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Angular-momentum cranking applied to multiphonon anharmonic collective vibrations:
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It is shown that the self-consistent angular-momentum cranking technique can be used to generate certain
types of collective vibrational solutions of time-dependent mean-field equations. The method is suitable for
systems having an equilibrium mean field with an axis of symmetry and is founded on a th@oaeking
bifurcation theoremproposed in this paper, according to which cranking about an equilibrium axis of sym-
metry leads to new symmetry-breaking solutions that bifurcate from the axially symmetric solution at the
critical cranking frequencies given iy =w, /K, wherew,, is a random-phase-approximati@RPA) fre-
quency for any mode carrying ,# 0 units of angular momentum along the symmetry axis. The bifurcating
solutions correspond to aligned multiphonon excitations including possible large-amplitude anharmonicities. A
general heuristic proof of the method is provided, as well as a perturbative demonstration within the framework
of the cranked Hartree-FodiCHF) approximation, which includes a derivation of the RPA. The static CHF
approach is then compared to a perturbative treatment of the time-dependent Hartree-Fock equations using the
Lindstedt method. It is also shown that the cranking approach may be applied to phenomenological mean-field
models to obtain anharmonic corrections to the vibrating potential model. Finally, the calculation of transition
matrix elements is briefly discussd®0556-28186)04507-4

