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Angular-momentum cranking applied to multiphonon anharmonic collective vibrations:
Cranked bifurcation theory

E. R. Marshalek
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

~Received 14 November 1995!

It is shown that the self-consistent angular-momentum cranking technique can be used to generate certain
types of collective vibrational solutions of time-dependent mean-field equations. The method is suitable for
systems having an equilibrium mean field with an axis of symmetry and is founded on a theorem~cranking
bifurcation theorem! proposed in this paper, according to which cranking about an equilibrium axis of sym-
metry leads to new symmetry-breaking solutions that bifurcate from the axially symmetric solution at the
critical cranking frequencies given byV5vm /Km , wherevm is a random-phase-approximation~RPA! fre-
quency for any mode carryingKmÞ0 units of angular momentum along the symmetry axis. The bifurcating
solutions correspond to aligned multiphonon excitations including possible large-amplitude anharmonicities. A
general heuristic proof of the method is provided, as well as a perturbative demonstration within the framework
of the cranked Hartree-Fock~CHF! approximation, which includes a derivation of the RPA. The static CHF
approach is then compared to a perturbative treatment of the time-dependent Hartree-Fock equations using the
Lindstedt method. It is also shown that the cranking approach may be applied to phenomenological mean-field
models to obtain anharmonic corrections to the vibrating potential model. Finally, the calculation of transition
matrix elements is briefly discussed.@S0556-2813~96!04507-4#

PACS number~s!: 21.60.Ev, 21.10.Re, 21.60.Jz, 47.20.Ky
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I. INTRODUCTION

The cranking method is usually applied to nuclei havi
an intrinsic state with a static broken rotational symme
manifested in the mean field. The cranking axis is cho
such that the system is deformed in a plane perpendicula
this axis. The technique then generates the usual rotati
bands found in permanently deformed nuclei. Overall, it h
been remarkably successful in explaining both qualitativ
and even quantitatively a huge body of data up to very h
spins @1# at both normal deformations and superdeform
tions. On the other hand, the common wisdom is that cra
ing a mean field about an axis of rotational symmetry ju
carries the field into itself, leading to nothing new, exce
possibly a redefinition of the Fermi surface~equivalent to
introducing a ‘‘tilted Fermi surface’’!. Therefore, one would
not suppose that the cranking method would be of any us
spherical nuclei. However, it will be shown here that th
common wisdom is shortsighted. More specifically, it will b
demonstrated that when a mean field is cranked about a s
metry axis, it is possible that at certain critical cranking fr
quencies new solutions thatbreak the symmetrybifurcate
from the symmetric one. In most cases, such a bifurcat
corresponds to a band ofmultiphonon vibrational states
rather than an ordinary rotational band. In view of the rec
experimental ground swell of interest in multiphonon stat
the cranking approach is worthwhile pursuing.

Collective vibrations of the one-phonon type have be
long identified throughout the nuclear periodic table. A
phenomenological collective models, and many microsco
ones, also predict the existence of multiphonon excitatio
the study of which is crucial to an evaluation of the impo
tance of anharmonicity. Here, the data have been more
sive, being primarily limited to quadrupole excitations
546-2813/96/54~1!/159~17!/$10.00
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near-magic spherical nuclei such as isotopes of Cd@2#. With
the advent of improved detectors, there has recently bee
considerable resurgence of interest in multiphonon exci
tions sparked by new experimental results. For example, le
els in 17 nuclei have been proposed as candidates forK54
two-phonong vibrations of deformed rare-earth nuclei@3#.
Very recently, persuasive evidence has been reported
such two-phonong vibrations in the isotope106Mo by Gues-
souset al. @4#. In addition, evidence has been cited for two
phonon octupole levels in148Gd @5#, 208Pb @6#, 144Ne, and
146Sm @7#, and for a mixed octupole-g vibration in several
deformed nuclei@8#. Two-phonon giant dipole@9# and quad-
rupole @10# resonances have also been observed in vario
spherical nuclei. From the perspective of systematics, Cas
and collaborators@11# have succeeded in correlating dat
over vast stretches of the periodic table using a simp
anharmonic-vibrator formula for quadrupole excitations ha
ing two or threeuniversalparameters.

A nonexhaustive inventory of the theorist’s tool kit o
microscopic approaches that can or have been applied
multiphonon anharmonic excitations includes the method
generator coordinates@12#, the ~fermion! multiphonon
method @13#, higher random-phase approximations@14#,
variants of boson-expansions@15#, the Dubna quasiparticle-
phonon model@16#, and specialized techniques for solving
time-dependent mean-field~TDMF! theories, such as the
self-consistent coordinate method@17#, and various formula-
tions of the theory of adiabatic large-amplitude collectiv
motion @18#. Each of these methods has its pros and con
For example, the multiphonon method, which takes into a
count the Pauli principle exactly, but may violate particle
number and angular-momentum conservation~deformed nu-
clei!, apparently cannot give rise to a compresse
multiphonon spectrum, which seems to be required by so
159 © 1996 The American Physical Society
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160 54E. R. MARSHALEK
of the data on deformed nuclei, and is a feature of the p
nomenological interacting boson model. Boson expansio
on the other hand, may partially violate the Pauli princip
due to truncation errors, but are capable of fulfilling cons
vation laws to a given order of approximation@19# and can
give rise to compressed multiphonon spectra. The met
closest to the one to be discussed in this paper is the TD
approximation, which includes the time-dependent Hartr
Hartree-Fock~HF! and Hartree-Fock-Bogoliubov~HFB! ap-
proximations, in which bound states corresponding to anh
monic collective modes are described by periodic orb
obeying a gauge-invariance condition@20# that is essentially
equivalent to Bohr-Sommerfeld quantization. Unfortunate
the construction of periodic solutions of the nonlinear TDM
equations is usually a difficult task that has been carried
only for a few simple models@21#. In lieu of exact periodic
solutions, one may use secular perturbation theory@22,23#
with the small-oscillation approximation, i.e., the random
phase approximation~RPA!, as zeroth order. This method i
generally limited to small amplitudes, and in many cas
runs into complications involving small resonance denom
nators. The main purpose of this paper is to call attention
yet another method for finding periodic solutions that is a
plicable to collective vibrations carrying nonzero angu
momentum, namely, the self-consistent cranking mo
~SCCM!, which has heretofore played a central role in e
cidating rotational states of high angular momentum@1#.
However, the proposal here is to use the SCCM to desc
states that are normally regarded asvibrational rather than
rotational in character with the particular aim of applying
for the first time to deformed nuclei.

The idea of applying cranking to vibrational modes w
first proposed by Marshalek and Sabato@24# and, indepen-
dently, by Kamlah@25# 25 years ago. In Ref.@25#, angular-
momentum projection was used to derive the connection
tween cranking and the RPA. In the series of papers@24#, the
cranking approach to vibrations was derived from t
c-number limit of boson expansions. The applications
spherical nuclei went beyond the RPA, including perturb
tively the leading-order anharmonic corrections to the ex
tation energies as well as the static quadrupole moments
BE~2!’s involving the alignedn-phonon quadrupole excita
tions, which have spinsI52n. It was also shown how the
parameters of the variable-moment-of-inertia~VMI ! model
for spherical nuclei could be calculated microscopically@26#.
The work was not carried further at the time for a number
reasons, including problems with small resonance denom
tors in many nuclei, the inadequacy of available compute
and, of course, lack of data~ergo interest! on multiphonon
states. Since the small-denominator problem can be avo
using exact diagonalization, with modern desktop compu
being easily up to the task and data proliferating, the mom
is opportune for a revival on a broader basis. Since the
sential ingredient of the originalspherical cranking modelis
the presence of an axis of symmetry in the mean field,
model can be extended to axially symmetric deformed
clei, thereby providing a new tool with some special adva
tages for calculating, for example, then-phonon
g-vibrational bandheads with spin projectionsK52n on the
axis of symmetry, as well as other band heads.

The general aim of this paper is to establish the foun
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tions of the cranking approach for vibrations, which will b
applied in future work. The main thesis of this work cente
on the relation between bifurcations and vibrational freque
cies. More precisely, many bifurcations described as rotat
equilibria are really vibrations, i.e., rotating surface wave
This is the case not only for nuclear mean fields, but also
collective models and liquid drops, as will be shown in fort
coming work. This viewpoint provides a justification for th
long-standing characterization of certain vibrational states
being ‘‘quasirotational.’’ A brief presentation of the bas
ideas with applications to some simple systems has b
given in Refs.@27–31#.

In Sec. II, a general but heuristic proof is given for wh
will be called the cranking bifurcation theorem~CBT!, which
provides the justification for cranking about a symmetry ax
It is widely believed that cranking about a symmetry axis
a mean field is an unproductive activity, merely tantamou
to an identity mapping. However, according to the theore
this is not necessarily so, for at certain critical cranking fr
quencies, which are related in a simple way to the R
frequencies, bifurcations occur that break the rotational sy
metry. Each bifurcating solution branch represents a
quence of anharmonic multiphonon excitations associa
with an excitation operator that carries angular moment
along the symmetry axis and reduces in the small-amplitu
limit to the associated RPA phonon. In Sec. III, a secon
more specific proof is given for mean fields using th
cranked Hartree-Fock~CHF! approximation in the frame-
work of perturbation theory. The results are compared
those obtained from the Lindstedt method as applied to
time-dependent Hartree-Fock~TDHF! equations, the two
treatments turning out to be completely equivalent. Howev
the CHF approach, unlike that of Lindstedt, is not limited
perturbation theory and can thus be applied to larg
amplitude vibrations through exact diagonalization. A br
discussion is also given of the application of the CBT
empirical independent-particle deformed potential mod
such as the Nilsson model and the relation to the vibrat
potential model~VPM!. The possibility of calculating transi-
tion probabilities and improving upon the mean-field a
proximation is also touched upon. Illustrative applications
the ideas will be presented in a subsequent paper.

