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Excited halo nuclear state and long range interaction in nuclear reactions
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Based on a three-body formulation of a nuclear reaction, we show that a new type of long-range intera
can exist in the imaginary part of the effective potential for nuclear reactions if the final-state nucleus ha
excited neutron-core halo state. The existence of such a long-range interaction can lead to an enhancem
the nuclear cross section. Comparison of the new long-range effective interaction with other previously kn
ones is given.@S0556-2813~96!00310-X#

PACS number~s!: 21.45.1v, 21.30.Fe, 24.10.2i, 24.50.1g
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I. INTRODUCTION

Effective potentials play a very important role in quantu
scattering theory of many body systems as applied to ato
@1,2# and nuclear reactions@1#. In particular, theoretical deri-
vations of the properties of the effective potential such as
strength and interaction range are essential in understan
the cross sections of many of electron-atom and nuclear
actions. If the interaction range is large, a large enhancem
of the cross section may occur for some reactions.

There are some known examples of the long-range eff
tive potentials such as the electric polarization potential a
dynamic polarization potential. A long-range potential c
arise from a Coulomb interaction as an electric polarizati
potential in the real part of the effective potential in th
elastic-scattering channel at low energies@3–6#. When in-
elastic channels due to Coulomb excitation of the targ
nucleus to excited states become open at higher energie
dynamic polarization potential results from the long-ran
Coulomb potential. For the case of a quadrupole excitati
the dynamic polarization potential has an imaginary p
with an asymptotic behavior ofr25 at large distances@7#.
For nuclear fusion reactions involving charged nuclei, re
rangement or fusion is involved in the exit channel, a
hence it may be reasonable to expect that a long-range in
action may result as an imaginary part of the effective p
tential due to the long-range Coulomb potential involved
nuclear fusion reactions.

In this paper, based on a three-body formulation
nuclear reactions, we present our theoretical derivation o
new type of long-range interaction in the imaginary part
the effective potential when the final-state nucleus has
excited neutron-core halo state with a small binding ener

II. THEORETICAL FORMULATION

For simplicity, we consider nuclear reactionsC(d,d)C
andC(d,p)A where the final-state nucleusA is regarded as a
composite of neutron (n) and core~target! nucleus (C), (A
5nC). To investigate the effective potential for a multicha
nel system, we consider the three-body system with t
open channels

~1,2!13→~1,2!13
~1!
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where particle labels 1, 2, and 3 refer top, n, andC, respec-
tively, and ~1,2! and ~2,3! representd ~deuteron! and
A5(nC), respectively. We introduce the Jacobi coordinate
given by ~i , j , k, cyclic!

rW i j5rW i2rW j , rW k5rWk2
mirW i1mjrW j
mi1mj

. ~2!

For the first~elastic! channel, we define

rW5rW125rWp2rWn , rW 52rWc1
mprWp1mnrWn
mp1mn

, ~3!

and, for the second~reaction! channel, we have

rW85rW235rW 2
mp

mp1mn
rW'rW 2

1

2
rW, ~4!

rW 85rW 15
M

M1mn
rW 1

mn~mp1mn1M !

~mn1M !~mp1mn!
rW, ~5!

and

rWpc5rW135rW 1
mn

mp1mn
rW5rW 81

mn

M1mn
rW8, ~6!

whereM is the rest mass ofC.

A. The initial state

The initial state for both the first and the second channe
for reactions~1! can be written as

w i~rW,rW !5wd~rW !Fi~rW !, ~7!

wherewd(rW) is the deuteron wave function, andFi(rW ) de-
scribes relative motion betweend andC in the presence of
the Coulomb interaction,

S 2
\2

2m i
Dr2

Ze2

r DFi~rW !5EiFi~rW !. ~8!

The reduced massm i is given by
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m i5
~mp1mn!M

mp1mn1M
, ~9!

andEi is related to the total energyE by

E5Ei1Ed , ~10!

whereEd is the deuteron binding energy.