PACS numbgs): 21.60.Ev, 21.10.Re, 21.60.Jz, 47.20.Ky

I. INTRODUCTION near-magic spherical nuclei such as isotopes of Z}dwith
the advent of improved detectors, there has recently been a
The cranking method is usually applied to nuclei havingconsiderable resurgence of interest in multiphonon excita-
an intrinsic state with a static broken rotational symmetrytions sparked by new experimental results. For example, lev-
manifested in the mean field. The cranking axis is chosemls in 17 nuclei have been proposed as candidatek fo4
such that the system is deformed in a plane perpendicular tiovo-phonony vibrations of deformed rare-earth nuc[&i].
this axis. The technigue then generates the usual rotation®ery recently, persuasive evidence has been reported for
bands found in permanently deformed nuclei. Overall, it hasuch two-phonory vibrations in the isotopé®®Mo by Gues-
been remarkably successful in explaining both qualitativelysouset al. [4]. In addition, evidence has been cited for two-
and even quantitatively a huge body of data up to very higtphonon octupole levels id*Gd [5], 2°®Pb[6], ***Ne, and
spins[1] at both normal deformations and superdeforma-146sm[7], and for a mixed octupole-vibration in several
tions. On the other hand, the common wisdom is that crankeleformed nuclef8]. Two-phonon giant dipolg9] and quad-
ing a mean field about an axis of rotational symmetry justrupole [10] resonances have also been observed in various
carries the field into itself, leading to nothing new, exceptspherical nuclei. From the perspective of systematics, Casten
possibly a redefinition of the Fermi surfa¢equivalent to and collaboratord11] have succeeded in correlating data
introducing a “tilted Fermi surface). Therefore, one would over vast stretches of the periodic table using a simple
not suppose that the cranking method would be of any use ianharmonic-vibrator formula for quadrupole excitations hav-
spherical nuclei. However, it will be shown here that thising two or threeuniversalparameters.
common wisdom is shortsighted. More specifically, it willbe A nonexhaustive inventory of the theorist’'s tool kit of
demonstrated that when a mean field is cranked about a symmicroscopic approaches that can or have been applied to
metry axis, it is possible that at certain critical cranking fre-multiphonon anharmonic excitations includes the method of
guencies new solutions thaireak the symmetrybifurcate  generator coordinateg12], the (fermion) multiphonon
from the symmetric one. In most cases, such a bifurcatiomethod [13], higher random-phase approximatioh4],
corresponds to a band ofultiphonon vibrational states variants of boson-expansiofi$5], the Dubna quasiparticle-
rather than an ordinary rotational band. In view of the recenphonon mode[16], and specialized techniques for solving
experimental ground swell of interest in multiphonon statesfime-dependent mean-fieldTDMF) theories, such as the
the cranking approach is worthwhile pursuing. self-consistent coordinate methgh7], and various formula-
Collective vibrations of the one-phonon type have beertions of the theory of adiabatic large-amplitude collective
long identified throughout the nuclear periodic table. All motion[18]. Each of these methods has its pros and cons.
phenomenological collective models, and many microscopi¢or example, the multiphonon method, which takes into ac-
ones, also predict the existence of multiphonon excitations;ount the Pauli principle exactly, but may violate particle-
the study of which is crucial to an evaluation of the impor- number and angular-momentum conservatideformed nu-
tance of anharmonicity. Here, the data have been more elwlei), apparently cannot give rise to a compressed
sive, being primarily limited to quadrupole excitations of multiphonon spectrum, which seems to be required by some
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of the data on deformed nuclei, and is a feature of the phetions of the cranking approach for vibrations, which will be
nomenological interacting boson model. Boson expansiongpplied in future work. The main thesis of this work centers
on the other hand, may partially violate the Pauli principleon the relation between bifurcations and vibrational frequen-
due to truncation errors, but are capable of fulfilling conser<ies. More precisely, many bifurcations described as rotating
vation laws to a given order of approximatiph9] and can equilibria are really vibrations, i.e., rotating surface waves.
give rise to compressed multiphonon spectra. The methodihis is the case not only for nuclear mean fields, but also for
closest to the one to be discussed in this paper is the TDMEollective models and liquid drops, as will be shown in forth-
approximation, which includes the time-dependent Hartreegoming work. This viewpoint provides a justification for the
Hartree-FockHF) and Hartree-Fock-BogoliubofHFB) ap-  long-standing characterization of certain vibrational states as
proximations, in which bound states corresponding to anhatseing “quasirotational.” A brief presentation of the basic
monic collective modes are described by periodic orbitsdeas with applications to some simple systems has been
obeying a gauge-invariance conditif?0] that is essentially given in Refs[27-31.
equivalent to Bohr-Sommerfeld quantization. Unfortunately, In Sec. Il, a general but heuristic proof is given for what
the construction of periodic solutions of the nonlinear TDMF will be called the cranking bifurcation theore/@BT), which
equations is usually a difficult task that has been carried ousrovides the justification for cranking about a symmetry axis.
only for a few simple modelf21]. In lieu of exact periodic |t is widely believed that cranking about a symmetry axis of
solutions, one may use secular perturbation thé@®,23  a mean field is an unproductive activity, merely tantamount
with the small-oscillation approximation, i.e., the random-to an identity mapping. However, according to the theorem
phase approximatio(RPA), as zeroth order. This method is this is not necessarily so, for at certain critical cranking fre-
generally limited to small amplitudes, and in many casesjuencies, which are related in a simple way to the RPA
runs into complications involving small resonance denomifrequencies, bifurcations occur that break the rotational sym-
nators. The main purpose of this paper is to call attention tenetry. Each bifurcating solution branch represents a se-
yet another method for finding periodic solutions that is apquence of anharmonic multiphonon excitations associated
plicable to collective vibrations carrying nonzero angularwith an excitation operator that carries angular momentum
momentum, namely, the self-consistent cranking modehlong the symmetry axis and reduces in the small-amplitude
(SCCM), which has heretofore played a central role in elu-limit to the associated RPA phonon. In Sec. Ill, a second,
cidating rotational states of high angular momentll.  more specific proof is given for mean fields using the
However, the proposal here is to use the SCCM to describgranked Hartree-FockCHF) approximation in the frame-
states that are normally regarded\alsrational rather than work of perturbation theory. The results are compared to
rotational in character with the particular aim of applying it those obtained from the Lindstedt method as applied to the
for the first time to deformed nuclei. time-dependent Hartree-FodDHF) equations, the two
The idea of applying cranking to vibrational modes wastreatments turning out to be completely equivalent. However,
first proposed by Marshalek and Sabf®d| and, indepen- the CHF approach, unlike that of Lindstedt, is not limited to
dently, by KamlaH25] 25 years ago. In Ref25], angular-  perturbation theory and can thus be applied to large-
momentum projection was used to derive the connection beamplitude vibrations through exact diagonalization. A brief
tween cranking and the RPA. In the series of pap24$ the  discussion is also given of the application of the CBT to
cranking approach to vibrations was derived from theempirical independent-particle deformed potential models
c-number limit of boson expansions. The applications tosuch as the Nilsson model and the relation to the vibrating
spherical nuclei went beyond the RPA, including perturbapotential modelVPM). The possibility of calculating transi-
tively the leading-order anharmonic corrections to the excition probabilities and improving upon the mean-field ap-
tation energies as well as the static quadrupole moments angtoximation is also touched upon. lllustrative applications of
BE(2)'s involving the alignedn-phonon quadrupole excita- the ideas will be presented in a subsequent paper.
tions, which have sping=2n. It was also shown how the
parameters of the variable-moment-of-inertidvil) model
for spherical nuclei could be calculated microscopicgli§]. Il. CRANKING BIFURCATION THEOREM
The work was not carried further at the time for a number of
reasons, including problems with small resonance denomina- Consider a nucleus whose equilibrium shape is either
tors in many nuclei, the inadequacy of available Computers§pherica| or deformed with axial symmetry in some reference
and, of course, lack of dat@rgo intereston multiphonon mean-field configuration, designated as the *“vacuum,”
states. Since the small-denominator problem can be avoidethich is normally the ground state but may be an excited
using exact diagonalization, with modern desktop computerstate as well. The physical picture of a collective vibration
being easily up to the task and data proliferating, the momerthat projectsK# 0 units of angular momentum along a sym-
is opportune for a revival on a broader basis. Since the egnetry axis corresponds to a rotating distortion, a surface
sential ingredient of the originapherical cranking moddés ~ wave traveling around this axisee Fig. 1 Since such a
the presence of an axis of symmetry in the mean field, th&node is degenerate, it is possible to choose linear combina-
model can be extended to axially symmetric deformed nutions of normal coordinates that describe wiformly ro-
clei, thereby providing a new tool with some special advaniating wave From a quantal viewpoint, these modes may be
tages for calculating, for example, then-phonon described in terms of the boson creation operaai[s:arry-
y-vibrational bandheads with spin projectidks-2n on the  ing K, units of angular momentum along the symmetry axis.
axis of symmetry, as well as other band heads. Since the cranking model is basically a classical approxima-
The general aim of this paper is to establish the foundation, these bosons will be replaced by the corresponding
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excitations occur in time-reversal conjugate pairs corre-
sponding tog}, and 8%  with the sum in Eq.(2.4) under-
stood to run over both time-reversal partners and
K_,=—K,. If 1,#0, then the total spin of a single excited
mode is given byo+K,|5,|% whereK , can be positive or
negative. In this case, time-reversal symmetry is broken for a
fixed choice of vacuum. However, one can also study exci-
tations built on the time-reversed vacuum having spin, to
obtain the time-reversed states. The difference between the
two cases is illustrated in Fig. 1.

