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The exact solution of the many-body problem in the framework of the nuclear shell model with a realistic
residual Hamiltonian makes it possible to study the fragmentation of simple configurations as a function of
excitation energy and interaction strength. The analysis is performed for 839 states with quantum numbers
J"T=0"0 in a system of 12 valence particles within thd shell. Our statistics allow us to establish the
generic shape of the strength function in the region of strong mixing. For the realistic interaction, the strength
function is close to Gaussian in the central part and has exponential wings. The spreading width is larger than
predicted by the standard golden rule. At the artificially suppressed interaction strength, we recover the
Breit-Wigner shape and the golden rule for the spreading width. The transition between these regimes agrees
with theoretical considerations based on the idea of chaotic dynaf6i@556-28136)03609-9

PACS numbd(s): 21.10.Ma, 21.10.Pc, 21.60.Cs

[. INTRODUCTION plexity of the wave functions, discovering that the degree of
complexity smoothly evolves along the spectrum, being in
The shell model with semiempirical residual interactionsfact a weakly fluctuating function of excitation energy.
[1,2] is, to date, the most reliable approach to microscopicTherefore, it is possible to relate information entropy calcu-
calculations of nuclear properties. It is especially successfuhted in the shell model basis to thermodynamic entropy and
in relatively light nuclei. With the matrix elements of the to the properties of the equilibrium thermal enseniilgb].
two-body interactions fitted by the known low-lying levels, it In an energy window which includes many levels but has an
turns out to be possible to reproduce numerous observablgpproximately constant level density, the generic wave func-
guantities in thesd-shell nuclei. Supported by this success,tions “look the same”[14] which justifies the concept of
we can move to the region of higher excitation energy andstatistical equilibrium.
dense level spectrum in order to study the complicated One of the most important characteristics of the highly
nuclear states which are not accessible individually by exexcited states is given by the strength function of simple
periment. Moreover, it is tempting to extrapolate our findingsmodes. An external field, for example, of electromagnetic
to other many-body quantum systems with strong interacnature, acts by a simple one-body operator and excites, in the
tions between constituents. independent particle shell model, one-particle—one-hole
As excitation energy and level density increase, the stastates. In reality, such an excited state is a wave packet of
tionary many-body states become exceedingly complicatethany close stationary states. Each component carries a frac-
superpositions of original “simple” shell model configura- tion of the strength of the original simple mode. An experi-
tions. The only quantum numbers characterizing a givemiment with a resolution insufficient for the analysis of the
state are those of exact integrals of motion, angular momerdense fine structure spectrum displays a strength function as
tum, parity, and isospin]™T, in our case. In such a situation an envelope of the strength distribution. Using the language
we expect the new statistical regularities typical for quantunof time evolution, this is interpreted as damping of the
chaos to dominate the dynamics. As we have shown earligsimple mode[15], via its decay into complex stationary
[3-5], the signatures of quantum chaos in the level statisticstates. With reasonable statistical assumptions about the
[6—8] are seen already at weak residual interact@2—-0.3 nearest level spacing distribution and the strength distribu-
of the actual strengjhThe nearest level spacing distribution tion among the invisible fine structure states, it is possible
P(s) rapidly reaches the Wigner form. The spectral rigidity [16] to reconstruct their level densities and to recover the
A(L) follows the predictions of the Gaussian Orthogonalstrength missing in the experiment with poor resolution.
Ensemble(GOE) up to L~200 where it upbends, probably  Considering the background of fine structure states as a
due to the finite bandwidth of the original Hamiltonian ma- continuum, one would expect the exponential decay of the
trix related to the selection rules of the two-body interaction.original excitation, and, therefore, a Breit-Wigner shape for
Similar studies have been carried out for heavy atf@hss  the strength distribution as a function of the energy distance
well as for other modifications of the nuclear shell modelfrom the centroid. As known from quantum decay theory, the
[10-12. Breit-Wigner shape which has an infinite second moment
Local level statistics give the simplest signatures of chacannot be exadtl7]. However, it can be a good approxima-
otic dynamics which are not sensitive enough to reveal thdion, except maybe for the extreme wings of the distribution,
deviations from complete chaos in the structure of the manyas shown, for example, for the neutron resonances and giant
body eigenfunctions. Using the representation-dependent criesonances built on the ground stfe8]. A microscopic
teria of information entropy3,13], we quantified the com- mechanism for the coupling between the simple mode
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and its chaotic environment leading to the Breit-Wigner H=Hy+H’ (1)
strength function is explained in detail [18]. Under as-

sumptions made in this derivation, the width of the distribu-contains the diagonal configuration energdiesich includes
tion is given by the “golden rule” in terms of the mean both the single-particle and diagonal two-body contribu-
coupling matrix elements and the background level densitytions), given byH,, and the off-diagonal residual interaction
We will call this theory a “standard model.” H’. In the actual nuclear diagonalization, the integrals of