B. The final state

The final statec f(rW8,rW 8) in the second channel satisfie
the Schro¨edinger equation

Hc f5Ec f , ~11!

where the Hamiltonian forc f(rW8,rW 8) is given by

H5H0~rW 8!1h1Vc~rW13!1Vs, ~12!

whereVc is the Coulomb potential,Vs is a sum of pair-wise
strong-interaction potentials,H0(rW 1) is the kinetic-energy
operator of 1~proton! relative to (2,3)5(nC), andh is the
Hamiltonian of the (nC) subsystem

hfn~rW8!5«nfn~rW8!, ~13!

with E5Ef1«0 . For low energies, we can expan
c f(rW8,rW 8) in terms offn(rW8) as

c f~rW8,rW 8!5 (
n50

wn~rW8!Fn~rW 8!, ~14!

wherewn(rW) is the solution of Eq.~13!, i.e.,

F2
\2

2m
D r 81VnC

s ~rW8!Gwn~rW8!5«nwn~rW8!, ~15!

with m5mnM /(mn1M ), andFn(r) is the solution of

FE2«n1
\2

2m f
Dr82Vnn

s ~r8!2
Ze2

r8 GFn~r8!

2 (
mÞn

Vnm
s ~rW 8!Fm~rW 8!2 (

nÞm
Vnm
c ~rW 8!Fm~rW 8!50, ~16!

with

Vnm
s ~rW 8!5^wnuVpn

s 1Vpc
s uwm&, ~17!

and

Vnm
c ~rW 8!5 K wnUVpc

c 2
Ze2

r8
UwmL . ~18!

Z is the charge ofC andm f is the reduced mass given by

m f5
~mn1M !mp

~mn1M !1mp
. ~19!
s

d

To separatenÞ0 contribution, we rewrite Eq.~16! for the
n50 case as

F2~E2«0!2
\2

2m f
Dr81V00

s ~rW 8!1
Ze2

r8 GF0~rW 8!

1 (
mÞn

V0m
s ~rW 8!Fm~rW 8!1 (

mÞ0
V0m
c ~rW 8!Fm~rW 8!50, ~20!

and, fornÞ0,

F2~E2«n!2
\2

2m f
Dr81

Ze2

r8 GFn~rW 8!1Vn0
s ~rW 8!F0~rW 8!

1 (
mÞ0

Vnm
s ~rW 8!Fm~rW 8!1Vn0

c ~rW 8!F0~rW 8!

1 (
mÞ0

Vnm
c ~rW 8!Fm~rW 8!50. ~21!

For larger8 the expansion ofVn0
c (r8) in terms of the recip-

rocal powers ofr8 begins with (r8)2l 21, where l is the
angular momentum characterizing the staten ~where l 50,
Vn0

c falls exponentially!, and hence the leading term on the
left-hand side of Eq.~21! yields for larger8

SE2«n1
\2

2m f
Dr8DFn~r8!2Vn0

c F0~r8!50, ~22!

with

Vn0
c ~r8!;

1

r8l 11 . ~23!

In Eq. ~22!, the asymptotic form ofF0(r) is given by

F0~r8!;sin~k0r82h ln2k0r81d0
c1d0

s!, ~24!

wherek05A2m f(E2«0)/\
2, h51/2k0Rf , Rf5\2/2m fZe

2,
d 0
c is the Coulomb phase, andd 0

s is the strong-interaction
phase shift. Using Eq.~24!, we can obtain from Eq.~22! the
following result:

Fn~r8!;2
Vn0
c ~r8!F0~r8!

«n2«0
~25!

for r8→` which is a well-known result~see, for example,
@2#!. For the case of larger 8 andr8 whenEn,«n , we obtain
from Eq. ~14! the leading term ofc f(rW8,rW 8) as

c f~rW8,rW 8!;2
wn~rW8!Vn0

c ~rW 8!F0~r8!

«n2«0
. ~26!

