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Realistic collective nuclear Hamiltonian
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~Received 13 April 1995; revised manuscript received 24 April 1996!

The residual part of the realistic forces—obtained after extracting the monopole terms responsible for bulk
properties—is strongly dominated by pairing and quadrupole interactions, with importantst•st, octupole,
and hexadecapole contributions. Their forms retain the simplicity of the traditional pairing plus multipole
models, while eliminating their flaws through a normalization mechanism dictated by a universalA21/3 scaling.
Coupling strengths and effective charges are calculated and shown to agree with empirical values. Compari-
sons between different realistic interactions confirm the claim that they are very similar.
@S0556-2813~96!05610-5#

PACS number~s!: 21.60.Cs, 21.60.Ev, 21.30.2x
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I. INTRODUCTION

It has not been possible, yet, to construct interactions t
could satisfy simultaneously three basic conditions:~A! to be
realistic, i.e., consistent with the nucleon-nucleon (NN)
phase shifts,~B! to ensure good saturation properties, i.e
correct binding energies at the observed radii, and~C! to
provide good spectroscopy. As a consequence many fo
have been designed for specific contexts or problems: pai
plus quadrupole @1,2#, density-dependent potentials fo
mean-field approaches@3,4#, Landau-Migdal parametriza-
tions for studies of the giant resonances@5#, direct fits to
two-body matrix elements for shell-model calculations@6#,
and many others. A way out of this unsatisfactory state
affairs would be to exhibit an interaction consistent with co
ditions~A!–~C! above. To understand how the project can
implemented, let us start by assuming that we work in a Fo
representation. Then the HamiltonianH is given in terms of
a set of matrix elements which we take to be written in
oscillator basis, the natural one for self-bound systems.

It may be thought very uneconomic to use an infinite s
of numbers to characterizeH, but there is a great advantag
in doing so, because it becomes possible to prove the follo
ing separation property.

Given a sufficiently smooth HamiltonianH, it can be
separated asH5Hm1HM . Only the monopole fieldHm is
affected by spherical Hartree-Fock variation. Therefore it
entirely responsible for global saturation properties an
single-particle behavior.

The idea is thatH can be written in terms of dens
ity operators coupled to good angular momentuml @i.e.,
(a†a)l], and that Hm exhausts the contributions with
l50, while the multipole partHM contains all the rest. A
schematic proof of the separation property has been give
@7#, and a more complete one may be found in@8#. It is easy
to explain the interest in this result.

One of the major problems of nuclear physics is that
alistic forces have bad saturation properties and sinceHm is
in charge of them it must be treated phenomenologica
Fortunately, it is a relatively simple object that makes it qu
feasible to force good saturation in a shell-model conte
with the pleasing result that the multipole partHM , which
can be extracted rather uniquely from the realistic intera
54556-2813/96/54~4!/1641~20!/$10.00
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tions, has an excellent behavior@9,10#. Therefore conditions
~A! and~C!, as well as~B! and~C!, are mutually compatible.

An elementary argument explains the situation. The o
served nuclear radiir>1.2A1/3 fm imply average interpar-
ticle distances of some 2.4 fm, and therefore the nucleo
‘‘see’’ predominantly the medium range of the potentia
This is a region that is well understood theoretically@11# and
well described by the realistic forces.

The saturation problem remains, of course, and as long
conditions~A! and ~B! cannot be made compatible, a phe
nomenological treatment ofHm will be necessary. Some
progress has been already made in this respect: In Ref.@12#,
a hint that will emerge in the present paper has been taken
and applied to the construction of a mass formula that
extremely precise by present standards~rms error of 375 keV
for all known nuclei withN,Z.8!. Of the 28 parameters tha
enter the calculations, a dozen represent a first approxima
to the monopole field. It is still very crude but it make
plausible the idea of constructing some simpleHm that con-
tains few parameters and describes nuclear data satisfa
rily. Since something simple in Fock space may be comp
cated in coordinate space, it may point to ways—so
overlooked—of reconciling conditions~A! and ~B!.

It follows that, although we still fall short of a complete
and rigorous characterization ofH, we may not be far from
it. In particular, we knowHM well. As this knowledge comes
in huge arrays of matrix elements, it would be more help
if we could extract from this mass of numbers the truly im
portant ones, i.e., separateHM5HC1HR , into a collective
(C) part and a rest that could be treated as random (R).
There are many advantages in doing so, but one is spe
As new regions open to scrutiny, through Monte Carlo tec
niques@13# and further improvements in shell model tech
nology @14#, the nature of the problems changes: Dimensio
alities grow exponentially with the size of the systems, b
the behavior described by the enormous matrices also
comes simpler through the increasing influence of coher
effects.

The special advantage is that in adapting existing meth
to face this situation, or designing new ones, our basic too
the Hamiltonian itself, and the simpler it can be made, t
higher will be the chances of developing successful comp
tational strategies.
1641 © 1996 The American Physical Society
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1642 54MARIANNE DUFOUR AND ANDRÉS P. ZUKER
Clearly, a deeper understanding ofHM is called for.
In Sec. II we are going to show that its structure is

simple as could be expected, because of the strong do
nance of pairing and lowest multipole operators. They app
in a normalizedform that retains all the simplicity of their
traditional counterparts but suffers none of their drawbac

In Sec. III, the possible candidates toHC are examined,
and then it is explained how a given choice of domina
terms is optimally extracted from the Hamiltonian, ensuri
that the corresponding coupling constants are quantitativ
correct.

Section IV proposes an analytic calculation of second
der renormalizations due to core polarization effects. T
agreement with empirical values turns out to be excellen

Section V is devoted to a comparison of different realis
interactions among themselves—which establishes th
unicity—and with theW fit in the sd shell @6#.

Appendix A contains a brief summary of the elementa
angular momentum results that are needed. With few exc
tions the material is borrowed or adapted from Refs.@15,16#,
and the aim of this appendix is to make the whole presen
tion self-contained.

Appendix B is devoted to some results on the matrix d
fining the diagonal multipole representation.

Appendix C revisits the pairing plus quadrupole model

II. DIAGONAL REPRESENTATIONS OF H

Our plan is as follows:~a! IntroduceHM in the two stan-
dard representations,~b! reduce to sums of separable term
by diagonalization,~c! show that the few dominant ones ar
normalizedversions of the standard pairing and multipo
forces,~d! show that the normalizations are dictated by t
universalA21/3 scaling for all couplings, and finally~e! say a
few words about the consequences of this result on the sp
fication ofHm .

A. Hamiltonian

We start by calling upon Eqs.~A20!–~A23! to writeHM
in the normal and multipole representations:

HM5 (
r<s,t<u,G

Wrstu
G ZrsG

†
•ZtuG , ~2.1a!

HM5 (
rstuG

@g#1/2
~11d rs!

1/2~11d tu!
1/2

4
v rtsu

g ~Srt
gSsu

g !0,

~2.1b!

v rtsu
g 5(

G
~2 !s1t2g2GH r s G

u t g JWrstu
G @G#, ~2.1c!

Wrstu
G 5(

g
~2 !s1t2g2GH r s G

u t g J v rtsu
g @g#. ~2.1d!

We useW for the matrix elements to stress that the intera
tion has been made monopole free. SinceHm is defined as
containing all theg500 and 01 terms,HM is defined by

v rstu
g 50 for g500 and 01.
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The one-body contractions vanish identically forHM be-
cause they are proportional tov rstu

0t .
The normal form is unique and the ordering of the indic

simply eliminates double counting: The contributions
rstu, srtu, rsut, andsrut are identical, and it is just as wel
to keep only the first.

The multipole form is highly nonunique because the term
are not linearly independent and permuting indices leads
different objects. We have chosen the variant in which su
mations are unrestricted for a reason that will become imm
diately apparent@after Eq.~2.3b!#.

For the calculations we adopt the Kahana-Lee-Sc
~KLS! force@17,18#, but in Sec. V it is argued that the choic
of realistic interaction does not matter much.

B. Separable form

We callHM the restriction ofHM to a finite set of orbits.
Replacing pairs by single indicesrs[x, tu5y in Eq. ~2.1a!
and rt[a, su5b in Eq. ~2.1b!, we bring the matricesWxy

G

and f ab
g 5vab

g A(11d rs)(11d tu)/4 to diagonal form through
unitary transformationsUxk

G ,uak
g :

U21WU5E⇒Wxy
G 5(

k
Uxk

G Uyk
G Ek

G , ~2.2a!

u21f u5e⇒ f ab
g 5(

k
uak

g ubk
g ek

g , ~2.2b!

and, then,

HM5(
k,G

Ek
G(

x
Uxk

G ZxG
† (

y
Uyk

G ZyG , ~2.3a!

HM5(
k,g

ek
gS (

a
uak

g Sa
g(

b
ubk

g Sb
gD 0@g#1/2, ~2.3b!

which we call theE and e representations. Note here th
explanation of the unrestricted ordering of the orbital ind
ces: It guarantees that in thef ab matrices,a andb belong to
the same set. In Appendix B it is explained what happe
when they do not~Asymmetric factorization!.

C. Dominant terms

We have calculated the eigensolutions in Eqs.~2.3a! and
~2.3b! using KLS for spaces of one and two major oscillat
shells. The density of eigenvalues~their number in a given
interval! in the E representation is shown in Fig. 1 for a
typical two-shell case. It is skewed, with a tail at negativ
energies which is what we expect from an attractive intera
tion.

The e eigenvalues have a number of simple properti
demonstrated in Appendix B: Their mean value always va
ishes, their width isA1/8 of that of theE distribution, and
they are twice as numerous. In Fig. 2 we find that they a
very symmetrically distributed around a narrow centr
group, but a few of them are neatly detached. The strong
havegp5120, 111, 210, 320, in Eq.~2.3b! and the asso-
ciated H in Eq. ~2.3a! is recalculated; the E distribution
becomes quite symmetric. Details will be given in Sec. III,
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and here we only note that the residual skewness is enti
accounted for by theG5110, 011, and 210 peaks, of
which the first remains strong at27 MeV.

This result is most telling because from the work of Mo
and French@19# we know that a symmetricE distribution
will lead to spectra in then-particle systems that are identica
to those of a random matrix. Therefore, we have fou
that—with the exception of threeG peaks—the very few
dominant terms in thee distribution are responsible for de
viations from random behavior inHM . Positively stated,
these terms are at the origin of collective properties.

If the diagonalizations are restricted to one major she
negative parity peaks are absent, but for the positive pa
ones the results are practically identical to those of Figs
and 2, except that the energies are halved, a striking fea
whose significance will become clear soon.

In the list of important contributions, whose structure w
be analyzed, we include theG510 and 01 terms, and the si
strongestg ones.

FIG. 1. E-eigenvalue density for the KLS interaction in th
p f1sdg major shells (\v59). Each eigenvalue has multiplicity
@G#. The largest ones are shown by arrows.