At some excitation energy, the spreading width saturateg1otion such as total angular momentud) (parity (), and
at a level determined by the original matrix elements for thesospin (T) are exactly preserved by the projection of the
coupling of the simple mode with the doorway states of thesimple shell model Slater determinants 6cheme; see be-
next degree of complexity. The saturation of the spreadingow) so that all states under consideration have the same
width is known from the thorough systematics for the iso-exact quantum numbeds'T.
baric analog resonancg¢49]. A qualitative explanation of It is convenient to include the diagonal part of the residual
this behavior, using the concepts of chaotic wave functionsinteraction into the unperturbed Hamiltonian. Its eigenfunc-
was given in[20,21]. Experimental data concerning the di- tions satisfy
pole giant resonance built on the compound stag2523
also support the saturation of the spreading width.

Thg assumptiqns of the standard model break down whep, .o E_k= He. The strict degeneracy of the pure shell
the width I obtained by the golden rule grows larger than e configurations corresponding to a single partition is
the energy intervaAE where the background level density thereby removed.
and/or the coupling matrix elements can be considered as gy he diagonalization of the full Hamiltonian matrix in-

approximately constant. The existence of this limit of cluding the off-diagonal matrix elemerit’, . we obtain the
“strong coupling” was recognized long ago by WigHe¥| eigensgtate$a) andgtheir energiek 8
and discussed in the banded random matrix md@&k The @l

deviations from the standard model are respondiB&27 Hla)=E,|a). 3)
for the narrow width of double giant resonand@8§]. The . . -
formulation of the general approach which contains the stanl N eigenstates are the complicated superpositions
dard model and the strong coupling as particular limiting
cases was presented[i29]. la)=">, CZ|k) (4)

The goal of the present paper is to study the strength K
function and the spreading width of simple nuclear configu-o¢ the pasis states. The fragmentation of basis states,
rations in the framgwork qf the_reallstlc .sh.ell model. Here We| k)=3,C¢ a), is described by the same transformation co-
are able to check_ in detail various statistical hypotheses an ficientsC2 which can be taken as real in our case of time
to trace the transition between the weak coupliaandard reversal invariance. This fragmentation is the object of our
mode) and strong coupling situations. At this stage we con- ' 9 )

sider the present work as a numerical experiment testing cu?—tUd'eS' - .
o . I g - The average characteristics of the fragmentation can be
rent theoretical ideas in realistic conditions. We start with a . : i
expressed directly in terms of the matrix elements of the

brief review of the standard model and its generalization inHamiItonian(l) For a given basis stalé), the centroid of

Sec. Il. The results for the strength function obtained in our, o L :
shell model are shown in Sec. Ill. At the realistic interactionthe strength distribution coincides with the unperturbed en-

strength, the generic shape of the strength function is close oY @),

the Gaussian in the central part. Up to high accuracy, the —

wings are exponential. The spreading width exceeds consid- > (CH%E,=Eq. )
erably the golden rule value which can be found with the ¢

help of the procedure of excluding a single basis state antthe second moment of the strength distribution is deter-
considering its coupling to the rest of the systédec. IV).  mined by the sum of all off-diagonal matrix elemefssart-
The strength function evolves as the interaction is artificiallying at a given basis statequared,

suppressed. In the weak coupling limit, we return to the do-

main of validity of the standard model and recover the Breit- 2_ 2(F _E N2 1\2

Wigner shape. Accordingly, the spreading width dependence ‘Tk—za: (COA(E,~Ep= ;k (Hi)*. (6)

on the interaction strength changes from linear to quadratic ) o )
as one proceeds from strong to weak coupling. We concludg€losely related to, but different from this, is the effective

Holk)=EWK), ®)

with summarizing our results. local bandwidthwy,
1 _
2 ’
Il. STRENGTH FUNCTION wk=0—%§k (Ex—ED*(Hg)? (7)
A. Definitions

In contrast to the GOE, the actual shell model Hamiltonian
We consider a quantal system governed by the Hamilmatrix does not couple a state with all others; the two-body
tonianH and considered in a truncated space spanned by thateraction leads to the specific selection rules which allow
finite set of the basis statelk). In this basis, which can be the matrix elements only between configurations which dif-
thought of as a traditional basis of the independent particléer in orbits of not more than two particles. This determines
shell model, the Hamiltonian the effective bandwidtt{7) and brings the matrix closer to



54 STRENGTH FUNCTIONS AND SPREADING WIDTHS PB. .. 1667

those described by the banded random matrix ensemblaeghere the amplitude€y coincide with those in Eq(4).