II. CRANKING BIFURCATION THEOREM

Consider a nucleus whose equilibrium shape is eit
spherical or deformed with axial symmetry in some referen
mean-field configuration, designated as the ‘‘vacuum
which is normally the ground state but may be an excit
state as well. The physical picture of a collective vibratio
that projectsKÞ0 units of angular momentum along a sym
metry axis corresponds to a rotating distortion, a surfa
wave traveling around this axis~see Fig. 1!. Since such a
mode is degenerate, it is possible to choose linear comb
tions of normal coordinates that describe auniformly ro-
tating wave. From a quantal viewpoint, these modes may
described in terms of the boson creation operatorsBm

† carry-
ing Km units of angular momentum along the symmetry ax
Since the cranking model is basically a classical approxim
tion, these bosons will be replaced by the correspond
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54 161ANGULAR-MOMENTUM CRANKING APPLIED TO . . .
c-number complex coordinatesbm* obeying the Poisson
bracket relations

@bm ,ibn* #PB5dm,n , @bm* ,bn* #PB5@bm ,bn#PB50,
~2.1!

where the symbol@•,•#PB denotes the Poisson bracket. IfH is
the quantal Hamiltonian, then̂H& will denote the classical
Hamiltonian function ofbm* , bm . This notation serves as a
reminder that the classical functions may be regarded as
pectation values with respect to suitable coherent states.
equilibrium points of the system relative to a frame rotatin
uniformly with angular velocityV about the three-axis are
solutions of the set of equations

]^H8&
]bm*

50, ~2.2!

where

^H8&[^H&2V^J3& ~2.3!

is the so-called Routhian~Hamiltonian with respect to the
rotating frame! with ^J3& being the classical angular-
momentum component along the symmetry axis~three-axis!
given by

^J3&[I 01(
m

Kmbm*bm . ~2.4!

~Here and throughout the paper it is assumed that\51.)
The diagonal quadratic form for̂J3& is, of course, a conse-
quence of designating the three-axis as the symmetry a
The constantI 0 is the spin of the axially symmetric vacuum
For the ground-state configuration of an even-even nucle
I 050, but for an odd-A nucleus, or for an excited state of a
even-even nucleus, nonzero values ofI 0 may occur, as, for
example, in the case of an oblate rotational-band termin
configuration or a high-K isomer @32#. If I 050, then the

FIG. 1. The rotational motion of the bifurcating solution, repre
sented by the solid ellipse, compared with that of the vacuum, r
resented by the dashed circle. The rotations may be in the sa
~a!,~c! or opposite~b!,~d! senses. The solutions~c!,~d! are the time
reverses of~a!,~b!, respectively. Here,I0 is the angular momentum
of the vacuum whileV is the angular velocity of the bifurcating
excited state.
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excitations occur in time-reversal conjugate pairs corr
sponding tobm* and b2m* with the sum in Eq.~2.4! under-
stood to run over both time-reversal partners an
K2m52Km . If I 0Þ0, then the total spin of a single excited
mode is given byI 01Kmubmu2, whereKm can be positive or
negative. In this case, time-reversal symmetry is broken fo
fixed choice of vacuum. However, one can also study ex
tations built on the time-reversed vacuum having spin2I 0 to
obtain the time-reversed states. The difference between
two cases is illustrated in Fig. 1.

For simplicity, first consider small oscillations~RPA!
about the vacuum configuration. In this limit, the classic
Hamiltonian is

^H&5^H0&[E0~ I 0!1(
m

vmbm*bm , ~2.5!

whereE0(I 0) is a constant, the vacuum energy, andbm* has
been chosen as a normal-mode coordinate with correspo
ing frequencyvm . The simultaneous diagonal quadrati
forms assumed for̂J3& and ^H& can always be achieved
since @^H&,^J3&#PB50. From Eq.~2.4!, the Routhian~2.3!
becomes

^H8&5E0~ I 0!2VI 01(
m

~vm2VKm!bm*bm. ~2.6!

Then, Eq.~2.2! implies

bm~vm2VKm!50. ~2.7!

In general, this set of equations has two kinds of solution
the trivial solution in which allbm50 and nontrivial solu-
tions in which a single coordinatebm0

Þ0, while bm50 for

mÞm0 . However, the nontrivial solutions are possible on
for a discrete set of cranking frequencies given by

V5VC[vm /Km , KmÞ0, ~2.8!

which is equivalent to thevanishingof a vibrational fre-
quencyvm2VKm , in the rotating frame. It should be noted
that there are no nontrivial solutions for those modes w
Km50. The trivial solution just corresponds to the axiall
symmetric vacuum~unproductive cranking!, while the non-
trivial solutions are deformed about the three-axis, the ma
nitude of the deformation depending onbm0

. Now, Eq.~2.7!

does not determinebm0
, which reflects the independence o

the frequency and amplitude for a harmonic oscillator. How
ever, ubm0

u can be fixed via Eq.~2.4! by prescribing a suit-

able quantized valuêJ3&5I , which leads to

Nm0
[ubm0

u25~ I2I 0!/Km0
. ~2.9!

Of course, the sign ofI must be chosen taking into regard
that of Km0

so that the right-hand side~RHS! of ~2.9! is
positive. The total energy~laboratory frame! for this solution
is then given by

E5^H&5E0~ I 0!1vm0
ubm0

u25E0~ I 0!1vm0
~ I2I 0!/Km0

.
~2.10!
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162 54E. R. MARSHALEK
For example, for quadrupole vibrations about a spheric
ground state, one hasI 050 and the cranking procedure en
gages only those modes withuKm0

u51,2. ForuKm0
u52, the

excitation spectrum is given byDE5 1
2vm0

I5vm0
n, where

n is the number of phonons. Therefore, the cranking soluti
selects the sequence of aligned multiphonon excitations w
~quantized! spins I52n50,2,4, . . . . which, for the lowest
frequencyvm0

, are often yrast states, referred to as quasir

tational states. ForuKm0
u51, the excitation spectrum is given

by DE5vm0
I5vm0

n, corresponding to multiphonon states

with spins I5n52,3,4, . . . . As shown explicitly in Ref.
@27# for the U~5! limit of the interacting boson model~IBM !
@33#, such solutions correspond to rotation about a tilted ax
rather than a principal axis of the density distribution
thereby breaking signature symmetry.

Next, consider the more general situation in which^H&
contains anharmonic corrections to the small-oscillation pa
in the form of an arbitrary, possibly infinite polynomial in
the coordinatesbm* , bm , which may be the result of a Taylor
expansion about the vacuum configuration. The argumen
greatly simplified if one chooses the coordinates such th
^H& is given by the Birkhoff-Gustavson~BG! normal form
@34,35#. In this connection, one should distinguish betwee
the nonresonant and the resonant cases. In the nonreso
case, the small-oscillation frequencies are either incomme
surate or else the commensurability is the consequence o
global symmetry that forbids resonant coupling terms. The
as proved by Birkhoff@34#, the Hamiltonian can be trans-
muted by a series of canonical transformations into an in
nite polynomial in the action variablesNm defined by

Nm[bm*bm , ~2.11!

with the conjugate angle variables being cyclic.1 With the
assumption that the coordinatesbm* , bm are already chosen
as the transformed variables, the most general Birkhoff no
mal form for ^H& is given by

^H&5E01(
m

vmNm1
1

2 (
m1m2

h~4!~m1,m2!Nm1
Nm2

1•••

1
1

n! (
m1m2•••mn

h~2n!~m1,m2, . . . ,mn!

3Nm1
Nm2

•••Nmn
1•••, ~2.12!

where the numerical coefficientsh(2n)(m1,m2, . . . ,mn) are
completely symmetric in the indices and theNm constitute a
formal set of constants of motion that are in involution. I
the resonant case@35#, the normal-mode frequenciesvm are
connected byr commensurability relations, and̂H& is a
polynomial involving in addition to theNm , certain resonant
monomials in thebm* , bm whose Poisson brackets with the
small-oscillation Hamiltonian̂H0& vanish@36#. In this case,
then action variablesNm cannot all be constants of motion,

1The obvious quantum analog is the perturbative diagonalizati
of a boson Hamiltonian by successive unitary transformations
produce a function of the boson number operators.
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but instead one can findn2r formal constants of motion that
are linear combinations of theNm , and others, such as globa
constants of motion, must be found by independent mea
Since the treatment of the resonant monomials, which
analogous to degenerate perturbation theory in the quan
case@37#, is rather complicated and difficult to demonstrat
in full generality, only the nonresonant case will be dea
with here for the sake of clarity.

From Eqs.~2.2!–~2.4! and~2.12!, the stationary points in
the rotating frame are solutions of the set of equations

bmFvm2VKm1(
m1

h~4!~m,m1!Nm1
1•••

1
1

~n21!! (
m1•••mn21

h~2n!~m,m1, . . . ,mn21!

3Nm1
•••Nmn21

1•••G50. ~2.13!

As in the harmonic case, one retains the trivial solution
which everybm50. In addition, there are the nontrivial so-
lutionsbm5bm0

dm,m0
with a single nonzero coordinatebm0

.
Thus, equating to zero the corresponding term in brackets
Eqs.~2.13! with Nm5Nm0

dm,m0
gives the following series in

Nm0
:

V2VC5h~4!~m0,m0!Km0

21Nm0
1•••1

1

~n21!!

3h~2n!~m0 , . . . ,m0!Km0

21~Nm0
!n211•••,

~2.14!

which can be reverted to give a series solution forNm0
in

powers ofV2VC . Thus, in the presence of anharmonicity
a nontrivial solution can exist for a continuous range of ro
tational frequenciesV in some neighborhood of each critica
frequencyVC given by Eq.~2.8!, and these critical frequen-
cies are points at which an anharmonic branchbifurcates
from the vacuum solution. It is also interesting to note th
if VC.0, which is most frequently the case, an
h(4)(m0,m0),0 while the higher orders are small, then th
solution backbends in some neighborhood ofVC .