For simplicity, first consider small oscillation€RPA)
about the vacuum configuration. In this limit, the classical
Hamiltonian is

<H>=<HO>EEO<IO>+§w#ﬁ;ﬁM, (2.5

FIG. 1. The rotational motion of the bifurcating solution, repre-
sented by the solid ellipse, compared with that of the vacuum, rep-
resented by the dashed circle. The rotations may be in the samghereEy(l) is a constant, the vacuum energy, aa;g has
(a),(c) or opposite(b),(d) senses. The solutioris),(d) are the time  been chosen as a normal-mode coordinate with correspond-
reverses ofa),(b), respectively. Herel, is the angular momentum ing frequencyw,. The simultaneous diagonal quadratic
of the vacuum whileQ) is the angular velocity of the bifurcating forms assumed fo(J3> and <H> can a|WayS be achieved
excited state. since[(H),(J3)]pg=0. From Eq.(2.4), the Routhian(2.3)

becomes
c-number complex coordinatesz obeying the Poisson

bracket relations

[Bu:iBy1pe=06u,, BB 1pe=[B4 B.1ps=0,
(2.2

(H’>=EO(IO)—QIO+% (0,—QK,)BLB,. (2.6

Then, Eq.(2.2) implies
where the symbdl-,-]pg denotes the Poisson bracketHlfis
the quantal Hamiltonian, thefH) will denote the classical Bulw,—QK,)=0. 27