When the final-state nucleus (nC) has ap-wave excited state
wn , Eq. ~26! can be written as

c f~rW8,rW 8!;2gn

1

~r8!2
wn~r 8!@Y1~ r̂ 8!3Y1~ r̂8!#00F0~r8!,

~27!

where
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@Yl 1~ â!3Yl 2~ b̂!#LM5 (
m1 ,m2

Cl1m1 ,l 2m2

LM Yl 1m1
~ â!Yl 2m2

~ b̂!,

andYl m are the spherical harmonics andCl 1m1 ,l 2m2

LM are the

Clebsh-Gordan coefficients. A detailed derivation ofgn is
given in Appendix A.

C. T matrix and cross section

The T matrix for the second channelC(d,p)A
[A5(nC)] of reaction~1! can be written in two equivalent
forms @1#:

Tf i5^c f
~2 !uW1uw i&5^f f uW2uc i

~1 !&, ~28!

where

W15Vpc
s 1Vnc

s 1Vpc
c 2

Ze2

r
, ~29!

and

W25Vpn
s 1Vpc

s 1Vpc
c 2

Ze2

r8
. ~30!

c i , f
(6) andf i , f

(6) are related by

uc i , f
~6 !&5 lim

«→0
6 i«

1

E2H6 i«
uf i , f

~6 !&, ~31!

whereH is the total Hamiltonian.
TheT matrix given by Eq.~28! can be written as

Tf i5E c f
~2 !~rW,rW !W1~rW,rW !wd~rW !Fi~rW !drW drW , ~32!

which can be rewritten as

Tf i5E g~rW 8!Fi~rW 8!drW , ~33!

where

g~rW !5E c f
~2 !~rW8,rW 8!W1~rW,rW !wd~rW !drW. ~34!

SinceW1;(V pc
c 2Ze2/r) for larger, and

SVpc
c 2

Ze2

r D;Ze2
2

3
p

1

r2
r @Y1~ r̂ !3Y1~ r̂ !#001••• ,

~35!

for r.r , we obtain from Eq.~34!

g~rW !;lF̃0~r!wn~r!
1

r4
, ~36!
whereF̃0(r);cos(k0r2h ln2k0r1d 0
c1d 0

s) for larger, and
wn(r) is the p-wave excited-state wave function@see Eq.
~A5! in Appendix A#. Equation~36! shows that, if the bind-
ing energy of thep-wave bound state is small,g(r) has a
long interaction range, i.e.,

g~rW !;l cos~k0r2h ln2k0r1d0
c1d0

s!•
1

r5
. ~37!

Since the cross section is proportional touTf i u
2, we have

s}U E Fi~r!g~r!drU2. ~38!

Using the optical theorem, we can write, for orbital momen
tum l 50,

Imf5
k

4p
~se1s!, ~39!

where f is the elastic nuclear scattering amplitude,se is the
elastic cross section, ands is the reaction cross section. Us-
ing low-energy relationsse;e24ph/k2 and s;e22ph/k2,
we obtain Imf'(k/4p)s. In terms of the effective two-body
t matrix, T, the elastic amplitudef can be written as

f}^Fi uTuFi&,

and hences as

s}^Fi uImTuFi&. ~40!

The above formula and Eq.~38! for s show that the imagi-
nary part of the elastic effective two-bodyt matrix,T(r ,r 8),
in the coordinate representation, is separable, i.e.,

ImT~r ,r 8!;g~r !g~r 8!. ~41!

Since T(r ,r 8) is the solution of the Lippmann-Schwinger
equation, we can prove that~i! for the case of very low
energies, the imaginary part of the effective two-body elast
T matrix is separable, and hence the imaginary part of t
effective~optical! potential is also separable, and~ii ! for the
case in which we have an excitedp-wave ‘‘halo’’ state as a
closed channel in the final state,g(r ) has the asymptotic
behavior, Eqs.~36! and ~37! ~see Appendix B for a detailed
derivation ofl!.

III. HALO NUCLEAR STATES

There are many known examples of one-neutron and tw
neutron halo nuclei. We describe below some known e
amples of one-neutron (nC) and one-proton (pC) halo nu-
clei.

