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The exact solution of the many-body problem in the framework of the nuclear shell model with a realistic
residual Hamiltonian makes it possible to study the fragmentation of simple configurations as a function o
excitation energy and interaction strength. The analysis is performed for 839 states with quantum numbe
JpT5010 in a system of 12 valence particles within thesd shell. Our statistics allow us to establish the
generic shape of the strength function in the region of strong mixing. For the realistic interaction, the strengt
function is close to Gaussian in the central part and has exponential wings. The spreading width is larger th
predicted by the standard golden rule. At the artificially suppressed interaction strength, we recover th
Breit-Wigner shape and the golden rule for the spreading width. The transition between these regimes agre
with theoretical considerations based on the idea of chaotic dynamics.@S0556-2813~96!03609-6#

PACS number~s!: 21.10.Ma, 21.10.Pc, 21.60.Cs
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I. INTRODUCTION

The shell model with semiempirical residual interactio
@1,2# is, to date, the most reliable approach to microsco
calculations of nuclear properties. It is especially success
in relatively light nuclei. With the matrix elements of th
two-body interactions fitted by the known low-lying levels,
turns out to be possible to reproduce numerous observa
quantities in thesd-shell nuclei. Supported by this succes
we can move to the region of higher excitation energy a
dense level spectrum in order to study the complica
nuclear states which are not accessible individually by e
periment. Moreover, it is tempting to extrapolate our findin
to other many-body quantum systems with strong inter
tions between constituents.

As excitation energy and level density increase, the s
tionary many-body states become exceedingly complica
superpositions of original ‘‘simple’’ shell model configura
tions. The only quantum numbers characterizing a giv
state are those of exact integrals of motion, angular mom
tum, parity, and isospin,JpT, in our case. In such a situation
we expect the new statistical regularities typical for quantu
chaos to dominate the dynamics. As we have shown ea
@3–5#, the signatures of quantum chaos in the level statis
@6–8# are seen already at weak residual interaction~0.2–0.3
of the actual strength!. The nearest level spacing distributio
P(s) rapidly reaches the Wigner form. The spectral rigidi
D(L) follows the predictions of the Gaussian Orthogon
Ensemble~GOE! up to L'200 where it upbends, probabl
due to the finite bandwidth of the original Hamiltonian ma
trix related to the selection rules of the two-body interactio
Similar studies have been carried out for heavy atoms@9# as
well as for other modifications of the nuclear shell mod
@10–12#.

Local level statistics give the simplest signatures of ch
otic dynamics which are not sensitive enough to reveal
deviations from complete chaos in the structure of the ma
body eigenfunctions. Using the representation-dependent
teria of information entropy@3,13#, we quantified the com-
543/96/54~4!/1665~10!/$10.00
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plexity of the wave functions, discovering that the degree o
complexity smoothly evolves along the spectrum, being i
fact a weakly fluctuating function of excitation energy.
Therefore, it is possible to relate information entropy calcu
lated in the shell model basis to thermodynamic entropy an
to the properties of the equilibrium thermal ensemble@4,5#.
In an energy window which includes many levels but has a
approximately constant level density, the generic wave fun
tions ‘‘look the same’’@14# which justifies the concept of
statistical equilibrium.

One of the most important characteristics of the highl
excited states is given by the strength function of simpl
modes. An external field, for example, of electromagneti
nature, acts by a simple one-body operator and excites, in t
independent particle shell model, one-particle–one-ho
states. In reality, such an excited state is a wave packet
many close stationary states. Each component carries a fr
tion of the strength of the original simple mode. An experi
ment with a resolution insufficient for the analysis of the
dense fine structure spectrum displays a strength function
an envelope of the strength distribution. Using the languag
of time evolution, this is interpreted as damping of the
simple mode@15#, via its decay into complex stationary
states. With reasonable statistical assumptions about t
nearest level spacing distribution and the strength distrib
tion among the invisible fine structure states, it is possib
@16# to reconstruct their level densities and to recover th
strength missing in the experiment with poor resolution.

Considering the background of fine structure states as
continuum, one would expect the exponential decay of th
original excitation, and, therefore, a Breit-Wigner shape fo
the strength distribution as a function of the energy distanc
from the centroid. As known from quantum decay theory, th
Breit-Wigner shape which has an infinite second momen
cannot be exact@17#. However, it can be a good approxima-
tion, except maybe for the extreme wings of the distribution
as shown, for example, for the neutron resonances and gia
resonances built on the ground state@18#. A microscopic
mechanism for the coupling between the simple mod
1665 © 1996 The American Physical Society
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1666 54FRAZIER, BROWN, AND ZELEVINSKY
and its chaotic environment leading to the Breit-Wign
strength function is explained in detail in@18#. Under as-
sumptions made in this derivation, the width of the distrib
tion is given by the ‘‘golden rule’’ in terms of the mean
coupling matrix elements and the background level dens
We will call this theory a ‘‘standard model.’’