FIG. 2. e-eigenvalue density for the KLS interaction in the p
1sdg major shells. Each eigenvalue has multiplicity@g#. The larg-
est ones are shown by arrows.
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Their eigenstates@i.e., the factors in Eqs.~2.3a! and~2.3b!
with k51# will be compared with standard pairing and mul-
tipole operators. To fix ideas, we write the form these eigen
states should take in the case of perfect pairing (G501) and
quadrupole forces (g520) acting in one shell of principal
quantum numberp. To compare with the result of a diago-
nalization, the operators must be normalized:

P̄p
†[ P̄01p

† 5(
rPp

Zrr 01
† V r

1/2/Vp
1/2, Vp>0.655Amp

2/3 ,

~2.4!

q̄p[Mp
205 (

rsPp
Srs
20qrs /Np , N p

2>0.085Amp
4/3 , ~2.5!

where

~i! V r5 j r11/2, qrs5A1
5 ^r ir 2Y2is&,

~ii ! Amp is the the total number of particles at midshellp

@p(2)5p(p21), remember#,

Amp52 (
p8,p

~p812!~2!1~p12!~2!

5
1

3
~p11!~p12!~2p13!

'
2

3
~p13/2!3,

~iii ! the normsVp andNp are then

Vp5(
r

V r5
1

2
~p12!~2!'

1

2
~3Amp /2!2/3,

N p
25Sqrs

2 >
5

32p
~p13/2!45

5

32p
~3Amp/2!4/3.

For the calculation ofN p
2 we have used the matrix elements

listed in Eq. ~A34!. Note that they should multiplied by a
factor A2, since they are reduced with respect toj only,
while qrs is reduced with respect to spin and isospin.

For the other strong multipoles the choice of operators
evident and forG510 the simple idea is that pairing inLS
coupling should produce a good candidate. Labeling the o
bits by theirl quantum numbers, we have two pairing term

P̄ST
† 5S (

l
@ l # D 21/2

(
l

@ l #1/2Zll 0ST
† , ST501,10,

which in j j coupling become

P̄01
† 5Vp

21/2(
r

AV rZrr 01
†

and

P̄10
† 5Vp

21/2(
j , j 8

@ l #1/2$~ l l !0 ~1/2 1/2!1 u~ j j 8!1%Zrr 810
† ,

~2.6!

e

f
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1644 54MARIANNE DUFOUR AND ANDRÉS P. ZUKER
where we have recovered the usualr[ j l label, and used a
self-evident notation for theLS to j j transformation. In
Table I these operators are compared with the results of t
diagonalization. It is apparent thatP̄p01 accounts very well
for (Urr

01)p . For P̄p10 vs (Urs
10)p the agrement is not so excel-

lent, but still good. The overlaps are found under^UpuP& in
Table II, which also contains the corresponding values o
^upuM & for the lowest multipole operatorsM . The agreement
is again excellent except for thes case, for which it is only
fair. Note that the form of these operators is given in Appen
dix A.

Interesting as these results might be, the truly remarkab
ones come when we diagonalize intwomajor shells. Let us
go back to Table I, and note that the eigenstates can alwa
be written as

TABLE I. Eigenvectors and energies calculated in the
p f(p53), sdg(p54), andp f1sdg(314) spaces compared with
the normalized pairing operatorsP̄10 and P̄01. The orbits are la-
belled by theirj values.

rs P̄01 (Urs
01)3,4 A2(Urs

01)314 P̄10 (Urs
10)3,4 A2(Urs

10)(314)

77 -0.63 -0.65 -0.66 0.41 0.31 0.31
75 -0.68 -0.74 -0.74
33 -0.45 -0.38 -0.41 0.33 0.26 0.27
35 0 -0.30 -0.25
31 -0.42 -0.43 -0.44
55 -0.55 -0.58 -0.59 -0.27 -0.12 -0.13
11 -0.32 -0.29 -0.31 -0.04 0.07 0.04

E3
G -2.95 -4.59

99 0.58 0.61 0.64 -0.37 -0.26 -0.25
97 0.63 0.67 0.72
77 0.52 0.55 0.57 0.26 0.12 0.11
75 0 -0.27 -0.28
55 0.45 0.41 0.34 -0.31 -0.22 -0.20
53 0.46 0.50 0.48
33 0.37 0.35 0.28 0.16 0.03 0.01
31 0 -0.21 -0.18
11 0.26 0.17 0.13 -0.26 -0.22 -0.20

E4
G -2.65 -4.78

1
2 E314

G -2.76 -5.06
he

f

-

le

ys

U3145~aU381bU48!/A2, a21b252, ~2.7!

whereUp8 can, in principle, be any unit vector, but in fact
is almost identical toUp . This is always the case, both fo
the Ui and ui vectors, as Table II shows:̂Ui uUi8& and
^ui uui8& are strikingly close to 1 with no exceptions whi
a2 is quite close to 1.

Therefore, for anynormalizedpairing or multipole opera-
tor Ō we have the following.

If Ōp and Ōp11 are eigenvectors for shell p and p11
separately, then(Ōp1Ōp11) is very much the eigenvecto
for the space of the two shells. The eigenvalues are v
close in the three cases.

Note that we have chosen a normalization of 2 for the t
shell eigenvectors so as to halve its eigenvalue.

Before we examine the consequences of this result,
mention a few facts about the other contributions.

In Table II we have added theg521 case as a reminde
that isovector multipoles are always present. Their strengt
between 30% and 40% of that of the isoscalar terms~precise
numbers are given in Table III! and they have identical struc
ture.

The dominant negative parity contributions areg510 at
4.59 MeV, ^rY1uu10&50.994 and g530 at 2.69 MeV,
^r 3Y3uu30&50.986.

The first is a center-of-mass operator. Its presence sim
reflects the translation invariance of the interaction.
g511 counterpart, associated to the giant dipole resona
~GDR!, comes at 1.81 MeV. The other strong term is resp
sible for octupole collectivity.@In deciding whether a given
multipole is attractive or repulsive it should be remembe
that (MgMg)05(2)g@g#21/2(Mg

•Mg).#

D. Universal scaling

.
We have now the necessary elements to construct a s

matic but accurate collective Hamiltonian. From@9# we
know that

Wxy
G ~v!>

v

v0
Wxy

G ~v0! ~2.8!

(v is the oscillator frequency! and therefore the eigenvalue
TABLE II. Energies and norms for the dominant terms (g521 added for illustrative purposes!. See text.

g e3
g e4

g e314
g M ^u3uM & ^u4uM & ^u3uu38& ^u4uu48& a2

11 1.77 2.01 3.90 st 0.992 0.994 0.999 1.000 0.94
20 -1.97 -2.14 -3.88 r 2Y2 0.996 0.997 1.000 1.000 0.95
10 -1.02 -0.97 -1.96 s 0.880 0.863 0.997 0.994 1.04
21 -0.75 -0.85 -1.60 r 2Y2t 0.991 0.998 0.999 0.997 0.94

G E3
G E4

G E314
G P ^U3uP& ^U4uP& ^U3uU38& ^U4uU48& a2

01 -2.95 -2.65 -5.51 P01 0.992 0.998 1.000 0.994 1.048
10 -4.59 -4.78 -10.12 P10 0.928 0.910 0.998 0.997 0.991
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54 1645REALISTIC COLLECTIVE NUCLEAR HAMILTONIAN
in Table II must scale in the same way. Settinga251 in Eq.
~2.7! for simplicity, thenormalizedpairing and quadrupole
forces become

HP̄52
\v

\v0
uE01u~ P̄p

†1 P̄p11
† !•~ P̄p1 P̄p11!, ~2.9!

H q̄52
\v

\v0
ue20u~ q̄p1q̄p11!•~ q̄p1q̄p11!, ~2.10!

which we take as representative of the ‘‘collective’’ Hami
tonian because of their known coherence. For the ot
strong terms the expressions are strictly similar, and all
guments concerning pairing and quadrupole expressions
ply to them. Sincee1

g>e2
g>e112

g /2 ~same forEG), the cou-
pling constants could be taken to be independent of the sp
chosen, which may be any of the shells or the two togeth

The termnormalizedapplies to the one-shell operator
For two or more shells it is more convenientnot to normalize
their sum,since it is in this form that the couplings are
constant.

To give a full characterization ofHM , Eqs. ~2.9! and
~2.10! should be generalized to any number of shells. For
quadrupole~and other multipole terms! this would demand
inclusion of n\v excitations, and in Sec. IV, it will be
shown that theg52t operatorqp8 that couples shellp to
2\v jumps, remains indeed close toqp , with welcome con-

TABLE III. The sdg1p f peaks in the f representation
(uegu.1.3) and theirp f andsdg counterparts.Sp, Ap5 symme-
try type and parity.⇑ signals the peaks singled out in Fig. 2, an
their one-shell counterparts.↓ is for peaks withuegu,1.3 MeV that
are likely to have a clear multipole character. Parentheses indi
that the assignment is unchecked but given as plausible.

lt Sym Type epfsdg ep f esdg

00 A2 . . . 1.88
10 S2 r 1Y1 4.59 ⇑

S† s -1.96 ⇑ -1.02 -0.97 ⇑
S2 . . . -1.53
S† l 1.44 0.66 0.80
S2 . . . 1.41

11 S† st 3.90 ⇑ 1.77 2.01 ⇑
A2 . . . -1.83
S2 r 1Y1t 1.81

20 S† r 2Y2 -3.88 ⇑ -1.97 -2.14 ⇑
S† . . . 1.31 0.64 0.75

21 S† r 2Y2t -1.60 -0.75 -0.85
S2 M2?? -1.55
A† . . . 1.46 0.64 0.76

30 S2 r 3Y3 2.69 ⇑
31 S2 r 3Y3t 1.14 ↓
40 S† (r 4Y4) -2.11 ⇑ -1.12 -1.24 ⇑
41 S† (r 4Y4t) -0.91 ↓
50 S2 (r 5Y5) 1.75
51 S2 (r 5Y5t) 0.78 ↓
60 S† (r 6Y6) -1.26 ↓ -0.73 -0.82
l-
her
ar-
ap-

ace
er.
s.

the

sequences. Here we concentrate on the restricted genera
tion of Eqs. ~2.9! and ~2.10! obtained by simply summing
over all p values.

A formal proof would start from the remark that it is
always possible to diagonalize in some sufficiently larg
space, and therefore write the lowest state associated w
multipoleg as(Op

g/Np
g .

The fact that the dominant terms arecentralsuggests that
the result must be common to forces of short but not ze
range, though we have no simple argument explaining w
Op

g should be so close to the schematic forms we have foun
However, assuming that it is, there is a scaling argument th
provides valuable insight into theNp

g denominator.
In leading order the expectation value of a Hamiltonia

must go as the number of particles in the system. Therefo
in H, the leading monopole terms must go asO(A). As
HM will effectively act on one~or at most a small number of
shells!, the number of particles involved, and hence the
energy, will beO(Df)5O(A2/3), whereDf'pf

2 is the de-
generacy of the Fermi shell. Since there arepf possible mul-
tipole contributors, each individual term must go as
O(pf)5O(A1/3), which—remembering that\v540A21/3

@20# —is precisely what the normalized operators ensure
given the universal scaling provided by the\v factor.

This statement demands a careful proof and we start
showing that the traditional choices for the pairing and qua
rupole coupling constants produce empirical evidence in f
vor of theO(A1/3) scaling for a given contribution, which we
have suggested on heuristic grounds.

Consider first the pairing force. On a space of degenera
D, it produces an energy

EP52
uGu
4
n~D2n12!52uGuO~nD!.