Halo nuclei@8#, i.e., loosely bound systems whose wav
functions will spread out to distances far away from th
binding potential@9#, are by now well established on the
neutron drip line@10,11#. Reference@9# gives several ex-
amples of halo states in light nuclei:11Be, 11Be* , 17F,
17F* , 21Na* , and 25Ne* . The excitation energyEx ~in MeV,
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with respect to the ground state,Ex50!, separation energy
Es ~in keV!, configuration~for Es!, partial wavel of the
state, and the rms~in fm, ^r 2&1/2) for these halo nuclei are
~Ex , Es , configuration, l , ^r &1/2!511Be@0~g.s.!, 503,
n110Be, 0, 5.90 or 6.58#, 11Be* ~0.32, 183,n110Be, 1,
5.35!, 17F @0~g.s.!, 600, p116O, 2, 3.9#, 17F* ~0.5, 105,
p116O, 0, 4.4 or 5.74!, 21Na* ~2.42, 7,p120Ne, 0, 4.25 or
5.65!, and 25Ne* ~4.07, 90,n124Ne, 2, 5.26!, respectively
@8#. Note that a halo nucleus may exist as an excited st
The ground-state halo nuclei such as11Be~g.s.) are of course
better documented than excited halo states. One interes
question is how a halo structure depends on value of
angular momentum. Riisageret al. @10# investigated the be-
havior of the momentŝr n& of the wave function as the neu
tron separation energy decreases towards zero and found
moment to be finite providedn,~2l 21!. Therefore if a halo
is defined as divergent second moment ofr as a function of
separation energy, then this occurs only fors and p states.
Similar observations have been made by Sagawa@12#, who
notes that states withl .1 are not likely to form a halo.

At present, we cannot prove nor rule out theoretically t
existence of such one-neutron halo excited states for hea
nuclei. Therefore, it is important to investigate both theore
cally and experimentally possible existence of halo excit
states in both light and heavy nuclei.

IV. COMPARISON WITH OTHER LONG-RANGE
INTERACTIONS

The new long-range interaction, given by Eq.~36!, in the
imaginary part of the effective potential is similar to the d
namical polarization potential which has an imaginary p
with an asymptotic behavior ofr25 at large distances@7#,
which originates from a different mechanism involving Co
lomb excitation of the target nucleus.

The interaction range of the imaginary part of the effe
tive potential in the elastic channel for nuclear fusion rea
tions at low energies has not been investigated extensiv
although there are some well-known examples of the r
part of the effective potential with a long finite interactio
range. One example is the polarization potential,Vpol, due to
electric polarizability of the target.

The effective potentialV for scattering of a charged pro
jectile from a target with an extended charge distribution c
be written as

V5VS1VC1Vpol, ~42!

whereVC andVS are Coulomb and strong interactions, r
spectively. The polarization potential in the adiabatic a
proximation is given forr@RB by

Vpol~r !'
aee

2

2RBr
4 , ~43!

whereae is the electric polarizability of the target andRB is
the Bohr radius of the target plus the projectil
RB5\2/(2mZaZbe

2). If we denote theS factor, S, corre-
sponding to the case of no polarization potential~Vpol50,
ate.

ting
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andV5VS1VC! and the polarizationS factor, Sp , for the
case includingVpol~V5VS1VC1Vpol!, perturbation calcula-
tions @3–6# yield uSp/S21u,1023, and show thatVpol has
negligible effects for fusion reactions involved in stellar nu
cleosynthesis. Even thoughVpol has a long range, it is the
real part of the effective potential, and hence it does n
contribute to the enhancement of the reaction cross sec
which is due to a finite-range interaction in the imagina
part of the effective potential.

Using the observed value of the deuteron polarizati
ã5ae/RB50.63 fm3 @13#, we can show thatVpol(RB)'10
eV. To obtain an upper bound ofuSp/S21u, we can use the
following expression:

USp~E!

S~E!
21U,uexp„2p$h@E1Vpol~RB!#2h~E!%…21u.

~44!

For the d1d reaction with E52 keV, Eq. ~44! yields
uSp(E)/S(E)21u,1022. In laboratory beam experiments
the electron screening effect needs to be taken into acco
using the screening energy, which is larger th
Vpol(RB)'10 eV. Therefore, the effect of the polarizatio
potential may be negligible for low-energy fusion reaction
This example shows that the contribution of the real part
the nonlocal effective potential to the reaction cross sect
behaves drastically different from that of the imaginary pa
of the effective potential.