At some excitation energy, the spreading width satura
at a level determined by the original matrix elements for t
coupling of the simple mode with the doorway states of t
next degree of complexity. The saturation of the spread
width is known from the thorough systematics for the is
baric analog resonances@19#. A qualitative explanation of
this behavior, using the concepts of chaotic wave functio
was given in@20,21#. Experimental data concerning the d
pole giant resonance built on the compound states@22,23#
also support the saturation of the spreading width.

The assumptions of the standard model break down w
the widthGs obtained by the golden rule grows larger tha
the energy intervalDE where the background level densit
and/or the coupling matrix elements can be considered
approximately constant. The existence of this limit
‘‘strong coupling’’ was recognized long ago by Wigner@24#
and discussed in the banded random matrix models@25#. The
deviations from the standard model are responsible@26,27#
for the narrow width of double giant resonances@28#. The
formulation of the general approach which contains the st
dard model and the strong coupling as particular limitin
cases was presented in@29#.

The goal of the present paper is to study the stren
function and the spreading width of simple nuclear config
rations in the framework of the realistic shell model. Here w
are able to check in detail various statistical hypotheses
to trace the transition between the weak coupling~standard
model! and strong coupling situations. At this stage we co
sider the present work as a numerical experiment testing c
rent theoretical ideas in realistic conditions. We start with
brief review of the standard model and its generalization
Sec. II. The results for the strength function obtained in o
shell model are shown in Sec. III. At the realistic interactio
strength, the generic shape of the strength function is clos
the Gaussian in the central part. Up to high accuracy,
wings are exponential. The spreading width exceeds con
erably the golden rule value which can be found with t
help of the procedure of excluding a single basis state a
considering its coupling to the rest of the system~Sec. IV!.
The strength function evolves as the interaction is artificia
suppressed. In the weak coupling limit, we return to the d
main of validity of the standard model and recover the Bre
Wigner shape. Accordingly, the spreading width depende
on the interaction strength changes from linear to quadra
as one proceeds from strong to weak coupling. We concl
with summarizing our results.

II. STRENGTH FUNCTION

A. Definitions

We consider a quantal system governed by the Ham
tonianH and considered in a truncated space spanned by
finite set of the basis states,uk&. In this basis, which can be
thought of as a traditional basis of the independent parti
shell model, the Hamiltonian
er
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H5H01H8 ~1!

contains the diagonal configuration energies~which includes
both the single-particle and diagonal two-body contribu
tions!, given byH0, and the off-diagonal residual interaction
H8. In the actual nuclear diagonalization, the integrals o
motion such as total angular momentum (J), parity (p), and
isospin (T) are exactly preserved by the projection of th
simple shell model Slater determinants (m scheme; see be-
low! so that all states under consideration have the sa
exact quantum numbersJpT.

It is convenient to include the diagonal part of the residu
interaction into the unperturbed Hamiltonian. Its eigenfunc
tions satisfy

H0uk&5Ēkuk&, ~2!

where Ēk5Hkk . The strict degeneracy of the pure she
model configurations corresponding to a single partition
thereby removed.

By the diagonalization of the full Hamiltonian matrix in-
cluding the off-diagonal matrix elementsHkl8 , we obtain the
eigenstatesua& and their energiesEa ,

Hua&5Eaua&. ~3!

The eigenstates are the complicated superpositions

ua&5(
k
Ck

auk& ~4!

of the basis states. The fragmentation of basis stat
uk&5(aCk

aua&, is described by the same transformation co
efficientsCk

a which can be taken as real in our case of tim
reversal invariance. This fragmentation is the object of o
studies.

The average characteristics of the fragmentation can
expressed directly in terms of the matrix elements of th
Hamiltonian~1!. For a given basis stateuk&, the centroid of
the strength distribution coincides with the unperturbed e
ergy ~2!,

(
a

~Ck
a!2Ea5Ēk . ~5!

The second moment of the strength distribution is dete
mined by the sum of all off-diagonal matrix elements~start-
ing at a given basis state! squared,

sk
2[(

a
~Ck

a!2~Ea2Ēk!
25(

lÞk
~Hkl8 !2. ~6!

Closely related to, but different from this, is the effective
local bandwidthvk ,

vk
25

1

sk
2(
lÞk

~Ēk2Ēl !
2~Hkl8 !2. ~7!

In contrast to the GOE, the actual shell model Hamiltonia
matrix does not couple a state with all others; the two-bod
interaction leads to the specific selection rules which allo
the matrix elements only between configurations which di
fer in orbits of not more than two particles. This determine
the effective bandwidth~7! and brings the matrix closer to



b-

n

f
f
y

nal

so
vels

te

ms
-

d
ons
e’’

e

d
ding

-
ely
dy
ns
as
ion.
ich
i-

54 1667STRENGTH FUNCTIONS AND SPREADING WIDTHS OF . . .
those described by the banded random matrix ensem
~BRME’s! @25#. However, our many-body matrix element
are determined by a much smaller number of independ
two-body matrix elements and therefore cannot be cons
ered as uncorrelated which is the case in the BRME’s. T
ensembles based on two-body random interactions in
many-body systems were discussed in@6,30#.

All the moments of the strength distribution can be foun
from the strength function

Fk~E!5(
a

~Ck
a!2d~E2Ea!. ~8!

