PHYSICAL REVIEW C VOLUME 54, NUMBER 4 OCTOBER 1996

Realistic collective nuclear Hamiltonian
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The residual part of the realistic forces—obtained after extracting the monopole terms responsible for bulk
properties—is strongly dominated by pairing and quadrupole interactions, with impertantr, octupole,
and hexadecapole contributions. Their forms retain the simplicity of the traditional pairing plus multipole
models, while eliminating their flaws through a normalization mechanism dictated by a uniéeféabcaling.
Coupling strengths and effective charges are calculated and shown to agree with empirical values. Compari-
sons between different realistic interactions confirm the claim that they are very similar.
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PACS numbd(s): 21.60.Cs, 21.60.Ev, 21.36x

[. INTRODUCTION tions, has an excellent behavi®,10|. Therefore conditions
(A) and(C), as well agB) and(C), are mutually compatible.

It has not been possible, yet, to construct interactions that An elementary argument explains the situation. The ob-
could satisfy simultaneously three basic conditiq#g:to be  served nuclear radii=1.2AY3 fm imply average interpar-
realistic, i.e., consistent with the nucleon-nucleoNN) ticle distances of some 2.4 fm, and therefore the nucleons
phase shifts(B) to ensure good saturation properties, i.e.,"see” predominantly the medium range of the potential.
correct binding energies at the observed radii, &§1to  This is a region that is well understood theoreticglly] and
provide good spectroscopy. As a consequence many forcegell described by the realistic forces.
have been designed for specific contexts or problems: pairing The saturation problem remains, of course, and as long as
plus quadrupole[1,2], density-dependent potentials for conditions(A) and (B) cannot be made compatible, a phe-
mean-field approachef3,4], Landau-Migdal parametriza- nomenological treatment of{,, will be necessary. Some
tions for studies of the giant resonandés, direct fits to  progress has been already made in this respect: In[Rgf.
two-body matrix elements for shell-model calculatidies, a hint that will emerge in the present paper has been taken up
and many others. A way out of this unsatisfactory state ofand applied to the construction of a mass formula that is
affairs would be to exhibit an interaction consistent with con-extremely precise by present standamiss error of 375 keV
ditions (A)—(C) above. To understand how the project can befor all known nuclei withN,Z>8). Of the 28 parameters that
implemented, let us start by assuming that we work in a Foclenter the calculations, a dozen represent a first approximation
representation. Then the Hamiltoni&his given in terms of to the monopole field. It is still very crude but it makes
a set of matrix elements which we take to be written in anplausible the idea of constructing some simpig that con-
oscillator basis, the natural one for self-bound systems.  tains few parameters and describes nuclear data satisfacto-

It may be thought very uneconomic to use an infinite setily. Since something simple in Fock space may be compli-
of numbers to characteriZ¥, but there is a great advantage cated in coordinate space, it may point to ways—so far
in doing so, because it becomes possible to prove the followsverlooked—of reconciling condition@) and (B).
ing separation property. It follows that, although we still fall short of a complete

Given a sufficiently smooth HamiltoniaH, it can be and rigorous characterization &f, we may not be far from
separated as{="H.,+Hy . Only the monopole fielé,, is it. In particular, we knowH,, well. As this knowledge comes
affected by spherical Hartree-Fock variation. Therefore it isin huge arrays of matrix elements, it would be more helpful
entirely responsible for global saturation properties and if we could extract from this mass of numbers the truly im-
single-particle behavior. portant ones, i.e., separéaitg,=Hc+ Hg, into a collective

The idea is thatH can be written in terms of dens- (C) part and a rest that could be treated as rand&h (
ity operators coupled to good angular momentinii.e.,  There are many advantages in doing so, but one is special.
(a'a)], and that H,, exhausts the contributions with As new regions open to scrutiny, through Monte Carlo tech-
A =0, while the multipole parf{y, contains all the rest. A niques[13] and further improvements in shell model tech-
schematic proof of the separation property has been given inology[14], the nature of the problems changes: Dimension-
[7], and a more complete one may be foundigh It is easy alities grow exponentially with the size of the systems, but
to explain the interest in this result. the behavior described by the enormous matrices also be-

One of the major problems of nuclear physics is that re.comes simpler through the increasing influence of coherent
alistic forces have bad saturation properties and shiigas  effects.
in charge of them it must be treated phenomenologically. The special advantage is that in adapting existing methods
Fortunately, it is a relatively simple object that makes it quiteto face this situation, or designing new ones, our basic tool is
feasible to force good saturation in a shell-model contextthe Hamiltonian itself, and the simpler it can be made, the
with the pleasing result that the multipole pét},, which  higher will be the chances of developing successful compu-
can be extracted rather uniquely from the realistic interactational strategies.
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Clearly, a deeper understanding’f, is called for. The one-body contractions vanish identically fafy, be-

In Sec. Il we are going to show that its structure is ascause they are proportional ez, .
simple as could be expected, because of the strong domi- The normal form is unique and the ordering of the indices
nance of pairing and lowest multipole operators. They appeagimply eliminates double counting: The contributions in
in a normalizedform that retains all the simplicity of their rstu, srtu, rsut, andsrut are identical, and it is just as well
traditional counterparts but suffers none of their drawbacksto keep only the first.

In Sec. Ill, the possible candidates - are examined, The multipole form is highly nonunique because the terms
and then it is explained how a given choice of dominantare not linearly independent and permuting indices leads to
terms is optimally extracted from the Hamiltonian, ensuringdifferent objects. We have chosen the variant in which sum-
that the corresponding coupling constants are quantitativelynations are unrestricted for a reason that will become imme-
correct. diately apparengafter Eq.(2.3b].

Section IV proposes an analytic calculation of second or- For the calculations we adopt the Kahana-Lee-Scott
der renormalizations due to core polarization effects. Th&KLS) force[17,18], but in Sec. V it is argued that the choice
agreement with empirical values turns out to be excellent. of realistic interaction does not matter much.

Section V is devoted to a comparison of different realistic
interactions among themselves—which establishes their B. Separable form
unicity—and with theW fit in the sd shell [6]. o . .

Appendix A contains a brief summary of the elementary  We callHy the restriction offy to a finite set of orbits.
angular momentum results that are needed. With few exceg?eplacing pairs by single indices=x, tu=y in Eq. (2'19
tions the material is borrowed or adapted from REf§,16,  andrt=a, su=b in Eq. (2.1, we bring the matricesV,,
and the aim of this appendix is to make the whole presentaandfl,=wlp\(1+ &s)(1+ 6;,)/4 to diagonal form through

tion self-contained. unitary transformationsJ}, ,u?, :
Appendix B is devoted to some results on the matrix de-

fining the diagonal multipole representation. U-'WU=E=W. => ul.uyr gr 29
Appendix C revisits the pairing plus quadrupole model. xy % Xk=yk=k (2.2

Il. DIAGONAL REPRESENTATIONS OF H u’lfu=e=>fgb=2 Ut el (2.20)

Our plan is as follows(a) Introduce™,, in the two stan- X
dard representationgh) reduce to sums of separable terms and. then,
by diagonalization(c) show that the few dominant ones are
normalizedversions of the standard pairing and multipole
forces, (d) show that the normalizations are dictated by the Hu=> EL> UnZi> ngzyr, (2.39
universalA =" scaling for all couplings, and finallfe) say a Kt X Y
few words about the consequences of this result on the speci-

0
fication of H,,. HM:kE el g ugksg% uZ S| [v1¥4  (2.3b
Y

A. Hamiltonian which we call theE and e representations. Note here the

We start by calling upon Eq$A20)—(A23) to write Hy, explanation of the unrestricted ordering of the orbital indi-

in the normal and multipole representations: ces: It guarantees that in tlig, matrices,a andb belong to
the same set. In Appendix B it is explained what happens
when they do nofAsymmetric factorization
HM = r<st2<u r W{stuz;rsl" ’ ZtuF il (2-13 y ( y d
s s C. Dominant terms
= 121+ Ors) "1+ O) Y ¥ gy \0 We have calculated the eigensolutions in E@s3a and
HM [7] wrtsu(srtssu) ’ L K .
rstur 4 (2.3b using KLS for spaces of one and two major oscillator

(21b  shells. The density of eigenvaluéheir number in a given
interval in the E representation is shown in Fig. 1 for a
r I typical two-shell case. It is skewed, with a tail at negative
u ot oy Wrsu[T'], (2.10 energies which is what we expect from an attractive interac-
tion.
r The e eigenvalues have a number of simple properties
]wrvtsu[ y]. (2.1  demonstrated in Appendix B: Their mean value always van-
ishes, their width isy1/8 of that of theE distribution, and
they are twice as numerous. In Fig. 2 we find that they are
We useW for the matrix elements to stress that the interaC-Very Symmetrica”y distributed around a narrow central
tion has been made monopole free. Sift¢g is defined as  group, but a few of them are neatly detached. The strongest
containing all they=00 and 01 terms},, is defined by havey™=170, 171, 270, 370, in Eq.(2.3b and the asso-
ciated H in Eq. (2.339 is recalculated; the E distribution
wls,=0 for y=00 and 01. becomes quite symmetribetails will be given in Sec. Il

_ —y-T
wrytsu_; (_)s+t % r

r
Wlljstu: 2y (_ )S+t—'y—F‘

u t
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Their eigenstatefs.e., the factors in Eq$2.33 and(2.3b

2000 - with k= 1] will be compared with standard pairing and mul-
i . tipole operators. To fix ideas, we write the form these eigen-
E-eigenvalue density states should take in the case of perfect pairiig-01) and
0 quadrupole forcesy=20) acting in one shell of principal
% quantum numbep. To compare with the result of a diago-
® nalization, the operators must be normalized:
©
é o+1 Pl=P},= 2 Zh o QF10?,  Q,=0.6577, s
2 .
= 1+0 20 r 0
=M= rszp ‘s /Ny, N5=0.08A03, (2.5
0 €
'10 ' '4 '2 0 2 4 Where

Energy (MeV)

(i) Q=i +1/2, qis= VE(r[Ir2Ys),
FIG. 1. E-eigenvalue density for the KLS interaction in the . . . .
pf+sdg major shells fw=9). Each eigenvalue has multiplicity (ii) Amp is the the total number of particles at midshell

[T']. The largest ones are shown by arrows. [p(2)= p(p—1), remembe

and here we only note that the residual skewness is entirely

accounted for by thd’=1%0, 0¥1, and 20 peaks, of Amp=2 2 (p'+2)@+(p+2)?
which the first remains strong at7 MeV. p'<p

