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Excited halo nuclear state and long range interaction in nuclear reactions
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Based on a three-body formulation of a nuclear reaction, we show that a new type of long-range interaction
can exist in the imaginary part of the effective potential for nuclear reactions if the final-state nucleus has an
excited neutron-core halo state. The existence of such a long-range interaction can lead to an enhancement of
the nuclear cross section. Comparison of the new long-range effective interaction with other previously known
ones is given[S0556-281®6)00310-X|

PACS numbses): 21.45+v, 21.30.Fe, 24.16:i, 24.50+9

I. INTRODUCTION —1+(2,3),

Effective potentials play a very important role in quantumwhere particle labels 1, 2, and 3 refergpn, andC, respec-
scattering theory of many body systems as applied to atomitively, and (1,2) and (2,3) representd (deuteron and
[1,2] and nuclear reactiord]. In particular, theoretical deri- A= (nC), respectively. We introduce the Jacobi coordinates
vations of the properties of the effective potential such as thgiven by (i, j, k, cyclic)
strength and interaction range are essential in understanding
the cross sections of many of electron-atom and nuclear re- . . ..
actions. If the interaction range is large, a large enhancement M =hi=r, =l
of the cross section may occur for some reactions.

There are some known examples of the long-range effecFor the first(elastio channel, we define
tive potentials such as the electric polarization potential and
dynamic polarization potential. A long-range potential can oo R _ Mg mpiy
arise from a Coulomb interaction as an electric polarization F=le=lp e, Pl = o )
potential in the real part of the effective potential in the P
elastic-scattering channel at low energj8s-6]. When in-  and, for the secon¢teaction channel, we have
elastic channels due to Coulomb excitation of the target

miFi+ijj
mi+mj

2

nucleus to excited states become open at higher energies, a . m, 1

dynamic polarization potential results from the long-range F=la=p- T =P~ 50 4)
Coulomb potential. For the case of a quadrupole excitation, P

the dynamic polarization potential has an imaginary part M my(my+m,+M)

with an asymptotic behavior af® at large distance§7]. P =p= p TP F, (5
For nuclear fusion reactions involving charged nuclei, rear- M-+m, (My+M)(mp+my)
rangement or fusion is involved in the exit channel, and d

hence it may be reasonable to expect that a long-range inter-

action may result as an imaginary part of the effective po- m m

tential due to the long-range Coulomb potential involved in Fpe=F13=p+ — =5+ s (6)
nuclear fusion reactions. Mp+ My M+m,

In this paper, based on a three-body formulation of
nuclear reactions, we present our theoretical derivation of Y
new type of long-range interaction in the imaginary part of
the effective potential when the final-state nucleus has an A. The initial state

excited neutron-core halo state with a small binding energy. The initial state for both the first and the second channels
for reactions(1) can be written as

hereM is the rest mass df.

Il. THEORETICAL FORMULATION 0i(F15)=0g(F)F (), @

For simplicity, we consider nuclear reactiogyd,d)C
andC(d,p)A where the final-state nucledsis regarded as a
composite of neutronn) and core(targe} nucleus C), (A
=nC). To investigate the effective potential for a multichan-

where ¢4(F) is the deuteron wave function, aig(p) de-
scribes relative motion betweehandC in the presence of
the Coulomb interaction,

nel system, we consider the three-body system with two 52 762
open channels <_2_,uiA"_ T)Fi(ﬁ):EiFi(ﬁ). (8)
(1,2+3—(1,2+3 The reduced masg; is given by
()