As compared to the full density of states

r~E!5(
a

d~E2Ea!, ~9!

the strength function~8! is frequently called the ‘‘local den-
sity of states.’’ It determines the contribution of the bas
stateuk& to r(E) at E5Ea ,

Fk~E!5r~E!^~Ck
a!2&Ea5E . ~10!

Equation~10! assumes that the strength function is appro
mated by the histogram where we sum in Eq.~8! over the
eigenstates within a narrow energy bin which contains, d
to the high level density, many states of close degree
complexity.

Our functions are normalized according to

E dEr~E!5N, E dEFk~E!51. ~11!

HereN is the total dimension of Hilbert space.

B. Standard model

In the standard derivation of the strength function@18#,
one singles out a stateuk& which is initially removed from
the Hamiltonian matrix. The diagonalization of the remai
ing (N21)3(N21) matrix gives the intermediate ‘‘back
ground’’ statesun&, their eigenvaluesen , and wave functions
un&5(k8Þk^k8un&uk8&. The full matrix expressed in the basi
(uk&,$un&%) hasĒk and intermediate energiesen on the main
diagonal and off-diagonal matrix elements

Vkn5Vnk5 (
k8Þk

Hkk8
8 ^k8un& ~12!

due to the coupling between the single stateuk& and the
background. The advantage of this approach is that the om
sion of a single state cannot change significantly the stati
cal properties of the dense spectrum. We can expect that
level density of the background is the same as in the ex
solution including allN states.

The problem of the interaction of the single state with t
background can be easily solved. The eigenstatesua& are the
combinations

ua&5Ck
auk&1(

n
Bn

aun&, ~13!
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where the amplitudesCk
a coincide with those in Eq.~4!.

Eliminating the coefficientsBn
a with the use of the Schro¨-

dinger equation and normalizing the wave function, we o
tain

~Ck
a!25F11(

n

Vkn
2

~Ea2en!2G21

. ~14!

The exact eigenvaluesEa are the poles of the Green functio
G(E)5(E2H)21 or the roots of the secular equation

Ea2Ēk2(
n

Vkn
2

Ea2en
50, ~15!

whereas the weights~14! are the corresponding residues o
G(E). The roots~15! do not depend on the original choice o
the excluded stateuk&. These equations do not contain an
approximation.

The results of the standard model are based on additio
assumptions.

~i! The background spectrum is dense and rigid, and
one can consider instead an equidistant sequence of le
with the mean spacingD.

~ii ! The coupling intensitiesVkn
2 are uncorrelated with the

energiesen of the background states and weakly fluctua
around the mean valuêV2&.

~iii ! The mixing is sufficiently strong,̂V2&/D2.1.
Under these assumptions, it is easy to calculate the su

over the intermediate statesn and to obtain the strength func
tion ~10! of Breit-Wigner shape,

Fk~E!5
1

2p

Gs

~E2Ēk!
21Gs

2/4
, ~16!

with the spreading widthGs given by the golden rule

Gs52p
^V2&
D

. ~17!

Expressions~16! and ~17! are sometimes taken for grante
although they are valid under above-mentioned assumpti
only. We note also that we use here the term ‘‘golden rul
for the spreading width~17! with no relation to perturbation
theory. This result is valid in the domain of validity of th
standard model.

C. General description and strong coupling limit

As discussed in@5#, the assumptions of the standar
model are correct as long as the resulting standard sprea
width is relatively small.Gs should be compared with the
energy rangeDE within which the level density and the cou
pling matrix elements can be considered as approximat
constant. In the framework of the shell model, the two-bo
interactions are capable of admixing the close configuratio
of gradually increasing level of complexity. They serve
the doorway states for the further process of stochastizat
The doorway states have their own spreading width wh
determines the energy range for effective mixing of the orig
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1668 54FRAZIER, BROWN, AND ZELEVINSKY
nal state. The finiteness of this energy interval plays no r
if Gs,DE. The formal limit ofDE→` corresponds to the
standard model.

As the coupling strength and the spreading width i
crease, the finite size of the doorway strength interval
comes important. One can estimate what happens in
limit assuming that the couplingVkn

2 suddenly disappears a
some finite distanceDE5en2Ēk from the centroidĒk . A
mean value of this interval can be inferred from the ‘‘ban
width’’ vk , Eq. ~7!. The strength distribution is then dete
mined by the outer roots of the secular equation~15! which
are located well outside of the bandwidth at the distance

~Ea2Ēk!
25(

n
Vkn
2 5sk

2 , ~18!

where the last equality follows from the definition~6!, ex-
pression~12! for the transformed coupling matrix element
and the completeness of the set of the intermediate st
un& in space of dimension (N21).

Thus, the result~18! allows one to give a simple estimat

Gk'2sk ~19!

for the spreading width in the limit of complete mixing
Written as Eq.~19!, the expression for the spreading widt
does not refer to the specific form of decrease of the coupl
matrix elementsVkn as one moves away from the centro
Ēk . Using the idea of similarity of complicated states in
given energy region@29,5#, we expect small variations of the
width for various statesuk& in this limit. Indeed, the quantity
sk found for the sd-shell model is roughly constant fo
nearly all states.