This result is most telling because from the work of Mon 1
and French19] we know that a symmetri€ distribution =§(p+ 1)(p+2)(2p+3)

will lead to spectra in tha-particle systems that are identical
to those of a random matrix. Therefore, we have found 2
that—with the exception of thre€ peaks—the very few ~§(p+ 3/2)3,
dominant terms in the distribution are responsible for de-
viations from random behavior i, . Positively stated, (il ) the normsQ, and A, are then
these terms are at the origin of collective properties. P P
If the diagonalizations are restricted to one major shell, 1 ) 1 3
negative parity peaks are absent, but for the positive parity 0p=2 Qr=5(p+2) 7= 5 (3Anp/2)7
ones the results are practically identical to those of Figs. 1 '
and 2, except that the energies are halved, a striking feature 5 5
whose significance will become clear soon. /\/f,:zqfS (p+3/2)4— 3Amp/2)4’3
In the list of important contributions, whose structure will
be analyzed, we include tH&=10 and 01 terms, and the six

For the calculation of\V2 we have used the matrix elements
strongesty ones.

listed in Eq.(A34). Note that they should multiplied by a
factor \2, since they are reduced with respectjtmnly,
5000 while g, is reduced with respect to spin and isospin.
e-eigenvalue density For the other strong multipoles the choice of operators is
evident and fol'= 10 the simple idea is that pairing InS
coupling should produce a good candidate. Labeling the or-
bits by theirl quantum numbers, we have two pairing terms

— -12
1-0 P;T:(ZI [I]) E [|]1/22||OST' ST:O:I.,].O,

number of states

which in jj coupling become

g gL g
oA L. Ph=0,"22 0, Zhoy

4321012345
Energy (MeV) and

FIG. 2. e-eigenvalue density for the KLS interaction in the pf F = 1/22 [|]1/2 (10 (/2 1/21|(jjH1 71 .
+sdg major shells. Each eigenvalue has multipliiy. The larg- 10 t G593 2;1110
est ones are shown by arrows. (2.6)
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TABLE |I. Eigenvectors and energies calculated in the
pf(p=3),sdgp=4), andpf+sdg(3+4) spaces compared with
the normalized pairing operatof®,5 and Py;. The orbits are la-
belled by theirj values.

Usra=(aUs+BUNIN2, o?+p2=2, (2.7)

whereU,’J can, in principle, be any unit vector, but in fact it

rs

Por (UDss V2(UDsis Pro (UD)ss V2(UD) (1)

is almost identical tdJ,,. This is always the case, both for
the U; and u; vectors, as Table Il showsU;|U/) and
(u;|ui) are strikingly close to 1 with no exceptions while

77 -0.63 -0.65 -0.66 041 0.31 0.31 5 .
75 068 -074 0.74 a |sth|]Ee clofse to 1. i edoi .
33 045 -0.38 -0.41 033 026 027 Therefore, for an;normg izedpairing or multipole opera-
35 0  -030 0.25 tor O we have the foIIOW|.ng.
31 042 -0.43 -0.44 If O, and O, are eigenvectors for shell p and-#i
55 -0.55 -0.58 -0.59 -0.27 -0.12 -0.13  separately, the{O,+ O, ,) is very much the eigenvector
11 -0.32 -0.29 031 -0.04 0.07 004 for the space of the two shells. The eigenvalues are very
. close in the three cases.

Es -2.95 -4.59 Note that we have chosen a normalization of 2 for the two
99 058 061 064 037 -0.26 .05 Shell eigenvectors so as to halve its eigenvalue.

Before we examine the consequences of this result, we
97 0.63 0.67 0.72 - o

mention a few facts about the other contributions.
77 0.52 0.55 0.57 0.26 0.12 0.11 .
75 0 0.27 0.28 In Table Il we have added the=21 case as a reminder
es 045 041 0.34 0.31 i .0 7 i .0 20 that isovector multipoles are always present. Their strength is
' : ‘ o s b between 30% and 40% of that of the isoscalar tefpnscise

3 046  0.50 0.48 numbers are given in Table Jland they have identical struc-
33 0.37 0.35 0.28 0.16 0.03 0.01 ture.
31 0 021 -0.18 The dominant negative parity contributions are- 10 at
11 026 0.17 013  -026 -0.22 020 459 MeV, (rY}ul®=0.994 and y=30 at 2.69 MeV,

The first is a center-of-mass operator. Its presence simply
3ES., -2.76 -5.06 reflects the translation invariance of the interaction. Its

v=11 counterpart, associated to the giant dipole resonance
(GDR), comes at 1.81 MeV. The other strong term is respon-

sible for octupole collectivity[In deciding whether a given
multipole is attractive or repulsive it should be remembered
at M"M7)°=(=)"Ty]"*(M”-M?).]

where we have recovered the usualjl label, and used a
self-evident notation for thd.S to jj transformation. In
Table | these operators are compared with the results of thid
diagonalization. It is apparent th&,,, accounts very well

for (U, For Py Vs (UL, the agrement is not so excel-
lent, but still good. The overlaps are found under,|P) in

Table I, which also contgins the corresponding values of We have now the necessary elements to construct a sche-
(up|M) for the lowest multipole operatod. The agreement  atic put accurate collective Hamiltonian. Frofa] we
is again excellent except for the case, for which itis only  ynow that

fair. Note that the form of these operators is given in Appen-
dix A.

Interesting as these results might be, the truly remarkable
ones come when we diagonalizetimo major shells. Let us
go back to Table I, and note that the eigenstates can always

D. Universal scaling

W)= Wy (wo) (2.8

be written as

(w is the oscillator frequengyand therefore the eigenvalues

TABLE Il. Energies and norms for the dominant terms=(21 added for illustrative purposesSee text.

y el el el M (M) (ulM) (ulup)  (ufup)  a?

11 1.77 2.01 3.90 oT 0.992 0.994 0.999 1.000 0.94
20 -1.97 -2.14 -3.88 r2Y2 0.996 0.997 1.000 1.000 0.95
10 -1.02 -0.97 -1.96 o 0.880 0.863 0.997 0.994 1.04
21 -0.75 -0.85 -1.60 rZYZT 0.991 0.998 0.999 0.997 0.94
r B} B El, P (UP) (UP) (UiUp  (Ufupy o

01 -2.95 -2.65 -5.51 Po1 0.992 0.998 1.000 0.994 1.048
10 -459  -478 -10.12 Py 0.928 0.910 0.998 0.997 0.991
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TABLE lil. The sdg+pf peaks in thef representation sequences. Here we concentrate on the restricted generaliza-
(le,/>1.3) and theipf andsdg counterpartsS™, A"= symme-  tion of Eqgs.(2.9) and (2.10 obtained by simply summing
try type and parityq] signals the peaks singled out in Fig. 2, and gyer all p values.
their one-shell counterparts.is for peaks withe | <1.3 MeV that A formal proof would start from the remark that it is
are likely to have a clear multipole character. Parentheses indicatgways possible to diagonalize in some sufficiently large
that the assignment is unchecked but given as plausible. space, and therefore write the lowest state associated with
multipole y as=O}/N}.

AT Sym TYPe  Cprsdg Cpf Csdg The fact that the dominant terms arentral suggests that
00 A~ 1.88 the result must be common to forces of short but not zero
10 S rY, 459 range, though we have no simple argument explaining why
NI o -1.96 1 -1.02 -097 1 O} should be so close to the schematic forms we have found.
S L -1.53 However, assuming that it is, there is a scaling argument that
N | 1.44 0.66 0.80 provides valuable insight into th&s’g denominator.
S 1.41 In leading order the expectation value of a Hamiltonian
11 St o7 390 f 177 201 1 must go as the number of particles in the system. Therefore,
A .1.83 in H, the leading monopole terms must go @$A). As
S rY,7 1.81 Hy will effectively act on onefor at most a small number of
20 St r2y, 388 1 -1.97 -214 1 shellg, the number of particles involved, and hence their
St 131 064 075 energy, will beO(D;)=0(A?3), whereD;~p? is the de-
21 St r2Y,r 1.60 075 -0.85 generacy of the Fermi shell. Since there prgpossible mul-
S M227 155 tipole contributors, each individual term must go as
At 1.46 064 076 O(pf):_O(A1’3}, which—remembering that w=40A"13
30 S r3Y, 269 1 [2_0] —is pre_C|ser whaf[ the no_rmahzed operators ensure,
31 S (3,7 114 | glven_the universal scaling provided by the factor.
40 St (rY,) 211 112 124 1 Th!s statement de.mands a pareful proof e_md we start by
a1 St (Yo 091 | showing that the traditional choices for the pairing and quad-

rupole coupling constants produce empirical evidence in fa-
vor of theO(A'®) scaling for a given contribution, which we
have suggested on heuristic grounds.

Consider first the pairing force. On a space of degeneracy
D, it produces an energy

50 S (r®Ys) 1.75
51 S (r®Ys7) 0.78
60 St (r®Ys) -126 | -0.73 -0.82

—

in Table Il must scale in the same way. Settig=1 in Eq. |G|
(2.7) for simplicity, the normalizedpairing and quadrupole Ep=— Tn(D—n+2)= —|G|O(nD).
forces become
The first equality is a standard result. Sinte O(D¢), the
ho _ - conventional choic&=0O(A 1) can be interpreted as guar-
Hp=— m|EOl|(P;§+ Pl ) (Pp+Ppi1), (29  anteeingEp=0O(AY3). It is worth mentioning that the form
0 of G was found empirically, and in a famous paper by
Baranger and Kumatr it is stated that“We know of no reliable
o 0 — — - way of predicting thisA~* dependenre. .. " [1]. The argu-
Hq=— h_wo|e |(Ap+dp+1)-(Ap+dp+1), (210 ment we have outlined provides a way that seems reliable.
For a quadrupole force, an estimate for the energy can be

. . . _ obtained by constructing a determinantal state that maxi-
which we take as representative of the “collective” Hamil- mizes the quadrupole mome@y=3_;(2n,— Ny —ny;),

tonian because of their known coherence. For the Othe\therenxi, nyi, N, are the number of quanta. The largest
strong terms the expressions are strictly similar, and all argerm in the sum is then®, the next »— 3, then 2—6, etc.
guments concerning pairing and quadrupole expressions afhereforeQ,=O(np), and ’ ’

ply to them. Sincee}=e}=e], ,/2 (same forE'), the cou-
pling constants could be taken to be independent of the space Eq~— [x' |Q§= —|x'|0(n?D),
chosen, which may be any of the shells or the two together.