Hamiltonian function ofg* , 8, . This notation serves as a . . . S
: CRE R In general, this set of equations has two kinds of solutions:
reminder that the classical functions may be regarded as X e trivial solution in which all3 =0 and nontrivial solu-
pectation values with respect to suitable coherent states. Tli%ns in which a sinale coordinﬁaﬂ_ £0. while 8. =0 for
equilibrium points of the system relative to a frame rotating 9 18,70, Bu=

uniformly with angular velocity) about the three-axis are “# io- However, the nontrivial solutions are possible only

solutions of the set of equations for a discrete set of cranking frequencies given by
A(H' O=Q0c=0,/K,, K,#0, 2.9
; *> =0, (2.2 S
B which is equivalent to thevanishingof a vibrational fre-

quencyw,— QK , in therotating frame. It should be noted
that there are no nontrivial solutions for those modes with
(H"Y=(H)—Q(J3) (2.3 K,=0. The trivial solution just corresponds to the axially
symmetric vacuuniunproductive cranking while the non-
is the so-called RouthiafHamiltonian with respect to the trivial solutions are deformed about the three-axis, the mag-
rotating frame with (J;) being the classical angular- nitude of the deformation depending pn,- Now, Eq.(2.7)

momentum component along the symmetry d#fisee-axi$  does not determing,, , which reflects the independence of

where

given by the frequency and amplitude for a harmonic oscillator. How-
ever, |BM0| can be fixed via Eq(2.4) by prescribing a suit-
(I5)=lo+ 2 K, BrB,. (24 able quantized valugl;)=1, which leads to
y2
= 2_(1_
(Here and throughout the paper it is assumed thatl.) N#o_|'8#o| =( IO)/KMo' (2.9

The diagonal quadratic form fdd;) is, of course, a conse- , o

quence of designating the three-axis as the symmetry axi§f course, the sign of must be chosen taking into regard
The constant, is the spin of the axially symmetric vacuum. that of K,/ -so that the right-hand sideRHS) of (2.9) is
For the ground-state configuration of an even-even nucleugositive. The total energffaboratory framgfor this solution
lo=0, but for an oddA nucleus, or for an excited state of an is then given by

even-even nucleus, nonzero valued gimay occur, as, for

example, in the case of an oblate rotational-band terminusE=(H)=Eo(l0) + @, | B, |*=Eo(l0) + @, (1=10)/K ..
configuration or a highc isomer[32]. If 1,=0, then the (2.10
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For example, for quadrupole vibrations about a sphericabut instead one can find—r formal constants of motion that
ground state, one hdg=0 and the cranking procedure en- are linear combinations of tH¢,,, and others, such as global
gages only those modes witK”O|=1,2. For|Kﬂo|=2, the  constants of motion, must be found by independent means.
excitation spectrum is given b&E:%wﬂJZwﬂon, where Since the treatment of the resonant monoml_als, which is
I@nalogous to degenerate perturbation theory in the quantal

selects the sequence of aligned multiphonon excitations witﬁase[37]' IS raj[her complicated and difficult to demonstrate
in full generality, only the nonresonant case will be dealt

(quantized spins1=2n=0,2,4 . ... which, for the lowest ) :

. with here for the sake of clarity.
frequencwao, are often yrast states, referred to as quasiro- From Eqs.(2.2—(2.4) and(2.12, the stationary points in
tational states. FdiK, | =1, the excitation spectrum is given the rotating frame are solutions of the set of equations
by AE=wMOI =w, N, corresponding to multiphonon states

with spinsl=n=2,3,4... . As shown explicitly in Ref. o —QK +> h® N, +--.
[27] for the U(5) limit of the interacting boson mod¢IBM ) Bl @ a % (42 12) Ny
[33], such solutions correspond to rotation about a tilted axis

n is the number of phonons. Therefore, the cranking solutio

rather than a principal axis of the density distribution, + 1 2 A (g et 1)
thereby breaking signature symmetry. (n=2)0, 2y Wil
Next, consider the more general situation in whicth)
contains anharmonic corrections to the small-oscillation part XN, N, +---|=0, (2.13
1 n—-1