The new and important property of the strong couplin
limit ~19! is that the quadratic dependence of the spread
width on the interaction strength is replaced by the line
dependence. Such a prediction was first made on qualita
grounds@26# in relation to the problem of the damping widt
of the double giant resonances. In the harmonic approxim
tion for the giant mode, the matrix elementsVkn of the cou-
pling between the collectiven-phonon stateuk& and the com-
pound statesun& scale asAn. Therefore, in agreement with
data@28#, the ratioG(n)/G(1) of the widths of the multiple
and single excitations should increase}An in the strong
coupling limit ~19! rather than}n as predicted by the golden
rule ~17! with the quadratic dependence on the coupling m
trix elements. The transition is nicely reproduced in nume
cal simulations@27#.

To understand the underlying mechanism leading to
linear dependence of the spreading width, one can refe
theN scaling of the matrix elements@31,32# occurring as one
proceeds to the mixed states at high excitation energy
high density. At a stage of the mixing process when a co
plicated state~4! containsN significant simple basis compo
nentsuk&, the matrix elementsV between this state and on
of simple states are reduced in average by factorN21/2 com-
pared to typical matrix elementsv between original simple
states. The coupling intensity^V2& at this degree of complex-
ity can be estimated asv2/N. The quantityND in the de-
nominator of Eq.~17! gives the order of magnitude of the
energy range covered by the fragmented strength of
ole
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original state. Thus, it is proportional to the spreading width
and the self-consistent consideration of Eq.~17! gives
G}v, i.e., the linear dependence on the interaction streng
Beyond this point, the regime of strong coupling takes plac
where the saturation of the spreading width as a function
excitation energy is expected.

The detailed behavior of the spreading width as a functio
of the interaction strength depends on the explicit depe
dence of the level density and the coupling matrix elemen
on the energy of the background states. The general the
which incorporates this behavior as input and then predic
the strength function and the value of the spreading wid
was developed in@29#; see also@5#. When going from weak
to strong coupling, the strength function evolves from th
Breit-Wigner form, Eq.~16!, to the nonuniversal shape with
a finite second moment. The spreading width@defined as the
full width at half maximum~FWHM!# undergoes a transition
from the quadratic dependence of the standard golden rule
the linear dependence, similar to our estimate~19!. However,
the form of theory suggested in@29# assumes the uniformity
of the statistical properties of all complicated states. Th
assumption is not completely valid in our case because t
wide strength functions at the realistic interaction steng
cover the regions with quite different degrees of complexit

Since the specific features of the results for the she
model residual interaction should be shown below, at th
point we limit ourselves with the simple interpolation for-
mula for the spreading width as a function of the strength
the residual interactionl,

G5
gl2

11yl
. ~20!

Foreseeing that in the region of chaotic dynamics one c
define a generic strength function of the basic states, we om
here the basis state labelk. Of course, there can be fluctua-
tions of the spreading width from one basis state to anoth
one. The case of the collective state with a nongene
strength function was studied in@29#. The scalel is defined
as a common factor in front of the residual off-diagonal in
teraction H8 in ~1!; l51 corresponds to the realistic
strength.

The parametersg and y of Eq. ~20! are related to the
weak and strong coupling limits. For the weak interactio
case, the comparison of Eqs.~17! and ~20! determines

g5
2p

D0

^V2~l!&
l2 , ~21!

whereD0 is the mean level spacing for the unperturbed sy
tem. The strong coupling limit determines, according to E
~19!,

11y5
g

2s̄
'

p^V2&

D0s̄
, ~22!

where ^V2& and the mean values̄ of the quantity~6! are
taken atl51 under the assumption that the actual value
the interaction strength belongs to the chaotic regime.
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III. STRENGTH FUNCTIONS OF SHELL MODEL STATES

A. Model

The modern nuclear shell model provides an exact so
tion of the quantum many-body problem within a truncat
space of several nucleon configurations. The space dim
sions of the order of 103 are easy to handle. On the othe
hand, they are sufficiently large to make the results stati
cally reliable. We use the Wildenthal Hamiltonian@1# which
defines the single-particle energies and the interaction
tween the valence particles by fitting more than 400 bindi
energies and excitation energies for thesd-shell nuclei. In
this paper we carry out calculations exclusively for th
JpT5010 states of 12 particles above the inert core
16O. The system can be considered as a model for the28Si
nucleus in the approximation when the interaction across
major shells is neglected. Examples of other shell model
plications for similar purposes can be found in@5#.

The 010 class containsN5839 states. They are parti
tioned into shell model configurations according to the occ
pation numbers of the spherical orbits 0d5/2,0d3/2, and
1s1/2. The calculations are carried out with theOXBASH code
@2#. The original configurations are described in them
scheme. This requires, as a prerequisite for the diagonal
tion, the construction, with the help of the projection oper
tors, of the proper linear combinations of them states within
a partition which have the desired valuesJpT. These super-
positions are the basis statesuk& of Eq. ~2!. As discussed in
@5#, the projection procedure already creates fairly comp
nondeterminantal states which still have very close bare
ergiesĒk .