The termnormalizedapplies to the one-shell operators. which in turn explains the origin of the usual choice
For two or more shells it is more conveniardtto normalize  y'=0(A~ >3 for the quadrupole strength, which leads to
their sum, since it is in this form that the couplings are E,=O(A%).
constant Itis clear from Eqgs(2.9) and(2.10 that the operators are

To give a full characterization oty , Egs.(2.9 and affected by coefficients that go a& 3D~ (instead of
(2.10 should be generalized to any number of shells. For thes %) for pairing, and asA~**D~? (instead ofA~>3) for
quadrupole(and other multipole termsthis would demand quadrupole. Fob =Dy, the energies are aga®(A), but
inclusion of viw excitations, and in Sec. IV, it will be now this important empirical fact is a direct consequence of
shown that they=2r operatorqg, that couples shelp to  the interaction. For arbitraryp, the energies of the traditional
2fiw jumps, remains indeed closedg, with welcome con- (old) form
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mentioned that there are several monopole candidates one
: can think of: the unit operator 1, which is identical to the
number operaton in second quantization, but alsd, for
differ from those in the normalized versignew), instance. When normalized they give the same result.
The remarkable thing about this form is that it provides
n n2 the answer to an important problem raised ™, which is
EneW:>EP=O<AT§>y Eq=0(m)- that the monopole-monopole one naively expects as domi-
nant, nn, suffers from the defect of the conventional sepa-

If the n particles are promoted to some higher shell withrable forces "? that it must be associate(_j with a coupling

pi=p;+M, D—(p+M)2 and both energies grow in the constant that is space dependent. There is no collapse now
1 1 . . 71 .

old version. For sufficiently larg#, because of the term in becausen is a consgrved quantity, and_a\n scaling en- .

M2, the gain will become larger than the monopole loss sures the asymptotically correct behavior and the coupling

O(r']Mﬁw):O(MAl/s) which is only linear inM. There- tends to a constant. Contrary to the pairing and quadrupole

fore the traditional forces lead the system to collapse. If the gshes thebr_ei czn tbti no gnergeltlc ga[?hm prorg()t'[rl]ng_partlcletz)stlto
are restricted to act in finite spaces, it is possible to obtai '9 erfor '”S u bere IS no ossdelH er,llfm : 'St IS a subtie
sensible results but the coupling constants must be reduc fm Ot coflapse because a good Hamiton\ st ensure

as the space is increasd@he problem will be discussed in e existence of a Fermi Igvel; ie., it mus_t force the particles
Appendix C) In the new form there is no collapsE; stays to occupy th_e lowest or_blts. The nor_mqllzed monopole op-
. 8rat0r does it by producing a discontinuity at each shell clo-

sure. Therefore, it is not only responsible for the bulk energy
of nuclear matter, but it also takes care of the major shell
effects.

This operator suggests the starting point in the construc-
tion of H,,. For a preliminary attempt s¢#&2], where a mass

nD n’D
Eo|d:>Ep=O T y Eq:O W

restoring force that guarantees that particles will remain pre
dominantly in the Fermi she#).

Although we have not given a formal proof of the gener-
alization of Eqs(2.9) and(2.10, the scaling arguments es-
tablish that it is physically sound, and that it is possible to . S .
recover the geometrical simplicity of the pairing plus quad_forr_nula—of rather high precision by present standards—is
rupole model without its fundamental flaw: the space depenger'ved'
dence of the coupling constants. The model has an enormous
historical interest, and it is very instructive to show how far

we can go in justifying it'see Appendix € There are two problems to be solved: what to extract from

_The scaling arguments—so far applied to show that a réy; anq how to extract. The two subsections that follow are
alistic interaction has all the properties we expect on empiriyeyoted to them.

cal grounds— can be turned around. Let us start with the

assumption that the pairing plus quadrupole model must be )

true “in some sense” because of its explanatory power. A. Choice ofH¢

Then we want to find an interaction that retains the model The results so far invite a separation:

(i.e., separable formsbut does not lead to collapse. It is

clear that with the single assumption of universal scaling, H=Hn+Hc+Hg,

i.e., the validity of Eq.(2.8) and theA'® dependence for the

energies, we would obtain Eq&.9) and (2.10, and their  whereH is the collective or coherent part, whit¢y is the
generalizations, or at least something very similar. Note irrest. To define them with some precision, i.e., to decide what
this respect that the normalizations are defined only to leadto extract, we shall rely on the result of Mon and Freht9|
ing order O(p¥), and we can say nothing about the thatHg could be viewed as random, as soon aEitdistri-
O(p*~1) terms, responsible for?+#1 in Eq.(2.7) and the  bution becomes symmetric.

Ill. CHOICE AND COMPLETE EXTRACTION OF H¢

slight differences we have neglected in theand E cou- The distributions will be characterized by their moments:
plings, but this is the good reason to neglect them.

One last remarkEp andE, contribute to what are com- 2 . oo
monly called “shell” effects. Although it seems clear that mﬁmz (ED  yi=mg/my”,

each individual contribution should go As”3 it is not clear
whether the total shell effectincluding monopolgcan add

up to anA2® behavior. For a discussion of this point §aé. and the vanishing of the skewness will be seen to be

sufficient to ensure symmetry. We usg= 2.

Let us then define some cutaff eliminate fromH in the
e representation those peaks with |>¢, and decrease

If Hy is as good as we have argued, why not trust theuntil the E distribution becomes symmetric. The result of the
information it can provide about,,? It is quite possible that, operation is shown in Figs. 3 and 4 fer=2 and 1.3 MeV,
rather than wrong, it is only insufficient and its study is mostrespectively. Labeling the original distribution in Fig. 1 as
interesting. (e==), we find the following momentsd in MeV).

As befits the leading term in a multipole expansion, the (i) e=%, ¢2=0.99, y,;=—2.22. Since the lowest state
monopole one is the strongest: In Fig. 2 it would come af"=1%0 is at—10.12 MeV its contribution toy, is by far
—10 MeV. Unsurprisingly it has the foriin, /D, which  the largest but still only-0.61. It means that many states in
is what we expect of normalized operators, but it should behe tail must contribute tons.

E. Monopole hint
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2000 It should be noted that the structure of the lafgstates is
little changed in going fromz =o0 to e =2.

E-eigenvalue density (i) e=1.3, 0°=0.41, y;,=—0.002. This cutoff was
epsilon=2.0 chosen as a sensible definition of the bulk of éhdistribu-
tion. The histogramm in Fig. 4 now becomes structureless.
The y terms with|e |>1.3 are listed in Table Ill. Some
useful information is given, as their symmetry tysee Egs.
(A14) and(A15)], and their multipole nature whenever pos-
sible.

The cutoff is reasonable in that the majority of excluded

oH 240 peaks belong naturally to what is expected from a multipole
H0 decomposition. However, several peaks have an ill-defined
\ f status, while others we would include lit. have missed the
X cutoff (e.g., 31 ate=1.14). Clearly we are in the boundary
where the small terms ikl overlap the large ones iAg.

Two attitudes compete in choositity. : Include eitheras
much as necessargr as little as possibleWhich one is
given precedence depends on the computational strategy

FIG. 3. E-eigenvalue density for the KLS interaction in the adopted, but in any case there are elements of guess, conve-
pf+sdg major shells fw=9), after removal of the five largest nience, and trial and error in the choice, which is more of an
multipole contributions. Each eigenvalue has multipli¢ify]. The  art than a science, at least at present. The only safe prescrip-
largest ones are shown by arrows. tion we can propose is to start with little—pairing plus quad-

rupole, say—and keep adding terms until it makes no differ-

(i) £=2.0, 0?=0.60, y;=—0.79. Five peaks have ence.
been excludedy=1-0, 1*1, 270,370, and 40 and now If forced to take a more courageous stand, our choice
the '=170 state at—7.79 MeV accounts for most of;  would be the following.
with a contribution of—0.60, which when added to that of (i) For theE terms we would only include pairing, i.e., the
the next two statesl=270 (—4.29 MeV) and 0'1 I'=01 and 10 forces.

(—3.82 MeV), at y;=—0.86, exceeds the full value. As (i) For thee terms thee = 2 cutoff sounds reasonable
anticipated, the very large peaks are responsible for most though it may be advisable to include also the insovector
of the tail of the original distribution. Although distortions quadrupole term, which misses the cutoff but is coherent. In
are still apparent, they may be interpreted as fluctuations angtudies involving the giant dipole resonance the1~1

we have a good model fdi.= the five y terms and the contribution is also called for of course.

r=1%0,0"1 ones. The type of calculation has an influence on the attitude

Since it is not only the size, but also the ability to generateadopted.
coherence that must characterize the main terms, we have As much as necessaapplies to the recently developped
left outI'=2"0 which—as we shall see in Sec. V—must be shell-model Monte Carlo approadh3]. When the Hamil-
counted as a nuisance, rather than a bona fide candidate ttmian is written in ane representation, the authors have
He. chosen an ingenious one in which they introduce the Pauli

violating terms necessary to cancel ai=\1 terms. To un-
derstand how it can be done refer to E426b), and imagine

number of states

| I
1086420 2 4
Energy (MeV)

2000 that in Vg, thers andtu states are allowed to be symmet-
E-eigenvalue density ric. The linear depgnd_ence problem is solved, but as the pur-
epsilon=1.3 pose of the exercise is to reduce the number of terms, it is

» probably a good idea to proceed as we have done and choose
% a properH. The problem is that pairing has to be included
17 in thee representation which is costly and something like the
© £=1.3 cutoff may be necessaryAt the end of the next
o subsection there is a comment relevant to this question.
'g The alternative is to include pairing in tHe representa-
= OH tion, which is technically feasibl¢21]. The problem be-
0 comes much simpler, and for theeterms thee =2 cutoff
r\ ij with the provisos mentioned above is a choice worth consid-
ering.
O—T—T7—T T T As little as possiblecan be reconciled with as much as
-10-8 6 4 -2 0 2 necessary by treating first the truly important terms and then
Energy (MeV) doing some form of perturbation theory to account for the

rest. Here pairing plus quadrupole or even only one of them
FIG. 4. E-eigenvalue density for the KLS interaction in the may be sufficient.
pf+sdgmajor shells £ w=9), after removal of multipole contri- One example may be mentioned. In a recent sfedy, it
butions with|e|> 1.3. Each eigenvalue has multipliciff’ ]. The  is shown that states of four neutrons and four protons mov-
largest ones are shown by arrows. ing in the same or contiguous major shells generate rota-
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tional spectra exhibiting systematic backbending. With asubstantiated ifi23]. Since this paper is hard to follow, we
proper choice of coupling constantjaq force leads to wave propose two arguments to suggest the validity3f). The
functions that have overlaps of better than 0.95 with those ofirst is purely heuristic.