The energy corresponding to such an anharmonic bran
may be obtained trivially by substituting the solution
Nm5Nm0

dm,m0
in Eq. ~2.12!, which merely limits the dynam-

ics to a particular submanifold in phase space,ipso facto
proving that the cranking technique gives the correct energ
When the action variable is expressed in terms of the p
scribed angular momentum through Eq.~2.9!, the energy
takes the form of an expansion in powers ofI2I 0 :

E5^H&5E0~ I 0!1vm0S I2I 0
Km0

D 1
1

2
h~4!~m0 ,m0!S I2I 0

Km0
D 2

1•••1
1

n!
h~2n!~m0 , . . . ,m0!S I2I 0

Km0
D n1•••. ~2.15!

Then, Eq.~2.14! is easily seen to be equivalent to the famil
iar relation

on
to
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V5
]E

]I
. ~2.16!

In summary, a heuristic argument has been given for t
following proposition.

If a system of coupled anharmonic oscillators has an ax
ally symmetric equilibrium configuration~vacuum!, then
self-consistent cranking about this axis yields families
symmetry-breaking solutions that bifurcate from the trivia
or vacuum solution at the critical rotational frequencie
VC5vm /Km, wherevm is the small-oscillation (RPA) fre-
quency (in the laboratory frame) of each mode carryin
KmÞ0 units of angular momentum along the symmetry ax
Each family describes the dynamics of the system on s
manifolds of phase space characterized by the single non
nishing action Nm5(I2I 0)/Km, where I is the angular mo-
mentum and I0 that of the vacuum.

One should note that the location of the bifurcation poin
is equivalently given by the condition that one of the RP
frequencies in the rotating frame vanish. It should also
emphasized that all of the bifurcations discussed here bra
off from the same vacuum, which has been assumed to
independent ofV, the situation normally prevailing for
nuclear mean fields. However, one may also contempl
more general systems in which the vacuum and, therefo
the vibrational frequencies depend on the rotational fr
quencyV, as, for example, in fluids with intrinsic vorticity.
In such a case, the above argument still goes through f
mally as long as the vacuum has an axis of rotational sy
metry. But then the condition for the critical bifurcation fre
quencies, vm(V)2KmV50, may become a nonlinear
equation for the critical angular frequencyV. In this situa-
tion, unlike the case when thevm are independent ofV, the
existence of a solution cannot be guaranteed in advan
each system has to be examined separately. Examples
such more general bifurcations may be found in fluid dynam
ics @38#.

Neither the CBT nor this paper deals with the separa
question ofstability. This is a complicated issue~especially
when one considers that there are more than 50 stability
teria in the literature! which is best left to specific applica-
tions in the future.

The line of proof advanced here for the CBT may b
considered heuristic since it is based solely on the manip
lation of formal power series, without regard for conve
gence. Indeed, it has been proven that the BG series ha
zero radius of convergence for a nonintegrable Hamiltoni
@39#, although it may give an accurate asymptotic expansi
in regions of phase space where the invariant tori rema
intact. Remarkably, Kaluz˘a and Robnik@40# have recently
recalculated the BG normal form through 14th order for th
Hénon-Heiles Hamiltonian, obtaining excellent results fo
the regular regions in the Poincare´ section plots. Of course,
the normal form is expected to lose all meaning in tho
regions of phase space dominated by chaotic trajectories

For low-energy trajectories in the neighborhood of th
equilibrium point, the cranking principle is expected to hold
correctly predicting the bifurcation points, as verified b
various models, and providing the correct energies possi
up to some cutoff point that cannot be determined from t
formal Taylor expansion. This raises a very important que
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tion, namely, that of how many times a collective mode ca
be repeated. If an excitation mode has a pure particle-hole
two-quasiparticle character, then even a double excitation
ruled out by the Pauli principle. Thus, collectivity is a nec
essary condition for the repeatability of an excitation. A b
furcating family of solutions labeled by a semiclassical
quantizedNm ~or ^J3&) corresponds to the repeated applica
tion of a boson operatorBm

† in the quantum case. The pos
sible disappearance of a continuous trajectory for some va
of the continuous parameterNm , would then imply an upper
limit on the repeatability of the corresponding collectiv
mode. While this possibility cannot be explored with a Ta
lor expansion, the nonlinearity of the cranking equations su
gests that it may be realized in nonperturbative cranking c
culations.

Another point that should be emphasized is that the B
method was introduced here solely to facilitate the justific
tion of the cranking technique, not as an end in itself.
should be obvious from the foregoing that if the normal for
could be calculated in nuclei, then cranking would becom
superfluous. In fact, the normal form was calculated throu
fourth order for a relatively simple nuclear model by Will
iams and Koonin@41# and further exploration of this ap-
proach may be worthwhile. However, the method has t
intrinsic drawback of being perturbative. The crankin
method, on the other hand, can be applied nonperturbativ
as well as perturbatively with the use of any set of coord
nates, not necessarily canonical ones. However, to see m
clearly the relevance of the foregoing proof to nuclei, on
should first recall how canonical coordinates can be intr
duced into nuclear mean fields. The most straightforwa
route is to first perform a generalized Holstein-Primako
~GHP! boson mapping of the nuclear many-body syste
@15#. Then, one may appeal to a theorem@42–44# according
to which the replacement of the boson operators by class
c-numbers results in a canonical parametrization of the on
body density matrix.~Of course, one must choose the prop
ordering of operators prior to thec-number replacement!.
Depending on the system and the type of GHP mappi
chosen, one can obtain in this way any of the standa
TDMF approximations, with the Hamiltonian~energy! being
a functional of thec-number canonical variables~which may
be identified with the originalbm* ,bm). While this can be the
starting point for calculating a BG normal form, it is gene
ally preferable to work with the standard forms of cranke
mean-field equations, using, for example, the noncanoni
density matrix elements themselves in the variational proc
dure. At a later stage, of course, the system is requantized
invoking a Bohr-Sommerfeld condition. The CBT applie
not only to microscopic mean fields, but also to phenomen
logical collective models, such as the IBM@33# and the
Bohr-Mottelson model@45# as well as some liquid-drop
models. Since these models are bosonized from the out
the classical approximation is obtained by simply replacin
the bosons byc-numbers in the Hamiltonian or, what is es
sentially equivalent, averaging in a coherent state, and th
invoking Eq. ~2.2!. Examples of such applications to th
IBM are given in Refs.@27# and @29#.

III. PERTURBATIVE APPLICATIONS
IN THE HARTREE-FOCK APPROXIMATION

Because of the heuristic nature of the general proof giv
for the CBT in the previous section, it would be reassuring



n

-

y
l
i-

d

.

k

f-
-
us
m
for

of
-

a-

by

n-

164 54E. R. MARSHALEK
have an independent argument specifically for mean fie
Such an argument is provided in this section for the TDH
equations. A similar treatment could also be carried out
the time-dependent Hartree-Fock-Bogoliubov~TDHFB! @46#
equations with only a little more complexity. The quant
many-body Hamiltonian is taken as the standard form

H5(
ab

eabaa
†ab1

1

4(
abcd
Vab,cdaa†ab†adac , ~3.1!

whereaa
† (aa) is a fermion creation~destruction! operator,

the indicesa,b,c,d referring to a complete set of nucleo
single-particle states, the matrixe represents either the bar
kinetic energy or a model independent-particle Hamiltonia
andVab,cd is an antisymmetrized two-body matrix elemen
In the TDHF approximation, the classical Hamiltonian m
be taken as the energy functional of the one-body den
matrix r:

^H&5E@r#5Trer1
1

2
Tr ur, ~3.2!

where r is Hermitian and for a system ofA interacting
nucleons must obey the conditions

r25r ~3.3!

and

Tr r5A, ~3.4!

while the matrixu corresponds to the self-consistent pote
tial, defined by

uab[(
cd
Vac,bdrdc , ~3.5!

which can be written in the shorthand notationu15
Tr 2 V12r2 . The TDHF dynamics are governed by the equ
tion of motion

i
dr

dt
5@h,r#, ~3.6!

where

h[e1u. ~3.7!

In this section, the CHF approximation for a system w
an axis of symmetry will be examined in self-consistent p
turbation theory through third-order corrections to the de
sity matrix. This is tantamount to calculating the fourth-ord
BG normal form for the Hamiltonian. In the first step, th
RPA will be derived by the purely static cranking techniqu
Finally, a brief comparison will be made with a more co
ventional time-dependent perturbation treatment based
the Lindstedt method.

A. Cranked Hartree-Fock approximation

The CHF approximation can be derived using the a
proach of Thouless and Valatin@47#, who transform the
TDHF equation~3.6! from the laboratory frame to a fram
lds.
F
for

al

n
e
n,
t.
ay
sity

n-
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e
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n-
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e

rotating with uniform angular velocityV about the three-
axis. Thus, the transformation of the density matrix is give
by

r5e2 iVt j 3r̂eiVt j 3, ~3.8!

where r̂, the density matrix with respect to the rotating
frame, obeys Eqs.~3.3! and~3.4! with r replaced byr̂, and
the matrix j 3 corresponds to the three-component of the an
gular momentum. The requirement thatr̂ be time indepen-
dent then leads to the CHF equations

@ ĥ2V j 3 ,r̂ #50, ~3.9!

whereĥ[e1û and

û1[Tr2V12r̂2 ~3.10!

is the mean-field potential in the rotating frame. The energ
~3.2! ~with r replaced byr̂) may be regarded as the classica
Hamiltonian expressed in terms of the noncanonical coord
natesr̂ab and Eq.~3.9! is the counterpart of Eq.~2.2! for
equilibrium in the rotating frame subject to a prescribe
quantized value of the angular-momentum component:2

^J3&5Tr r̂ j 35I . ~3.11!