(BRME's) [25]. However, our many-body matrix elements Eliminating the coefficient8% with the use of the Scfiro

are determined by a much smaller number of independerfinger equation and normalizing the wave function, we ob-

two-body matrix elements and therefore cannot be considgin

ered as uncorrelated which is the case in the BRME's. The

ensembles based on two-body random interactions in a

many-body systems were discussed6tB80]. (CH2=
All the moments of the strength distribution can be found

from the strength function

2
kv
L2 Ee)
v a 14

-1
(14

The exact eigenvaluds, are the poles of the Green function
G(E)=(E—H) ! or the roots of the secular equation

FUE)=2 (CH)?S(E~E,). (8)
o V2
P kv _
As compared to the full density of states Eo— Ek—Ey E_o O (15
p(E)=2 S8(E—E,), (9 whereas the weight€l4) are the corresponding residues of

G(E). The rootq15) do not depend on the original choice of
the excluded statgk). These equations do not contain any
approximation.
The results of the standard model are based on additional
assumptions.
FL(E)=p(E){(CH)De _g. (10) (i) The bac_kgrognd spectrum i§ _dense and rigid, and so
@ one can consider instead an equidistant sequence of levels

Equation(10) assumes that the strength function is approxi-With the mean spacin@. ) .
mated by the histogram where we sum in E8). over the (if) The coupling intensitie¥}, are uncorrelated with the
eigenstates within a narrow energy bin which contains, duénergiese, of the background states and weakly fluctuate
to the high level density, many states of close degree ofround the mean valug/*).
complexity. (i) The mixing is sufficiently strong(V?)/D?>1.

Our functions are normalized according to Under these assumptions, it is easy to calculate the sums
over the intermediate statesand to obtain the strength func-
tion (10) of Breit-Wigner shape,

the strength functiori8) is frequently called the “local den-
sity of states.” It determines the contribution of the basis
state|k) to p(E) atE=E,,

dep(E)=N, JdEFk(E)=1. (12

1 I

i i i i FWE)= —m ——————, 16
HereN is the total dimension of Hilbert space. KB)=5— (E—Eg?+174 (16)
B. Standard model with the spreading width’g given by the golden rule

In the standard derivation of the strength functids3],

one singles out a staf&) which is initially removed from (V?)
the Hamiltonian matrix. The diagonalization of the remain- Is=2m—0-—. 17)
ing (N—1)X(N—1) matrix gives the intermediate “back-
ground” stategv), their eigenvalues,, and wave functions Expressiong16) and (17) are sometimes taken for granted

|9) =20 (K k). The full matrix expr(_assed in the b?SiS although they are valid under above-mentioned assumptions
(Ik).{|»)}) hasEy and intermediate energies on the main only. We note also that we use here the term “golden rule”

diagonal and off-diagonal matrix elements for the spreading widtti17) with no relation to perturbation
theory. This result is valid in the domain of validity of the
Vip=V = 2 H{(k,<k/|y> (12 standard model.
k' #k
due to the coupling between the single Stﬁté and the C. General description and strong coupling limit

background. The advantage of this approach is that the omis- As discussed in[5], the assumptions of the standard
sion of a single state cannot change significantly the statistimodel are correct as long as the resulting standard spreading
cal properties of the dense spectrum. We can expect that thgidth is relatively small.l' should be compared with the
level density of the background is the same as in the exa(énergy rangaE within which the level density and the cou-
solution including allN states. pling matrix elements can be considered as approximately
The problem of the interaction of the single state with theconstant. In the framework of the shell model, the two-body
background can be easily solved. The eigenstatpsire the interactions are capable of admixing the close configurations
combinations of gradually increasing level of complexity. They serve as
the doorway states for the further process of stochastization.
|a>=Cf|k>+z BY|»), (13) '(Ij'he do_orway states have their own s_prea(_jipg width whiqh
v etermines the energy range for effective mixing of the origi-
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nal state. The finiteness of this energy interval plays no rol@riginal state. Thus, it is proportional to the spreading width,

if I's<AE. The formal limit of AE—co corresponds to the and the self-consistent consideration of Ed.7) gives

standard model. =y, i.e., the linear dependence on the interaction strength.
As the coupling strength and the spreading width in-Beyond this point, the regime of strong coupling takes place

crease, the finite size of the doorway strength interval bewhere the saturation of the spreading width as a function of

comes important. One can estimate what happens in thisxcitation energy is expected.

limit assuming that the coupliny?Z, suddenly disappears at ~ The detailed behavior of the spreading width as a function

some finite distancd E=e,—E, from the centroidE,. A of the interaction strength depends on the explicit depen-
mean value of this interval can be inferred from the “band-dence of the level density and the coupling matrix elements
width” w,, Eq. (7). The strength distribution is then deter- ON the energy of the background states. The general theory
mined by the outer roots of the secular equatips which ~ Which incorporates this behavior as input and then predicts

are located well outside of the bandwidth at the distance the strength function and the value of the spreading width
was developed ifi29]; see alsd5]. When going from weak