the realistic interactiorH, but the backbending has gone. Let us assume sont¢g that we want to separate from the
However, when the expectation value of the tdllis calcu-  full HamiltonianH. The problem can be stated by writing
lated using theq-q eigenvectors, the spectrum reproduces

perfectly the exact one. The example indicates that “as little H=(H—\Hg)+\Hg=Ha+Hpg 3.2

as possible” may be little indeed, with lowest order pertur-and by demanding thatH(— A\Hg)? be as small as possible.

bation theory supplying the necessary improvements. : : . o .
This example is particularly relevant because the.Slnce we are dealing with an operator, “small” must be

“proper” quadrupole strength that reproduces best the exad terpreted in an average sense. It is equivalent to saying that

. : . She “size” or “norm” of an operator must be defined
results is some 30% larger thareigenvalue in Table IIl. It .
: ) . through the trace of its square, and therefore we want to
is probable that part of the effect is due to the isovector_. .~ <
. ) ; minimize
guadrupole that was not included in the calculation. But
there is another reason that explains the increase in the cou-

pling constant, as explained next. Tr[(H—)\HB)Z]=rSt2UF [T1(Vigu—AViewp)? (33

B. Complete extraction The minimum we are after is found to be at

At this point we may have a good idea abauhat to B r T r 2
separate, but since most of it comes from a multipole repre- )‘_rg:jr [T1VistVrsts rg:jr [T1(Vistue)
sentation, to decide exacthow, we must realize thatl - and
Hg are “orthogonal” by construction in the multipole rep- =H-Hg/Hg-Hg.

resentation, but they need not be in the the normal one. The

notion of orthogonality is important and demands a digreslt ¢an be easily checked that this is equivalent to

sion. _ o Ha-Hg=0.

The complete symmetry that the equations indicate be-
tween theo,s, and Wi, matrix elements is fictitious, be- To meet the demand after E¢B.2, H, and Hg must be
cause the latter must be antisymmetric in the indiceand  made “as different as possible” which amounts to making
tu, while no restrictions apply to the former. To understandthem orthogonal in the sense of E§.1).
the problem raised by this situation we note thain Eq. The second argument in favor of the definition(&1) is
(A20) is invariant with respect to the choice of orderings simple but strong: the norms associated with each represen-
because of EqgA18b), while V in Eq. (A21) or (A23) will tation can be used to define product norms for the Hamilto-
look very different for different orderings. Of course, it will nians since each matrix element affects an operator that is
always be the same object, which means that a given operguadratic in the “unit vectors’Z,; andS,s. For theE rep-
tor in the multipole representation can be written in terms ofresentation, the product norm is identical to the one intro-
other operators apparently unrelated to it. This ambiguityduced in Eq(3.1).
may occasionally allow some freedom in the choice of forms Turning to our specific problem, the simplest thing to do
of V, but in general we need to eliminate the ambiguitiesis to orthogonalizeH - andHg through
rather than take advantage of them, as can be seen from the

following argument. Let us assume some very simple force _ Hc-Hr Hc-Hr
; Hgr+He=|Hg— =—H¢c|+Hc| 1+ .

such as quadrupole-quadrupotg ¢), and take it to normal He-He Hc-He
form. The symmetric matrix elements will disappear since _ )
they are associated to operators that vanish identically. No#y squaring we find
transform back to the multipole representation: The operato Ho Ho)2 Ho Ho)
will no longer look likeq-q, but it will still be the original IH _ (HeHe)® +He Het 2H e Hot (He-He)”

; : . R cHc c HR :
one. But then, since an operator may have different guises, (Hc-He) (Hc-He)

how to decide what iteally is? 5 _
The only solution is to refer always to the normal form, If (Hc-Hgr)*/(Hc-Hc) can be neglected, the orthogonaliza-

which is unique. Therefore what is needed is a way to com{ion amounts to leavingig untouched, and to boostirtgc
pare two Hamiltonian$d,, andHg, defined in some finite PY the cross term. Now we call upon E@6), which says

space by their matrix ebmermrswA andVrrsmB- Intuitively, that the total norms in the two representations are propor-

the thing to do is treat these two sets as components of ve |_on§1I, and examine the relative contributions lé and
r in both cases.

tors, and introduce a scalar product remembering that fo . .
b g Fore=2, from Table Ill we can find that the five largest

eachl” we have[I'] components: peaks contribute 0.29, i.e., some 30% to the total norm which
we know to be 0.99, and therefokéy accounts for the re-
Ha-Hg=2 [TIVisuaVrsus- (3.)  maining 70%. But we also know that, when calculated in the
normal representatioi 2 is not 0.70, but 0.60, and therefore
the orthogonalization boosts the shareHy to 40%, which
This tentative definition, already suggested[i5], was  implies a/4/3=15% increase in the coupling constants.
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This should be sufficient to have an idea of the effect, butation[25], using far more sophisticated techniques and more
for a quantitatively reliable extraction, each term must bemodern interactions than those [@4], produces very much
treated separately. the same results, as will be illustrated in Sec. V. The state of

Assume we have selected the candidatedHto. Call  the art on the subject of renormalizations is discussed in a
them H, and transform the multipole ones to the normalrecent review articl¢26]. _ .
representation. We want to find the linear combination [N this section we shall calculate effective coupling con-
He=3C,H, that maximizes the overlap betweeh. and stants for the pairing and quadrupole forces in second order

H. It amounts to a standard minimization of the expressiorpe"t“rbation theory, which will be seen o be very clqse to
(a=rstu) those extracted frofR5], and to the empirically determined

ones. Satisfactory effective charges will also be obtained by
2 2 repeating, with a realistic force, exactly the steps followed by
> (Wl;—E Cle;K) [F]=(H—E CKHK) Mottelson in his classical derivatidi27]. The simplicity of

@ K K the derivation may be of help in understanding the difficul-

ties encountered in the standard approaches to quadrupole
—H.-H-25 CH_.H polarizability[ 28] (see, howevef29], for a more successful
o T calculation using a Skyrme forge
Before going into the calculations it is worth explaining
why, for the energies, it seems possible to obtain, in second
order perturbation theory, results close to those of the stan-
dard formulations that go to higher orders.[Rb] it is ex-

(3.4 plained how to go about constructing a gg@dnatrix with a
good potential, and then solving the problems raised by the
perturbative expansion with as much rigor as possible. How-
ever, it has been claimed for a long time that it is dangerous

H. H=> H.,H.C,. (3.5 to be too rigorous with an interaction that is known to have
K bad saturation properti¢80], and this is why the monopole-

multipole separation strategy has been adopted. As it hap-

pens, we have been lucky, becatise serious problems that

the representation best adapted to the calculation at hand. Bf:;jchc 223;?7'1 ::oo 2?33 r:t:ggnlcr)]pgle“gﬁgl"rlijw?s F\)I?:Surhti)sttgf ir? P

l.t may be of interest Fo make them arthagonal by d.iago'[30], and here we offer two further plausibility arguments
nalizing the norm matrixH,-H,. through transformation -0 g from[25] and[26]

Tt (1) Many of the difficulties in the standard treatments are

related to the tensor force. In our case these problems do not
Ho=> TuHe He=2 ToH,, exist because the perturbation is causedHjy which is a
central interaction for the dominant terms of interest.
(2) Higher order corrections become less important if a
Hartree-Fock basis is used. Again a monopole effect.
Another argument in favor of low order perturbative cor-
rections comes frorh31], where diagonalizations in the full
(3.5) pf shell are treated in second order using as unperturbed
He=>, C,H,= C,;H,,H/Hi. (3.7  states thef}, configurations. Exact resul{d0] have con-
firmed the validity of the approach. The test passed by sec-

A potentially interesting result is worth mentioning. In the Ond order estimates is seen to be very stringent because a
sd shell we have included ikl the strongest contribution 0% space is involved, with denominators much smaller

out that the exclusion of the latter makes a negligible differ-test applies only to finite vector spaces. If the whole Hilbert
ence. space is probed problems ménd will) arise.

We shall use the quasiconfiguration method, which pro-
vides a flexible framework, and is particularly well adapted
to diagonal representatiof81—33. The idea is to separate

To be of use in a shell-model calculation, the Hamiltonianthe full space into a model part containing stdigsand an
(and other operatorsnust be renormalized to account for the external one made of stat¢ly. The |i) and|j) states are
effect of states outside the model spaces in which we argow “dressed” through a transformation
prepared to work. When realistic matrix elements were intro-
duced, the necessity of this operation was immediately rec- [i)=]i)+> AliD, D=1 -> Aliy,
ognized, and by using a simple perturbative prescription, i [

Kuo and Brown(KB) were able to obtain numbers that
agreed quite nicely with the spectra ¥ and *®F [24]. The
agreement was so good that it led to much research trying to <W=0-
establish whether it was fortuitous or genuine. After some 30

years, it appears that it is quite genuine, and a recent calc-he amplitudes\;; are then defined by

+2> C,CoH H,,

!
K, K

and thereforeC, is determined by the linear system

The C,. coefficients are uniquely defined provided tHe
operators are linearly independent. E&thcan be written in

_ 2
HyHy =8, H2. (3.6

Therefore, definindd¢ in terms of theH ,, we have

IV. CORE POLARIZATION AND EFFECTIVE CHARGES

which respects strict orthogonality:
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(11H1y)=0, G| Qpiz Qpisg
topo| Qerat 53

G|1

4.

(4.9

which leads to a set of coupled equations defining the effec-

tive interaction in its most general form. In particular, linked The normalization of the operatoPs, transforms a very bad
cluster perturbation theory follows from Neumann expan-givergence into a logarithmic one, which is still a diver-
sion, and diagrammatic techniques may be introduced if NeGjence.
essary, but are not essential. We refef3a-33 for fuller The problem may be due to a fault in our formulation. It
information, and we simply borrow from these references thgs nossible, for instance, that since high-lying pairing excita-
expressions for the second order corrections, and apply thefyns violate badly translation invariance the corresponding
in some detail to the pairing and quadrupole Hamiltonians. nairix elements should be quenched and this could be per-
~ The use of diagonal representations makes the calculgjaps sufficient to eliminate the divergence. It is also true that
tions analytic, and it will become clear how the quasicon-yhat we treat as a potential issamatrix, and in earlier work
figuration_method transforms the dressing of the states intg 55 argued that the perturbative treatment leads to double
the dressing of the operators. It should be noted, howevep, nting, but it can be shown that lowest order Brueckner
that the second order results should be identical 10 Whafeory amounts to discarding the short range repulsion and
would be obtained with the conventionah{schemgmeth-  epjacing it by a density-dependent saturating mechanism
ods. [33]. Therefore, it should be possible to tregBanatrix as a
smooth potential, but then the postulated form for the pairing
A. Pairing term may not be correct.