It will be assumed that the zeroth-order solution of Eq
~3.9! corresponds to a mean-field Hamiltonianĥ(0)5h(0) that
is rotationally invariant about the three-axis~including the
possibility of spherical symmetry!. A single-particle basis
can then be chosen that simultaneously diagonalizesh(0),
r (0), and j 3 . Furthermore, it will be convenient to decom-
pose the complete set of single-particle states~denoted by
indicesa,b,c,d,...! into occupied states, labeled by the gree
indicesa,b,g,d, . . . , andempty states, labeled by the latin
indicesi , j ,k,l ,... . Thus

hab
~0!5«ada,b , ~ j 3!ab5Kada,b , rab

~0!5nada,b ,

na51, ni50. ~3.12!

The problem of finding perturbative solutions of Eq.~3.9!
can now be tackled. The situation here is fundamentally di
ferent from ordinary cranking in which the zeroth-order sys
tem is already deformed about the axis of rotation and th
responds to an infinitesimal cranking impulse. Instead, fro
the discussion in Sec. II, one expects a response only
certain discrete threshold frequenciesVC . This would seem
to suggest that a perturbation expansion in powers
V2VC would be appropriate. Indeed, that is what one ob
tains forNm0

by reverting the expansion~2.14!. On the other

2Based on the study of simple models, it appears that a quantiz
tion rule like ^J3&5 @ I (I11)#1/2, which is often used in the con-
ventional cranking model, is not valid when applied to vibrations. A
more appropriate rule is of the form̂J3&5I1a, wherea is a
properly chosen Maslov index. However, the approach favored
the author is to simply usêJ3&5 I in the CHF approximation, and
afterwards to pick up quantal zero-point corrections from a qua
tized RPA about the CHF equilibrium solution@58#.
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hand, this implies forbm0
an expansion in powers of

uV2VCu1/2, apart from an arbitrary phase factor. In fact, on
finds that the latter choice is the correct one for the pert
bation treatment of Eq.~3.9!. Therefore, defining the formal
perturbation parameterj as

j[uV2VCu1/2, ~3.13!

one may introduce into Eq.~3.9! the decomposition

V5VC1uj2, ~3.14!

whereu5sgn(V2VC), along with the expansions

r̂5r~0!1 r̂ ~1!1 r̂ ~2!1 r̂ ~3!1•••1 r̂ ~n!1••• ~3.15!

and

ĥ5h~0!1û~1!1û~2!1û~3!1•••1û~n!1•••, ~3.16!

where r̂ (n)}jn, implying that û(n)} jn, since, from Eq.
~3.10!,

û1
~n![Tr2V12r̂2~n! . ~3.17!

The orders in Eq.~3.9! can now be separated, startin
with the zeroth-order equation

@h~0!2VCj 3 ,r
~0!#50, ~3.18!

which is satisfied automatically through Eq.~3.12!. The im-
portant point to note here is that the unperturbed sing
particle energies are given by

~h~0!2VCj 3!ab5~«a2VCKa!da,b . ~3.19!

The generalnth-order equation is

@h~0!2VCj 3 ,r̂
~n!#1 (

k51

n

@ û~k!,r̂ ~n2k!#

2uj2@ j 3 ,r̂
~n22!#~12dn,1!50, n>1. ~3.20!

In addition, the requirements~3.3! and ~3.4! must also be
satisfied order by order for the density matrixr̂. This is
automatic in zeroth order, while innth order the condition
~3.3! becomes

(
k50

n

r̂ ~k!r̂ ~n2k!5 r̂ ~n!, n>1. ~3.21!

Equation~3.4!, which requires that Trr̂ (n)50 for n>1, can
be shown to be automatically satisfied. In fact, Eq.~3.20!
determines the particle-hole~ph! matrix elementsr̂ ia

(n) , while
~3.21! determines the particle-particle~pp! matrix elements
r̂ i j
(n) and the hole-hole~hh! matrix elementsr̂ab

(n) , in both
cases in terms of lower-order particle-hole matrix elemen
The special casesn51,2,3 will be examined in more detai
next.
e
r-

g

le-

ts.

1. First order: The RPA

For n51, Eq. ~3.21! becomes

~12na2nb!rab
~1!50, ~3.22!

which implies that

r̂ i j
~1!5 r̂ab

~1!50. ~3.23!

Therefore, the only nonvanishing matrix elements are of t
ph type,r̂ ia

(1) . Taking the ph matrix elements of Eq.~3.20!
while noting Eqs.~3.17! and ~3.19! one obtains the result

@« i2«a2VC~Ki2Ka!#r̂ ia
~1!

1(
jb

~Vib,a j r̂ jb
~1!1Vi j ,abr̂ jb

~1!* !50. ~3.24!

Since the two-body interaction commutes withJ3 , it follows
that

Vab,cd~Ka1Kb2Kc2Kd!50, ~3.25!

which implies that the only contributing terms in the firs
sum on the left in ~3.24! are those satisfying
Kj2Kb5Ki2Ka and, in the second, those with
Kj2Kb52(Ki2Ka). Consequently, Eq.~3.24! can be fac-
tored into separate blocks, each labeled by a constant va
K[Ki2Ka . Of course, a further factorization of the block
may be possible based on other constants of motion, such
parity, and, for spherical nuclei, total angular momentum
but these possibilities will not be explicitly exhibited.

The corresponding density matrix elements will be de
noted by r̂ ia

(1)@K#, indicating thatKi2Ka5K. In general,
r̂ab
(n)@K# denotes thenth-order correction to a density matrix
element such thatKa2Kb5K. Correspondingly, Eq.~3.24!,
together with the equation obtained by replacingK by 2K
and then taking the complex conjugate, is

~« i2«a2VCK !r̂ ia
~1!@K#1(

jb
~Vib,a j r̂ jb

~1!@K#

1Vi j ,abr̂ jb
~1!* @2K# !50,

~« i2«a1VCK !r̂ ia
~1!* @2K#1(

jb
~Vib,a j* r̂ jb

~1!* @2K#

1Vi j ,ab* r̂ jb
~1!@K# !50. ~3.26!

If one definesvK
(0)[VCK, then Eqs.~3.26! can be written in

the compact supermatrix form

S A@K# B@K#

B* @2K# A* @2K# D S r̂ ~1!@K#

r̂~1!* @2K#
D

5vK
~0!S r̂ ~1!@K#

2 r̂ ~1!* @2K#
D , ~3.27!

where in general the underscored objectr̂ (n)@K# is defined
as a column vector formed from the ph matrix elemen
r̂ ia
(n)@K#, and the matricesA andB are defined by
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Aia, jb@K#[~« i2«a!d i , jda,b1Vib,a j
when Ki2Ka5Kj2Kb5K,

Bia, jb@K#[Vi j ,ab when Ki2Ka5Kb2Kj5K.
~3.28!

Equation ~3.27! is easily identified as the RPA
eigenfrequency-eigenvector equation3 for an excitation mode
that carriesK units of angular momentum along the symme
try axis. The implications are now clear: A nontrivial solu
tion for r̂ (1) is possible in general only for a discrete set o
cranking frequencies given by

VC5vK
~0!/K, KÞ0, ~3.29!

wherevK
(0) is any one of the RPA frequencies. IfK50, the

RHS of ~3.27! vanishes, so that in general only the trivia
solution exists. Once a particular mode is chosen as ‘‘a
tive,’’ the corresponding density matrixr̂ (1)@6K# has non-
zero elements, but the density matrices for all other mod
vanish.

The normalization of the RPA eigenvectors can be det
mined by considering the angular momentum. It will be a
sumed that in zeroth order the angular momentum is giv
by

^J3&
~0!5Tr r̂ ~0! j 35I 0 , ~3.30!

where I 0 can have either sign in principle. For the groun
state of an even-even nucleusI 050, in which case time-
reversal conjugate single-particle levels are filled pairwis
The nonzero values occur, for example, for rotational-ba
terminus states and other axially symmetric large-K states,
and also for states in odd nuclei, when the time-reversal c
jugate single-particle levels are not all filled pairwise. Fro
Eqs.~3.12! and~3.23! it follows that the first-order change in
the angular momentum vanishes:

^J3&
~1!5Tr r̂ ~1! j 350. ~3.31!

The second-order change^J3&
(2) requires the diagonal matrix

elements ofr̂ (2), which can be obtained from the pp and h
matrix elements as given by Eq.~3.21! for n52 as follows:

r̂ i j
~2!@0#5(

a
~r̂ ia

~1!@K#r̂ ja
~1!* @K#1 r̂ ia

~1!@2K#r̂ ja
~1!* @2K# !,

r̂ i j
~2!@62K#5(

a
r̂ ia

~1!@6K#r̂ ja
~1!* @7K#,

r̂ab
~2!@0#52(

i
~ r̂ ia

~1!* @K#r̂ ib
~1!@K#1 r̂ ia

~1!* @2K#r̂ ib
~1!@2K# !,

r̂ab
~2!@62K#52(

i
r̂ ia

~1!* @7K#r̂ ib
~1!@6K#. ~3.32!

3In a more familiar notation,r̂ ia
(1)@K#}Xia@K# and r̂ ia

(1)* @2K#
}Yia@2K#.
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To satisfy the angular-momentum constraint~3.11!, it fol-
lows from ~3.32! that

^J3&
~2!5Tr r̂ ~2! j 35K(

ia
~ r̂ ia

~1!@K#r̂ ia
~1!* @K#

2 r̂ ia
~1!@2K#r̂ ia

~1!* @2K# !

5I2I 0 . ~3.33!

This establishes the normalization of the RPA eigenvect
as (I2I 0)/K, which is just the number of phonons, eac
carryingK units, required to change the angular momentu
by I2I 0 units.

The total energy~3.2! ~laboratory frame! is straightfor-
ward to evaluate in the RPA order. Since the CHF solution
stationary, ^H& is a quadratic form in ther̂ ia

(1)@K#,
r̂ ia
(1)* @K#, in fact just the RPA Hamiltonian if the density
matrix elements are interpreted as bosons. Theref
through the RPA order

^H&5E0~ I 0!1~ r̂~1!†@K# r̂~1!T@2K# !