in the form of an arbitrary, possibly infinite polynomial in

the coordinatesz » B,» Which may be the result of a Taylor ) . ) o o
expansion about the vacuum configuration. The argument {85 in the harmonic case, one retains the trivial solution in
greatly simplified if one chooses the coordinates such thaghich everyB,=0. In addition, there are the nontrivial so-
(H) is given by the Birkhoff-GustavsofBG) normal form  Utions 8,=B,,,6,, , With a single nonzero coordinafg, .
[34,35. In this connection, one should distinguish betweenThus, equating to zero the corresponding term in brackets in
the nonresonant and the resonant cases. In the nonreson&gs.(2.13 with N, =N, J, , gives the following series in
case, the small-oscillation frequencies are either incommerNM :

surate or else the commensurability is the consequence of a 0

global symmetry that forbids resonant coupling terms. Then, 1

as proved by Birkhoff34], the Hamiltonian can be trans- Q—Qc=h(4)(ﬂo,ﬂo)K;01NM0+ et =11

muted by a series of canonical transformations into an infi- '

nite polynomial in the action variablds, defined by xh@V(ug, ... ,MO)K;Ol(NMO)”*lJr e

N,=BB,, (2.11) (2.14

with the conjugate angle variables being cydliwith the ~ Which can be reverted to give a series solution Koy in
assumption that the coordinatg3 , B, are already chosen powers ofQ—(c. Thus, in the presence of anharmonicity,
as the transformed variables, the most general Birkhoff nora nontrivial solution can exist for a continuous range of ro-
mal form for (H) is given by tational frequencie$) in some neighborhood of each critical
frequencyQ) ¢ given by Eq.(2.8), and these critical frequen-
B 1 @ cies are points at which an anharmonic brafxturcates
(H)=Eog+ 2 w,N,+ 52 N p2INy Ny + - from the vacuum solution. It is also interesting to note that
a e if Qc>0, which is most frequently the case, and
h™*)(womo) <0 while the higher orders are small, then the

+ HMMZZ_M hEV(uy s, pin) solution backbends in some neighborhood k.
! The energy corresponding to such an anharmonic branch
XNy Ny Ny e, (212 may be obtained trivially by substituting the solution
N, =N, 6, 4, N EQ.(2.12), which merely limits the dynam-

where the numerical coefficients®(uiu, o) are ics to a particular submanifold in phase spaipso facto
completely symmetric in the indices and tNg constitute a  proving that the cranking technique gives the correct energy.
formal set of constants of motion that are in involution. In\When the action variable is expressed in terms of the pre-
the resonant cad@5], the normal-mode frequencies, are  scribed angular momentum through EQ.9), the energy
connected byr commensurability relations, ar¢H) is a  takes the form of an expansion in powerslefl :
polynomial involving in addition to thél , , certain resonant 5
monomials in theB% , B, whose Poisson brackets with the K"o %)
Ko

Ko

I 1 @
E=(H)=Eo(lo) +w,, + 50 (o, mo)

small-oscillation HamiltoniagH ) vanish[36]. In this case,
the n action variables\,, cannot all be constants of motion,

n

o), (2.19

K

Ko

1
+.F mhan)(,uo, < ko)

The obvious quantum analog is the perturbative diagonalization
of a boson Hamiltonian by successive unitary transformations tolhen, Eq.(2.14) is easily seen to be equivalent to the famil-
produce a function of the boson number operators. iar relation
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JE tion, namely, that of how many times a collective mode can
= (2.16  be repeated. If an excitation mode has a pure particle-hole or
two-quasiparticle character, then even a double excitation is