— 5 2 to strong coupling, the strength function evolves from the
(Ea—Ex) :Ev Vie= 0%k, (18) Breit-Wigner form, Eq.(16), to the nonuniversal shape with
a finite second moment. The spreading witllefined as the
where the last equality follows from the definitigf), ex-  full width at half maximum(FWHM)] undergoes a transition
pression(12) for the transformed coupling matrix elements, from the quadratic dependence of the standard golden rule to
and the completeness of the set of the intermediate statéRe linear dependence, similar to our estinfa®. However,
|v) in space of dimensionN—1). the form of theory suggested |29] assumes the uniformity
Thus, the result18) allows one to give a simple estimate Of the statistical properties of all complicated states. This
assumption is not completely valid in our case because the
I'~2ay (199 wide strength functions at the realistic interaction stength
cover the regions with quite different degrees of complexity.
for the spreading width in the limit of complete mixing.  Since the specific features of the results for the shell
Written as Eq.(19), the expression for the spreading width model residual interaction should be shown below, at this
does not refer to the specific form of decrease of the couplingoint we limit ourselves with the simple interpolation for-
matrix elementsv,, as one moves away from the centroid mula for the spreading width as a function of the strength of
E,. Using the idea of similarity of complicated states in athe residual interaction,
given energy regiof29,5], we expect small variations of the
width for various statefk) in this limit. Indeed, the quantity A2
o found for the sd-shell model is roughly constant for I'= 1+yn’ (20
nearly all states.

The new and important property of the strong COUplmgForeseeing that in the region of chaotic dynamics one can

"“.“'t (19 is th?‘t the q_uadrat|c depgndence of the Spre.adm%efine a generic strength function of the basic states, we omit
width on the interaction strength is replaced by the linear

dependence. Such a prediction was first made on qualitativ?:ere the basis state label Of course, there can be fluctua-
grounds{26] in relation to the problem of the damping width tions of the spreading width from one basis state to another

. ) . one. The case of the collective state with a nongeneric
of the double giant resonances. In the harmonic approxima:

tion for the giant mode, the matrix elementg, of the cou- strength function was studied [&9]. The scale\ is defined

. . as a common factor in front of the residual off-diagonal in-

pling between the collective-phonon staték) and the com- ¢ ; ;o oy L
. . eraction H in (1); A=1 corresponds to the realistic

pound state$v) scale as\/n. Therefore, in agreement with strength
data[gS], the ra.tiolf(n)/F(l) of .the widths Qf the multiple The parametersy andy of Eq. (20) are related to the
and single excitations should mcreaggﬁ in the strong  \yeak and strong coupling limits. For the weak interaction
coupling limit (19) rather tharecn as predicted by the golden case, the comparison of Eq4.7) and(20) determines
rule (17) with the quadratic dependence on the coupling ma-
trix elements. The transition is nicely reproduced in humeri-
cal simulationg27].

To understand the underlying mechanism leading to the
linear dependence of the spreading width, one can refer to
theN scaling of the matrix elemenf81,32 occurring as one whereD, is the mean level spacing for the unperturbed sys-
proceeds to the mixed states at high excitation energy angm. The strong coupling limit determines, according to Eq.
high density. At a stage of the mixing process when a com{19),
plicated stat€4) containsN significant simple basis compo-

2w (v2(\)
’y_D_O_)\r, (21)

nents|k), the matrix element¥ between this state and one y (V3
of simple states are reduced in average by fakitot’> com- 1+y= R (22
pared to typical matrix elements between original simple 7 Doo

states. The coupling intensity/?) at this degree of complex-

ity can be estimated as*/N. The quantityND in the de- where(V?) and the mean value of the quantity(6) are
nominator of Eq.(17) gives the order of magnitude of the taken at\ =1 under the assumption that the actual value of
energy range covered by the fragmented strength of ththe interaction strength belongs to the chaotic regime.
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Ill. STRENGTH FUNCTIONS OF SHELL MODEL STATES S

A. Model 008 [ (1) (2 (3
0.06 |

The modern nuclear shell model provides an exact solu-
tion of the quantum many-body problem within a truncated
space of several nucleon configurations. The space dimen-
sions of the order of f0are easy to handle. On the other

hand, they are sufficiently large to make the results statisti- o zzz @ © ©
cally reliable. We use the Wildenthal Hamiltonigh] which =
defines the single-particle energies and the interaction be- oo
tween the valence particles by fitting more than 400 binding ooz | " ]
energies and excitation energies for théshell nuclei. In 00
008 | (7) &) 9) 4

this paper we carry out calculations exclusively for the
J"T=070 states of 12 particles above the inert core of

160. The system can be considered as a model for{Be 004 ¢ 3
nucleus in the approximation when the interaction across the 0.0z f y J ]
kUl Ll ol L s L | FURRERRY il 1y

major shells is neglected. Examples of other shell model ap- 0 o 10 10 80 —50 -30 10 10 30 50 30 10 10 30 50
plications for similar purposes can be found§i.