However, it may also be that the logarithmic divergence is
a real problem that has to be solved by doing better than
second order perturbation theory, and the simplicity of the
Hamiltonian makes it possible to push the exploration very
far. We have here an illustration of the efficacy of the diag-
. pr.p onal representations in transforming a toy model into what
(r[Hpt 1 )= < i ‘ EOl(w)?)—p i’> (413  may be a reasonably realistic one.

P

We deal first with the effect on shedl of shellp+ 1 only.
Eo, is a one-shell energy from Table Il, scaled by
hwlhwy, andfhwy=9 MeV (for typographical reasons we
shall useE,; instead ofE®Y):

Ecz)l(w) (i P;T)- Pp+1|J><J| PI)+1' Ppli ") B. Quadrupole
- 2hw ; JO.Q., /OO (4.1 The problem of multipole renormalizations is very differ-
PREp 1N EpRiptl ent from the one we have analyzed for pairing because the
> physical processes are different. Where we had two particles

T 2 t T
=<i Eoy(@) Pp-Pp_ Eti(®) 1PpPpPpii-Ppig i jumping to higher shells, or being promoted from lower
Qp 2hw 3 Q, Qpig ones, now it is a particle-hole excitation that is produced by

(4.190  the valence particles, and it is in the multipole representation

that the problem is naturally treated, and the space involved

] Egi(w) PI,- Pol., is always finite in second order for the operators of interest.

=\ 1|Eo(@)| 1~ 2hog | Q, | /| (4.1d In particular, the quadrupole renormalization is due to

2hw jumps mediated by a term of the form

Step by step we finda) the unperturbed energy, to which K(dg* 024, d24,,° dp), Which must be extracted frorty, .
we add(b) the second order perturbation. The intermediateThe primes indicate that the operators may not be genuine
states are assumed to be all at enerfiw2Then(c) invok- ~ quadrupoles. The extraction method is a variant of the diago-
ing closure and recoupling the operatghence the factor nalizations we have used so far. It is explained in Appendix
1/3), (d) the final result follows by contracting out the opera- B under the itemAsymmetric factorizatianThe space in-
tors in shellp+1 (which gives back a factor)3Repeating Volves all shells fronp=0 to 4, and the matrix elements we
the operation to account for states in shel-1 leads to are not interested in are eliminatethose of the form
exactly the same correction and we conclude that the renof2s.," d2s.,)- There is no cheating here: We could have done
malized operator is the original one affected by a modifiedhe same thing in the two shell case by keeping only the
Eo, cross shell elements if we had wanted only e gy 4
component. To compare with empirical reults in the
|Eoil () sd, p=2 shell we work atiw=11. The standard one shell
1+T) =Epn—Ep(1+0.32. (42  calculation yield®?= —2.40 MeV[note that Eq(C3) gives
—2.37 MeV)]. For the cross terms the large matrix produced

p

Eo1—Eo1

Now consider what would happen if we were to general- k=_2 MeV. (allam =
ize to an indefinite number of shells, and compare with the 80 MeV, (dz[q,)=0.97, “.9
result for ordinary pairing. The jumps to higher shells would

lead to (A2.0/ 902t A5t Qo) N2y, = 0.83, (4.9
|Eoy( )] 11 where q,,, are the Zw quadrupole operators that can
1ot @1 4T pp

o)) 1+ =0 (1Tt 3t 43 couple tog,. Their sum is normalized td/;,,. By normal-
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izing eachq,, operator separately the overlap at 0.87 is

slightly better, but it is the number in EG1.6) we shall need.

From Eq.(4.5), q;~0Q,, and this is important because the
closeness ofj, to g, ensures that “quadrupole renormalizes
qguadrupole” and that effective charges are state independe

as shown below.
Proceeding as in Eq$4.1), we have(H.c. stands for Her-
mitean conjugate of the first tejm

(1THgl 1) =ex)(i[dp-apli") (4.73

SO —— I

_m(l|(q2ﬁw'qp+H'C')|‘J><‘]|(q2hw'qp+H'C')|I >
(4.7p

. —_ 2K(w) 1, . — ]|
=\ eZO(w)qp'Qp_W ngﬁm'q2ﬁwqp'qp i") (479
K(w)|  —

:(ezo(w)_ﬁ)OMp'Qp“')- (4.70

In the last step only half of the operators act: those creating

1651

271

k'(w
1ol 2 1- 3, ey, a9

a_factor N3, appearing now because the contraction

?ﬂqzﬁw- O246|1Yinvolves unnormalized operators.

For p=2 we obtain\y;,, /N,=1.97, which turns out to
be very close to the value for largethat can be calculated
with the help of Eqs(A33) and (A34). Taking as coupling
constantk(w) = — 2.8 w/11 andk’ = —hw/(8N}) (see af-
ter last equation of Appendix )Bthe transition operator is
boosted by a factofl+0.42) for Eqg. (4.8), and(1+0.5) for
Eq. (4.9, which are too small to agree with the empirical
value close to 2. The problem is that second order perturba-
tion may work very well for the energy but poorly for the
transition rateg[31] contains some examplest is argued in
[27] that a resummation to all orders in perturbation theory
[random phase approximatigRPA)] is necessary, and that
it amounts to recognizing that the perturbation should not be
understood as affecting only the valence particles but the
whole system. Then, callin@?° the total quadrupole opera-
tor, the estimat&?°=(1+x)q%° (x=0.42 or 0.5 becomes

Q%= g2+ xQ?°— Q%= (1-x) Lg%,

first an excitation and then destroying it. Hence the factor 5/2

instead of 5. We have indulged in the fallacious app
tion of treating the three terms ingy,,=d,_op
+0p-1p+1tdpp+2 @S cOmmuting withg,, which is true

roxima ottelson also argues thatcorresponds to the mass polar-

izability of the system, and that for t&2 operator it should
be replaced byx—xZ/A. However, the quasiconfiguration

only for the middle one. A correct calculation would yield a technique we have used makes it clear thi the isoscalar
rank 2+ 3 force for the offending terms. Still, the result is poarizability, and what is needed is a similar calculation for
correct for the two-body contribution as can be checked innhe isovector one. The steps are as in E49); all numbers

[31] in which a very similar case is fully worked out. The gre the same except for the coupling, which is now
neglect of three-body contributions is common, but bady— 11 28 MeV.

practice.

1. Effective charges

The modification of the transition operatq (notq_p) is
calculated along similar lines,

T . . 2k(w) . —  — .
(ilali")= i1y =5 don @1 Gt Hee)li ")
(4.83

K@) LN —
=(ilqpli >_W§Tp<l|qpqytw'q2hw|l )

(4.8b
K(©) Nono|
=|1-0.83;— AZ/’:J (ilapli"). (4.89

C. Comparisons

For thesd shell, precise empirical data can be compared
with the calculated effective coupling constant and effective
chargesy?® and %%. The numbers areef® in MeV)

e—e?%1+0.3)=—-3.12 vs —3.18[34], (4.10
7?°=(1-0.42 =176 vs 1.783) [6], (4.1))
7°'=(140.19 '=0.8 vs 0.81) [6]. (4.12

The quality of the agreement is pleasing, aftllis also
close to the Bonn B value given in Table \*@3.32 MeV).

In principle the effective charges above should be valid
for all regions, provided Eq$4.8) scale well. We have men-
tioned in this respect thal/,, /N, seems independent of

What we have done i&) use the second order expressionp, but we have neither checked the constancy of the overlap
and (b) upon recoupling collect two equal terms and thefactor(0.83 nor the linearity ok(w). Furthermore, we have

factor 1/5. Then, to contract the normalizeti & operators
(whose overlap is 0.83interchange normalizations fay,
andq,;,, and write(c) the final result.

to remember that the choice of energy denominators at
2h w is at best a good average, since the isoscalar states must
be below the isovector ones. All these uncertainties amount

This second order estimate of the effective quadrupoléo changingx by a multiplicative factor, and to have an idea

operator is equivalent to Mottelsonf&7], which was made
using a conventionak’q-q force. Then, in stefgb) above

of their impact we simply replace the overlap factor of 0.83
by one(in which case the isoscalar polarizability coincides

the quotient of the normd/,;,,/N,, does not appear, and with Mottelson’s. The effective charges for protons and

the final result changes to

neutrons [i.e., (7?°+ %»?Y/2], which are e,=1.31 and



1652 MARIANNE DUFOUR AND ANDRES P. ZUKER 54

TABLE IV. Comparison of some matrix elements in tisel In heavier nuclei the important contributions k- will
shell (5=dsj,, 3=d32, 1=5y) for different interactions« indi-  become increasingly orthogonal, and they will increasingly
cates largéV-realistic discrepancies. renormalize themselves in a strict sense.

It is clear that the use of diagonal representations simpli-
rstu JT KLS KB Bonn B w fies considerably the calculation of effective operators by
5553 10 3.03 317 3.31 254 making it possible to concentrate attention on the few impor-

tant terms that grow larger, and neglect the small ones that

21 -0.52 -0.40 -0.22 -0.28

30 121 187 1.89 299 have no chance to grow.

41 -1.24 -1.36 -1.28 -1.24
5533 01 -4.17 -3.79 -3.41 -3.19 V. COMPARING INTERACTIONS

10 1.45 1.62 1.29 0.72

21 -0.89 -0.90 -0.89 -1.62 Now we compare several realistic interactions in ffte

30 0.13 0.50 0.56 1.89 shell, the only region in which a direct fit to the dat¥,[6],
5153 20 -1.10 1.44 -1.33 04 leads to more accurate spectra.

Table IV shows some off-diagonal matrix elements at the
beginning of the shell, calculated with the KL(&s used in
[9]), KB [24], and Bonn B 25] realistic interactions, or taken
from the W fit. The KLS numbers represent bare matrix el-
ements affected by a multiplicative factor of 1.4 for=1.

This extremely coarse “renormalization” will be seen to be
quite acceptable. It is apparent that the realistic values are
close to one anothdespecially KB and Bonn Band not far
from W, except in two cases shown by arrows.