0556-2813/96/541)/18056)/$10.00 54 1805 © 1996 The American Physical Society



1806 YEONG E. KIM AND ALEXANDER L. ZUBAREV 54
(mp+my)M To separatsn# 0 contribution, we rewrite Eq(16) for the
Mi:m, (9  n=0 case as
. h? ze?
andE; is related to the total enerdy by —(E—gg)— — Apr+V80( Nt } Fo(7')
Mt p'
E=E +Eq, (10 2 5
. . + 2, Vom(B )Fm(p')+ 2, Vom(p' )Fm(p')=0, (20
whereE, is the deuteron binding energy. om(P)F (P iy oI mip
B. The final state and, forn#0,
The final statey;(f’,p") in the second channel satisfies h2 Ze? )
the Schiedinger equation —(E—eq)— 20 Ayt 7 n(B")+Viao(p )Fo(p")
H = E ll / "/
n=Ev M 43 Ve R+ ViolF o)
where the Hamiltonian foy;(r’,p’) is given by
V(P )Fm(p’)=0. 21
H=Hy(p')+h+ V(3 + V5, (12 E PFw(p’) o

whereV° is the Coulomb potential/® is a sum of pair-wise For largep’ the expansion 0¥/ $y(p’) |n 1 terms of the recip-

strong-interaction potentialiy(p,) is the kinetic-energy

operator of 1(proton relative to (2,3} (nC), andh is the
Hamiltonian of the (C) subsystem

hn(F") =endn(r"), (13

W|th E= Ef+80
Ye(F',p") in terms of g, (') as

(751 = 2 en(

)Fn(p"), 14

where ¢, (1) is the solution of Eq(13), i.e.,

hZ
[_ﬂAr’+VﬁC(F/)}(:Dn(r,):snﬁpn(r/)l (15
with u=m,M/(m,+ M), andF,(p) is the solution of

h? ., Z€ ,
E_8n+2_Mpr’_Vnn(p )_7 Fnlp")

= 2 VarlB)Fn(5) = 2 Vin(p)Fn(5)=0, (16
with
p')= <‘Pn|vS +Vpc| Pm)s 17
and
2
Vﬁm(ﬁ/): < ®n Vpc_ 7 §0m> . (18)

Z is the charge oC and u; is the reduced mass given by

(m,+M)m,

(M +M)+my’ (19

M=

For low energies, we can expand

rocal powers ofp’ begins with p') ™~ *, where/ is the
angular momentum characterizing the state/vhere/zo,

<o falls exponentially, and hence the leading term on the
left-hand side of Eq(21) yields for largep’

ﬁZ
(E_£n+ ZMf ) n(P) VOFO(p) 0, (22

with

Vio(p')~ paRt (23

In Eq. (22), the asymptotic form oF ,(p) is given by

Fo(p')~sin(kop’ — 77 In2kop’ + 85+ 85),  (24)

whereko=2ui(E—go)/A?, 7=12%,R;, Ry=1%121;Z€?,

& is the Coulomb phase, angf is the strong-interaction
phase shift. Using Eq24), we can obtain from Eq22) the
following result:

Vgo(P’)Fo(P')
€nT&p

Fn(p’)~~— (25

for p’—o which is a well-known resultsee, for example,
[2]). For the case of large’ andp’ whenE,<e,, we obtain
from Eq. (14) the leading term ofj;(f”,p’) as

@n(F’)Vﬁo(ﬁl)Fo(P’)
en—&p '

Ye(F,p")~ (26)

When the final-state nucleua ) has ap-wave excited state
¢n, EQ.(26) can be written as

1 - -
Pe(r'.p")~ = ¥n )2 en(r)IY1(r") X Ya(p)looFolp),
(27)

where



[V, (3)XY, (b)]u= lemz Chin Y/ m (Y m (D),

andY ,, are the spherical harmonics agll"}, , . are the

Clebsh-Gordan coefficients. A detailed derivation yf is
given in Appendix A.