The first equality is a standard result. Sincen5O(Df), the
conventional choiceG5O(A21) can be interpreted as guar-
anteeingEP5O(A1/3). It is worth mentioning that the form
of G was found empirically, and in a famous paper b
Baranger and Kumar it is stated that‘‘We know of no reliabl
way of predicting thisA21 dependence . . . ’’ @1#. The argu-
ment we have outlined provides a way that seems reliable

For a quadrupole force, an estimate for the energy can
obtained by constructing a determinantal state that ma
mizes the quadrupole momentQ05( i51

n (2nzi2nxi2nyi),
wherenxi , nyi , nzi are the number of quanta. The larges
term in the sum is then 2p, the next 2p23, then 2p26, etc.
ThereforeQ05O(np), and

Eq'2ux8uQ0
252ux8uO~n2D !,

which in turn explains the origin of the usual choice
x85O(A25/3) for the quadrupole strength, which leads to
Eq5O(A1/3).

It is clear from Eqs.~2.9! and~2.10! that the operators are
affected by coefficients that go asA21/3D21 ~instead of
A21) for pairing, and asA21/3D22 ~instead ofA25/3) for
quadrupole. ForD5Df , the energies are againO(A

1/3), but
now this important empirical fact is a direct consequence
the interaction. For arbitraryD, the energies of the traditional
~old! form

d

cate
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1646 54MARIANNE DUFOUR AND ANDRÉS P. ZUKER
Eold⇒EP5OS nDA D , Eq5OS n2DA5/3D ,
differ from those in the normalized version~new!,

Enew⇒EP5OS n

A1/3D , Eq5OS n2

A1/3D D .
If the n particles are promoted to some higher shell wi
pf5pf1M , D→(p1M )2, and both energies grow in the
old version. For sufficiently largeM , because of the term in
M2, the gain will become larger than the monopole los
O(nM\v)5O(MA1/3), which is only linear inM . There-
fore the traditional forces lead the system to collapse. If th
are restricted to act in finite spaces, it is possible to obt
sensible results but the coupling constants must be redu
as the space is increased.~The problem will be discussed in
Appendix C.! In the new form there is no collapse:EP stays
constant,Eq decreases, and the monopole term provides
restoring force that guarantees that particles will remain p
dominantly in the Fermi shell~s!.

Although we have not given a formal proof of the gene
alization of Eqs.~2.9! and ~2.10!, the scaling arguments es
tablish that it is physically sound, and that it is possible
recover the geometrical simplicity of the pairing plus qua
rupole model without its fundamental flaw: the space dep
dence of the coupling constants. The model has an enorm
historical interest, and it is very instructive to show how f
we can go in justifying it~see Appendix C!.

The scaling arguments—so far applied to show that a
alistic interaction has all the properties we expect on emp
cal grounds— can be turned around. Let us start with
assumption that the pairing plus quadrupole model must
true ‘‘in some sense’’ because of its explanatory pow
Then we want to find an interaction that retains the mod
~i.e., separable forms!, but does not lead to collapse. It i
clear that with the single assumption of universal scalin
i.e., the validity of Eq.~2.8! and theA1/3 dependence for the
energies, we would obtain Eqs.~2.9! and ~2.10!, and their
generalizations, or at least something very similar. Note
this respect that the normalizations are defined only to le
ing order O(pk), and we can say nothing about th
O(pk21) terms, responsible fora2Þ1 in Eq. ~2.7! and the
slight differences we have neglected in thee and E cou-
plings, but this is the good reason to neglect them.

One last remark.EP andEq contribute to what are com-
monly called ‘‘shell’’ effects. Although it seems clear tha
each individual contribution should go asA1/3, it is not clear
whether the total shell effects~including monopole! can add
up to anA2/3 behavior. For a discussion of this point see@12#.

E. Monopole hint

If HM is as good as we have argued, why not trust t
information it can provide aboutHm? It is quite possible that,
rather than wrong, it is only insufficient and its study is mo
interesting.

As befits the leading term in a multipole expansion, t
monopole one is the strongest: In Fig. 2 it would come
210 MeV. Unsurprisingly it has the form(np /ADp, which
is what we expect of normalized operators, but it should
th
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mentioned that there are several monopole candidates
can think of: the unit operator 1, which is identical to the
number operatorn in second quantization, but alsor 2, for
instance. When normalized they give the same result.

The remarkable thing about this form is that it provide
the answer to an important problem raised in@7#, which is
that the monopole-monopole one naively expects as dom
nant,nn, suffers from the defect of the conventional sepa
rable forces in that it must be associated with a couplin
constant that is space dependent. There is no collapse n
becausen is a conserved quantity, and anA21 scaling en-
sures the asymptotically correct behavior and the coupli
tends to a constant. Contrary to the pairing and quadrupo
cases there can be no energetic gain in promoting particles
higher orbits but there is no loss either, and this is a sub
form of collapse because a good Hamiltonianmustensure
the existence of a Fermi level; i.e., it must force the particle
to occupy the lowest orbits. The normalized monopole o
erator does it by producing a discontinuity at each shell cl
sure. Therefore, it is not only responsible for the bulk energ
of nuclear matter, but it also takes care of the major she
effects.

This operator suggests the starting point in the constru
tion ofHm . For a preliminary attempt see@12#, where a mass
formula—of rather high precision by present standards—
derived.

III. CHOICE AND COMPLETE EXTRACTION OF HC

There are two problems to be solved: what to extract fro
H, and how to extract. The two subsections that follow a
devoted to them.

A. Choice ofHC

The results so far invite a separation:

H5Hm1HC1HR ,

whereHC is the collective or coherent part, whileHR is the
rest. To define them with some precision, i.e., to decide wh
to extract, we shall rely on the result of Mon and French@19#
thatHR could be viewed as random, as soon as itsE distri-
bution becomes symmetric.

The distributions will be characterized by their moments

mk5
2

D~D21!( ~EG!k, g15m3 /m2
3/2,

and the vanishing of the skewnessg1 will be seen to be
sufficient to ensure symmetry. We usem25s2.

Let us then define some cutoff«, eliminate fromH in the
e representation those peaks withuegu.«, and decrease«
until theE distribution becomes symmetric. The result of th
operation is shown in Figs. 3 and 4 for«52 and 1.3 MeV,
respectively. Labeling the original distribution in Fig. 1 a
(«5`), we find the following moments (s in MeV!.

~i! «5`, s250.99, g1522.22. Since the lowest state
G5110 is at210.12 MeV its contribution tog1 is by far
the largest but still only20.61. It means that many states in
the tail must contribute tom3.
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54 1647REALISTIC COLLECTIVE NUCLEAR HAMILTONIAN
~ii ! «52.0, s250.60, g1520.79. Five peaks have
been excludedg5120, 111, 210, 320, and 410 and now
the G5110 state at27.79 MeV accounts for most ofg1
with a contribution of20.60, which when added to that o
the next two statesG5210 (24.29 MeV! and 011
(23.82 MeV!, at g1520.86, exceeds the full value. As
anticipated, the very largee peaks are responsible for mos
of the tail of the original distribution. Although distortion
are still apparent, they may be interpreted as fluctuations
we have a good model forHC[ the five g terms and the
G5110, 011 ones.

Since it is not only the size, but also the ability to genera
coherence that must characterize the main terms, we h
left outG5210 which—as we shall see in Sec. V—must b
counted as a nuisance, rather than a bona fide candida
HC .

FIG. 3. E-eigenvalue density for the KLS interaction in th
p f1sdg major shells (\v59), after removal of the five larges
multipole contributions. Each eigenvalue has multiplicity@G#. The
largest ones are shown by arrows.

FIG. 4. E-eigenvalue density for the KLS interaction in th
p f1sdgmajor shells (\v59), after removal of multipole contri-
butions with ueu. 1.3. Each eigenvalue has multiplicity@G#. The
largest ones are shown by arrows.
f
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It should be noted that the structure of the largeG states is
little changed in going from«5` to «52.

~iii ! «51.3, s250.41, g1520.002. This cutoff was
chosen as a sensible definition of the bulk of thee distribu-
tion. The histogramm in Fig. 4 now becomes structureles
The g terms with uegu.1.3 are listed in Table III. Some
useful information is given, as their symmetry type@see Eqs.
~A14! and~A15!#, and their multipole nature whenever pos
sible.

The cutoff is reasonable in that the majority of exclude
peaks belong naturally to what is expected from a multipo
decomposition. However, several peaks have an ill-defin
status, while others we would include inHC have missed the
cutoff ~e.g., 321 ate51.14). Clearly we are in the boundary
where the small terms inHC overlap the large ones inHR .

Two attitudes compete in choosingHC : Include eitheras
much as necessaryor as little as possible. Which one is
given precedence depends on the computational strate
adopted, but in any case there are elements of guess, con
nience, and trial and error in the choice, which is more of a
art than a science, at least at present. The only safe presc
tion we can propose is to start with little—pairing plus quad
rupole, say—and keep adding terms until it makes no diffe
ence.

If forced to take a more courageous stand, our choi
would be the following.

~i! For theE terms we would only include pairing, i.e., the
G501 and 10 forces.

~ii ! For thee terms the« 5 2 cutoff sounds reasonable
though it may be advisable to include also the insovect
quadrupole term, which misses the cutoff but is coherent.
studies involving the giant dipole resonance theg5121
contribution is also called for of course.

The type of calculation has an influence on the attitud
adopted.

As much as necessaryapplies to the recently developped
shell-model Monte Carlo approach@13#. When the Hamil-
tonian is written in ane representation, the authors have
chosen an ingenious one in which they introduce the Pa
violating terms necessary to cancel allg5l1 terms. To un-
derstand how it can be done refer to Eq.~A26b!, and imagine
that inVrstu

JT the rs and tu states are allowed to be symmet
ric. The linear dependence problem is solved, but as the p
pose of the exercise is to reduce the number of terms, it
probably a good idea to proceed as we have done and cho
a properHC . The problem is that pairing has to be include
in thee representation which is costly and something like th
«51.3 cutoff may be necessary.~At the end of the next
subsection there is a comment relevant to this question.!

The alternative is to include pairing in theE representa-
tion, which is technically feasible@21#. The problem be-
comes much simpler, and for thee terms the«52 cutoff
with the provisos mentioned above is a choice worth consi
ering.

As little as possiblecan be reconciled with as much as
necessary by treating first the truly important terms and th
doing some form of perturbation theory to account for th
rest. Here pairing plus quadrupole or even only one of the
may be sufficient.

One example may be mentioned. In a recent study@22#, it
is shown that states of four neutrons and four protons mo
ing in the same or contiguous major shells generate ro
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tional spectra exhibiting systematic backbending. With
proper choice of coupling constant aq̄•q̄ force leads to wave
functions that have overlaps of better than 0.95 with those
the realistic interactionH, but the backbending has gone
However, when the expectation value of the fullH is calcu-
lated using theq̄•q̄ eigenvectors, the spectrum reproduc
perfectly the exact one. The example indicates that ‘‘as lit
as possible’’ may be little indeed, with lowest order pertu
bation theory supplying the necessary improvements.

This example is particularly relevant because t
‘‘proper’’ quadrupole strength that reproduces best the ex
results is some 30% larger thane eigenvalue in Table III. It
is probable that part of the effect is due to the isovec
quadrupole that was not included in the calculation. B
there is another reason that explains the increase in the
pling constant, as explained next.