The 00 class containdN=839 states. They are parti-
tioned into shell model configurations according to the occu- ;5 1 The strength functions for nine individual' 0 basis

pation numbers Qf the spher_lcal orblt_$i5§)2,0d3,2, and stategk) in the middle of the spectrurthistogram vs the energy
1s,,. The calculations are carried out with tbgBASH code  gistances— E, from the centroid of the unperturbed st#, pan-
[2]. The original configurations are described in the els 1-9. The bin size is 1 MeV.

scheme. This requires, as a prerequisite for the diagonaliza- ) )
tion, the construction, with the help of the projection opera-lure of the two-body matrix elements. In contrast, the Wigner
tors, of the proper linear combinations of thiestates within semicircle level .densny is thalned for the uncorre_lated
a partition which have the desired valul&T. These super- Mmany-body matrix elements in a full or bandeabit suffi-
positions are the basis stafés of Eq. (2). As discussed in Ciently wide matrix. , ,

[5], the projection procedure already creates fairly complex Ve refer the reader to the review papf for a detailed
nondeterminantal states which still have very close bare erstudy Of the chaotic properties of the'0 states. The local
ergiesE_k. level statisticdthe nearest level spacing distribution and the

There are 63 independent two-body interaction matrix el_spectr_al rigidi_ty display an onset of ghaos alrea_ldy for the
ements which define all many-body matrix elements. Theweak |nteract|on?\~Q.2. The complexity O.f the eigenstates.
: haend related localization length measured in the original basis
continues to regularly evolve beyond this point. This mani-
fests the greater sensitivity of the wave functions to the de-
viations from the chaotic limit. Below we concentrate on the
structure of the individual eigenstates which will allow us to

extract the generic strength function.

0.06 [ ]

E - Ek(MeV)

GOE or BRME's. The global properties of the mixing inter-
action are seefb] by inspection of the matrixl’ prior to the
actual diagonalization. The second momenpt Eq. (6), and
the effective bandwidthw,, Eq. (7), both stay essentially
constant for the majority of the statée. Their fluctuations
are presumably of statistical character. The mean values of
these quantities for the '@ states arec~10 MeV and
w=~8 MeV. The constancy af, is one of the manifestations One of the main conclusions of the analysis giveri5h
of the N scaling[31,32: As the mixing proceeds involving was that of the similarity of individual wave functions in the
the increasing numbeX of fine structure states, each cou- chaotic region, in accordance with Percival's conjecfdr.
pling matrix element diminishes1/\N, keeping the surt6) ~ The degree of complexity of the eigenstates, measured by
constant. The same phenomenon is responsible for the satirformation entropy and/or by the moments of the distribu-
ration of the damping width of giant resonan¢@8,23 and  tion function of the amplitude€; was found to saturate in
isobaric analog resonancgz0,21]. the central part of the spectrum. The average properties of
The direct diagonalization of the Hamiltonian matrix re- the eigenstates with approximately the same degree of com-
sults in the energieg,, of the eigenstatelsr) and their wave  plexity can be related to thermodynamical entropy and tem-
functions expressed as the superpositiofisof the basis perature of the equilibrium thermal ensemijig]. These
states. The level densit{) has a Gaussian shape with the properties can be extracted by averaging out the fluctuations.
variance which is equal t@rg=8 MeV without the off- We expect that the closely related problem of the frag-
diagonal interactionA =0). The variance broadens up to mentation of the basis states over the eigenstates can be
oe=13 MeV atA=1. The mean level spacings near thesolved similarly. Figure 1 shows the “empirical” strength
middle of the spectrum a®,=24 keV andD =40 keV for  functionsF,(E), Eq. (10), for nine basis statelk) with the
A=0 and\=1, respectively. It is knowr{6,33] that the centroidsE, located in the middle of the spectrum. The his-
Gaussian shape occurs mainly due to combinatorial reasomsgrams obtained with the bin size of 1 MeV are plotted as a
for the two-body interaction in the many-body system, irre-function of the energy distance from the corresponding cen-
spective of the random or determinist@s in our casena-  troid. Taking the basis states in this high-density mid-energy

B. Shape of the strength function
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- ] a 0.003 - =
002 [ — [ 0.002 =
L N 0.001 = 3
0.0 - .
C ] 00 E =
oos [ © - ~ FE @ 3
g 1 B SE E
0w - . = E
L i =] -5 =
00 | N g -8
C ] - 7
B ] -8 E L v b e by by by
0.04 — —
3 . -50 -40 -30 -20 -10 0 10 20 30 40 50
00z | - E — E, Mev)
00 Lo ] FIG. 4. The Gaussian fisolid lineg to the strength function of
-50 50 Fig. 2(c) (histogram¥ panel(a), and the same fit on the logarithmic
E — E,(Mev) scale, panelb). The bin size is 100 keV.