C. T matrix and cross section

The T matrix for the second channelC(d,p)A
[A=(nC)] of reaction(1) can be written in two equivalent
forms[1]:

Tri=( Wl @) = (be|Wol g ), (28)
where
S S C Zez
W, = V3 + Vit Vo~ e (29)
and
S S C Zez
W2=Vpn+ Vpc+ Vpc_ 7 (30)
¢{7) and ¢ (7 are related by
(%) = lim =i ; (%) 31
|¢-i,f >_S|Lno—|8 E_Hii8|¢i’f >’ ( )
whereH is the total Hamiltonian.
The T matrix given by Eq.(28) can be written as
Ti= f YT B)Wa(T,p) ea(PFi(p)dT dp, (32
which can be rewritten as
To= [ 0GR ds. (33)
where
9(p) = f PP B Wa(T,5) ea(D)AT. (34)
SinceW, ~(V §.—Z€*/p) for largep, and
. Z€ 2 1 . R
Ve~ T ~z¢ 37 ;2 rEY1(p) XY (r) oot -,
(39
for p>r, we obtain from Eq(34)
= 1
g(p)~AFo(p)en(p) et (36)
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whereF o(p) ~cosKop — 77 In2kgp+ 85+ 83) for largep, and
on(p) is the p-wave excited-state wave functidsee Eg.
(A5) in Appendix A]. Equation(36) shows that, if the bind-
ing energy of thep-wave bound state is small(p) has a
long interaction range, i.e.,

1
9(5) =\ costkop— 7 IN2kop + 85+ 83)- 5. (37
Since the cross section is proportional|Tg;|2, we have
2
T f Fi(p)g(p)dp| . (39

Using the optical theorem, we can write, for orbital momen-
tum /=0,

imf— (oot ), (39)

41

wheref is the elastic nuclear scattering amplitudg,is the
elastic cross section, andis the reaction cross section. Us-
ing low-energy relationsr,~e *"7/k? and o~e 2""/Kk?,
we obtain Inf~ (k/4m)o. In terms of the effective two-body
t matrix, T, the elastic amplitudé can be written as

foc(Fi|T|F),

and hencer as

oo (Fi[ImT|F;). (40)
The above formula and E@38) for o show that the imagi-
nary part of the elastic effective two-bodymatrix, T(r,r’),
in the coordinate representation, is separable, i.e.,

ImT(r,r")~g(r)g(r’). 41
Since T(r,r') is the solution of the Lippmann-Schwinger
equation, we can prove thai) for the case of very low
energies, the imaginary part of the effective two-body elastic
T matrix is separable, and hence the imaginary part of the
effective (optica) potential is also separable, afig) for the
case in which we have an excitpdwave “halo” state as a
closed channel in the final statg(r) has the asymptotic
behavior, Eqs(36) and(37) (see Appendix B for a detailed
derivation of\).

[ll. HALO NUCLEAR STATES

There are many known examples of one-neutron and two-
neutron halo nuclei. We describe below some known ex-
amples of one-neutromC) and one-proton{C) halo nu-
clei.