There are 63 independent two-body interaction matrix
ements which define all many-body matrix elements. T
latter therefore cannot be considered uncorrelated as in
GOE or BRME’s. The global properties of the mixing inte
action are seen@5# by inspection of the matrixH8 prior to the
actual diagonalization. The second momentsk , Eq. ~6!, and
the effective bandwidthvk , Eq. ~7!, both stay essentially
constant for the majority of the statesuk&. Their fluctuations
are presumably of statistical character. The mean value
these quantities for the 010 states ares̄'10 MeV and
v̄'8 MeV. The constancy ofsk is one of the manifestations
of theN scaling@31,32#: As the mixing proceeds involving
the increasing numberN of fine structure states, each cou
pling matrix element diminishes}1/AN, keeping the sum~6!
constant. The same phenomenon is responsible for the s
ration of the damping width of giant resonances@22,23# and
isobaric analog resonances@20,21#.

The direct diagonalization of the Hamiltonian matrix re
sults in the energiesEa of the eigenstatesua& and their wave
functions expressed as the superpositions~4! of the basis
states. The level density~9! has a Gaussian shape with th
variance which is equal tosE

058 MeV without the off-
diagonal interaction~l50!. The variance broadens up t
sE513 MeV at l51. The mean level spacings near th
middle of the spectrum areD0524 keV andD540 keV for
l50 and l51, respectively. It is known@6,33# that the
Gaussian shape occurs mainly due to combinatorial reas
for the two-body interaction in the many-body system, irr
spective of the random or deterministic~as in our case! na-
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ture of the two-body matrix elements. In contrast, the Wigne
semicircle level density is obtained for the uncorrelate
many-body matrix elements in a full or banded~but suffi-
ciently wide! matrix.

We refer the reader to the review paper@5# for a detailed
study of the chaotic properties of the 010 states. The local
level statistics~the nearest level spacing distribution and the
spectral rigidity! display an onset of chaos already for the
weak interaction,l'0.2. The complexity of the eigenstates
and related localization length measured in the original bas
continues to regularly evolve beyond this point. This man
fests the greater sensitivity of the wave functions to the de
viations from the chaotic limit. Below we concentrate on the
structure of the individual eigenstates which will allow us to
extract the generic strength function.

B. Shape of the strength function

One of the main conclusions of the analysis given in@5#
was that of the similarity of individual wave functions in the
chaotic region, in accordance with Percival’s conjecture@14#.
The degree of complexity of the eigenstates, measured
information entropy and/or by the moments of the distribu
tion function of the amplitudesCk

a was found to saturate in
the central part of the spectrum. The average properties
the eigenstates with approximately the same degree of co
plexity can be related to thermodynamical entropy and tem
perature of the equilibrium thermal ensemble@4#. These
properties can be extracted by averaging out the fluctuation

We expect that the closely related problem of the frag
mentation of the basis states over the eigenstates can
solved similarly. Figure 1 shows the ‘‘empirical’’ strength
functionsFk(E), Eq. ~10!, for nine basis statesuk& with the
centroidsĒk located in the middle of the spectrum. The his
tograms obtained with the bin size of 1 MeV are plotted as
function of the energy distance from the corresponding ce
troid. Taking the basis states in this high-density mid-energ

FIG. 1. The strength functions for nine individual 010 basis
statesuk& in the middle of the spectrum~histograms! vs the energy
distanceE2Ēk from the centroid of the unperturbed stateuk&, pan-
els 1–9. The bin size is 1 MeV.
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1670 54FRAZIER, BROWN, AND ZELEVINSKY
region as members of a statistical ensemble, we superimp
their strength functions in order to reduce the statistical flu
tuations and produce a smooth, ‘‘generic’’ strength functio
In Fig. 2 this averaging, with the same bin size, is perform
over 10, 100, and 400 basis states, parts~a!, ~b!, and ~c!,
respectively.

The resulting strength function is already very smooth
the step~b!. The wings of the curve are decreasing mu
faster than expected for the Breit-Wigner distribution~16!.
For the detailed fit we use the histograms with the finer b
size of 100 keV. Figure 3 demonstrates that the Breit-Wign

FIG. 2. The strength function averaged over 10, 100, and 4
010 states in the middle of the spectrum, panels~a!–~c!, respec-
tively. The bin size is 1 MeV.

FIG. 3. The overall Breit-Wigner fit~solid lines! to the strength
function of Fig. 2~c! ~histograms!, panel~a!, to the central part of
the strength function of Fig. 2~c! ~histograms!, panel~b!, and the
same fit on the logarithmic scale, panel~c!. The bin size is 100 keV.
ose
c-
n.
ed

at
ch

in
er

curve does not fit particularly well in any region@Fig. 3~a!#.
Our attempt, Fig. 3~b!, to fit only the central region results in
an extremely poor fit to the tails, Fig. 3~c!. Together with the
width exceeding the quantityv̄, this means that the strong
coupling case is closer to reality for the states in the midd
of the spectrum at the actual interaction strength.