B. Complete extraction

At this point we may have a good idea aboutwhat to
separate, but since most of it comes from a multipole rep
sentation, to decide exactlyhow, we must realize thatHC and
HR are ‘‘orthogonal’’ by construction in the multipole rep
resentation, but they need not be in the the normal one.
notion of orthogonality is important and demands a digre
sion.

The complete symmetry that the equations indicate
tween thev rtsu

g andWrstu
G matrix elements is fictitious, be-

cause the latter must be antisymmetric in the indicesrs and
tu, while no restrictions apply to the former. To understa
the problem raised by this situation we note thatV in Eq.
~A20! is invariant with respect to the choice of ordering
because of Eqs.~A18b!, while V in Eq. ~A21! or ~A23! will
look very different for different orderings. Of course, it wil
always be the same object, which means that a given op
tor in the multipole representation can be written in terms
other operators apparently unrelated to it. This ambigu
may occasionally allow some freedom in the choice of form
of V, but in general we need to eliminate the ambiguiti
rather than take advantage of them, as can be seen from
following argument. Let us assume some very simple fo
such as quadrupole-quadrupole (q•q), and take it to normal
form. The symmetric matrix elements will disappear sin
they are associated to operators that vanish identically. N
transform back to the multipole representation: The opera
will no longer look likeq•q, but it will still be the original
one. But then, since an operator may have different guis
how to decide what itreally is?

The only solution is to refer always to the normal form
which is unique. Therefore what is needed is a way to co
pare two HamiltoniansHA andHB , defined in some finite
space by their matrix elementsVrstuA

G andVrstuB
G . Intuitively,

the thing to do is treat these two sets as components of v
tors, and introduce a scalar product remembering that
eachG we have@G# components:

HA•HB5( @G#VrstuA
G VrstuB

G . ~3.1!

This tentative definition, already suggested in@15#, was
a
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substantiated in@23#. Since this paper is hard to follow, we
propose two arguments to suggest the validity of~3.1!. The
first is purely heuristic.

Let us assume someHB that we want to separate from the
full HamiltonianH. The problem can be stated by writing

H5~H2lHB!1lHB[HA1HB ~3.2!

and by demanding that (H2lHB)
2 be as small as possible.

Since we are dealing with an operator, ‘‘small’’ must be
interpreted in an average sense. It is equivalent to saying t
the ‘‘size’’ or ‘‘norm’’ of an operator must be defined
through the trace of its square, and therefore we want
minimize

Tr@~H2lHB!2#5 (
rstuG

@G#~Vrstu
G 2lVrstuB

G !2. ~3.3!

The minimum we are after is found to be at

l5 (
rstuG

@G#Vrstu
G VrstuB

G Y (
rstuG

@G#~VrstuB
G !2

[H•HB /HB•HB .

It can be easily checked that this is equivalent to

HA•HB50.

To meet the demand after Eq.~3.2!, HA and HB must be
made ‘‘as different as possible’’ which amounts to makin
them orthogonal in the sense of Eq.~3.1!.

The second argument in favor of the definition in~3.1! is
simple but strong: the norms associated with each repres
tation can be used to define product norms for the Hamilt
nians since each matrix element affects an operator that
quadratic in the ‘‘unit vectors’’Zrs andSrs . For theE rep-
resentation, the product norm is identical to the one intr
duced in Eq.~3.1!.

Turning to our specific problem, the simplest thing to d
is to orthogonalizeHC andHR through

HR1HC5SHR2
HC•HR

HC•HC
HCD1HCS 11

HC•HR

HC•HC
D .

By squaring we find

FHR•HR2
~HC•HR!2

~HC•HC! G1FHC•HC12HC•HR1
~HC•HR!2

~HC•HC! G .
If (HC•HR)

2/(HC•HC) can be neglected, the orthogonaliza
tion amounts to leavingHR untouched, and to boostingHC
by the cross term. Now we call upon Eq.~B6!, which says
that the total norms in the two representations are propo
tional, and examine the relative contributions ofHC and
HR in both cases.

For «52, from Table III we can find that the five largest
peaks contribute 0.29, i.e., some 30% to the total norm whi
we know to be 0.99, and thereforeHR accounts for the re-
maining 70%. But we also know that, when calculated in th
normal representation,HR

2 is not 0.70, but 0.60, and therefore
the orthogonalization boosts the share ofHC to 40%, which
implies aA4/3[15% increase in the coupling constants.
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54 1649REALISTIC COLLECTIVE NUCLEAR HAMILTONIAN
This should be sufficient to have an idea of the effect, b
for a quantitatively reliable extraction, each term must
treated separately.

Assume we have selected the candidates toHC . Call
them Hk and transform the multipole ones to the norm
representation. We want to find the linear combinati
HC5(CkHk that maximizes the overlap betweenHC and
H. It amounts to a standard minimization of the express
(a[rstu)

(
a

SWa
G2(

k
CkWak

G D 2@G#5SH2(
k

CkHkD 2

5H•H22(
k

CkHk•H

12(
k,k8

CkCk8Hk•Hk8,

~3.4!

and thereforeCk is determined by the linear system

Hk•H5(
k8

Hk•Hk8Ck8. ~3.5!

The Ck coefficients are uniquely defined provided theHk
operators are linearly independent. EachHk can be written in
the representation best adapted to the calculation at han

It may be of interest to make them orthogonal by diag
nalizing the norm matrixHk•Hk8 through transformation
Tmn :

Hm5( TmkHk , Hk5( TkmHm ,

Hm•Hm85dmm8Hm
2 . ~3.6!

Therefore, definingHC in terms of theHm , we have

HC5( CmHm ⇒
~3.5!

Cm5Hm•H/Hm
2 . ~3.7!

A potentially interesting result is worth mentioning. In th
sd shell we have included inHC the strongest contribution
for eachg plus the pairing terms. In solving Eq.~3.5! it turns
out that the exclusion of the latter makes a negligible diffe
ence.

IV. CORE POLARIZATION AND EFFECTIVE CHARGES

To be of use in a shell-model calculation, the Hamiltoni
~and other operators! must be renormalized to account for th
effect of states outside the model spaces in which we
prepared to work. When realistic matrix elements were int
duced, the necessity of this operation was immediately r
ognized, and by using a simple perturbative prescriptio
Kuo and Brown ~KB! were able to obtain numbers tha
agreed quite nicely with the spectra of18O and18F @24#. The
agreement was so good that it led to much research tryin
establish whether it was fortuitous or genuine. After some
years, it appears that it is quite genuine, and a recent ca
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lation @25#, using far more sophisticated techniques and mo
modern interactions than those of@24#, produces very much
the same results, as will be illustrated in Sec. V. The state
the art on the subject of renormalizations is discussed in
recent review article@26#.

In this section we shall calculate effective coupling con
stants for the pairing and quadrupole forces in second ord
perturbation theory, which will be seen to be very close t
those extracted from@25#, and to the empirically determined
ones. Satisfactory effective charges will also be obtained
repeating, with a realistic force, exactly the steps followed b
Mottelson in his classical derivation@27#. The simplicity of
the derivation may be of help in understanding the difficu
ties encountered in the standard approaches to quadrup
polarizability @28# ~see, however@29#, for a more successful
calculation using a Skyrme force!.

Before going into the calculations it is worth explaining
why, for the energies, it seems possible to obtain, in seco
order perturbation theory, results close to those of the sta
dard formulations that go to higher orders. In@26# it is ex-
plained how to go about constructing a goodG matrix with a
good potential, and then solving the problems raised by t
perturbative expansion with as much rigor as possible. Ho
ever, it has been claimed for a long time that it is dangero
to be too rigorous with an interaction that is known to hav
bad saturation properties@30#, and this is why the monopole-
multipole separation strategy has been adopted. As it ha
pens, we have been lucky, becausethe serious problems that
need careful consideration in a rigorous perturbative ap
proach seem to have a monopole origin. This was hinted in
@30#, and here we offer two further plausibility argument
borrowed from@25# and @26#.

~1! Many of the difficulties in the standard treatments ar
related to the tensor force. In our case these problems do
exist because the perturbation is caused byHM which is a
central interaction for the dominant terms of interest.

~2! Higher order corrections become less important if
Hartree-Fock basis is used. Again a monopole effect.

Another argument in favor of low order perturbative cor
rections comes from@31#, where diagonalizations in the full
p f shell are treated in second order using as unperturb
states thef 7/2

n configurations. Exact results@10# have con-
firmed the validity of the approach. The test passed by se
ond order estimates is seen to be very stringent becaus
0\v space is involved, with denominators much smalle
than the typical 2\v we shall encounter now. However, the
test applies only to finite vector spaces. If the whole Hilbe
space is probed problems may~and will! arise.

We shall use the quasiconfiguration method, which pr
vides a flexible framework, and is particularly well adapte
to diagonal representations@31–33#. The idea is to separate
the full space into a model part containing statesu i & and an
external one made of statesu j &. The u i & and u j & states are
now ‘‘dressed’’ through a transformation

u ī &5u i &1(
j
Ai j u j &, u ̄ &5u j &2(

i
Ai j u i &,

which respects strict orthogonality:

^ ı̄ u ̄ &50.

The amplitudesAi j are then defined by
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^ ı̄ uHu ̄ &50,

which leads to a set of coupled equations defining the eff
tive interaction in its most general form. In particular, linke
cluster perturbation theory follows from Neumann expa
sion, and diagrammatic techniques may be introduced if n
essary, but are not essential. We refer to@31–33# for fuller
information, and we simply borrow from these references
expressions for the second order corrections, and apply th
in some detail to the pairing and quadrupole Hamiltonian

The use of diagonal representations makes the calc
tions analytic, and it will become clear how the quasico
figuration method transforms the dressing of the states i
the dressing of the operators. It should be noted, howe
that the second order results should be identical to w
would be obtained with the conventional (m-scheme! meth-
ods.

A. Pairing

We deal first with the effect on shellp of shellp11 only.
E01 is a one-shell energy from Table II, scaled b
\v/\v0, and\v059 MeV ~for typographical reasons we
shall useE01 instead ofE01):

^ ı̄ uHP̄u ı̄ 8&5K iUE01~v!
Pp
†
•Pp

Vp
U i 8L ~4.1a!

2
E01
2 ~v!

2\v (
J

^ i uPp
†
•Pp11uJ&^JuPp11

†
•Ppu i 8&

AVpVp11AVpVp11

~4.1b!

5K iUE01~v!
Pp
†
•Pp

Vp
2
E01
2 ~v!

2\v

1

3

Pp
†
•Pp

Vp

Pp11•Pp11
†

Vp11
U i 8L

~4.1c!

5K iUE01~v!S 12
E01~v!

2\v0
DPp

†
•Pp

Vp
U i 8L . ~4.1d!

Step by step we find~a! the unperturbed energy, to whic
we add~b! the second order perturbation. The intermedia
states are assumed to be all at energy 2\v. Then~c! invok-
ing closure and recoupling the operators~hence the factor
1/3!, ~d! the final result follows by contracting out the opera
tors in shellp11 ~which gives back a factor 3!. Repeating
the operation to account for states in shellp21 leads to
exactly the same correction and we conclude that the ren
malized operator is the original one affected by a modifi
E01,

E01→E01S 11
uE01u~v!

\v D[E01→E01~110.32!. ~4.2!