FIG. 2. The strength function averaged over 10, 100, and 40&urve does not fit particu]arly well in any regi(ﬁﬁig. 3a)]. '
0*0 states in the middle of the spectrum, pan@s-(c), respec-  Our attempt, Fig. @), to fit only the central region results in
tively. The bin size is 1 MeV. an extremely poor fit to the tails, Fig(8. Together with the

width exceeding the quantity, this means that the strong

region as members of a statistical ensemble, we superimposeupling case is closer to reality for the states in the middle
their strength functions in order to reduce the statistical flucof the spectrum at the actual interaction strength.
tuations and produce a smooth, “generic” strength function. The overall Gaussian fit, Fig.(&, is better. With the
In Fig. 2 this averaging, with the same bin size, is performedariance obtained from the Gaussian di,=8.9=0.7 MeV,
over 10, 100, and 400 basis states, pa&as (b), and (c), the typical spreading widt{FWHM) of the central 00
respectively. states equalk = (8In2)"?c=21 MeV. This agrees with the

The resulting strength function is already very smooth aestimate(19), I'=20=20 MeV, made for the strong cou-
the step(b). The wings of the curve are decreasing muchpling limit. We again observe deviations from the Gaussian
faster than expected for the Breit-Wigner distributidr®). shape in the tails of the strength function, Figh)4
For the detailed fit we use the histograms with the finer bin Because of the breakdown of both the Gaussian and the
size of 100 keV. Figure 3 demonstrates that the Breit-WigneBreit-Wigner fits for the tails of the strength function, it be-
comes necessary to examine both the central region and the
tails of the distribution more closely. According to H40),
the strength function histograms actually involve two factors,
the average valugC{)?) of the eigenfunction components
corresponding to the basis stdte) and the level density
p(E). The level density itself is describg¢8] by the Gauss-
ian curve of Fig. 5. This is typicdb] for many-body systems
with two-body interactions in the finite Hilbert space. The
level density effects dominate the central part of the strength
function. Eliminating the level density from the strength
function, we come to the “pure” weight functiof(Cy)?) of
Fig. 6.

We see that the Breit-Wigner shape that fits poorly to the
strength functionFig. 3(@)] is noticeably improved in the

0.005

0.004

0.003

0.002

0.001

F(E)

o

[=]

f=

W
||||||||1I||I]|||HI| III|IIII|IIH|II|||HII II|I|IIIIIII||!|||||||||
|II||||I|!|||||||| I|||IIII|IIII|HII|IIII IIII|lIII|IIH|I|lI|I|II

N central region for the pure weight function of Figab The
;Za -4 tail of the weight distribution on a logarithmic scale shows a
- ° linear behavior, Fig. ®). It is clear from Fig. 7, especially
2 :s A from the logarithmic plot of Fig. (b), that such an exponen-
s E tial fit does, in fact, represent the tails of the strength distri-
~50 —40 -30 -20 -10 0 10 20 30 40 50 bution. The final form of this fit is
E - Ek(MeV)
— — Bk
FIG. 3. The overall Breit-Wigner fifsolid lineg to the strength F(E= Ek)wFO(EXF{ = ) : (23

function of Fig. Zc) (histogramg panel(a), to the central part of
the strength function of Fig.(2) (histogram$ panel(b), and the =~ where the energy localization length =5 MeV. Of
same fit on the logarithmic scale, parel. The bin size is 100 keV. course, the expressid3) is valid only for the tails of the
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FIG. 5. Gaussian fi(solid lines to the level densityp(E), for FIG. 7. The exponential fit of Eq23), solid lines, to the wings

the strength function averaged over 400 states, pa@elnd the  of the strength function of Fig.(2) (histogram panel(a), and the
same fit on the logarithmic scale, parie]. The bin size is 1 MeV.  same fit on the logarithmic scale, parie). The bin size is 100 keV.

distribution, E—E,)>T. The exponential behavior holds IV. SPREADING WIDTH

for at least three orders of magnitude. _ A. Two-step diagonalization and the spectral function
A strength function falling off much faster than the Breit-

Wigner distribution was also seen, with larger numerical un_shérl]l r?lrgdeerl t;a?éfexee tzﬁoimsgiwg V;’(')%tgjug (I)r;omled?vscln
certainty, in a study of atomic leve]9] where several inter- ' P P

polating formulas connecting the middle and the wings of theStep diagonalization described earlier in relation to the stan-