The overall Gaussian fit, Fig. 4~a!, is better. With the
variance obtained from the Gaussian fit,sF58.960.7 MeV,
the typical spreading width~FWHM! of the central 010
states equalsG5(8ln2)1/2sF521 MeV. This agrees with the
estimate~19!, G52s̄520 MeV, made for the strong cou-
pling limit. We again observe deviations from the Gaussia
shape in the tails of the strength function, Fig. 4~b!.

Because of the breakdown of both the Gaussian and
Breit-Wigner fits for the tails of the strength function, it be
comes necessary to examine both the central region and
tails of the distribution more closely. According to Eq.~10!,
the strength function histograms actually involve two factor
the average valuê(Ck

a)2& of the eigenfunction components
corresponding to the basis stateuk& and the level density
r(E). The level density itself is described@5# by the Gauss-
ian curve of Fig. 5. This is typical@6# for many-body systems
with two-body interactions in the finite Hilbert space. The
level density effects dominate the central part of the streng
function. Eliminating the level density from the strength
function, we come to the ‘‘pure’’ weight function̂(Ck

a)2& of
Fig. 6.

We see that the Breit-Wigner shape that fits poorly to th
strength function@Fig. 3~a!# is noticeably improved in the
central region for the pure weight function of Fig. 6~a!. The
tail of the weight distribution on a logarithmic scale shows
linear behavior, Fig. 6~b!. It is clear from Fig. 7, especially
from the logarithmic plot of Fig. 7~b!, that such an exponen-
tial fit does, in fact, represent the tails of the strength distr
bution. The final form of this fit is

Fk~E2Ēk!'F0expS 2
E2Ēk

El
D , ~23!

where the energy localization length isEl55 MeV. Of
course, the expression~23! is valid only for the tails of the

00

FIG. 4. The Gaussian fit~solid lines! to the strength function of
Fig. 2~c! ~histograms!, panel~a!, and the same fit on the logarithmic
scale, panel~b!. The bin size is 100 keV.
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distribution, (E2Ēk).G. The exponential behavior hold
for at least three orders of magnitude.

A strength function falling off much faster than the Brei
Wigner distribution was also seen, with larger numerical u
certainty, in a study of atomic levels@9# where several inter-
polating formulas connecting the middle and the wings of t
curve were suggested. The exponential localization is
part of the folklore accompanying studies of complicat
wave functions@13#. To the best of our knowledge, the gen
eral proof of this notion is missing. The exponential loca
ization of the wave functions in real space is known@34# in
disordered solids. The situation in this case is different b
cause the localized functions of nearly the same energy
not overlap if the distance between their centroids exce
the spatial size of the wave function. In the limit of larg
N, these functions do not interact, which implies level stat
tics of the Poisson type. In our case, the exponential wings
the strength function coexist with the perfect chaotic lev
statistics.

FIG. 5. Gaussian fit~solid lines! to the level density,r(E), for
the strength function averaged over 400 states, panel~a!, and the
same fit on the logarithmic scale, panel~b!. The bin size is 1 MeV.

FIG. 6. Breit-Wigner fit ~solid lines! to the average weight,
^Wk

a&5^(Ck
a)2&, for 400 states, panel~a!, and the same fit on the

logarithmic scale, panel~b!. The bin size is 1 MeV.
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IV. SPREADING WIDTH

A. Two-step diagonalization and the spectral function

In order to observe the spreading widths of individu
shell model states, we performed the procedure of the tw
step diagonalization described earlier in relation to the st
dard model. Taking out an arbitrary basis stateuk& and per-
forming the diagonalization of the remaining matrix w
obtain the intermediate basis (uk&,$un&%) with energies
(Ēk ,$en%) and coupling matrix elementsVkn , Eq. ~12!, be-
tween the single excluded state and intermediate fine str
ture states. As we discussed, in the realistic situation th
matrix elements are correlated with the energy distan
Ēk2en . To characterize the distribution function of the cou
pling matrix elements, we introduce, for each removed st
uk&, the spectral function~form factor!

gk~Ēk ,Ēk1v!5(
n

uVknu2d~Ēk2en1v!. ~24!

This function can be presented by a histogram with the h
of the densityr̄k(en) of the intermediate states available fo
the mixing with the single stateuk&. Introducing the average
coupling intensitŷ uVknu2&, we get, for the spectral form fac-
tor ~24!,

gk~Ēk ,Ēk1v!'r̄k~Ēk1v!^uVknu2&. ~25!

According to Eq.~18!, this function is normalized as

E dvgk~Ēk ,Ēk1v!5sk
2 . ~26!

Using the same arguments of uniform complexity, we e
pect to be able to extract the ‘‘generic’’ spectral functio
ḡ(v), depending on the transition frequencyv only, from
the superposition of the form factorsgk derived for different
original statesuk&.