Halo nuclei[8], i.e., loosely bound systems whose wave
functions will spread out to distances far away from the
binding potential[9], are by now well established on the
neutron drip line[10,11. Reference9] gives several ex-
amples of halo states in light nuclet'Be, 'Be*, F,
TP+ 2INg*, and >>Ne*. The excitation energg, (in MeV,
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with respect to the ground staté,=0), separation energy andV=V5+VC®) and the polarizatior$ factor, Sy, for the
E, (in keV), configuration(for E,), partial wave/ of the  case including/*°(V=VS+VC+VP%) perturbation calcula-
state, and the rmén fm, (r?)"/%) for these halo nuclei are tions [3-6] yield |S,/S—1|<10"2, and show thav" has
(E,, Eg, configuration, /7, (r)¥=Beg0(g.s), 503, negligible effects for fusion reactions involved in stellar nu-
n+'%Be, 0, 5.90 or 6.5 Be*(0.32, 183,n+'%Be, 1, cleosynthesis. Even thoug® has a long range, it is the
5.35, 'F [0(g.s), 600, p+0, 2, 3.9, YF*(0.5, 105, real part of the effective potential, and hence it does not
p+1€0, 0, 4.4 or 5.74 ?Na*(2.42, 7,p+?Ne, 0, 4.25 or  contribute to the enhancement of the reaction cross section
5.69, and 2°Ne* (4.07, 90,n+2*Ne, 2, 5.26, respectively which is due to a finite-range interaction in the imaginary
[8]. Note that a halo nucleus may exist as an excited statguart of the effective potential.
The ground-state halo nuclei such@Be(g.s.) are of course Using the observed value of the deuteron polarization
better documented than excited halo states. One interestiri=a./Rg=0.63 fn? [13], we can show thaV"(Rg)~10
question is how a halo structure depends on value of theV. To obtain an upper bound ¢%,/S—1|, we can use the
angular momentum. Riisaget al. [10] investigated the be- following expression:
havior of the momentgr") of the wave function as the neu-
tron separation energy decreases towards zero and found the
moment to be finite provided<(2/—1). Therefore if a halo SE) 1‘ <|expm{7[E+Vpo(Re)1— 7(E)})—1].
is defined as divergent second moment afs a function of (44)
separation energy, then this occurs only $oand p states.
Similar observations have been made by Sage#) who ) . ]
notes that states witli>1 are not likely to form a halo. For the d+d reaction with E=2 keV, Eq. (44 yields

At present, we cannot prove nor rule out theoretically the Sp(E)/S(E)—1|<10"“. In laboratory beam experiments,
existence of such one-neutron halo excited states for heaviéf€ electron screening effect needs to be taken into account
nuclei. Therefore, it is important to investigate both theoreti-usSing ~ the screening energy, which is larger than

| — . .
cally and experimentally possible existence of halo excited”” (Re)~10 eV. Therefore, the effect of the polarization
states in both light and heavy nuclei. potential may be negligible for low-energy fusion reactions.

This example shows that the contribution of the real part of
the nonlocal effective potential to the reaction cross section
behaves drastically different from that of the imaginary part
of the effective potential.

Sp(E)

IV. COMPARISON WITH OTHER LONG-RANGE
INTERACTIONS

The new long-range interaction, given by Eg6), in the
imaginary part of the effective potential is similar to the dy- V. SUMMARY AND CONCLUSIONS
namical polarization potential which has an imaginary part ) ) o
with an asymptotic behavior af > at large distancef7], Using a rigorous derivation, we have shown that a new
which originates from a different mechanism involving Cou- type of finite long-range interaction exists in the imaginary
lomb excitation of the target nucleus. part of the effective nuclear interaction in the elastic channel
The interaction range of the imaginary part of the effec-(ENIEC) for a nuclear reaction if an excited halo nuc-
tive potential in the elastic channel for nuclear fusion reacléar state exists in one of the final-state nuclei. We have
tions at low energies has not been investigated extensivelpbtained a separable form factor for the imaginary part
although there are some well-known examples of the rea®® ENIEC which at large distances behaves as
part of the effective potential with a long finite interaction C0S&op— 77 In2kop+ 8+ 53) en(p)/p* [see Eg. (36)],
range. One example is the polarization potenti&f!, due to ~ Whereko, 7, 6, ande,(p) are the final-state wave number,
electric polarizability of the target. the Spmmerfeld parameter, the phase shift, and the wave
The effective potentiaV/ for scattering of a charged pro- function for the excitedp-wave halo nuclear state, respec-

jectile from a target with an extended charge distribution carfively. This new finite long-range interaction and can lead to
be written as a large enhancement of the reaction cross section at low en-

ergies.