3S A@K# B@K#

B* @2K# A* @2K# D S r̂ ~1!@K#

r̂~1!* @2K#
D

5E0~ I 0!1vK
~0!~ r̂~1!†@K# r̂~1!T@2K# !

3S r̂ ~1!@K#

2 r̂ ~1!* @2K#
D

5E0~ I 0!1~vK
~0!/K !~ I2I 0!, ~3.34!

whereE0(I 0) is the zero-order energy,r̂ (1)T is the row vec-
tor obtained by transposing the column vectorr̂ (1), and Eq.
~3.27! was used to obtain the second equation and Eq.~3.33!
to obtain the third. The final result agrees perfectly with E
~2.10!.

2. Second order

Since the pp and hh matrix elements ofr̂ (2) have already
been found from the conditionr̂25 r̂ and @Eqs. ~3.32!#, the
ph matrix elements may be found from Eq.~3.20!. It is easily
shown that Eq.~3.20! is also consistent with the pp and h
matrix elements as given by Eqs.~3.32! for the casen52. It
should be noted that the term in~3.20! proportional touj2

vanishes since@ j 3 ,r
(0)#50. One then readily obtains in ma

trix form the following two inhomogeneous equations for th
ph matrix of r̂ (2):

S A@0# B@0#

B* @0# A* @0# D S r̂ ~2!@0#

r̂~2!* @0#
D 5S R~2!@0#

R~2!* @0#
D ~3.35!

and
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SA@2K#22vK
~0!I B@2K#

B* @22K# A* @22K#12vK
~0!ID S r̂ ~2!@2K#

r̂~2!* @22K#
D

5S R~2!@2K#

R~2!* @22K#
D , ~3.36!

whereI is an identity matrix andR(2)@0# andR(2)@2K# are
column vectors constructed from the following ph mat
elements:

Ria
~2!@0#[@r̂~1!@K#,û~1!@2K## ia1@ r̂~1!@2K#,û~1!@K## ia

2ûia8
~2!@0# ~3.37!

and

Ria
~2!@2K#[@r̂~1!@K#,û~1!@K## ia2ûia8

~2!@2K#, ~3.38!

where @.,.# refers to the commutator of two matrices. Th
matrix û(1)@K#, the first-order change in the self-consiste
field @Eq. ~3.17!#, is explicitly given by

ûia
~1!@K#5(

jb
~Vib,a j r̂ jb

~1!@K#1Vi j ,abr̂ jb
~1!* @2K# !,

~3.39!

while ûia8
(2) is the part ofûia

(2) arising from the pp and hh
matrix elements ofr̂ (2), which for anyn>2 and any integer
K is defined by
ix

e
nt

ûia8
~n!@K#5(

jk
Vik,a j r̂ jk

~n!@2K#1(
bg
Vig,abr̂bg

~n!@2K#.

~3.40!

The second-order density matrix is especially useful f
determining the leading-order corrections to static electr
magnetic moments. For example, in the HFB analog it h
been applied to the problem of calculating the static quad
pole moments of one-phonon quadrupole vibrations
spherical nuclei, for which the solution of Eq.~3.35! suffices
@22,26#. However, to continue to higher orders, one mu
also solve Eq.~3.36!. It should then be noticed that becaus
of the presence of the submatrixA@2K#22vK

(0)I, the inver-
sion of the matrix in Eq.~3.36! may give rise to resonance
denominators. This is just the problem of commensurate f
quencies mentioned in Sec. II reappearing now in a differe
guise. The solution of this problem within the framework o
degenerate perturbation theory will not be discussed he
The simpler solution ultimately is to exactly diagonalize th
CHF equations rather than use perturbation theory.

3. Third-order–leading-order corrections to the RPA energy

The pp and hh matrix elements ofr̂ (3) are obtained from
Eq. ~3.21! for n53, the nonvanishing ones being of the fol
lowing types:
r̂ i j
~3!@6K#5(

a
~r̂ ia

~1!@6K#r̂ ja
~2!* @0#1 r̂ ia

~2!@0#r̂ ja
~1!* @7K#1 r̂ ia

~1!@7K#r̂ ja
~2!* @72K#1 r̂ ia

~2!@62K#r̂ ja
~~1!* @6K# !,

r̂ab
~3!@6K#52(

i
~ r̂ ia

~1!* @6K#r̂ ib
~2!@62K#1 r̂ ia

~2!* @72K#r̂ ib
~1!@7K#1 r̂ ia

~1!* @7K#r̂ ib
~2!@0#1 r̂ ia

~2!* @0#r̂ ib
~1!@6K# !, ~3.41!

r̂ i j
~3!@63K#5(

a
~r̂ ia

~1!@6K#r̂ ja
~2!* @72K#1 r̂ ia

~2!@62K#r̂ ja
~1!* @7K# !,

r̂ab
~3!@63K#52(

i
~ r̂ ia

~1!* @7K#r̂ ib
~2!@62K#1 r̂ ia

~2!* @72K#r̂ ib
~1!@6K# !.

This immediately implies that all diagonal matrix elements ofr̂ (3) vanish and therefore that

^J3&
~3!5Trr̂ ~3! j 350, ~3.42!

guaranteeing that the condition^J3&5I , fixed by Eqs.~3.30! – ~3.33!, continues to hold through third order. The ph matrix
elements ofr̂ (3) are then obtained by taking the ph matrix elements of Eq.~3.20! with n53. In this way one finds two
inhomogeneous matrix equations, the first being

SA@K#2vK
~0!I B@K#

B* @2K# A* @2K#1vK
~0!ID S r̂ ~3!@K#

r̂~3!* @2K#
D 5S R~3!@K#

R~3!* @2K#
D 1~V2VC!KS r̂ ~1!@K#

2 r̂ ~1!* @2K#
D ~3.43!

and the second

SA@3K#23vK
~0!I B@3K#

B* @23K# A* @23K#13vK
~0!ID S r̂ ~3!@3K#

r̂~3!* @23K#
D 5S R~3!@3K#

R~3!* @23K#
D , ~3.44!
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whereR(3)@K# is a column vector composed of the ph matrix elements

Ria
~3!@K#5@ r̂~2!@0#,û~1!@K## ia1@ r̂~2!@2K#,û~1!@2K## ia1@ r̂~1!@K#,û~2!@0## ia1@ r̂~1!@2K#,û~2!@2K## ia2uia8

~3!@K#,
~3.45!

while R(3)@3K# is a column vector composed of the ph matrix elements,

Ria
~3!@3K#[@r̂~2!@2K#,û~1!@K## ia1@ r̂~1!@K#,û~2!@2K## ia2uia8

~3!@3K#, ~3.46!

with uia8
(3)@K#, uia8

(3)@3K# defined by Eq.~3.40!. The term explicitly proportional toV2VC in ~3.43!, the role of which will
be discussed momentarily, corresponds to the term proportional touj2 in Eq. ~3.20!, which contributes for the first time in the
present order.

If one wishes only to calculate the correction to the energy, then it is not necessary to actually solve forr̂ (3) or to even
consider Eq.~3.44!. Instead, one may multiply both sides of Eq.~3.43! by the row vector (r̂

(1)†@K# r̂ (1)T@2K# ). The LHS of
the result vanishes, as implied by the H.c. of the RPA Eq.~3.27!, leaving

~ r̂~1!†@K# r̂~1!T@2K# !S R~3!@K#

R~3!* @2K#
D 1~V2VC!K~ r̂~1!†@K# r̂~1!T@2K# !S r̂ ~1!@K#

2 r̂ ~1!* @2K#
D 50. ~3.47!
-

y

But from the RPA normalization condition~3.33!, this result
may be written as

V2VC52S 1

I2I 0
D ~ r̂~1!†@K# r̂~1!T@2K# !S R~3!@K#

R~3!* @2K#
D ,

~3.48!

which just corresponds to Eq.~2.14! of the BG method.
Now, one expects the energy, including the leading-or
correction to the RPA energy~3.34!, to have the form of an
expansion in powers of (I2I 0)/K:

E5E0~ I 0!1vK
~0!S I2I 0

K D1
1

2
aKS I2I 0

K D 2. ~3.49!

From Eq.~2.16!, which is implied by the Hellmann-Feynma
theorem for the CHF approximation, it then follows that

V2VC5aKS I2I 0
K D ~3.50!

to the given order of approximation. Comparison with~3.48!
then establishes the coefficientaK as

aK52
K

~Tr r̂ ~2! j 3!
2
~ r̂~1!†@K# r̂~1!T@2K# !S R~3!@K#

R~3!* @2K#
D ,

~3.51!

with the use of Eq.~3.33!. From the discussion in Sec. II, th
result~3.49! is equivalent to that obtained from cranking th
BG normal form including quartic anharmonic terms.

Exploratory calculations ofaK were made for quadrupol
vibrations (K52) of spherical nuclei in the Sn region in Re
@26# using the HFB counterpart of Eq.~3.51! with the pairing
plus quadrupole-quadrupole interaction. Extensive mod
calculations of this parameter for quadrupole excitatio
built on the ground state (I 050) would be highly desirable
in view of the recent claim of a ‘‘universal’’ value for spher
cal nuclei by Casten and collaborators@11#.
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B. Transformation to the laboratory frame
and the Lindstedt method

Although all physical quantities of interest can be calcu
lated with the aid ofr̂, the density matrix in the rotating
frame, it is instructive to transform it back to the laborator
frame, using Eq.~3.8!. Since the angular-momentum matrix
j 3 is diagonal, so ise

6 iVt j 3, which then trivially leads to the
result

rab5 r̂abe
iVt~Kb2Ka! ~3.52!

for the density matrix in the laboratory frame. If
Kb2Ka5nK, wheren is a positive or negative integer, then

rab@nK#5 r̂ab@nK#einvKt, ~3.53!

where

vK[KV, ~3.54!