FIG. 7. The exponential fit of Eq.~23!, solid lines, to the wings
of the strength function of Fig. 2~c! ~histograms!, panel~a!, and the
same fit on the logarithmic scale, panel~b!. The bin size is 100 keV.
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As the interval of averaging increases, the average fo
factor rapidly evolves into the Gaussian shape. The fo
factor averaged over 100 close states is shown in Fig. 8~a!
together with the Gaussian fit. The dispersion of the Gau
ian is equal tosg517 MeV. The fitted normalization leads
to the integral*dvḡ(v)5104 MeV2 which agrees@see Eq.
~26!#, with the average value ofsk's̄'10 MeV.

Dividing out the level density of the intermediate bas
states, we determine, Fig. 8~b!, the average coupling inten-
sity ^uVknu2&, Eq. ~25!. Except for the excess correspondin
to the highest and, less pronounced, lowest statesun&, the
matrix elements are nearly constant on the lev
^uVu2&.0.149 MeV2. This means that the realistic coupling
is strong and it involves the remote parts of the spectru
with a different level density which mainly determines th
shape of the form factor.

The value of the average coupling strength substitut
into the golden rule~17! along with the average level spacing
;100 keV would result in the spreading widthG'9.4 MeV
which is less than the value of 21 MeV found directly from
the data by a factor of 2.2. The evident disagreement de
onstrates that the golden rule estimate based on the stan
model is not reliable when dealing with fragmentation an
spreading widths which are of the order or larger than t
scale of the change of the level density. Taking, instead
the average level density, the significantly larger level de
sity in the center of the spectrum,D'40 keV, we would get
the golden rule width of 23 MeV, which is closer to the
actual value.

Finally, we show in Fig. 9 that, in the intermediate basi
the wings of the strength functionFk(E) can be actually
calculated by perturbation theory using in Eq.~10! the
weight coefficients

^~Ck
a!2&→~Ck

n!2[S Vkn

Ēk2en
D 2. ~27!

FIG. 8. ~a! The spectral form factorg(v) averaged over 100
010 basis states in the middle of the spectrum,~histograms!;
Gaussian fit~solid line!. ~b! The coupling intensitŷ Vkn

2 & for the
same basis statesuk& in the middle of the spectrum~histogram!, as
a function ofv5en2Ēk ; dashes correspond to the constant valu
of ^V2&50.149 MeV2.
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The agreement with the original calculation in the peripher
region is seen by coincidence of the two logarithmic plots

B. Dependence on the interaction strength

Here we study the evolution of the strength function an
the spreading width as a function of the strength of the r
sidual interactionl. As we mentioned, the level statistics
reveal standard signatures of quantum chaos already
l'0.2. The mixing of the wave functions, the growth of the
degree of complexity, and the evolution of the strength fun
tion are parallel aspects of the stochastization process.

In agreement with the general trends discussed in Sec.
at weak interaction strength the shape of the strength fun
tion becomes closer to the Breit-Wigner one. Figure 1
clearly shows the Breit-Wigner behavior forl50.1,0.2, and
0.3, panels~a!, ~b!, and ~c!, respectively. The whole evolu-
tion pattern is seen in the logarithmic plots of Figs. 11 an

e

FIG. 9. Strength functionFk(E), panel ~a!, and perturbative
result F̃k(E), panel~b!, on a logarithmic scale. Bin size is 1 MeV.

FIG. 10. Breit-Wigner fit~solid lines! to the strength function
averaged over 400 010 midenergy states forl 5 0.1, 0.2, and 0.3,
panels~a!, ~b!, and~c!, respectively. The bin size is 100 keV.
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12. The curve evolves in the direction of the Gaussian in
central part with exponential tails. The Breit-Wigner descri
tion of the main part of the strength function can be cons
ered as satisfactory up tol'0.4. In this region the narrow
strength function is not strongly influenced by the change
the level density. As seen from Fig. 13, the quality of th
Gaussian fit clearly improves as one goes to the strong c
pling limit; the last panel,~d!, corresponds tol51.2.

Using ‘‘empirical’’ generic strength functions, we ca
trace the evolution of the spreading width~FWHM! as a
function of the intensity of the residual interaction. Figure 1
shows the results for the values ofl between 0 and 1.2. The

FIG. 12. Breit-Wigner fit~solid lines! to the strength function
averaged over 400 010 mid-energy states forl 5 0.5, 0.7, and 0.9,
panels~a!, ~b!, and~c!, respectively, on a logarithmic scale. The bi
size is 100 keV.

FIG. 11. Breit-Wigner fit~solid lines! to the strength function
averaged over 400 010 mid-energy states forl 5 0.1, 0.2, and 0.3,
panels~a!, ~b!, and~c!, respectively, on a logarithmic scale. The bi
size is 100 keV.
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dependence of the spreading width on the interact
changes from quadratic in the weak coupling limit to line
at strong coupling. The results are nicely described by
simple interpolation~20! with parametersg'44.9 MeV and
y'1.32. Our estimates~21! and~22!, using the value of the
average level spacing at weak interactionD0'21 keV, pre-
dict for these parametersg544.6 MeV andy51.23.