V=VS+VCtyPro (42)
APPENDIX A

whereV® and VS are Coulomb and strong interactions, re-  In this appendix, we give a detailed derivation gf in
spectively. The polarization potential in the adiabatic ap-Eq.(27) which will be used to our estimate farin Eq. (36).

proximation is given for >Ry by We start with
pol aee2 c c Ze?
VPE(r)~ ZRBI"" (43 nO(p )= ®n Vpc_ 7 Pj

wherea, is the electric polarizability of the target afi} is :f ¢n(r’)V(r’,p’)¢0(r’)dr’, (A1)
the Bohr radius of the target plus the projectile,

Rg=%2/(2uZ,Zpe?). If we denote theS factor, S, corre-

sponding to the case of no polarization potent\f®=0,  where(for p wave
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1 m, r' - n )
/) ez ? mn+ M ? , P mn+ M o
V(px ) \/— 1 mn+M)2(p/> ,< mn , (AZ)
P2 Baseal B Rl r.
r m, r P m,+M
|
Using Egs.(Al) and(A2), it is straightforward to show that, eg(r)~Ne *d, (B2)

for p' —oo,
with

VC ! Ze2 mn J’Oo ! ! ’d !
no(p") B2 M Jo @o(r")@n(r)r'dr’,

3
Kq 2,LL Ed
(A3) N2~ =, kg=\ g (B3)

Using the expansion dfy(p") valid for p>1/2r,

where

A
¢O(r)~r—l,7e’“r, r>r., A=y2«r, (A4)
C

N\ 22 1.
QDn(r) ( ) 1+E eiﬁr! r>er (A5) Fo(p )NFO Er
&0l |l ~Fo )+2 KorFo(p)[Y1(F)Y1(p) oot -+
2u =, B=\/2u 57, olp \/—o olp)LY1 14P) Joo ,
h h
(B4)
andr is the nuclear interaction radius. #fis smaller than«
(,8<K) andN~ B°r 2, one can write to a very good approxi- we obtain form JM<1 andp—oo
mation
* ! ! ! ! A ~ 1
fo ol en(r)ridr’~-=. (A6) 9(P)~AFo(p)en(p) 7. (B5)
Combining Eqs(A6) and (A3) with Eq. (27), we obtain where
ze& m, (A} 1 A7
TG Mt M | k) enmeo” (AD) 822y ko kg
AN —— . (B6)
Kq
APPENDIX B
If Bis extremely small, we can rewrite E(B5) as
In this appendix, we give an estimate »fin Eq. (36).
From Egs.(27) and (34) we have for large
1
9(p)=A\rcFolp "5 (B7)

g(p)= fw( (P, )Wy(F,5) eg(r)di dp

2 zé : ,
~— =T — ynf O(p ) en(r[Y1(F )X Y1(p )]  WhereFq(p) in Egs.(B4), (B5), and(B7) has the asymptotic
3 p form (for large p) given by
X[Y1(p) X Y1(F)Jooga(r)ridr dp df, (B1)

where Fo(p)~cogkop— 7 In2kop+ 85+ 55). (B8



1810 YEONG E. KIM AND ALEXANDER L. ZUBAREV 54

[1] R. G. Newton, Scattering Theory of Waves and Particles A291, 183(1977.

(McGraw-Hill, New York, 1968. [8] P. G. Hansen and B. Jonson, Europhys. L4t409 (1987.
[2] G. F. Drukarev,The Theory of Electron-Atomic Collision [9] R. Riisager, A. S. Jensen, and P. Moller, Nucl. Ph4548,
(Academic, New York, 1966 393(1992.
[3] A. I L'vov, Few-Body Syst.2, 28 (1987. [10] P. G. Hansen, Nucl. PhyA553, 89C (1993.
[4] V. V. Levashev, Phys. Lett. B14, 443(1988. [11] I. Tanihata, Nucl. PhysA522, 275C (1992

[5] Gy. Bencze, Phys. LetR02 289 (1988. [12] H. Sagawa, Phys. Lett. B86, 7 (1992
[6]v. P, Pupyshev and O. P. Solovtsova, Int. J. Mod. Phyg, A [13] N. F. Ramsey, B. J. Malenka, and U. E. Kruse, Phys. Réy.

[7]W. G. Love, T. Terasawa, and G. R. Satchler, Nucl. Phys.