Now consider what would happen if we were to gener
ize to an indefinite number of shells, and compare with t
result for ordinary pairing. The jumps to higher shells wou
lead to

E01~v!F11
uE01~v!u
2\v S 11

1

2
1
1

3
1••• D G , ~4.3!
ec-
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GF11
uGu
2\v S Vp111

Vp12

2
1

Vp13

3
1••• D G . ~4.4!

The normalization of the operatorsPp transforms a very bad
divergence into a logarithmic one, which is still a diver
gence.

The problem may be due to a fault in our formulation. I
is possible, for instance, that since high-lying pairing excita
tions violate badly translation invariance the correspondin
matrix elements should be quenched and this could be p
haps sufficient to eliminate the divergence. It is also true th
what we treat as a potential is aG matrix, and in earlier work
it was argued that the perturbative treatment leads to dou
counting, but it can be shown that lowest order Brueckn
theory amounts to discarding the short range repulsion a
replacing it by a density-dependent saturating mechanis
@33#. Therefore, it should be possible to treat aG matrix as a
smooth potential, but then the postulated form for the pairin
term may not be correct.

However, it may also be that the logarithmic divergence
a real problem that has to be solved by doing better th
second order perturbation theory, and the simplicity of th
Hamiltonian makes it possible to push the exploration ve
far. We have here an illustration of the efficacy of the diag
onal representations in transforming a toy model into wh
may be a reasonably realistic one.

B. Quadrupole

The problem of multipole renormalizations is very differ
ent from the one we have analyzed for pairing because t
physical processes are different. Where we had two partic
jumping to higher shells, or being promoted from lowe
ones, now it is a particle-hole excitation that is produced b
the valence particles, and it is in the multipole representati
that the problem is naturally treated, and the space involv
is always finite in second order for the operators of interes

In particular, the quadrupole renormalization is due t
2\v jumps mediated by a term of the form
k(q̄p8•q̄2\v8 1q̄2\v8 •q̄p8), which must be extracted fromHM .
The primes indicate that the operators may not be genu
quadrupoles. The extraction method is a variant of the diag
nalizations we have used so far. It is explained in Append
B under the itemAsymmetric factorization. The space in-
volves all shells fromp50 to 4, and the matrix elements we
are not interested in are eliminated~those of the form
q̄2\v8 •q̄2\v8 ). There is no cheating here: We could have don
the same thing in the two shell case by keeping only th
cross shell elements if we had wanted only theq̄p•q̄p11
component. To compare with empirical reults in th
sd, p52 shell we work at\v511. The standard one shell
calculation yieldse20522.40 MeV@note that Eq.~C3! gives
22.37 MeV#. For the cross terms the large matrix produce

k522.80 MeV, ^q̄28uq̄2&50.97, ~4.5!

^q̄2\v8 uq021q131q24&/N2\v50.83, ~4.6!

where qpp8 are the 2\v quadrupole operators that can
couple toq2. Their sum is normalized toN2\v . By normal-
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izing eachqpp8 operator separately the overlap at 0.87
slightly better, but it is the number in Eq.~4.6! we shall need.

From Eq.~4.5!, q̄28'q̄2, and this is important because th
closeness ofq̄28 to q̄2 ensures that ‘‘quadrupole renormalize
quadrupole’’ and that effective charges are state independ
as shown below.

Proceeding as in Eqs.~4.1!, we have~H.c. stands for Her-
mitean conjugate of the first term!

^ ı̄ uH q̄u ı̄ 8&5e20~v!^ i uq̄p•q̄pu i 8& ~4.7a!

2
k2~v!

2\v
^ i u~ q̄2\v8 •q̄p1H.c.!uJ&^Ju~ q̄2\v8 •q̄p1H.c.!u i 8&

~4.7b!

>K iUe20~v!q̄p•q̄p2
2k2~v!

\v

1

5
q̄2\v8 •q̄2\v8 q̄p•q̄pU i 8L ~4.7c!

5S e20~v!2
k2~v!

\v D ^ i uq̄p•q̄pu i 8&. ~4.7d!

In the last step only half of the operators act: those creat
first an excitation and then destroying it. Hence the factor
instead of 5. We have indulged in the fallacious approxim
tion of treating the three terms inq2\v8 [qp22p8
1qp21p118 1qpp128 as commuting withq̄p , which is true
only for the middle one. A correct calculation would yield
rank 213 force for the offending terms. Still, the result i
correct for the two-body contribution as can be checked
@31# in which a very similar case is fully worked out. Th
neglect of three-body contributions is common, but ba
practice.

1. Effective charges

The modification of the transition operatorqp ~not q̄p) is
calculated along similar lines,

^ ī uqu ī 8&5^ i uqpu i 8&2
2k~v!

2\v
^ i uq2\v~ q̄2\v8 •q̄p1H.c.!u i 8&

~4.8a!

5^ i uqpu i 8&2
2k~v!

\v

1

5

N2\v

Np
^ i uqpq̄2\v•q̄2\v8 u i 8&

~4.8b!

5S 120.83
k~v!

\v

N2\v

Np
D ^ i uqpu i 8&. ~4.8c!

What we have done is~a! use the second order expressio
and ~b! upon recoupling collect two equal terms and th
factor 1/5. Then, to contract the normalized 2\v operators
~whose overlap is 0.83!, interchange normalizations forqp
andq2\v , and write~c! the final result.

This second order estimate of the effective quadrup
operator is equivalent to Mottelson’s@27#, which was made
using a conventionalk8q•q force. Then, in step~b! above
the quotient of the normsN2\v /Np , does not appear, and
the final result changes to
is
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^ ī uqu ī 8&
@27#
5 S 12

k8~v!

\v
N 2\v

2 D ^ i uqpu i 8&, ~4.9!

a factor N 2\v
2 appearing now because the contraction

^ i uq2\v•q2\vu i 8& involves unnormalized operators.
For p52 we obtainN2\v /Np51.97, which turns out to

be very close to the value for largep that can be calculated
with the help of Eqs.~A33! and ~A34!. Taking as coupling
constantsk(v)522.8\v/11 andk852\v/(8N p

2) ~see af-
ter last equation of Appendix B!, the transition operator is
boosted by a factor~110.42! for Eq. ~4.8!, and~110.5! for
Eq. ~4.9!, which are too small to agree with the empirical
value close to 2. The problem is that second order perturb
tion may work very well for the energy but poorly for the
transition rates~@31# contains some examples!. It is argued in
@27# that a resummation to all orders in perturbation theor
@random phase approximation~RPA!# is necessary, and that
it amounts to recognizing that the perturbation should not b
understood as affecting only the valence particles but th
whole system. Then, callingQ20 the total quadrupole opera-
tor, the estimateQ205(11x)q20 (x50.42 or 0.5! becomes

Q205q201xQ20→Q205~12x!21q20.

Mottelson also argues thatx corresponds to the mass polar-
izability of the system, and that for theE2 operator it should
be replaced byx→xZ/A. However, the quasiconfiguration
technique we have used makes it clear thatx is the isoscalar
polarizability, and what is needed is a similar calculation fo
the isovector one. The steps are as in Eqs.~4.8!; all numbers
are the same except for the coupling, which is now
k511.28 MeV.

C. Comparisons

For thesd shell, precise empirical data can be compare
with the calculated effective coupling constant and effectiv
chargesh20 andh21. The numbers are (e20 in MeV!

e20→e20~110.3!523.12 vs 23.18 @34#, ~4.10!

h205~120.42!2151.76 vs 1.78~3! @6#, ~4.11!

h215~110.19!2150.8 vs 0.8~1! @6#. ~4.12!

The quality of the agreement is pleasing, ande20 is also
close to the Bonn B value given in Table V (23.32 MeV!.

In principle the effective charges above should be vali
for all regions, provided Eqs.~4.8! scale well. We have men-
tioned in this respect thatN2\v /Np seems independent of
p, but we have neither checked the constancy of the overl
factor ~0.83! nor the linearity ofk(v). Furthermore, we have
to remember that the choice of energy denominators
2\v is at best a good average, since the isoscalar states m
be below the isovector ones. All these uncertainties amou
to changingx by a multiplicative factor, and to have an idea
of their impact we simply replace the overlap factor of 0.83
by one ~in which case the isoscalar polarizability coincides
with Mottelson’s!. The effective charges for protons and
neutrons @i.e., (h206h21)/2], which are ep51.31 and
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en50.46 in Eqs. ~4.11! and ~4.12!, would become
ep51.41 anden50.60. It is seen that the uncertainties a
likely to have small effects.

The comparison of the effective pairing numbers in E
~4.2! with empirical values would show that we are missin
some strength. Going up to 4\v jumps leads to an effective
energy~in MeV!

E01→E01~110.48!525.4 vs 25.7 @34#.

The agreement with Bonn B in Table V (25.5 MeV! is
also good, but we should remember that the logarithmic
vergence of second order theory is still there.

This problem does not seem to have attracted much at
tion, but there have been numerous controversies in the
erature on the influence of core polarization in the str
sense, i.e., what we call multipole processes, on pair
renormalization~see@26#!.

According to our simple ideas ‘‘pairing renormalizes pai
ing’’ and ‘‘multipole renormalizes multipole’’ and the con
troversies would seem without object, but there is a catch

A pairing force can always be written in the multipol
representation, the highest multipoles entering with grea
weights. The calculations that generated the controver
were done in thesd shell, a region where quadrupole an
hexadecapole are already high multipolarities, well rep
sented in the pairing decomposition~see last paragraph in
Sec. III!. Therefore, their strong polarizabilities will have
non-negligible effect on theG501 matrix elements. This is
simply a manifestation of the linear dependence problem
have often encountered.

TABLE IV. Comparison of some matrix elements in thesd
shell (55d5/2, 35d3/2, 15s1/2) for different interactions.← indi-
cates largeW-realistic discrepancies.

rstu JT KLS KB Bonn B W

5553 10 3.03 3.17 3.31 2.54
21 -0.52 -0.40 -0.22 -0.28
30 1.21 1.87 1.89 2.22
41 -1.24 -1.36 -1.28 -1.24

5533 01 -4.17 -3.79 -3.41 -3.19
10 1.45 1.62 1.29 0.72
21 -0.89 -0.90 -0.89 -1.62
30 0.13 0.50 0.56 1.89←

5153 20 -1.10 -1.44 -1.33 -0.1←
re
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In heavier nuclei the important contributions toHC will
become increasingly orthogonal, and they will increasing
renormalize themselves in a strict sense.

It is clear that the use of diagonal representations simp
fies considerably the calculation of effective operators
making it possible to concentrate attention on the few imp
tant terms that grow larger, and neglect the small ones t
have no chance to grow.

V. COMPARING INTERACTIONS

Now we compare several realistic interactions in thesd
shell, the only region in which a direct fit to the data,W @6#,
leads to more accurate spectra.

Table IV shows some off-diagonal matrix elements at t
beginning of the shell, calculated with the KLS~as used in
@9#!, KB @24#, and Bonn B@25# realistic interactions, or taken
from theW fit. The KLS numbers represent bare matrix e
ements affected by a multiplicative factor of 1.4 forT51.
This extremely coarse ‘‘renormalization’’ will be seen to b
quite acceptable. It is apparent that the realistic values
close to one another~especially KB and Bonn B! and not far
fromW, except in two cases shown by arrows.