V, being defined by Eq.~3.48! in lowest order, is the exact
nonlinear frequency, not the RPA frequencyvK

(0) defined by
Eq. ~3.29!. The density matrix in the laboratory frame can
then be decomposed as follows:

r~ t !5r~0!1r~1!1r~2!1r~3!1•••, ~3.55!

where

r~1!5 r̂ ~1!@K#e2 ivKt1 r̂ ~1!@2K#eivKt, ~3.56!

r~2!5 r̂ ~2!@0#1 r̂ ~2!@2K#e2 i2vKt1 r̂ ~2!@22K#ei2vKt,
~3.57!

and

r~3!5 r̂ ~3!@K#e2 ivKt1 r̂ ~3!@2K#eivKt1 r̂ ~3!@3K#e2 i3vKt

1 r̂ ~3!@23K#ei3vKt. ~3.58!

Here it is understood that the matrix elementsr̂ab
(m)@nK# are

zero unlessKa2Kb5nK. Also, sincer (m) is Hermitian,
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r̂ ~m!@2nK#5 r̂ ~m!†@nK#. ~3.59!

Thus, the time-dependent solution in the laboratory frame
obtained as a Fourier expansion.

One can interpret Eqs.~3.55!–~3.58! as a boson expansion
by first introducing the BG coordinates with the time depe
dence given by

bK[S I2I 0
K D 1/2e2 ivKt, bK*5S I2I 0

K D 1/2eivKt,

~3.60!

so that, for example,ei2vKt→@K/(I2I 0)#(bK* )
2, etc., while

constant terms such asr̂ (2)@0# are multiplied by
@K/(I2I 0)# bK*bK5@K/(I2I 0)#NK . In this way, one ob-
tains an expansion of the noncanonical density matrix e
ments in terms of the canonical variables for a particul
excitation mode. Upon quantization, the density matrix el
ments map into fermion-pair operators and the canoni
variables into boson operators. Of course, such a treatm
has the usual problems of operator ordering which may n
correctly reproduce quantal contraction terms that can
computed by working with a quantized boson mapping fro
the outset.

As an alternative to the cranking approach, one may tre
the TDHF equation~3.6! by direct dynamical perturbation
theory as in the work of Meyer@22# and of Abada and Vau-
therin @23#. A convenient way to carry out this program in a
way that avoids the problem of secular terms is to use t
method of Lindstedt@48#. The first step in this method is the
introduction of the dimensionless time variablet given by

t[vt, ~3.61!

whereupon the TDHF equation~3.6! becomes

iv
dr

dt
5@h,r#. ~3.62!

The next step involves the expansion ofr, h, and the fre-
quencyv in powers of the amplitude:

r5r~0!1r~1!1r~2!1r~3!1•••1r~n!1•••, ~3.63!

h5h~0!1u~1!1u~2!1•••1u~n!1•••, ~3.64!

v5v~0!1v~1!1v~2!1•••1v~n21!1•••. ~3.65!

Upon separation of orders, one obtains of course in the fi
order the RPA equations of motion, including modes wi
K50, as well as those treated earlier, andv (0) is identified
with one of the RPA frequencies. In each higher order,
inhomogeneous linear differential equation must be solv
involving the RPA kernal. The frequency expansion~3.65! is
then exploited to eliminate secular terms in the solution.
second order, this is easily accomplished by lettin
v (1)50, tantamount to ignoring the frequency renormaliz
tion. In third order, however, a nonzero value ofv (2) is
required, which is just proportional to the frequency shift i
Eq. ~3.48! for a mode withKÞ0.

To make a long story short, for modes withKÞ0, the
Lindstedt solution is identical with the cranking solution re
is
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ferred to the laboratory frame, as given by Eqs.~3.55! –
~3.58!, which is, of course, what one expects. The Lindste
method has one advantage over perturbed cranking, nam
that it can describe modes withK50, although otherwise it
is a little more cumbersome. On the other hand, the Lindste
method is limited to perturbation theory, whereas the se
consistent cranking equations can be diagonalized exac
which is a major advantage for modes withKÞ0.

C. CBT and the vibrating potential model

The vibrating potential model~VPM! @49,50# is a purely
phenomenological TDMF approximation. Whereas th
TDHF approximation is based on anab initio calculation of
the fluctuating mean field from a given internucleon intera
tion, the VPM begins directly with a time-dependent mea
field derived from an empirically successful static deforme
potential model such as the Nilsson model by allowing th
deformation parameters to acquire a time dependence. T
empirical mean field can be used in reverse to derive
effective internucleon interaction@51–53#, which necessarily
has many-body components. In effect, this means that
VPM can be regarded as an application of the tim
dependent Hartree4 or Hartree-Bogoliubov~when the pairing
potential is included! approximation. In the VPM, the mean-
field Hamiltonian forA nucleonsHMF„a(t)…, wherea(t)
denotes a set of time-dependent deformation parameters
defined so that the total energyE 5 ^HMF„a(t)…&, the ex-
pectation value with respect to the TDMF state vector5

which is a solution of the time-dependent Schro¨dinger equa-
tion corresponding to the HamiltonianHMF„a(t)…. The de-
formation parametersa(t) are defined to guarantee nuclea
incompressibility in some manner, usually by requiring vo
ume conservation, the condition that the volumes of equip
tential surfaces be independent of deformation. In additio
at each instant, the shape consistency between the pote
and density distribution is secured by imposing the set
conditions^]HMF„a(t)…/]a i&50, which also guarantee that
E is a constant of motion.

The proposal here is to replace the time-dependent tre
ment of the VPM with the static cranking model~CVPM!.
Thus, if uFV(a)& is an eigenvector of the Routhian

HMF8 ~a,V![HMF~a!2VJ3 , ~3.66!

one must seek solutions satisfying the extremum conditio

K FV~a!U ]HMF8 ~a,V!

]a i UFV~a!L
5K FV~a!U ]HMF~a!

]a i UFV~a!L 50. ~3.67!

Of course, since these equations also include ordinary cra
ing solutions, one must locate those that bifurcate from a

4The exchange term is not included in the VPM.
5This means thatHMF(a(t)) already contains the corrections to

prevent overcounting of internucleon interactions.
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170 54E. R. MARSHALEK
ally symmetric configurations. It will now be demonstrat
that these bifurcation points are determined by the R
equations for the VPM.

Consider first the case of the axially symmetric groun
state configuration of an even-even nucleus, denoted
u0&, with orthogonal excited configurations denoted byun&.
With the three-axis designated as the symmetry axis, one

J3u0&50, J3un&5Kn . ~3.68!

Since u0& is a self-consistent solution of Eqs.~3.67! for
V50, corresponding to the equilibrium deformation para
eter seta(0), it satisfies the conditions

K 0US ]HMF

]a i D
0

U0L 50, ~3.69!

with the notation (]HMF /]a i)0[(]HMF /]a i)a5a(0) . For
simplicity, it will first be assumed that cranking changes on
one of the deformation parameters, denoted simply bya,
which is assumed to be real and defined so that

FJ3 ,FJ3 ,S ]HMF

]a D
0

G G5K2S ]HMF

]a D
0

; ~3.70!

i.e., the operator (]HMF /]a)0 transfers6K units of angular
momentum along the three-axis. In the neighborhood o
bifurcation point, the Routhian~3.66! may be expanded as

HMF8 ~a,V!.HMF„a~0!…2VJ31daS ]HMF

]a D
0

~3.71!

to first order in the deformation changeda. Sinceu0& is the
ground state of the zero-order RouthianHMF„a(0)…2VJ3 ,
the perturbed ground state to first order is given by

FV~a!.u0&2da (
nÞ0

^nu~]H MF /]a!0u0&
En2E02VKn

un&,

~3.72!

where HMF„a(0)…u0&5E0u0& and HMF„a(0)…un&5Enun&.
The self-consistency condition~3.67! may be evaluated to
first order inda using the expansion

K FV~a!U ]HMF~a!

]a UFV~a!L
.K FV~a!US ]HMF

]a D
0

1daS ]2HMF

]a2 D
0

UFV~a!L 50,

~3.73!

which, with the help of~3.72! and the invariance ofu0&
under time reversal, leads to the following result:
ed
PA

d-
by

has

m-

ly

f a

daF K 0US ]2HMF

]a2 D
0

U0L
22(

nÞ0

u^nu~]HMF /]a!0u0&u2~En2E0!

~En2E0!
22~VK !2 G50. ~3.74!

Therefore, the nontrivial solutiondaÞ0 is possible only if
KÞ0 andv[VK is a solution of the equation

2(
nÞ0

u^nu~]HMF /]a!0u0&u2~En2E0!

~En2E0!
22v2 5K 0US ]2HMF

]a2 D
0

U0L ,
~3.75!

which is just the RPA dispersion formula derived from th
VPM and originally applied tog vibrations of even-even
deformed nuclei@49#.

The use of a single deformation parameter may be a
equate in the RPA order if it is judiciously chosen, but gen
erally not in higher orders. For example, if the axial asym
metry parametera5g is chosen to describeg vibrations in
the RPA order, then in higher orders there will be a chan
db in the deformation parameterb due to anharmonic cou-
plings betweeng andb vibrations. Even in the RPA order,
several deformation parametersaK

i may be associated with a
particular mode carryingK units of angular momentum
along the symmetry axis, for example, parameters that ta
into account the coupling of quadrupole and hexadecap
degrees of freedom withuKu52. The RPA equations for the
more general case in which

J3u0&5I 0u0& ~3.76!

can now readily be derived by the cranking method. Th
deformation parametersaK

i , which in general are complex,
may be chosen to satisfy

FJ3 ,S ]HMF

]aK
i D

0

G52KS ]HMF

]aK
i D

0

, ~3.77!

wherea2K
i 5(21)KaK

i* . This property is most appropriate
for mean fields arising from multipole interactions; a som
what different parametrization would be more suitable fo
pairing fields with nonzero angular momentum, which ca
also be accommodated in this framework. The first-ord
state vector now becomes

FV~a!.u0&2(
i ,K

daK
i (
nÞ0

^nu~]H MF /]aK
i !0u0&

En2E01VK
un&.

~3.78!