The comparison of individual matrix elements can be mis-
leading, because apparently large discrepancies may be of

Eo1—Eoi(1+0.48=-5.4 vs —5.7 [34]. little consequence, and apparently small ones disastrous.
Therefore it is better to concentrate on the contributions that
can make a difference. Accordingly Table V collects infor-

The agreement with Bonn B in Table V-(6.5 MeV) is  mation on the lowest state in treeand E representations.
also good, but we should remember that the logarithmic diThe KB numbers have been left out because they practically
vergence of second order theory is still there. duplicate those of Bonn B. The differences in eigenvalues

This problem does not seem to have attracted much attebetween KLS and Bonn B is not large but may have some
tion, but there have been numerous controversies in the lisignificance, while the agreement in eigenvectors is com-
erature on the influence of core polarization in the strictplete. Very much the same is true in the comparisoWbf
sense, i.e., what we call multipole processes, on pairingvith the realistic values except fér=20 and 30, which are
renormalization(see[26]). not among the dominant states of the collective Hamiltonian

According to our simple ideas “pairing renormalizes pair- The reading of the result is simpl&/ has discovered and
ing” and “multipole renormalizes multipole” and the con- dealt with some local problem by altering radically some
troversies would seem without object, but there is a catch. special matrix elements, bitthas scrupulously respected the

A pairing force can always be written in the multipole truly important contributions
representation, the highest multipoles entering with greater The local problem deserves some attention. It shows
weights. The calculations that generated the controversiasainly in the lower half of the region, and we borrow from
were done in thesd shell, a region where quadrupole and unpublished results used in the calculationd @jf some of
hexadecapole are already high multipolarities, well reprethe following observations.
sented in the pairing decompositigeee last paragraph in (1) In ?°Na the realistic interactions produce a close dou-
Sec. ll). Therefore, their strong polarizabilities will have a blet J=1, 3, instead of the well detacheb=3 observed
non-negligible effect on th& =01 matrix elements. This is ground state. Referen¢é] contains a useful figure for this
simply a manifestation of the linear dependence problem weucleus. Monopole corrections very much improve—but not
have often encountered. completely—the catastrophic behavior of the realistic inter-

e,=0.46 in Egs. (4.1) and (4.12, would become
e,=1.41 ande,=0.60. It is seen that the uncertainties are
likely to have small effects.

The comparison of the effective pairing numbers in Eq.
(4.2) with empirical values would show that we are missing
some strength. Going up tdido jumps leads to an effective
energy(in MeV)

TABLE V. Lowest energiesEr for I'=01, 10, 20, and 30 and” for all iy, and overlaps of the wave-
functions for KLS, Bonn B, andV.

01 10 20 30 10 11 20 21 30 31 40 41
-5.42 -543 -2.68 -2.15 KLS -2.18 2.38 -2.90 -0.71 -0.82 0.44 -1.61 0.40
-5.48 -6.24 -291 -2.66 Bonn B -1.55 2.64 -3.32 -0.97 -0.83 0.46 -1.39 0.52
-5.69 -5.90 -0.95 -2.44 W -2.16 3.08 -3.18 -0.70 -0.94 0.54 -1.60 0.51

1.00 1.00 1.00 1.00(KLS|Bonn B) 0.99 1.00 1.00 0.99 0.98 0.99 1.00 1.00
1.00 0.98 055 0.82 (KLS| W) 0.95 0.99 1.00 0.98 098 0.92 1.00 1.00
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actions indicated by the figure. somewhat scattered. The differences may come either from
(2) Thek=3/2 band in?*Na is too low. better renormalizations or from the interactions themselves.
(3) The y band in?*Mg is also too low. The latter prospect is an interesting one, since it may help in

(4) The JT=20 state in*®F always too low by about 1 Cchoosing interactions: Our basic tenet that the realistic ones

MeV. This seems to be true for all interactiof25]. (One  are equivalent is basically sound, but not strictly true.
should be careful here: The experimental counterpart of this The local problem remains, but the diagonal representa-
level is the second T=20 state in!8F, the first one is an tions put useful constraints on the possible solutions. More
intruder) In 38K, the JT= 20 state(which is now the firstis ~ generally, our analysis has confirmed that there is not much
again too low. This will turn out to be a most interesting "00m for tampering with the realistic interactions.

indication, because in the upper part of the shell the realistic

interactions do extremely well, and this state is the one of the VI. CONCLUSION

very few that causes trouble.

These discrepancies are very mild when compared with
the ones due to bad monopole behavior but they are mostl
responsible for the fact that the best results quoté@Jigive
rms errors of some 100 keV above thévalues.

The solution proposed by th# fit is such that there is no
hope to reconcile it with the realistic forces. The problem is
then to reconcile the latter with the data. It is quite possible APPENDIX A
that monopole effects are still responsible for the discrepan- 1. Basic operators

cies, but it is worth examining whether the multipole terms , . )
may be at fault. We shall work in spaces containinQ orbits labeled

One possibility is that the renormalizations are not cor{'"2): ($:;S) . . ., wherer specifies the subshell to which the
rect: What was said for pairing in the preceding section ap®Pit belongs, and its projection quantum numbers. The
plies to all the strong™ contributions. associated creanorat,z) and annihilation a,,z) operators

The other possibility is to exploit the differences betweenobey anticommutation relations.
realistic interactions. Similar as they are, they also differ in  All operators we may need are products of these elemen-
some respects as can be gathered from Fig. 3 of [R6f, tary ones and, to take advantage of the basic symmetries,
which shows several calculated spectral@ and 1°0. they have to be coupled to good angular momentlij

There are two effects. formalism), or to both good) and isospinl (jt formalism.

(i) Overall dilation. If we refer to Eq(2.8), the discrep- Following French 15], we shall introduce a product notation
ancy can be absorbed by simply changing slightly the oscilin which expressions are independent of the coupling
lator frequency, which is in principle fixed by the size of the scheme. Injt formalism, for example, a single tensorial in-
nucleus. Because of their bad saturation properties, thidex will represent pairs in spin-isospidT) space:
choice is not always possible for the realistic potentials. As
long as saturation properties have to be treated phenomeno- r=JT, T =MT,, r=j,3, r,= m,7,, etc. (Al)
logically, the overall dilation must be treated as a free pa-
rameter. The differences due to this phenomenon can be Note thatr as tensor index has not exactly the same
eliminated by normalizing the interactions to the samfeén ~ meaning as label of shell (i.e., r=j,p,, wherep, is the
Eq. (3.1). When this is done, most of the discrepancies beprincipal quantum numbgrNo confusion can possibly arise
tween interactions in Fig. 3 of Reff25] will be removed. from this convention.

(if) Spectroscopically light matrix elements. The interac- Expressions involving these indices will stand for prod-
tions would still differ, especially through the “spectroscopi- ucts as in
cally light” matrix elements, i.e., those of sm@ll T], and in _
particular theJT=01 and 10 ones. As we have seen in the (—)'z=(—)""Tz, (=)'=(=)"""%  [r]=2(2},+1),
preceding section they are also the ones most severely af-
fected by renormalization uncertainties. [I']=[JIT]=(23+1)(2T+1), (A2)

These remarks suggest ways of attacking the local prob-
lem in thesd shell. From Table V it is clear that there is no M°r€ generally
room whatsoever for tampering with the structdre., the _
wave function of the dominant terms. The magnitudes of U(I" spacg=U(J spacgU(T space, (A3)
the energies are more flexible. Since thE=20 state has where U may be some ﬁor Clebsh-Gordan coefficient or
been clearly identified as a troublemaker, it has to be movedimilar functions as in
up. Or, conversely, the states below it in the two particie
hole) spectra must be moved down. Monopole terms can (yy27 7o LT =(mj' m’'|[IM)(tt,t't,|TT,). (A4)
then correct the overall energetic balance: The imporfant
states have different particle occupancies, and are quite sen- In j formalism, also called neutron-protomg), we do
sitive to monopole details. As the radial behavior of nuclei innot couple explicitly to good’, the tensorial indices refer to
the first half of the shell is very complicatédl], the effective  a single space, and the identifications dte-J, r=j,,
Hn, may also be complicated and accomodate values [r]=(2j,+1), etc.(Note that when used as label,must
quite different from those in Table V, which are already specify whether the shell is a neutron or a proton pne.

The residual or multipole part of the nuclear Hamiltonian
dominated by few terms that are very simple. Work re-
ains to be done on the monopole field, but as things stand,
we have already a fairly useful characterization of the inter-
action.
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The Hermitian conjugatédenoted by an asterisk *) of a "
tensor operatofl is not itself a good tensor but it can be Rzl:r;’ (rr4|R] |tty)ay, an,
gnd Ll

associated to one, which may be its “conjugat&”or its

adjoint” 7, whose components are defined by :; <r||R7||t)(y)*l’zszz(rt). (A13)
Ty, = ()T, )% T = (=) (T, ).
(A5) We can always rewrite an arbitraR?” in terms of sym-

metric (S) and antisymmetric {) operators:
The (=) factor is not essential, and in the case of the

spherical harmonics with the Condon-Shortley phase, for 1 ¢

which Y§,=(-)'Y,_n, there is no point in introducing it. R}~ 52 IR+ (=) Ry 1S3 (rH)

On the contrary, the)*"z phase is dictated by the defini-

tion of tensor operatorsee Eq(4.9) and Sec. 4.8 of16]], +[RE— (=) 'RE1A] (r0)}, (A14)

and the ambiguity in sign demands some care.
In coupling operations it is convenient to adopt the notawhere we have useR’;=(r||R”||t)(y) Y2 and
tion of French for the basic fermions:
Sy (rt)=Sj (rt)+(—)"‘S§ (tr),
ArrZ:a;rrZ' BrrZ:a;Z:(_)H—rzar—rz- (A6) ’ ’ ’
o AT (rt)=87 (rt)—(—)""'S] (tr). (A15)
The coupledoperators quadratic iA andB are z z z
The (—)"! phase ensures that the spherical harmonics
are symmetric ifY",=(—)"MY,_, (Condon and Shortley’s
choice, which leads to(r|Y [[t)=(—)""%t||Y,/r) and van-

Xtr (r)=(AAIL . Xpr(rs)=(B/Bo)r ,

S, (rt)=(ABy7, - (A7)  ishing of the A term. The phase convention should be
changed to €)' if Y—i'Y,. Then
The notationX{ (rs)=X[sp, (and similar ones for the Yi,=(=)""Y|_p, an32(r||Y|||t0):.(—)"t"<t|\Y|||r). Note
From the easily proved identity valid for any two opera- Yi-Yi=(=)'[IT*(Y,Y)°  but J-J=-3(JJ)° and
tors, T T=- J§(TT)O always, sincel—iJ makes no sense. Still,
positive definite zero coupling for tensors of integer rank
PYOY \T=(— )77 -T(QY p7T’ A8 could be obtained with the change
(P7Q7) =(~) (Q"P7) (A8) (Iml—m|00)=(—)"""11"¥2to (=)™ 1]~ 2 For half inte-
(equally valid for conjugation we obtain ger rank, no convention will ensure that zero coupling is

always definite positive.