The comparison of individual matrix elements can be m
leading, because apparently large discrepancies may b
little consequence, and apparently small ones disastro
Therefore it is better to concentrate on the contributions t
can make a difference. Accordingly Table V collects info
mation on the lowest state in thee andE representations.
The KB numbers have been left out because they practic
duplicate those of Bonn B. The differences in eigenvalu
between KLS and Bonn B is not large but may have som
significance, while the agreement in eigenvectors is co
plete. Very much the same is true in the comparison ofW
with the realistic values except forG520 and 30, which are
not among the dominant states of the collective Hamiltonia.
The reading of the result is simple:W has discovered and
dealt with some local problem by altering radically som
special matrix elements, butit has scrupulously respected th
truly important contributions.

The local problem deserves some attention. It sho
mainly in the lower half of the region, and we borrow from
unpublished results used in the calculations of@9# some of
the following observations.

~1! In 22Na the realistic interactions produce a close do
blet J51, 3, instead of the well detachedJ53 observed
ground state. Reference@6# contains a useful figure for this
nucleus. Monopole corrections very much improve—but n
completely—the catastrophic behavior of the realistic inte
TABLE V. Lowest energiesEG for G501, 10, 20, and 30 andeg for all g, and overlaps of the wave-
functions for KLS, Bonn B, andW.

01 10 20 30 10 11 20 21 30 31 40 41

-5.42 -5.43 -2.68 -2.15 KLS -2.18 2.38 -2.90 -0.71 -0.82 0.44 -1.61 0.40
-5.48 -6.24 -2.91 -2.66 Bonn B -1.55 2.64 -3.32 -0.97 -0.83 0.46 -1.39 0.52
-5.69 -5.90 -0.95 -2.44 W -2.16 3.08 -3.18 -0.70 -0.94 0.54 -1.60 0.51
1.00 1.00 1.00 1.00 ^KLSuBonn B& 0.99 1.00 1.00 0.99 0.98 0.99 1.00 1.00
1.00 0.98 0.55 0.82 ^KLSu W& 0.95 0.99 1.00 0.98 0.98 0.92 1.00 1.00
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actions indicated by the figure.
~2! The k53/2 band in23Na is too low.
~3! Theg band in 24Mg is also too low.
~4! The JT520 state in18F always too low by about 1

MeV. This seems to be true for all interactions@25#. ~One
should be careful here: The experimental counterpart of t
level is the secondJT520 state in18F, the first one is an
intruder.! In 38K, theJT520 state~which is now the first! is
again too low. This will turn out to be a most interestin
indication, because in the upper part of the shell the reali
interactions do extremely well, and this state is the one of
very few that causes trouble.

These discrepancies are very mild when compared w
the ones due to bad monopole behavior but they are mo
responsible for the fact that the best results quoted in@9# give
rms errors of some 100 keV above theW values.

The solution proposed by theW fit is such that there is no
hope to reconcile it with the realistic forces. The problem
then to reconcile the latter with the data. It is quite possib
that monopole effects are still responsible for the discrep
cies, but it is worth examining whether the multipole term
may be at fault.

One possibility is that the renormalizations are not co
rect: What was said for pairing in the preceding section a
plies to all the strongG contributions.

The other possibility is to exploit the differences betwe
realistic interactions. Similar as they are, they also differ
some respects as can be gathered from Fig. 3 of Ref.@25#,
which shows several calculated spectra of18F and 18O.

There are two effects.
~i! Overall dilation. If we refer to Eq.~2.8!, the discrep-

ancy can be absorbed by simply changing slightly the os
lator frequency, which is in principle fixed by the size of th
nucleus. Because of their bad saturation properties,
choice is not always possible for the realistic potentials.
long as saturation properties have to be treated phenom
logically, the overall dilation must be treated as a free p
rameter. The differences due to this phenomenon can
eliminated by normalizing the interactions to the sames2 in
Eq. ~3.1!. When this is done, most of the discrepancies b
tween interactions in Fig. 3 of Ref.@25# will be removed.

~ii ! Spectroscopically light matrix elements. The intera
tions would still differ, especially through the ‘‘spectroscop
cally light’’ matrix elements, i.e., those of small@JT#, and in
particular theJT501 and 10 ones. As we have seen in t
preceding section they are also the ones most severely
fected by renormalization uncertainties.

These remarks suggest ways of attacking the local pr
lem in thesd shell. From Table V it is clear that there is n
room whatsoever for tampering with the structure~i.e., the
wave functions! of the dominant terms. The magnitudes
the energies are more flexible. Since theJT520 state has
been clearly identified as a troublemaker, it has to be mo
up. Or, conversely, the states below it in the two particle~or
hole! spectra must be moved down. Monopole terms c
then correct the overall energetic balance: The importanG
states have different particle occupancies, and are quite
sitive to monopole details. As the radial behavior of nuclei
the first half of the shell is very complicated@9#, the effective
Hm may also be complicated and accomodateEG values
quite different from those in Table V, which are alread
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somewhat scattered. The differences may come either fro
better renormalizations or from the interactions themselve
The latter prospect is an interesting one, since it may help
choosing interactions: Our basic tenet that the realistic on
are equivalent is basically sound, but not strictly true.

The local problem remains, but the diagonal represent
tions put useful constraints on the possible solutions. Mo
generally, our analysis has confirmed that there is not mu
room for tampering with the realistic interactions.

VI. CONCLUSION

The residual or multipole part of the nuclear Hamiltonian
is dominated by few terms that are very simple. Work re
mains to be done on the monopole field, but as things stan
we have already a fairly useful characterization of the inte
action.

APPENDIX A

1. Basic operators

We shall work in spaces containingD orbits labeled
(rr z), (s,sz) . . . , wherer specifies the subshell to which the
orbit belongs, andr z its projection quantum numbers. The
associated creation (arr z

† ) and annihilation (arr z) operators

obey anticommutation relations.
All operators we may need are products of these eleme

tary ones and, to take advantage of the basic symmetrie
they have to be coupled to good angular momentumJ ( j
formalism!, or to both goodJ and isospinT ( j t formalism!.
Following French@15#, we shall introduce a product notation
in which expressions are independent of the couplin
scheme. Inj t formalism, for example, a single tensorial in-
dex will represent pairs in spin-isospin (JT) space:

G[JT, Gz[MTz , r[ j r
1
2 , r z[mrtzr, etc. ~A1!

Note that r as tensor index has not exactly the sam
meaning as label of shellr ~i.e., r[ j rpr , wherepr is the
principal quantum number!. No confusion can possibly arise
from this convention.

Expressions involving these indices will stand for prod
ucts as in

~2 !Gz5~2 !M1Tz, ~2 !r5~2 ! j r11/2, @r #52~2 j r11!,

@G#5@JT#5~2J11!~2T11!, ~A2!

more generally

U~G space!5U~J space!U~T space!, ~A3!

whereU may be some 6j or Clebsh-Gordan coefficient or
similar functions as in

^ggzg8gz8uGGz&5^ jm j8m8uJM&^ttzt8tz8uTTz&. ~A4!

In j formalism, also called neutron-proton (np), we do
not couple explicitly to goodT, the tensorial indices refer to
a single space, and the identifications areG5J, r[ j r ,
@r #5(2 j r11), etc. ~Note that when used as label,r must
specify whether the shell is a neutron or a proton one.!
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The Hermitian conjugate~denoted by an asterisk *) of a
tensor operatorT is not itself a good tensor but it can b
associated to one, which may be its ‘‘conjugate’’T̃ or its
‘‘adjoint’’ T, whose components are defined by

T̃ggz
5~2 !g1gz~Tg2gz

!* , Tggz
5~2 !g2gz~Tg2gz

!* .
~A5!

The (2)g factor is not essential, and in the case of t
spherical harmonics with the Condon-Shortley phase,
which Ylm* 5(2) lYl2m , there is no point in introducing it.
On the contrary, the (2)6gz phase is dictated by the defini
tion of tensor operators@see Eq.~4.9! and Sec. 4.8 of@16##,
and the ambiguity in sign demands some care.

In coupling operations it is convenient to adopt the no
tion of French for the basic fermions:

Arr z
5arr z

† , Brr z
5arr z

; 5~2 !r1r zar2r z
. ~A6!

The coupledoperators quadratic inA andB are

XGGz

† ~rs!5~ArAs!Gz

G , XGGz
~rs!5~BrBs!Gz

G ,

Sgz
g ~rt !5~ArBt!gz

g . ~A7!

The notationXGGz

† (rs)5XrsGGz

† ~and similar ones for the

other operators! will be also used.
From the easily proved identity valid for any two opera

tors,

~PgQg8!G5~2 !g1g82G~Q̄g8P̄g!G ~A8!

~equally valid for conjugation!, we obtain

XG
†~rs!52XG~rs!, Sgz

g ~rt !5~2 ! t2r2gS2gz
g ~ tr !.

~A9!

For reduced matrix elements we use Racah’s definitio

^aazuPgz
g ubbz&5~2 !a2azS a g b

2az gz bz
D ^aiPgib&.

~A10!

Note that the reduction applies to both spin and isospin
we are working in aj t formalism. For any operatorPg it is
true that

^aazuPgz
g ubbz&5^bbzu~Pgz

g !* uaaz&* ~A11!

and by applying Eq.~A10! to both sides it follows that

^aiPgib&5~2 !a2b2g^bi P̄gia&, ~A12!

where we have omitted complex conjugation on the rig
hand side~RHS! because our reduced matrix elements w
be real.

The coupled form of a rank 1 operator is deduced fro
the uncoupled one by using Eq.~A10! and the definition of
Sg in ~A7!:
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Rgz
g 5 (

r ,t,r z
^rr zuRgz

g uttz&arr z
† attz

5(
rt

^r iRgi t&~g!21/2Sgz
g ~rt !. ~A13!

We can always rewrite an arbitraryRg in terms of sym-
metric (S) and antisymmetric (A) operators:

Rgz
g 5

1

2(r<t
$@Rrt

g 1~2 !r2tRtr
g #Sgz

g ~rt !

1@Rrt
g 2~2 !r2tRtr

g #Agz
g ~rt !%, ~A14!

where we have usedRrt
g 5^r iRgi t&(g)21/2, and

Sgz
g ~rt !5Sgz

g ~rt !1~2 !r2tSgz
g ~ tr !,

Agz
g ~rt !5Sgz

g ~rt !2~2 !r2tSgz
g ~ tr !. ~A15!

The (2) r2t phase ensures that the spherical harmonic
are symmetric ifYlm* 5(2)mYl2m ~Condon and Shortley’s
choice!, which leads tô r iYl i t&5(2) r2t^tiYl ir & and van-
ishing of the A term. The phase convention should be
changed to (2) r2t2 l if Yl→ i lYl . Then
Ylm* 5(2) l1mYl2m , and ^r iYl i t&5(2) r2t2 l^tiYl ir &. Note
that now Yl•Yl5@ l #1/2(YlYl)

0 instead of the usual
Yl•Yl5(2) l@ l #1/2(YlYl)

0 but J•J52A3(JJ)0 and
T•T52A3(TT)0 always, sinceJ→ iJ makes no sense. Still,
positive definite zero coupling for tensors of integer ran
could be obtained with the change
^ lml2mu00&5(2) l2m@ l #21/2 to (2)m@ l #21/2. For half inte-
ger rank, no convention will ensure that zero coupling i
always definite positive.