The generalization of the first-order self-consistency cond
tion ~3.73!,

K FV~a!US ]HMF

]aK
i D

0

1 (
j ,K8

daK8
j S ]2HMF

]aK
i ]aK8

j D
0

UFV~a!L 50,

~3.79!

then leads to the following set of equations for eachK ~and
parity, etc.!:
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(
j

daK
j F K 0US ]2HMF

]aK
i* ]aK

j D
0

U0L 2 (
nÞ0

^0u~]HMF /]aK
i* !0un&^nu~]HMF /]aK

j !0u0&
En2E01VK

2 (
nÞ0

^0u~]HMF /]aK
j !0un&^nu~]HMF /]aK

i* !0u0&
En2E02VK G50. ~3.80!
.
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This system of linear homogeneous equations in thedaK
j*

has nontrivial solutions if and only if its determinant ha
solutions forv[VK, which, of course, is possible only if
KÞ0. This determinant is just a generalized form of the RP
equation when several modes are coupled, as, for exam
quadrupole and hexadecapole modes in an axially symme
deformed nucleus. In the special case when only two para
etersaK anda2K5(21)KaK* enter, the determinant simpli-
fies to

(
nÞ0

u^nu~]HMF /]aK!0u0&u2

En2E01v
1 (

nÞ0

u^nu~]HMF /]aK* !0u0&u2

En2E02v

5K 0US ]2HMF

]aK]aK* D
0

U0L , ~3.81!

and a second equation is obtained by allowingv→2v,
which corresponds physically to the time-reverse obtained
letting V→2V. However, by allowing both positive and
negative solutions forv, all RPA roots are contained in Eq
~3.81!. It should be noted that since the vacuum has the s
projection I 0 along the three-axis, the admixed configur
tions un& in the first sum have the spin projectionsI 01K,
while those in the second sum have the spin projecti
I 02K, in accord with Eq.~3.77!.

RPA equations similar to~3.81! were first derived by Be`s
and Chung@54# to describeg vibrations in odd nuclei and
later by Andersson and Krumlinde@32# to describeg vibra-
tions built on oblate rotational-band termination states,
both cases with the use of the quadrupole-quadrupole~QQ!
interaction. Indeed, their equations can be recovered from
preceding ones by defining the mean-field Hamiltonian f
the QQ interaction as

HMF5H02x (
K522

2

Q̂KaK*1
1

2
x (
K522

2

aK*aK , ~3.82!

whereH0 is the part of the mean-field Hamiltonian that i
independent of the relevant deformation parameters,Q̂K ,
K562, 61, 0, are components of the quadrupole tens
x is the strength of the QQ interaction, and the last term
the right is introduced to guarantee that the total energyE
5 ^HMF(a)& and that the VPM self-consistency conditio
~3.67! is equivalent to the Hartree self-consistency conditio

^FV~a!uQ̂KuFV~a!&5aK . ~3.83!

In this way, one recovers foruKu52 the results of Refs.
@54,32#. It should also be noted that the QQ force gives r
sults that are very similar to those derived from the VP
potential based on the Nilsson model, the main differen
s
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being that in the latter case, the strengthx is determined
automatically when evaluating the RHS of Eq.~3.81!,
whereas in the former case, it is a free parameter. It is als
interesting to note that foruKu51, the nonzero values of the
quadrupole momentŝFV(a)uQ̂61uFV(a)& imply that the
rotation takes place about an axis that istiltedwith respect to
the principal axes of the mean field. The topic of tilted rota
tion has been gaining considerable interest lately@55#, but
the possible connection with vibrational modes has not bee
widely recognized, although it is discussed in Ref.@27#.

The advantage of the cranking approach to the VPM i
that one is not limited to the RPA, but can include anharmo
nicities of all orders, and also cover the case of odd nuclei. I
the latter case, the approach of Be`s and Chung, which, in
contrast to other methods that require coupling of the od
nucleon with the phonons of the even-even core, allows e
citations directly from the ground state of the odd nucleus
can be generalized to take into account anharmonicities. F
nally, it should be pointed out that the Strutinsky shell-
correction method@56# could be applied to the CVPM in
much the same way as in the normal cranking of phenom
enological potential models. However, some rethinking o
this procedure may be required. For example, normalizatio
to a rigidly rotating liquid drop would not be correct for a
vibrational band, where the moments of inertia may be sig
nificantly smaller than rigid-body values.

IV. TRANSITION PROBABILITIES
IN THE CRANKING APPROXIMATION

The discussion thus far has centered on the calculation
energies of multiphonon vibrations using the self-consisten
cranking method. The most important remaining question
whether one can also calculate transition rates within th
formalism. In short, the answer is yes, provided that the tran
sitions connect states lying along the cranked trajectory an
that one is content with a semiclassical estimate. It is we
known that the cranked mean-field method in general ap
proximates energies with greater accuracy than wave fun
tions, which carry the added burden of broken symmetrie
In particular, the wave functions are not angular-momentum
eigenstates. A general remedy is to project out states havi
good angular momentum as well as other symmetries and
use these states to calculate transition matrix elements. Wh
such an approach is fine, it requires, in its fullest implemen
tation, a formidable amount of computation and takes one
considerable distance away from the relative simplicity o
the cranking method. An alternative is provided by the self
consistent cranking plus RPA~SCC1RPA! method@57–59#,
which has been successfully applied to high-spin states a
could just as well be applied to cranked vibrations. Now, th
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SCC model, which describes a uniformly rotating syste
~including rotating waves!, generates a ‘‘Regge trajectory’’
on an energy (E) vs angular momentum (I ) plot. The RPA,
in the SCC1RPA, has three principal effects:~i! It displaces
the trajectory vertically by a small amount due to the inclu
sion of the angular-momentum-dependent RPA correlati
energy,~ii ! it allows for excitations based on the cranke
trajectory as the reference state; and~iii ! it isolates the de-
grees of freedom associated with broken symmetries. Pr
erty ~iii ! notwithstanding, the SCC1RPA method does not
directly generate eigenstates with good quantum numb
owing to the appearance of Goldstone modes correspond
to the constants of motion violated in the SCC step. Neve
theless, as shown in Ref.@58#, it is still possible to correctly
calculate matrix elements by making a connection betwe
eigenstates and transition operators having good quan
numbers and the corresponding SCC1RPA eigenvectors and
transition operators, which depend on the Goldstone degr
of freedom.

Now, the introduction of RPA correlations6 on top of the
cranked SCC trajectory certainly goes beyond the SCC
proximation itself, including quantal effects left out in the
SCC step. Physically, the excitations represent either wa
traveling around the uniformly rotating nucleus or the wob
bling motion of the angular momentum relative to a bod
fixed frame. The corresponding quantal excitations or dee
citations, as the case may be, take one from the trajectory
theE vs I plot to other points above or below. In Ref.@58#,
it has been shown, however, that the transition matrix e
ments connecting successive states lying on the cranked
jectory itself are proportional to expectation values of th
transition operatorcalculated with respect to the SCC
vacuum. In other words, for such transitions, one need not g
beyond the cranked mean-field approximation; the SC
1RPA method is only used to provide the justification. O
the other hand, to calculate transitions departing from t
cranked trajectory, one must solve for the RPA amplitude
which is beyond the intended purview of this paper. Sin
the formal discussion, which depends on connecting t
Goldstone modes with an extended Holstein-Primakoff re
resentation of angular momentum, has already been provi
in the earlier work on the SCC1RPA, it suffices here to list
the most commonly required reduced transition probabiliti
~RTP’s!. The electric quadrupole tensor will be denoted b
M(E2,m) and the magnetic dipole vector byM(M1,m).
The corresponding RTP’s between successive points on
cranked trajectory are just given by@58#

B~E2;I→I2m!5u^M~E2,2m!& I u2, m51,2,

B~M1;I→I21!5u^M~M1,21!& I u2, ~4.1!

where^•••& I denotes the expectation value of the multipo
operator taken with respect to the SCC state for whi
^J3& I5I . For a normal cranking trajectory that preserves si
nature symmetry, only theE2 transition withm52 is appli-

6This should be distinguished from the RPA diagrams that a
summed along with higher-order anharmonicities in the crank
trajectory itself, as discussed earlier.
m

-
on
d

op-

ers
ing
r-

en
tum

ees

ap-

ves
-
y-
x-
on

le-
tra-
e

o
C
n
he
s,
ce
he
p-
ded

es
y

the

le
ch
g-

cable since the successive members haveuDI u52. However,
for a broken-signature trajectory, whose successive memb
haveuDI u51, all of the above transitions are expected to b
nonzero, including theM1; this would be the situation for
tilted rotation. The SCC1RPA gives for the static electric
quadrupole momentQ0 and the static magnetic dipole mo
mentm0 for states along the cranked trajectory the expre
sions that have been traditionally used in cranking calcu
tions, namely,

Q05S 16p5 D 1/2^M~E2,0!& I , m05S 4p

3 D ^M~M1,0!& I .

~4.2!

There are two caveats concerning the above expressio
in particular, the RTP’s. First, since the SCC1RPA model
assumes that the states connected by a transition lie o
smoothly varying part of the trajectory, application of th
above formulas to states lying on different portions of
backbending trajectory and thus having very different stru
tures would be highly questionable@60#. The second caveat
is that, strictly speaking, the above expressions, being se
classical, are valid for large values of the spinI , implying
errors of the order ofI21, which could be significant for the
usual low-spin vibrations, in particular for the RTP’s. In
principal, higher-order corrections to the SCC1RPA model,
including those of orderI21, could be computed, although
that goes beyond the cranked mean-field philosophy. A p
sible simple way to partially correct for inaccuracies of ord
I21 in the RTP’s when they are important is to multiply th
expressions~4.1! by an I -dependent factor that approache
unity for large values ofI . The proposal is not to introduce
empirical ‘‘fudge factors,’’ but rather factors that allow on
to smoothly interpolate between the known theoretical qua
tal behavior of the system at low spins and the cranki
result at high spins in the spirit of the correspondence pr
ciple.