. A dard model. Taking out an arbitrary basis st&eand per-
curve were suggested. The ex_ponentla_l Iocallzatlon_ is th?orming the diagonalization of the remaining matrix we
part of the folklore accompanying studies of compllcatedObtain the intermediate basiskf,{|»)}) with energies

wave functiong13]. To the best of our knowledge, the gen- (Ev.{e,}) and coupling matrix elementg,.,, Eq. (12), be-

eral proof of this notion is missing. The exponential IOCal'tween the single excluded state and intermediate fine struc-

'dz.atlog Oféhe \Il.\';ve_;# nct_lons_ln r_ealr?pace IS _kng_[gn] n b ture states. As we discussed, in the realistic situation these
ISordered solias. The S|t.uat|on In this case Is different €matrix elements are correlated with the energy distance
cause the localized functions of nearly the same energy

not overlap if the distance between their centroids exceed II|(n_ eryﬁa-trrci)xcglz:fllg;etgzsvéh?ngfétggtlﬁgrfgggﬂorgr?1fot\?ee dcsot:-te
the spatial size of the wave function. In the limit of large piing : '

N, these functions do not interact, which implies level statis-| k), the spectral functiofform facto

tics of the Poisson type. In our case, the exponential wings of - _

the strength function coexist with the perfect chaotic level O(Ey Ext+ w)=z IVi,|?8(Ex—e,+ o). (29
statistics. v

This function can be presented by a histogram with the help

Lrrore T et e ] of the densityp,(e,) of the intermediate states available for
s (@ -] the mixing with the single statgk). Introducing the average
s, = . coupling intensity |V}, |?), we get, for the spectral form fac-
\;/ 0.001 - _ tor (24),

oo F : 9k(Ex, Ext )~ pi( Ext+ )(| Vi, |?). (25)
A B ® E . . . .
S - . According to Eq.(18), this function is normalized as
T F =
E : dogi(Ex,Ex+ w) =0t (26)
C T I (T NI IR NN IR N T S B

-50 —-40 -30 -20 -10 O _10 20 30 40 50
E -~ E (Mev) Using the same arguments of uniform complexity, we ex-
pect to be able to extract the “generic” spectral function
FIG. 6. Breit-Wigner fit(solid line$ to the average weight, d(®), depending on the transition frequenayonly, from
(WE)=((C&)?), for 400 states, panéh), and the same fit on the the superposition of the form factogg derived for different

logarithmic scale, panedb). The bin size is 1 MeV. original stategk).
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FIG. 9. Strength functior-,(E), panel (a), and perturbative

FIG. 8. (a) The spectral form facto averaged over 100 =
@ P 9(w) averag v resultF(E), panel(b), on a logarithmic scale. Bin size is 1 MeV.

0*0 basis states in the middle of the spectruhistograms
Gaussian fit(solid line). (b) The coupling intensityVZ,) for the . . o i
same basis staték) in the middle of the spectrurthistogram, as 1€ agreement with the original calculation in the peripheral
a function Ofw:eV_Ek; dashes correspond to the constant value"€9i0n is seen by coincidence of the two logarithmic plots.
of (V2)=0.149 Me\~.

B. Dependence on the interaction strength

As the interval of averaging increases, the average form ere e study the evolution of the strength function and
factor rapidly evolves into the Gaussian shape. The formye gpreading width as a function of the strength of the re-
factor averaged over 100 close states is shown in R@. 8 gjqyq| interaction\. As we mentioned, the level statistics
together with the Gaussian fit. The dispersion of the GausSsyeq| standard signatures of quantum chaos already at
lan is equal toog=17 MeV. The fitted normalization leads ) _q > The mixing of the wave functions, the growth of the
to the integralf dwg(w) =104 MeV< which agreegsee Ed.  gegree of complexity, and the evolution of the strength func-
(26)], with the average value af,~o~10 MeV. _ tion are parallel aspects of the stochastization process.

Dividing out the level density of the intermediate basis |, agreement with the general trends discussed in Sec. I,
states, we determine, Fig(t8, the average coupling inten- ¢ \weak interaction strength the shape of the strength func-
sity (|Viu|“), Eq. (25). Except for the excess corresponding tion pecomes closer to the Breit-Wigner one. Figure 10
to the highest and, less pronounced, lowest statesthe  cjearly shows the Breit-Wigner behavior fae=0.1,0.2, and
matrix elements are nearly constant on the Ieve|0_3’ panelga), (b), and(c), respectively. The whole evolu-

2\ i ioti i : ; . A .
(IV|?)=0.149 Me\~. This means that the realistic coupling tjon pattern is seen in the logarithmic plots of Figs. 11 and
is strong and it involves the remote parts of the spectrum

with a different level density which mainly determines the

which is less than the value of 21 MeV found directly from
the data by a factor of 2.2. The evident disagreement dem-
onstrates that the golden rule estimate based on the standard
model is not reliable when dealing with fragmentation and
spreading widths which are of the order or larger than the
scale of the change of the level density. Taking, instead of 0.02
the average level density, the significantly larger level den-
sity in the center of the spectrum~40 keV, we would get -
the golden rule width of 23 MeV, which is closer to the R L L