2. Normal and multipole representations

The two crucial equalities relating the zero coupled opera
tors in terms of which the potential part of the Hamitonian
V, can be written are

2@XG
†~rs!XG~ tu!#052~2 !u1t2GFG

r G 1/2dstSru0
1(

g
@Gg#1/2~2 !s1t2g2GH rsG

utgJ
3~Srt

gSsu
g !0dstSru

0 ~A16!

and its inverse

~Srt
gSsu

g !05~2 !u2t1gF g

r G 1/2dstSru0 2(
G

@Gg#1/2

3~2 !s1t2g2GH r s G

u t gJ @XG
†~rs!XG~ tu!#0.

~A17!
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In both cases the second term can be written through
elementary recoupling but the one body contractions ne
some care.

The potential energy appears naturally in terms of sca
products of the normalized creation operator
ZrsGGz

† 5(11d rs)
21/2XrsGGz

† , and its Hermitian conjugate

ZrsGGz
:

V5 (
r<s

t<u,~G!

Vrstu
G ZrsG

†
•ZtuG[ (

r<s
t<u,~G!

Vrstu
G (

Gz

ZrsGGz

† ZtuGGz
,

~A18a!

Vturs
G 5Vrstu

G 52~2 !r1s2GVsrtu5~2 !r1s1t1uVsrut
G

52~2 ! t1u2GVrsut
G . ~A18b!

In recoupling it is convenient to allow for complete flexibil
ity in the summations over orbits, and we adopt the follo
ing convention

j rs5~11d rs!
21/2 if r<s,

j rs5
~11d rs!

1/2

2
if no restriction, ~A19!

so that the sums could be interpreted as restricted or
restricted. We write therefore

V5 (
r<s
t<u,G

Vrstu
G ZrsG

†
•ZtuG

52 (
~rstu!G

j rsj tu@G#1/2Vrstu
G ~XrsG

† XtuG!0. ~A20!

Note that( (rstu) means that that we are summing as di
tated by the values ofj rs andj tu .

According to Eq.~A16!, V can be transformed into

V5 (
~rstu!g

j rsj tu@@g#1/2v rtsu
g ~Srt

gSsu
g !0

1dstd̂ ru@s#
1/2v russ

0 Sru
0 #, ~A21!

where

v rtsu
g 5(

~G!
~2 !s1t2g2GH r s G

u t gJ Vrstu
G @G#,

~A22a!

Vrstu
G 5(

g
~2 !s1t2g2GH r s G

u t gJ v rtsu
g @g#.

~A22b!

~We use( (G) to indicate that we sum over Pauli allowe
G.! Equation~A17! suggests an alternative to Eq.~A21!:
an
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V5 (
~rstu!g

j rsj tu@g#1/2v rstu
g F ~SrtgSsug !0

2~2 !g1r2sFgr G
1/2

dstd̂ ruSru
0 G , ~A23!

where each term is associated with a two-body operator. T
obvious check that Eq.~A23! is indeed Eq.~A21! comes
from

2(
g

@g#1/2v rstu
g ~2 !g1r2sFgr G

1/2

5@s#1/2v russ
0 .

~A24!

The proof is left as an exercise@use Eq.~A22a! and Racah
sum rule~A39!#.

In a j t representation, by introducing explicitly the isos

pin in G5JT,g5lt,r5 j r
1
2 etc., and the 6j values

H 1/2 1/2T

1/2 1/2tJ 5

Tt 00 01 10 11

21/2 1/2 1/2 1/6, ~A25!

we find

v rtsu
l0 5

1

2(~J!
~2 ! j s1 j t2l2JH j r j s J

j u j t lJ @J#~Vrstu
J0 13Vrstu

J1 !,

~A26a!

v rtsu
l1 5

1

2(~J!
~2 ! j s1 j t2l2JH j r j s J

j u j t lJ @J#~Vrstu
J0 2Vrstu

J1 !,

~A26b!

and reciprocally

Vrstu
J0 5

1

2(l
(2) j s1 j t2l2JH j r j s J

j u j t lJ [l](v rtsu
l0 13v rtsu

l1 ),

~A27a!

Vrstu
J1 5

1

2(l
~2 ! j s1 j t2l2JH j r j s J

j u j t lJ @l#~v rtsu
l0 2v rtsu

l1 !.

~A27b!

When the Hamiltonian is written as in Eq.~A20! we
speak of the normal orV representation, and refer to the
forms ~A21! or ~A23! as multipole, orv representation. The
latter is often calledph representation in the literature, be-
cause Eq.~A21! can be cast as aph or Pandya-Talmi trans-
formation by simply replacing theAs and Bt operators by
their ph transforms.

It is useful to have at hand the relationship between m
trix elements in thej t and thej schemes. A single shellr in
the former becomes a pairr n and r p in the latter
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Vrnsptnup
J 5

~11d rs!
1/2~11d tu!

1/2

2
~Vrstu

J1 1Vrstu
J0 !,

Vrnspuptn
J 5

~11d rs!
1/2~11d tu!

1/2

2
~Vrsut

J1 2Vrsut
J0 !,

Vrnsntnun
J 5Vrpsptpup

J 5Vrstu
J1 . ~A28!

3. Reduced matrix elements forl, s, rY1, and q operators

Conventions:r is the coordinate in units of the oscillato
length A(\/Mv). Radial wave functions are positive nea
the origin.

ĵ5 l̂1 ŝ ~not ŝ1 l̂ ). The carets indicate operators.
Condon and Shortley phases forYlm .
~A! ŝ52ŝ and l̂ matrix elements:

j 85 l11/2, j5 l21/2,

f ~ j !5@ j ~ j11!~2 j11!#1/2,

^ j 8iŝi j 8&5 f ~ j 8!/ j 8, ^ j iŝi j &52 f ~ j !/~ j11!,

^ j 8i l̂ i j 8&5 l f ~ j 8!/ j 8, ^ j i l̂ i j &5~ l11! f ~ j !/~ j11!,

^ j i ŝi j 8&5^ j 8i l̂ i j &5F2l ~ l11!

2l11 G1/2
52^ j 8i ŝi j &52^ j i l̂ i j 8&. ~A29!

~B! r lYl matrix elements:

Yl5S 2l11

4p D 1/2Cl ,

^pl j ir lClip8l 8 j 8&5^plur lup8l 8&~2 ! j 82l21/2@ j j 8#1/2

3S j j 8 l

1/2 21/2 0D . ~A30!

~B1! r 1 and r 1Y1 matrix elements:

^plur up11 l11&5A1

2
~p1 l13!,

^plur up11 l21&52A1

2
~p2 l12!, ~A31!

^pl j irC1ip11 l11 j11&

52Ap1 l13

2 F ~2 j11!~2 j13!

2~2 j12! G1/2,
^pl j irC1ip11 l11 j &52Ap1 l13

2 F 2 j11

2 j ~2 j12!G
1/2

,

^pl j irC1ip11 l21 j &5Ap2 l12

2 F 2 j11

2 j ~2 j12!G
1/2

,

r
r

^pl j irC1ip11 l21 j21&

52Ap2 l12

2 F ~2 j21!~2 j11!

4 j G1/2. ~A32!

~B2! r 2 andr 2Y2 matrix elements (q0\v only for the latter!:

^plur 2upl&5p13/2,

^plur 2upl12&52@~p2 l !~p1 l13!#1/2,

^plur 2up12 l &52
1

2
@~p2 l12!~p1 l13!#1/2,

^plur 2up12 l12&5
1

2
@~p1 l15!~p1 l13!#1/2,

^plur 2up12 l22&5
1

2
@~p2 l15!~p2 l14!#1/2,

~A33!

^ j l ir 2C2i j l &

52
p13/2

2 F ~2 j11!~2 j21!~2 j13!

2 j ~2 j12! G1/2,
^ j l ir 2C2i j11 l &5~p13/2!F32 ~2 j11!~2 j13!

2 j ~2 j12!~2 j14!G
1/2

,

^ j l ir 2C2i j11 l12&

52F32 ~p2 l !~p1 l13!~2 j11!~2 j13!

2 j ~2 j12!~2 j14! G1/2,
^ j l ir 2C2i j12 l12&

52F38 ~p2 l !~p1 l13!~2 j15!~2 j13!~2 j11!

~2 j14!~2 j12! G1/2. ~A34!

Useful formulas involving 3j and 6j symbols:

^ jm j8m8uJM&5~2 ! j2 j 81M@J#1/2S j j 8 J

m m8 2M D
5~2 ! j1 j 82J^ j 8m8 jmuJM&

5~2 ! j1 j 82J^ j2mj82m8uJ2M &,

~A35!

S j j 8 J

m m8 2M D 5~2 ! j1 j 81JS j 8 j J

m8 m 2M D
5~2 ! j1 j 81JS j j 8 J

2m 2m8 M D .
~A36!

The 3j symbol is invariant under cyclical permutations
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^ jm j2mu00&5@ j #21/2~2 ! j2m, ~A37!

(
J

~2 !J@J#H j j 8 J

j 8 j kJ 5~2 ! j1 j 8@ j j 8#1/2dk0 ,

~A38!

(
J

@J#H j j 8 J

j j 8 kJ 51, ~A39!

H j j 0

j 8 j 8 kJ 5~2 ! j1 j 81k@ j j 8#21/2. ~A40!

The 6j symbol is invariant under permutations of col
umns and under interchange of upper and lower indices
two columns.

APPENDIX B

1. Properties of thef matrices

There is nothing special about theW matrix that is diago-
nalized in theE representation except that it is traceless b
construction, while thef matrix leading to thee representa-
tion has a number of nontrivial properties.

a. Direct properties

~i! The f lt matrix has twice as many elements as th
WJT matrix with J5l.

If rÞs and tÞu, Wrstu
G goes intov rtsu

g andv rust
g and the

allowed values ofG andg are the same.
If r5s or t5u, Wrstu

G goes intov rtsu
g 5v rust

g but G is
allowed for (2)G521 only and there is no restriction on
g. E.g., there are five possible ways of constructingJ52
states in the sd shell d5/2

2 , d3/2
2 , d5/2s1/2, d5/2d3/2,

s1/2d3/2 and there are fiveJT521 states and threeJT520
states~the first two are Pauli forbidden!. For theg matrices
there are eight possible combinations: the five above p
s1/2d5/2, d3/2d5/2, andd3/2s1/2 which are counted as differ-
ent. Therefore inW we have a 333 (G520) and a 535
(G521) matrix, while in f we have twice an 838 matrix.
Each of these 838 matrices consists of two blocks of
333 and 535 because of the following property.

~ii ! In thee representation we can write

H5
1

2 (
r<t
s<ug

@g#1/2@~ f rtsu
g 1~2 !s2uf rtus

g !~Srtg Ssug !0

1~ f rtsu
g 2~2 !s2uf rtus

g !~Art
gAsu

g !0# ~B1!

in terms of theS andA operators defined in Eq.~A14! . In
the preceding example it means that out of eight possi
g52t combinations three are ofA type and five ofS type.
Note that the matrices are always symmetric but the eige
vectors are linear combinations that are either ofS orA type.