XE(rs)=—=Xp(rs), S (rt)=(=)""""SY (tr). _ _
(A9) 2. Normal and multipole representations

_ o The two crucial equalities relating the zero coupled opera-
For reduced matrix elements we use Racah’s definition tors in terms of which the potential part of the Hamitonian,
V, can be written are

_ B
(aa | P] BBy =(—)" “Z(_ (al[P7B). V2
z a; v: B: t 0_ u+t-T I 0
(A10) —[Xp(rs)Xp(tu) "= —(—) T OstSry
Note that the reduction applies to both spin and isospin if rsT
we are working in gt formalism. For any operatd®?” it is o
true that 2 [P ey
Y
(aa,|P] | BB)=(BB(P))*|aay)* (ALl X (S SY)08:SY, (A16)
and by applying Eq(A10) to both sides it follows that and its inverse
py 1/2
(allPB)=(—)*"F~ B[P a), (A12) y
(SASL)°= (=)' 2| 8aSh— 2 [Ty]™?
where we have omitted complex conjugation on the right- r
hand side(RHS) because our reduced matrix elements will s T
be real. +t—y-T t 0
The coupled form of a rank 1 operator is deduced from X(=)7 [u t y] [Xp(rs)Xp(tu)]™.

the uncoupled one by using EGA10) and the definition of
S in (A7): (A17)
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In both cases the second term can be written through an s 0
elementary recoupling but the one body contractions need V= 2 &bl v1M0ky| (SHSL)
some care. (rst)y
The potential energy appears naturally in terms of scalar C[y]Me .
products of the normalized creation operator —()TY | 050ruSKul (A23)
Zlgrr,=(1+ 8,) ¥ X/grr,, and its Hermitian conjugate
Zisrr,: where each term is associated with a two-body operator. The
obvious check that Eq(A23) is indeed Eq.(A21) comes
from
_ r —t _ r t
V= Zs Vistrsr Zur= rZs Vrstu; erFFZZtuFI‘Za
t<u,(I") t=<u,(I') ’ 12y yir—s| Y 1 12,0
(A183) =2 [P0l(2)7T 1 =[] 0l
Y
_ (A24)
Vtrurs:vrstu: _(_)r+s FVsrtu:(_)rJrSHJruvgrut
= (- )t+u—rvrrsut_ (A18h) The proof is left as an exercigase Eq(A22a) and Racah

sum rule(A39)].
L . - In a jt representation, by introducing explicitly the isos-
In recoupling it is convenient to allow for complete flexibil-

o o
ity in the summations over orbits, and we adopt the follow-Pin in '=JT,y=A7,r=j. 3 etc., and the § values
ing convention

1/2 1/2-|- Tr OO 01 10 11
Es=(1+6,5) Y2 if r<s, =

12 1/2r —-1/2 1/2 1/2 1/6 (A25)
(1+89" -
Ty if no restriction, (A19) we find
so that the sums could be interpreted as restricted or notm 1 o o s I " "
restricted. We write therefore wrtsuzz% (=)l iv Je N[ DViswt3Visw),
(A263)

_ r T
V= Z VrstuzrsF ' ZtuF
r<s
t<u,I’

ir

1 . js J
ol =2 (—yistie A [I](V22, —\L )
S S et TP KX (A20) 20 Ju deo A st~ Visty
(rsmr tu retul sl (A26b)

Note thatX s,y means that that we are summing as dic-and reciprocally
tated by the values dof,s and &, .

According to Eq.(A16), V can be transformed into 1 iojs Jd
V‘r]_gtu:§§ (_)jSHt)\J[ ju jt )\] [)\](wl)'\tgu"':';w])}tlsu )
V=(%W Erséul [ V]V su(SHSL)° (A273)
+ 5st’$ru[s]1/2w?uss 0u]1 (A21)
v Js J
where 1 S
V?sltuzig (=)t J[ju it )\][)\](w?gu_wi\éu)-

r (A27b)
(‘)rysuz (_)S+t7)/7r u t vy Vrstu[rl
When the Hamiltonian is written as in EgA20) we
(A22a) speak of the normal oW representation, and refer to the
forms (A21) or (A23) as multipole, orw representation. The

r s T latter is often calledoh representation in the literature, be-
V=2 () e y({ s V] cause Eq(A21) can be cast as ph or Pandya-Talmi trans-
Y formation by simply replacing thég and B; operators by

(A22b)  their ph transforms.
It is useful to have at hand the relationship between ma-
(We useZ () to indicate that we sum over Pauli allowed trix elements in thgt and thej schemes. A single shellin
I'.) Equation(A17) suggests an alternative to Ed\21): the former becomes a paif andr,, in the latter
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1/2 1/2
_ (1+5rs) (1+(5'[U) VJl VJO

nsptnup_ 2 ( rstu rstu

1/2, 1/2
(1+5FS) (1+5tu) VJl VJO

r.s u.t 2 ( rsut rsut

nppn

Vf St U =V, t :V}]sltU' (A28)

nTn'n-n rpSp pup

3. Reduced matrix elements fol, o, rY,, and q operators

Conventionsr is the coordinate in units of the oscillator
length V(#/M w). Radial wave functions are positive near

the origin.

J—I+s (nots+|) The carets indicate operators.
Condon and Shortley phases 6.

(A) =25 and| matrix elements:
i'=1+1/2, j=1-1/2,
f)=[G+D2j+1]*

('llalliy=fG75" Cllaliy==f()/(+1),

GID=18GD" G =0+ DF)IG+1),

( +1) 1/2

I8l Y=l = [ T+ 1
=—("18i)y=—lllj").

(B) r'Y, matrix elements:

21+1\12
Am | "

(A29)

Y, =

(PllIrACyllp 1" j"y=(pI[rMp'I") (=) =1 jj v

j TN
1/2 —-1/2 0 (A30)
(B1) r! andrlY; matrix elements:
1
(plrlp+11+1)= \/E(p+|+3),
1
(plrlp+11-1)=— \lz(p—l+2), (A31)

(pljllrCyflp+11+1j+1)
B /p+|+3[(2j+1)(2j+3)
T 2 | 2(2j+2)
il e /p+|+3[ 2j+1
<pj||r 1||p+ + J>__ 2 [2](2J+2)

p—1+2[ 2j+1
12j(2j+2)

1/2

1/2

12

(plillrCylp+11-1j)=

(plillrCyllp+11-1j-1)

3 /p—|+2[(2j—1)(2j+1)
SV 2 [ 4

(B2) r2 andr?2Y, matrix elementsdy;,, only for the lattey:
(pllr?|ply=p+3/2,

(plr2[pl+2)=—[(p—1)(p+1+3)]*?

1/2
. (A32)

(pllr¥p+2l)=— %[(p—l +2)(p+1+3)]"7,
(pl|r|p+21 +2)=;[(p+|+5)(p+| +3)]2,
1
(plr¥p+21-2)=5[(p=1+5)(p—I+4)]""
(A33)
(illlr2Clljry
1/2

P32 2j+1)(2)-1)(2j+3)
T2 | 2j(2j+2)

3 (2j+1)(2j+3)
22j(2j+2)(2j+4)

GG +11)= <p+3/z>[

(illr*Calli+11+2)

1/2

3 (p—h(p+1+3)(2j+1)(2j+3)
2 2j(2j+2)(2]+4)

(tlir*Callj +21+2)

1/2

3D+ +5RITIRIFDE

|8 (2] +4)(2j+2)

Useful formulas involving $ and § symbols:
(imj’m’[JM)y= ()i =1 M 3]V joqr 3
m m —-M

= (=) m’ jm|IMm)

= (=) j=mj —m'[I=M),

(A35)
I I L T
m m -—-M =(=)lT m m —M
o ] RN
:(_)J+J +J “m -m' M
(A36)

The 3j symbol is invariant under cyclical permutations
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(jmj—ml00y=[j1""2(—)I~™, (A37) o r
2 V=2 PePu X (57N Wi
. rg at r T] Y
|
_3J S, =(—)*i'Tij 128 P Ptt
2 ( )[J]{, , k} (=T 1800, -3 D=, 82)
(A38)
where we have use@.10 and sum ruléA10) from [1]. The
i matrix elementW?, is always zero because it is Pauli for-
J . , =1’ A39 bidden.
2 : ]{J J k] (A39) (iv)  The variance of the f matrix  is

=[(D—1)/8D]o?, where o, is the variance of thav
matrix. The calculation is better conducted in thescheme:

[ J J 0} i+j’+k 1/2
i k(=G (A40)
I H(W)= > Wy ZlZ,,

The 6 symbol is invariant under permutations of col- x=(ij), x=1.--D?/2, i<j, (B3)
umns and under interchange of upper and lower indices in
two columns.

H(f):E faar SaSar,

APPENDIX B N N .
a=(ij), x=1---D?%(ij unrestricted. (B4)
1. Properties of thef matrices
There is nothing special about thé matrix that is diago- A typical Wy, =W,,34, say, appears af,a =+ W, in
nalized in theE representation except that it is traceless byfour contributionsaa’=13 24 and 24 13, 14 23, and 23 14.
construction, while thé matrix leading to thee representa- Then
tion has a number of nontrivial properties.