0.0

shape of the form factor. 02 T
The value of the average coupling strength substituted _. o5 =
into the golden rulé17) along with the average level spacing E% 01 [ 3
~100 keV would result in the spreading width~9.4 MeV B os - 3
5

|
o

0.06

0.04

Fy(E)

.III]|l||||T|I<

- III|III|II||I

-
o
o

actual value. . F ©@r-o3 E

Finally, we show in Fig. 9 that, in the intermediate basis, & °% £ E
the wings of the strength functioR,(E) can be actually = o001 [ -
calculated by perturbation theory using in EAQO) the o0 E ! 7S ! 3
weight coefficients -15 ~10 -5 0 5 10 15

E — Ek(uev)

Vi 2 FIG. 10. Breit-Wigner fit(solid lineg to the strength function
CH%)—(CY)2=| —= . (27 averaged over 400°'®M midenergy states for = 0.1, 0.2, and 0.3,
k k
panels(a), (b), and(c), respectively. The bin size is 100 keV.
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FIG. 11. Breit-Wigner fit(solid line9 to the strength function
averaged over 4000 mid-energy states for = 0.1, 0.2, and 0.3,
panels(a), (b), and(c), respectively, on a logarithmic scale. The bin

size is 100 keV.

E — EyMev)

FIG. 13. Gaussian fit to the strength function averaged over 400
0*0 mid-energy states for = 0.6, 0.8, 1.0, and 1.2, panés, (b),
(c), and(d), respectively.

12. The curve evolves in the direction of the Gaussian in the

dependence of the spreading width on the interaction

central part with exponential tails. The Breit-Wigner descrip- e oo )
tion of the main part of the strength function can be consid-Changes from quadra'uc in the weak cpuphng I|m_|t to linear
ered as satisfactory up to~0.4. In this region the narrow at strong coupling. The results are nicely described by the

C ; imple interpolation(20) with parametersgy~44.9 MeV and
strength function is not strongly influenced by the change 01S'Tp . )
the level density. As seen from Fig. 13, the quality of they~1'32' Our estimate21) and(22), using the value of the

Gaussian fit clearly improves as one goes to the strong CO%yer?ger:evel spacing at Xveak interactlb@w_Zl keV, pre-
pling limit; the last panel(d), corresponds ta =1.2. ict for these parameterg=44.6 MeV andy=1.23.

Using “empirical” generic strength functions, we can
trace the evolution of the spreading widtRWHM) as a V. CONCLUSION

function of the intensity of the residual interaction. Figure 14 1o typical strength function for stationary nuclear states
shows the results for the valuesiobetween 0 and 1.2. The a5 for the first time, extracted from the exact solution of

the many-body problem in the truncated Hilbert space of
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FIG. 12. Breit-Wigner fit(solid lineg to the strength function
averaged over 400" mid-energy states for = 0.5, 0.7, and 0.9,
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FIG. 14. Spreading widtf', of the basis states as a function of
the interaction strength for 400 middle 00 states. The solid line
panels(a), (b), and(c), respectively, on a logarithmic scale. The bin corresponds to Eq20) with y=44.9 MeV andy=1.32. The error
bars are defined by the deviations of the fit from the calculated data.
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shell model configurations. The realistic interaction strengtmied by the reduction of the spreading width and the smooth
corresponds to the strong coupling case which cannot bgansition from the linear interaction dependence characteris-
satisfactorily described by the standard model of the strengttic for the strong coupling limit to the ordinary quadratic
function. The generic shape of the compound states at higependence predicted by the golden rule. This transition is
excitation energy is close to a Gaussian but with exponentiadeen for the first time in realistic calculations.

wings. At this point we cannot explain the factor responsible  New effects will enter when the presence of real decay
for the exponential localization length. In order to better un-into continuum is taken into account. The competition of the
derstand this we should investigate the strength function eVqpernal mixing, external decay, and interaction through com-
lution along the spectrum; here, we studied the most compligy gecay channels makes the whole problem more compli-
cated states near the middle which could be considered 8804 This interplay of various mechanisms will determine

uniform in their properties including the shape and the width[he physics of compound states at high excitation energy in

of the streng_th function. . ... . stable nuclei and at lower excitation energy in weakly bound
The transition to the weak coupling case at the art|f|c|allynuclei

suppressed strength of the residual interaction shows how the
shape of the strength function regularly changes from theThe authors acknowledge support from NSF Grants Nos.
Gaussian to the “normal” Breit-Wigner. This is accompa- 94-03666 and 95-12831.
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