V. SUMMARY AND CONCLUSIONS

Using a rigorous derivation, we have shown that a ne
type of finite long-range interaction exists in the imagina
part of the effective nuclear interaction in the elastic chann
~ENIEC! for a nuclear reaction if an excited halo nuc
lear state exists in one of the final-state nuclei. We ha
obtained a separable form factor for the imaginary p
of ENIEC which at large distances behaves
cos(k0r2h ln2k0r1d 0

c1d 0
s)wn(r)/r

4 @see Eq. ~36!#,
wherek0 , h, d, andwn(r) are the final-state wave numbe
the Sommerfeld parameter, the phase shift, and the w
function for the excitedp-wave halo nuclear state, respec
tively. This new finite long-range interaction and can lead
a large enhancement of the reaction cross section at low
ergies.

APPENDIX A

In this appendix, we give a detailed derivation ofgn in
Eq. ~27! which will be used to our estimate forl in Eq. ~36!.
We start with

Vn0
c ~r8!5 K wnUVpc

c 2
Ze2

r8
Uw i L

5E wn~r 8!Ṽ~r 8,r8!w0~r 8!dr8, ~A1!

where~for p wave!
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Ṽ~r8,r8!52
Ze2

A3 H 1

r8 S mn

mn1M D S r 8r8D , r8.
mn

mn1M
r 8,

1

r 8 Smn1M

mn
D 2S r8

r 8 D , r8,
mn

mn1M
r 8.

~A2!
Using Eqs.~A1! and~A2!, it is straightforward to show that,
for r8→`,

Vn0
c ~r8!'2

Ze2

A3r82
mn

mn1M E
0

`

w0~r 8!wn~r 8!r 8dr8,

~A3!

where

w0~r !'
A

r c
1/2 e

2kr , r.r c , A5A2kr c, ~A4!

wn~r !'S Nr cD
1/2S 11

1

br De2br , r.r c , ~A5!

k5A2m
u«0u
\2 , b5A2m

u«nu
\2 ,

andr c is the nuclear interaction radius. Ifb is smaller thank
~b,k! andN'b2r c

2, one can write to a very good approxi
mation

E
0

`

w0~r 8!wn~r 8!r 8dr8'
A

k
. ~A6!

Combining Eqs.~A6! and ~A3! with Eq. ~27!, we obtain

gn'2
Ze2

A3
mn

mn1M SAk D 1

«n2«0
. ~A7!

APPENDIX B

In this appendix, we give an estimate ofl in Eq. ~36!.
From Eqs.~27! and ~34! we have for larger

g~r!5E c f
~2 !~rW8,rW 8!W1~rW,rW !wd~r !drW dr̂

'2
2

3
p
Ze2

r2
gnE F0~r8!

r82
wn~r 8!@Y1~ r̂ 8!3Y1~ r̂8!#00

3@Y1~ r̂ !3Y1~ r̂ !#00wd~r !r 3dr dr̂ dr̂, ~B1!

where
-

wd~r !'Ne2kdr , ~B2!

with

N2'
kd
3

p
, kd5A2mpnEd

\2 . ~B3!

Using the expansion ofF0(r8) valid for r.1/2r ,

F0~r8!'F0S UrW 1
1

2
rWU D

'F0~r!1
2p

A3
k0rF̃ 0~r!@Y1~ r̂ !Y1~ r̂ !#001••• ,

~B4!

we obtain formn/M,1 andr→`

g~r!'lF̃0~r!wn~r!•
1

r4
, ~B5!

where

l'2
8Ze2gnk0Akdp

kd
4 . ~B6!

If b is extremely small, we can rewrite Eq.~B5! as

g~r!'lAr cF̃0~r!•
1

r5
, ~B7!

whereF0(r) in Eqs.~B4!, ~B5!, and~B7! has the asymptotic
form ~for larger! given by

F̃0~r!'cos~k0r2h ln2k0r1d0
c1d0

s!. ~B8!
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