentials obtain
by inversion and via the Wigner transform. The agreement
the l50 wave functions found using the two interaction
also is good.

Of course the nonlocality has not been reconstructed,
this can be done by an inverse Fourier transformation, wh
requires implementation of the scheme at a large numbe
energies, a task that is beyond the scope of this work. I
case such asn240Ca, this could be done directly from the
experimental phase shifts if they are available at a su

n

y

FIG. 7. Comparison of thes-wave wave functions obtained
from the solution of the Schro¨dinger equation with the Wigner
transformVW(E,R) ~solid curve! and with the inversion potential
VI(E,R) ~dashed curve! for then140Ca system at an incident neu
tron energyEn5100 MeV.

FIG. 8. Same as Fig. 7, but atEn5150 MeV.
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ciently large number of energies. The results could then
compared to those of theK model.
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APPENDIX: EVALUATION
OF THE PARAMETERS an AND bn

In order to evaluate the complex parametersan andbn
we rewrite theS function as

Sl5
11(m51

N Bmz
m

11(m51
N Amz

m , ~A1!

wherel5 l11/2, l50,1, . . . ,2N; Am andBm are, in gen-
eral, complex coefficients; andz51/l2. The roots of the
polynomials

11 (
m51

N

Bmz
m50 ~A2!

and

11 (
m51

N

Amz
m50 ~A3!
be

h

e-

provide us with the values ofam
22 and bn

22 , respectively.
The coefficientsAm andBn can be determined if we rewrite
Eq. ~A1! in the form

Sl (
m51

N

Amz
m2 (

m51

N

Bmz
m512Sl ~A4!

or in a matrix notation

(
k51

2N

Mlkxk5yk , ~A5!

where

xk5H Am , k5m m51,2, . . . ,N

Bm , k5N1m, m51,2, . . . ,N
~A6!

and

Mlk5H Slz
k, k51,2, . . . ,N

2zk2N, k5N11,N12, . . . ,2N.
~A7!

Furthermore,

yk512Sl , l50,1, . . . ,2N. ~A8!

Thus the task of evaluating theam andbm is reduced to the
solution of the system~A5! to obtain theBn andAm and then
to locate the roots of the polynomials~A2! and ~A3!.
.
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