For example, assume that the critical bifurcation poi
corresponds to zero spin. Then since, as was demonstrate
Sec. III, the solutions correspond to the RPA in some neig
borhood of the critical point, one may choose the factors
as to reproduce the well-known RTP’s of the fully quantize
RPA. Here, it is important to distinguish between trajectori
that describe vibrations in spherical nuclei and those in a
ally symmetric deformed nuclei, which require different fac
tors. It is straightforward to check that for the case of align
quadrupole vibrations forming the sequence ofn-phonon
states withI52n, Eq. ~4.1! ~only the first form52 is rel-
evant! already reproduces the RPA result as it is, thus requ
ing no correction in this limit. One way to see this is t
directly calculate ^M(E2,22)& I5Tr m(E2,22)r (1),
wherem(E2,22) is the matrix corresponding to the electri
quadrupole operator, and then to compare with the conv
tional quantal calculation of theB(E2) in the RPA. In this
calculation, the related Eqs.~3.11! and ~3.33! ~with I 050
andK52), which establish the normalization ofr (1), play
an essential role. They guarantee that the transition ma
element is proportional toAn5AI /2, which in the quantal
calculation arises from the matrix element of the phono
annihilation operator. Another way is provided by the fo
lowing argument, which also puts into perspective the re

re
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tion between the cranking and quantal transition matrix e
ments when anharmonic corrections to the RPA are includ
Let B2m

† denote a quadrupole phonon creation operator c
rying m units of angular momentum along the three-ax
The subspace of aligned phonon states with spinsI52n is
generated by the states

unII &5F S I2D ! G
21/2

~B22
† ! I /2u0&, ~4.3!

where unIM & denotes ann-phonon angular momentum
eigenstate andu0& the spin-zero vacuum state of an even
even nucleus. TheE2 operators projected into this subspac
then must have the following forms:

Q22[PM~E2,2!P5B22
† f ~N2!,

Q222[PM~E2,22!P5 f ~N2!B22, ~4.4!

P being the projector,N2[B22
† B22 the phonon number op-

erator, andf an arbitrary~unknown! function thereof. It will
be assumed from now on that the phonons have been cho
such that the HamiltonianH is diagonal, i.e., a function only
of the boson number operators, which implies, incidental
that PHP is a function only ofN2 . Then states~4.3! are
exact eigenstates and one immediately has the matrix
ments

^n21 I22 I22uQ222unII &

5^n21 I22 I22uM~E2,22!unII &

5S I2D
1/2

f S I22

2 D . ~4.5!

From the Wigner-Eckart theorem and the explicit value
the corresponding Clebsch-Gordan coefficient, one then
rives at the followingexact, though very general, reduced
matrix element:

^n21 I22iM~E2!inI&5~2I11!1/2S I2D
1/2

f S I22

2 D .
~4.6!

The transition from the exact result to the cranked mean-fi
approximation involves two steps. First, the bosons are
placed byc-numbers as follows:B22→b22, B22

† →b22* , and
N2→ub22u2. Second, the functionf (N2)→ f̃ (ub22u2), where
f̃ differs from f by terms of orderN21, whereN is a rela-
tively large number of the order of the number of interactin
particles or available valence levels; i.e.,N21 is the small-
ness parameter appearing in boson expansions@15#. To be
more specific, assume thatf is a holomorphic function and
therefore can be expanded in the form

f ~N2!5 (
n50

`

cnN2
n . ~4.7!

In general, the coefficients can be expected to have exp
sions in powers of N21, so that one may write
cn5cn

(0)1O(N21). Then the functionf̃ is given by
le-
ed.
ar-
is.

-
e

sen

ly,

ele-

of
ar-

eld
re-

g

an-

f̃ ~ ub22u2!5 (
n50

`

cn
~0!ub22u2n. ~4.8!

Similar considerations hold for other operators. In this wa
one recovers the BG representation of Sec. II. The Eq.~2.9!
with I 050 andKm0

52 implies thatub22u25I /2 and one is

free to choose the real valueb225AI /2. With these two
steps,M(E2,22)→^M(E2,22)& I , where

^M~E2,22!& I5 f̃ ~ ub22u2!b225S I2D
1/2

f̃ S I2D , ~4.9!

which is to be compared to Eq.~4.5!. From Eq.~4.1! it fol-
lows that the cranking result agrees with the exactB(E2) to
leading order in the two expansion parametersI21 and
N21. A similar argument can be given for theg vibrations
of deformed nuclei using strong-coupling eigenvector
where the cranking solution describes the sequence
aligned-phonon bandheads withI5K52n, n51,2, . . . . In
this case, the validity of Eq.~4.1! at low spins is improved by
multiplying the first of Eqs.~4.1! by the square of a Clebsch-
Gordan coefficient, namely, u^I2 I22uI22 I22&u2
5(2I23)/(2I11).

V. SUMMARY AND CONCLUSIONS

It has been shown that the self-consistent cranking mo
possesses a class of solutions that has escaped general n
These solutions bifurcate from a state having at least o
axis ofC` symmetry, the existence of which is a necessa
condition for the symmetry-breaking bifurcation. The po
sible bifurcation points are related in a simple way to th
RPA frequencies for modes carrying nonvanishing angu
momentum about theC` axis, as expressed in the crankin
bifurcation theorem~CBT!. This relationship comes abou
precisely because the uniformly rotating cranking solutio
are actually vibrations, i.e., waves traveling about the cran
ing axis. It was shown explicitly that such a bifurcation in
cludes anharmonic corrections to the harmonic RPA. An e
act ~as opposed to perturbative! numerical solution of the
cranking equations then sums anharmonicities of all ord
in a classical approximation. The solution trajectory, as d
picted in anE vs I plot, typically corresponds to a sequenc
of aligned multiphonon states, as, for example, the seque
I5 2n1, for n-phonon quadrupole excitations. The metho
can be implemented either within the context of fully sel
consistent cranked mean fields generated by fundame
nucleon-nucleon interactions or within the context of ph
nomenological mean fields, such as the Nilsson model,
which case the results correspond to an anharmonic ext
sion of the vibrating potential model. It was also noted th
transition matrix elements connecting states lying on a t
jectory can be calculated within the bounds of the formalis

The cranking approach to vibrations has a broad range
possible applications, although it also has its limitations. O
limitation already discussed is that only excitation mod
carrying angular momentum are accessible, therefore excl
ing the breathing mode andb vibrations. But that still leaves
a very wide range of treatable modes. The other limitatio
are shared with the cranking model for ordinary rotation
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states, and stem from the fact that this method is fundam
tally a classical one with a superimposed Bohr-Sommer
quantization condition on the angular momentum. Thus,
ditional quantum corrections usually exist, although the
may in many cases be adequately treated by the inclusio
the RPA~SCC1RPA!. However, one must still be cautiou
in situations in which quantal tunneling plays an importa
role. Apart from these caveats, the cranking approach ca
a worthy and even superior competitor to adiabatic tim
dependent mean-field approximations for bound states
addition to greater simplicity, the cranking approach has
advantage of not assuming the adiabatic approximation,
therefore can sum collective kinetic-energy as well
potential-energy anharmonicities of all orders. Of course
the potential exhibits multiple minima so that tunneling
important, then the adiabatic approach with quantization
probably the superior approach.

The cranking approach to vibrations may be able to s
a new light on the old question of the repeatability of phon
excitations. When are multiple excitations of a given vib
tional mode to be expected? Since the repeatability of
excitation mode having a pure particle-hole or tw
quasiparticle character is ruled out by the Pauli principle,
issue of repeatability is closely tied to the collectivity of th
mode and its interplay with single-particle modes. Since
cranking equations are nonlinear, it is possible for a solut
trajectory not only to suddenly appear as a bifurcation
just as suddenly to disappear, thereby signaling a cutof
repeatability. Should a cutoff occur for an amplitude cor
sponding to less than two quanta, one would have to c
clude that the mode in question cannot be repeated.
course, such behavior can probably be correlated with cr
ing patterns of the underlying quasiparticle Routhian plots
for ordinary rotations. One reason for believing that t
cranking technique can reproduce cutoffs on vibrations w
they exist is that it can reproduce cutoffs on ordinary ro
tional bands in exactly soluble models such as the Ell
model@61#, as will be discussed in a subsequent publicati
en-
eld
ad-
se
n of
s
nt
n be
e-
. In
the
and
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, if
is
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ed
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a-
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o-
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e
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but
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on-
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ta-
iott
on.

There are many concrete applications for which the pro
posed formalism may be suitable. These include variou
types of multiphonon excitations such as the classical quad
rupole and octupole vibrations in spherical nuclei,g vibra-
tions in deformed nuclei, and dipole and quadrupole gian
resonances in both spherical and deformed nuclei. In add
tion, as briefly pointed out earlier, the cranking approach
may provide a new perspective on vibrations in odd nucle
by adding anharmonic corrections to the approximation o
Bès and Chung@54#. Of special current interest are octupole
vibrations in superdeformed nuclei, which are expected to b
very soft. Thus far, these have been treated mainly in th
RPA @62#. While the present formalism would certainly pro-
vide an improvement through the inclusion of anharmonici-
ties for theK51, 2, 3 octupole bands (K50 is not acces-
sible!, it should be kept in mind that there may be important
tunneling effects for octupole bands that are not included
Another phenomenon accessible to the cranking approach
that of tilted rotation@55#. The CBT implies the existence of
bands of collective tilted states, as distinguished from the
those arising through the asymmetries introduced by extr
quasiparticles, which have been the main focus of attention
Finally, since the cranking approach to vibrations in pertur-
bation theory leads to angular-momentum expansions of th
form of Eq. ~3.49!, which includes the phenomenological
universal quadrupole-vibrator energy expression of Caste
and collaborators@11#, it is uniquely suited for a microscopic
calculation of the parameters.

A paper soon to follow will discuss some illustrative ap-
plications of the CBT to simple soluble systems.
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