V. CONCLUSION

The typical strength function for stationary nuclear stat
was, for the first time, extracted from the exact solution
the many-body problem in the truncated Hilbert space

n

FIG. 14. Spreading widthGk of the basis states as a function o
the interaction strengthl for 400 middle 010 states. The solid line
corresponds to Eq.~20! with g544.9 MeV andy51.32. The error
bars are defined by the deviations of the fit from the calculated d

n
FIG. 13. Gaussian fit to the strength function averaged over 4

010 mid-energy states forl 5 0.6, 0.8, 1.0, and 1.2, panels~a!, ~b!,
~c!, and~d!, respectively.
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shell model configurations. The realistic interaction streng
corresponds to the strong coupling case which cannot
satisfactorily described by the standard model of the stren
function. The generic shape of the compound states at h
excitation energy is close to a Gaussian but with exponen
wings. At this point we cannot explain the factor responsib
for the exponential localization length. In order to better u
derstand this we should investigate the strength function e
lution along the spectrum; here, we studied the most com
cated states near the middle which could be considered
uniform in their properties including the shape and the wid
of the strength function.

The transition to the weak coupling case at the artificia
suppressed strength of the residual interaction shows how
shape of the strength function regularly changes from
Gaussian to the ‘‘normal’’ Breit-Wigner. This is accompa
th
be
gth
igh
tial
le
n-
vo-
pli-
as
th

lly
the
the
-

nied by the reduction of the spreading width and the smoo
transition from the linear interaction dependence character
tic for the strong coupling limit to the ordinary quadratic
dependence predicted by the golden rule. This transition
seen for the first time in realistic calculations.

New effects will enter when the presence of real deca
into continuum is taken into account. The competition of th
internal mixing, external decay, and interaction through com
mon decay channels makes the whole problem more comp
cated. This interplay of various mechanisms will determin
the physics of compound states at high excitation energy
stable nuclei and at lower excitation energy in weakly boun
nuclei.

The authors acknowledge support from NSF Grants No
94-03666 and 95-12831.
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@12# S. Drożdż, S. Nishizaki, J. Speth, and J. Wambach, Phys. Re

C 49, 867 ~1994!.
@13# F.M. Izrailev, Phys. Rep.196, 299 ~1990!.
@14# I.C. Percival, J. Phys. B6, L229 ~1973!.
@15# G.F. Bertsch, P.F. Bortignon, and R.A. Broglia, Rev. Mod

Phys.55, 287 ~1985!.
@16# G. Kilgus et al., Z. Phys. A326, 41 ~1987!.
@17# P.M. Gopychet al., Sov. J. Part. Nucl.19, 338 ~1988!.
@18# A. Bohr and B. Mottelson,Nuclear Structure~Benjamin, New

York, 1969!, Vol. 1.
@19# J. Reiter and H.L. Harney, Z. Phys. A337, 121 ~1990!.
.

.

.

d

.

v.

.

@20# H.L. Harney, A. Richter, and H.A. Weidenmu¨ller, Rev. Mod.
Phys.58, 607 ~1986!.

@21# V.G. Zelevinsky and P. von Brentano, Nucl. Phys.A529, 141
~1991!.

@22# A. Braccoet al., Phys. Rev. Lett.62, 2080~1989!; G. Enders
et al., ibid. 69, 249 ~1992!; J.J. Gaardho” je, Annu. Rev. Nucl.
Part. Sci.42, 483 ~1992!.

@23# A. Braccoet al., Phys. Rev. Lett.74, 3748~1995!.
@24# E.P. Wigner, Ann. Math.62, 548 ~1955!.
@25# M. Feingold, A. Gioletta, F.M. Izrailev, and L. Molinari, Phys.

Rev. Lett.70, 2936~1993!.
@26# C.A. Bertulani and V.G. Zelevinsky, Phys. Rev. Lett.71, 967

~1993!; Nucl. Phys.A568, 931 ~1994!.
@27# C.H. Lewenkopf and V.G. Zelevinsky, Nucl. Phys.A569, 183

~1994!.
@28# S. Mordechaiet al., Phys. Rev. C41, 202 ~1990!; J. Ritman

et al., Phys. Rev. Lett.70, 533 ~1993!; R. Schmidtet al., ibid.
70, 1767 ~1993!; T. Aumannet al., Phys. Rev. C47, 1728
~1993!.

@29# B. Lauritzen, P.F. Bortignon, R.A. Broglia, and V. Zelevinsky,
Phys. Rev. Lett.74, 5190~1995!.

@30# V.V. Flambaum, G.F. Gribakin, and F.M. Izrailev, Phys. Rev
E 53, 5729~1996!.

@31# O.P. Sushkov and V.V. Flambaum, Pis’ma Zh. E´ksp. Teor.
Fiz. 32, 377 ~1980! @JETP Lett.32, 353 ~1980!#; Usp. Fiz.
Nauk136, 3 ~1982! @Sov. Phys. Usp.25, 1 ~1982!#.

@32# V.G. Zelevinsky, Nucl. Phys.A553, 125c~1993!; A570, 411c
~1994!.

@33# K.K. Mon and J.B. French, Ann. Phys.~N.Y.! 95, 90 ~1975!.
@34# I.M. Lifshits, S.A. Gredescul, and L.A. Pastur,Introduction to

the Theory of Disordered Systems~Wiley, New York, 1988!.