2 D@~ 2
a. Direct properties UW:< 2 ) 2 Wi » (BS)
(i) The f*™ matrix has twice as many elements as the )
WIT matrix with J=X. D23 2 =p23 4< XX/) _b- 102
Y aa’ 8D w
If r+#s andt#u, Wi, goes intow’,, andw/,, and the
allowed values of" and y are the same. (B6)

If r=s or t=u, Wi, goes intow},=w},s butT is
allowed for (—)'=—1 only and there is no restriction on
v. E.g., there are five possible ways of constructihg?2 Quadrupole renormalizations are mediated by terms of the
states in the sd shell d,, d3,, ds.Si, dgpds,  form K(dp- G240 T 24, dp)- It is perhaps surprising that Eq.
Sy,0d3, and there are fivdT=21 states and thredT=20 (2.3b could produce such a result. In fact, it does it indi-
states(the first two are Pauli forbiddénFor they matrices  rectly. What happens is that, for the particular type of matri-
there are eight possible combinations: the five above pluses involved, two contributions with eigenvalues of same
Sy0spp, dgpds,, anddssy», which are counted as differ- magnitude and opposite signs are present. It is by summing
ent. Therefore il we have a X3 (I'=20) and a %5  them that asymmetric factorizations appear. Let us see how,
(I'=21) matrix, while inf we have twice an 88 matrix. by studyingl X| matricesf, whose nonzero elements belong

b. Asymmetric factorizations

Each of these &8 matrices consists of two blocks of to the rectangular blocksf,, and f,, a=1,...K,
3X 3 and 5x5 bhecause of the following property. x=K+1,...], I-K=L.
(i) In the e representation we can write Specializing Eq(2.2b to this situation we have
1 = =
2 [7]1/2[(frtsu )S ufrtus)(srytssyu)o 2 faXUXk uakek’ ; fxauak UXkek. (B7)
S<U'y

u 0 The eigenvectofk) with eigenvalueg, can be expanded
+(Fisu= (=) s (ARALD"] (B1) in terms of unit column vector$) (1 in theith position, zero
in the otherx
in terms of theS and.A operators defined in E¢A14) . In

the preceding example it means that out of eight possible _ o\
g = ; = iKliy= + .
y= 27 combinations three are of type and five ofS type. k) izzu Ui ) a;,K Uakl2) =1, Uxl). (B8)
Note that the matrices are always symmetric but the eigen-
vectors are linear combinations that are eithe§ of A type. By reversing simultaneously the sign @& and uy

(iii) The trace of thef matrix alwaysvanishes, as seen (e— —€y, Uy — —Uy, YX) Eg.(B7) remains unchanged
from telling us that
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— Let us start by comparing the traditional pairing plus
|k>:§ Uak|a>_§ Uyl X) (B9  quadrupole forces as used|ih,35]

= — T t .
is an eigenvector with eigenvaluee,. Furthermore, from Hp= = Gu(PptPpi1) - (PptPpia), (€D

unitarity

X/
Hq=— 5 (dp+Tdp+1) - (Apt Up+1), (C2
q 2 \Hp™ Hp p™ Up
Ei uikuik’zg UakUak'+§ UyUyr = S (BLO)
with the normalized versions in EgR.9) and(2.10, which

and taking overlaps we write explicitly by borrowing numbers from Table Il and
remembering that wo=9 MeV:

<k|F>:§ uakuak’_z UyUyir =0, (B11)

Pl Pl [ Py Py )
Hp=—0.3%w + + ,
leading to VQp VQp1/\VQp VOpig
1 (€3
2 Uakuak/:E kauxk/:—(skk/. (BlZ) ( qp qp+l)( qp qp+l)
3=—0. —+ —+ .
a - 2 Ha=—021810| 37 +37— || 437

From these results we may construct the spectrurf. of
Let us callM =min(L,K). We have:M positive eigenvalues
e (k=1,M), M negative ones,=—¢e, (k=M +Kk), and
| —2M null ones.

We may gain further insight by presenting the problem as

If we consider first the case of one shell, the operators are
the same, and we can relate the coupling constants by simply
equating.

For the two shell case, the overlap

a search for an optimum approximanig, to the rectangular 1
matrix f 5, defined through _<&+ Op+1| GpTOp+1 >
\/E Np Np+1 \/Np+Np+1
2 (fra—gagy)*=min. (B13)
1 Np+Np+1
. ith d df. lead =——F—————--=0.98 forp=3 (C4
Variation with respect td, andf, leads to \/51/N7p+/\/?p+l

> fra0x=0a f2, > fra0a=0x > 02, (B19) seems Ia}rge enough to identiflyq*and Hq to a good ap-

X x a proximation. Of course there is some risk because in the
norms defined in the vector space of the multipole represen-
tation theS;; operators arall treated as unit vectors. In a
midshell situation, as iR®Si, thep+ 1—upper—shell is very
poorly represented in the wave functions. Then the large
> gfzz gi=e (B15)  overlap is meaningless.

x a With this proviso in mind we equate the traditional and
o the new forms. Recalling thdtw=40A"*3[20], and writ-

and Eq.(B14) becomes Eq(B7) by identifying g,=Uxc,  jng the norms in terms oA, as in Eqs(2.4) and (2.5) we
ga=Uax, €=8. The factorlzgtpn produced by the lowest 4 for one shell

(k=1) eigenstate at= —|e,| is identical to the one for the
highest ae=|e;| and the best available. Exact separability is

and given that (B13) is invariant under g,— ogy
ga— 0 g, we may request

achieved fore,=0 for k#1. 0'21?(“ = 1 53161/3 X &A—SB,
Nj 2 AAL, 22
APPENDIX C (C5)
. 03%w 1951 B
1. Baranger and Kumar revisited O = amBaze = G=GoA L
In two important papers Baranger and Kumar attempted P me
to derive from a realistic interaction the pairing plus quadru-;nq for two shells,
pole forces adapted to a space of two major shdllsand
proceeded to do Hartee-Fock-Bogoliub@iFB) calculations
in the rare earth region that showed for the first time that it 0.2162hw) 1 216 X' XéA’5’3
was possible to explain microscopically the onset of defor- ) 2 T o plBAMB T 5 o !
mation[35]. NptNpa 2ATA, 2 2
The success of the calculations is probably due in large (C6)
part to the fact that the model is far more realistic than its 0.322hw) 19.51
authors believed. The reason is rather strange and we think it 010 . = AlBAZR =G=G,A 4,
is worth telling. ptilprr ATAG,
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where we have expressed the averaged norms in terms of The point is rather subtle and it is only thanks to universal
A, and Agrp,, both close enough to the total number of scaling that it can be made.
particles at the closure of shedl A;,, to be identified with Everything seems to happen as if one flaw of the model—
it in what follows. incorrect scaling—corrected the other: the space dependence
For one shell the only problem comes from the conven-of the coupling constants. A better interpretation, though, is
tional scalings, i\~ andA 1. It is possible to understand that the model should be restricted either to one shell in the
their origin: They amount to setting,,=A, which makes vicinity of Ay, or to two shells in the vicinity ofA,.
sense in comparing strengths in distant regions, but is locally Now we note that the rare earth region studied3s] is
wrong. If taken at face value, the~ %2 |ocal behavior pre- approximately centered at the oscillator closuZes70 and
dicts variations in the moments of inertia of neighboring thatN=112, which meets this restriction, and that the parameters
are much larger than the observed of86,37]. used wergin MeV):
In the two-shell case the couplings are reduced with re-

spect to the one shell values by a factor of about ,
X0~280, Gy,=27, Gg,=22,

k
, (C7 somewhat larger than those in E.6) but quite consistent
with the renormalized values of Sec. IYThe need to use
different G, values for neutrons and protons is readily ex-
plained by(C6). It is a mild manifestation of space depen-

2p+3
2p+4

(Amp/Acp)k/3:

with k=4 for y' andk=2 for G. If our identifications were encel
correct, these discrepancies should not exist, and they ape We can draw two conclusions
related to the risk we described after EG4): There is no '

guarantee that we can approsmate well_the operatop, i ST O PO NS HECE B T e
0ptdp+1 by 9p+Qp+ 1. The compromisg’ in Eq. (C6) is

too small for the lower shell but also too large for the u ertions than its authors believed.
9 bp (i) It can be made truly realistic by using the normalized

one. If the mixing is strong and both shells contribute equally . ; :
to the wave functions, then the large overlap in EQ4) operators, by including a pair of other terrtectupole and

indicates that the compromise may work but in a nucleushexadecgpobeandlmf ex?rﬂmmg more cllpgely tfhﬁ monqpo:e
well described by the lower shell alone it makes no Sensecc_)ntrlbutlon_. Very litle of the bas_lc simplicity of the origina
. : . : ; Will be lost in this improved version.
The thing to do in this case is to restrict the model to one i . .
shell | Note 1: on sperl]ce deggrg)jgn&(amm? wgat happens in
’ . ) . T . arger spaces when E is generalized toM major
By overlapping theq-q form with a realistic interaction shells. It is elementary to prove that=O(A~ Y3 ~4), and

Baranger and Kumar obtaingg= 203 (vs our 216 for one Fhat the overlap tends tg5/9. It means that to simulate—
shell, but for two shells the value was reduced by a factor o , . ) -
never mind how remotely—the behavior of its realistic coun-

about 0.6 atp=2, close to (7/8) calculated in Eq(C7). .
When faced with this unwanted reduction, instead of blam_terpart, the conventional-q force must be affected by a

. . : vanishingly smally’.
'ng the_q d fo_rm, they declargd_ Incorrect th_elr_method of Note 2: on the second method of extraction[ij. To
extraction which—under a primitive guise—is identical to

: ) , O .
ours and correct to within some detaitiscussed in Sec. IlI reg:rfee?'fncé ?ﬁ?;:'o?ogtosggrg trzit:]%ﬂlst::slenéeéﬁctt;]oeni dea
B). Then, to obtain the coupling constant, they proceeded t 9 prop

invent another method, unrelated to any interactg@eNote at the average energy of a nucleus is independent ‘.Jf. Its
2 below). shape. It makes no reference to the force nor to any empirical

datum but assumes very specifically that particles move in
two major shells. Hence the presence of two terms in the
denominator of the resulting estimate:

At this point Ref.[1] becomes confusing because it is
argued that sincéhe quadrupole force cannot be extracted
from the realistic interaction its origin must be something
elsethat may not be quadrupole at allvhat we are showing
is that the “something else” is simply the normalized quad- how
rupole force. X' “NIINZ.

The extraordinary thing is that Baranger and Kumar had P p+1
found it. The reason they did not see what they had found is
that they reasoned in terms of tie >° scaling, in spite of [Eqgs.(72) and(73) and the paragraph following them fia],
having given the correct argument showing what the scalingyt here we have introduced the norms instead of their as-
must be. ymptotic value$ This is the samg’ of Eq. (C6), except that

Now observe carefully Eq¢C5) and(C6) to discover the 3 factor 4x 0.216 has been set to unity.
detail that repairs the damage. The only sensible way to de- The critical dependence on the number of shells that are
fine x; for one shell is to “equate’An,;~A, while for two  taken to be active makes the result suspect. However, it may
shells we must tak&.,~A and nowy, is identical to 216 in  also mean that it is a profound one since two shells seem to
both cases. be the natural valence space to describe rotational motion.

There is no contradiction betweeg’'(1 shell* x'(2  (See[22].) It should be noted that the value pf deduced by
shells) at a given nucleus ang(1 shell=xq (2 shells), Mottelson in[27] is exactly half of the Baranger and Kumar
both calculated in different nuclei. one[1].
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