~iii ! The trace of thef matrix alwaysvanishes, as seen
from
-
in

y

e

lus

ble

n-

(
g,rt

f rtrt
g @g#5(

rt
Prr Ptt(

g[G]
~2 !r1t2g2GH r r G

t t g JWrrtt
G

5(
rt

Prr Ptt

@rt #1/2
Wrrtt

00 50, ~B2!

where we have used~2.1c! and sum rule~A10! from @1#. The
matrix elementWrrtt

00 is always zero because it is Pauli for-
bidden.

~iv! The variance of the f matrix is
s f
25@(D21)/8D#sW

2 wheresW
2 is the variance of theW

matrix. The calculation is better conducted in them scheme:

H~W!5( Wxx8Zx
†Zx8,

x[~ i j !, x51•••D ~2!/2, i, j , ~B3!

H~ f !5( f aa8SaSa8,

a[~ i j !, x51•••D2~ i j unrestricted!. ~B4!

A typical Wxx85W1234, say, appears asf aa856 1
4 Wxx8 in

four contributions:aa8513 24 and 24 13, 14 23, and 23 14.
Then

sW
2 5SD ~2!

2 D 21

( Wxx8
2 , ~B5!

s f
25D22( f aa8

2
5D22( 4SWxx8

4 D 25D21

8D
sW
2 .

~B6!

b. Asymmetric factorizations

Quadrupole renormalizations are mediated by terms of th
form k(q̄p8•q̄2\v8 1q̄2\v8 •q̄p). It is perhaps surprising that Eq.
~2.3b! could produce such a result. In fact, it does it indi-
rectly. What happens is that, for the particular type of matr
ces involved, two contributions with eigenvalues of sam
magnitude and opposite signs are present. It is by summi
them that asymmetric factorizations appear. Let us see ho
by studyingI3I matricesf , whose nonzero elements belong
to the rectangular blocksf xa and f ax , a51, . . . ,K,
x5K11, . . . ,I , I2K5L.

Specializing Eq.~2.2b! to this situation we have

(
x

f axuxk5uakek , (
a

f xauak5uxkek . ~B7!

The eigenvectoruk& with eigenvalueek can be expanded
in terms of unit column vectorsu i & ~1 in thei th position, zero
in the others!:

uk&5 (
i51,I

uiku i &5 (
a51,K

uakua&1 (
x5K11,I

uxkux&. ~B8!

By reversing simultaneously the sign ofek and uxk
(ek→2ek , uxk→2uxk , ;x) Eq. ~B7! remains unchanged
telling us that
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uk̄&5(
a

uakua&2(
x
uxkux& ~B9!

is an eigenvector with eigenvalue2ek . Furthermore, from
unitarity

(
i
uikuik85(

a
uakuak81(

x
uxkuxk85dkk8 ~B10!

and taking overlaps

^kuk̄8&5(
a

uakuak82( uxkuxk850, ~B11!

leading to

(
a

uakuak85(
x
uxkuxk85

1

2
dkk8. ~B12!

From these results we may construct the spectrum off .
Let us callM5min(L,K). We have:M positive eigenvalues
ek (k51,M ), M negative onesek̄52ek ( k̄5M1k), and
I22M null ones.

We may gain further insight by presenting the problem
a search for an optimum approximantgagx to the rectangular
matrix f ax , defined through

( ~ f xa2gagx!
25min. ~B13!

Variation with respect tof x and f a leads to

(
x

f xagx5ga(
x

f x
2 , (

a
f xaga5gx( ga

2 , ~B14!

and given that ~B13! is invariant under gx→sgx
ga→s21ga we may request

(
x
gx
25(

a
ga
25e ~B15!

and Eq. ~B14! becomes Eq.~B7! by identifying gx5uxk ,
ga5uak , e5ek . The factorization produced by the lowes
(k51) eigenstate ate52ue1u is identical to the one for the
highest ate5ue1u and the best available. Exact separability
achieved forek50 for kÞ1.

APPENDIX C

1. Baranger and Kumar revisited

In two important papers Baranger and Kumar attempt
to derive from a realistic interaction the pairing plus quadr
pole forces adapted to a space of two major shells@1# and
proceeded to do Hartee-Fock-Bogoliubov~HFB! calculations
in the rare earth region that showed for the first time that
was possible to explain microscopically the onset of defo
mation @35#.

The success of the calculations is probably due in lar
part to the fact that the model is far more realistic than
authors believed. The reason is rather strange and we thin
is worth telling.
as

t

is

ed
u-

it
r-

ge
its
k it

Let us start by comparing the traditional pairing plu
quadrupole forces as used in@1,35#

HP52Gx~Pp
†1Pp11

† !•~Pp1Pp11!, ~C1!

Hq52
x8

2
~qp1qp11!•~qp1qp11!, ~C2!

with the normalized versions in Eqs.~2.9! and~2.10!, which
we write explicitly by borrowing numbers from Table II and
remembering that\v059 MeV:

HP̄520.32\vS Pp
†

AVp

1
Pp11
†

AVp11
D S Pp

AVp

1
Pp11

AVp11
D ,

~C3!

H q̄520.216\vS qpNp
1
qp11

Np11
D S qpNp

1
qp11

Np11
D .

If we consider first the case of one shell, the operators a
the same, and we can relate the coupling constants by sim
equating.

For the two shell case, the overlap

1

A2 K qpNp
1

qp11

Np11
U qp1qp11

AN p
21N p11

2 L
5

1

A2
N p1N p11

AN p
21N p11

2
50.98 forp53 ~C4!

seems large enough to identifyH q̄ andHq to a good ap-
proximation. Of course there is some risk because in t
norms defined in the vector space of the multipole represe
tation theSrt operators areall treated as unit vectors. In a
midshell situation, as in28Si, thep11—upper—shell is very
poorly represented in the wave functions. Then the larg
overlap is meaningless.

With this proviso in mind we equate the traditional an
the new forms. Recalling that\v540A21/3 @20#, and writ-
ing the norms in terms ofAmp as in Eqs.~2.4! and ~2.5! we
find for one shell

0.216\v

N p
2 >

1

2

216

A1/3Amp
4/35

x8

2
[

x08

2
A25/3,

~C5!
0.32\v

Vp
>

19.51

A1/3Amp
2/35G[G0A

21,

and for two shells,

0.216~2\v!

N p
21N p11

2 >
1

2

216

A1/3Ac8p
4/3 5

x8

2
[

x08

2
A25/3,

~C6!

0.32~2\v!

Vp1Vp11
>

19.51

A1/3Ac9p
2/3 5G[G0A

21,
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where we have expressed the averaged norms in term
Ac8p and Ac9p , both close enough to the total number
particles at the closure of shellp, Acp , to be identified with
it in what follows.

For one shell the only problem comes from the conve
tional scalings, inA25/3 andA21. It is possible to understand
their origin: They amount to settingAmp5A, which makes
sense in comparing strengths in distant regions, but is loc
wrong. If taken at face value, theA25/3 local behavior pre-
dicts variations in the moments of inertia of neighboring th
are much larger than the observed ones@36,37#.

In the two-shell case the couplings are reduced with
spect to the one shell values by a factor of about

~Amp /Acp!
k/35S 2p13

2p14D
k

, ~C7!

with k54 for x8 andk52 for G. If our identifications were
correct, these discrepancies should not exist, and they
related to the risk we described after Eq.~C4!: There is no
guarantee that we can approximate well the opera
q̄p1q̄p11 by qp1qp11. The compromisex8 in Eq. ~C6! is
too small for the lower shell but also too large for the upp
one. If the mixing is strong and both shells contribute equa
to the wave functions, then the large overlap in Eq.~C4!
indicates that the compromise may work but in a nucle
well described by the lower shell alone it makes no sen
The thing to do in this case is to restrict the model to o
shell.

By overlapping theq•q form with a realistic interaction
Baranger and Kumar obtainedx085 203 ~vs our 216! for one
shell, but for two shells the value was reduced by a factor
about 0.6 atp52, close to (7/8)4 calculated in Eq.~C7!.
When faced with this unwanted reduction, instead of bla
ing the q•q form, they declared incorrect their method o
extraction which—under a primitive guise—is identical t
ours and correct to within some details~discussed in Sec. III
B!. Then, to obtain the coupling constant, they proceeded
invent another method, unrelated to any interaction~seeNote
2 below!.

At this point Ref. @1# becomes confusing because it
argued that sincethe quadrupole force cannot be extracte
from the realistic interaction its origin must be somethin
elsethat may not be quadrupole at all. What we are showing
is that the ‘‘something else’’ is simply the normalized qua
rupole force.

The extraordinary thing is that Baranger and Kumar h
found it. The reason they did not see what they had found
that they reasoned in terms of theA25/3 scaling, in spite of
having given the correct argument showing what the scal
must be.

Now observe carefully Eqs.~C5! and~C6! to discover the
detail that repairs the damage. The only sensible way to
fine x08 for one shell is to ‘‘equate’’Amp'A, while for two
shells we must takeAcp'A and nowx08 is identical to 216 in
both cases.

There is no contradiction betweenx8(1 shell)Þx8(2
shells) at a given nucleus andx08(1 shell)5x08 (2 shells),
both calculated in different nuclei.
s of
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The point is rather subtle and it is only thanks to univers
scaling that it can be made.

Everything seems to happen as if one flaw of the model
incorrect scaling—corrected the other: the space depende
of the coupling constants. A better interpretation, though,
that the model should be restricted either to one shell in t
vicinity of Amp or to two shells in the vicinity ofAcp .

Now we note that the rare earth region studied in@35# is
approximately centered at the oscillator closuresZ570 and
N5112, which meets this restriction, and that the paramete
used were~in MeV!:

x08'280, G0p527, G0n522,

somewhat larger than those in Eq.~C6! but quite consistent
with the renormalized values of Sec. IV.@The need to use
differentG0 values for neutrons and protons is readily ex
plained by~C6!. It is a mild manifestation of space depen
dence.#

We can draw two conclusions.
~i! The conventional pairing plus quadrupole model i

two shells is far more consistent with the realistic interac
tions than its authors believed.

~ii ! It can be made truly realistic by using the normalize
operators, by including a pair of other terms~octupole and
hexadecapole!, and by examining more closely the monopol
contribution. Very little of the basic simplicity of the original
will be lost in this improved version.

Note 1: on space dependence.Examine what happens in
larger spaces when Eq.~C6! is generalized toM major
shells. It is elementary to prove thatx85O(A21/3M24), and
that the overlap tends toA5/9. It means that to simulate—
never mind how remotely—the behavior of its realistic coun
terpart, the conventionalq•q force must be affected by a
vanishingly smallx8.

Note 2: on the second method of extraction in@1#. To
replace direct extraction ofx8 from the realistic interaction
Baranger and Kumar proposed a method based on the i
that the average energy of a nucleus is independent of
shape. It makes no reference to the force nor to any empiri
datum but assumes very specifically that particles move
two major shells. Hence the presence of two terms in th
denominator of the resulting estimate:

x85
\v

N p
21N p11

2

@Eqs.~72! and~73! and the paragraph following them in@1#,
but here we have introduced the norms instead of their a
ymptotic values#. This is the samex8 of Eq. ~C6!, except that
a factor 430.216 has been set to unity.

The critical dependence on the number of shells that a
taken to be active makes the result suspect. However, it m
also mean that it is a profound one since two shells seem
be the natural valence space to describe rotational motio
~See@22#.! It should be noted that the value ofx8 deduced by
Mottelson in@27# is exactly half of the Baranger and Kumar
one @1#.
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