In summary, a heuristic argument has been given for théuled out by the Pauli principle. Thus, collectivity is a nec-
éssary condition for the repeatability of an excitation. A bi-

following proposition. furcating family of solutions labeled by a semiclassicall
If a system of coupled anharmonic oscillators has an axi- 9 y y y

ally symmetric equilibrium configuratiofvacuum, then quantizedNM (or (J3)) cor{e'sponds to the repeated applica-
self-consistent cranking about this axis yields families oftl.on of.a boson operatds,, in .the quantum case. The pos-
symmetry-breaking solutions that bifurcate from the trivial sible disappearance of a continuous trajectory for some value
y y '9 - . . of the continuous parametsk,, would then imply an upper

or vacuum solution at the critical rotational frequencies ©

B . i limit on the repeatability of the corresponding collective
Qc=w,/K,, wherew, is the small-oscillation (RPA) fre- 546 “\while this possibility cannot be explored with a Tay-

quency (in the laboratory frame) of each mode carrying|o expansion, the nonlinearity of the cranking equations sug-
K,#0 units of angular momentum along the symmetry axiSgests that it may be realized in nonperturbative cranking cal-
Each family describes the dynamics of the system on sulyylations.
manifolds of phase space characterized by the single nonva- Another point that should be emphasized is that the BG
nishing action N,= (1 —1¢)/K ,, where I is the angular mo- method was introduced here solely to facilitate the justifica-
mentum and{ that of the vacuum. tion of the cranking technique, not as an end in itself. It
One should note that the location of the bifurcation pointsshould be obvious from the foregoing that if the normal form
is equivalently given by the condition that one of the RPAcould be calculated in nuclei, then cranking would become
frequencies in the rotating frame vanish. It should also besuperfluous. In fact, the normal form was calculated through
emphasized that all of the bifurcations discussed here brandaurth order for a relatively simple nuclear model by Will-
off from the same vacuum, which has been assumed to b@ms and Koonin[41] and further exploration of this ap-
independent ofQ, the situation normally prevailing for Proach may be worthwhile. However, the method has the
nuclear mean fields. However, one may also contemplatétrinsic drawback of being perturbative. The cranking

more general systems in which the vacuum and, thereforé‘ﬂeth‘)d' on the other hand, can be applied nonperturbatively

the vibrational frequencies depend on the rotational fre@S Well as perturbatively with the use of any set of coordi-

quencyQ, as, for example, in fluids with intrinsic VOl’tiCity. nates, not necessarlly canonical ones. However, to see more

In such a case, the above argument still goes through foficary the relevance of the foregoing proof to nuclei, one
should first recall how canonical coordinates can be intro-

mally as long as the vacuum has an axis of ! otatlo.nal SYM3uced into nuclear mean fields. The most straightforward
metry. But then the condition for the critical bifurcation fre-

. a : route is to first perform a generalized Holstein-Primakoff
quencies, w,(€)-K,Q1=0, may become a nonlinéar «GHp phoson mapping of the nuclear many-body system

e_quatior_l for the critical angular frequenéy In this situa- [15]. Then, one may appeal to a theorfé2—44 according
tion, unlike the case when the, are independent df, the o which the replacement of the boson operators by classical
existence of a solution cannot be guaranteed in advance;numbers results in a canonical parametrization of the one-
each system has to be examined separately. Examples Bbdy density matrix(Of course, one must choose the proper
such more general bifurcations may be found in fluid dynam-ordering of operators prior to the-number replacement
ics [38]. Depending on the system and the type of GHP mapping
Neither the CBT nor this paper deals with the separate&hosen, one can obtain in this way any of the standard
question ofstability. This is a complicated issu@specially = TDMF approximations, with the Hamiltonia@nergy being
when one considers that there are more than 50 stability cra functional of thec-number canonical variabléahich may
teria in the literaturewhich is best left to specific applica- be identified with the origina,B; ,B,). While this can be the
tions in the future. starting point for calculating a BG normal form, it is gener-
The line of proof advanced here for the CBT may beally preferable to work with the standard forms of cranked
considered heuristic since it is based solely on the manipunean-field equations, using, for example, the noncanonical
lation of formal power series, without regard for conver- density matrix elements themselves in the variational proce-
gence. Indeed, it has been proven that the BG series hasdilre. At a later stage, of course, the system is requantized by
zero radius of convergence for a nonintegrable Hamiltoniavoking a Bohr-Sommerfeld condition. The CBT applies
[39], although it may give an accurate asymptotic expansioftot only to microscopic mean fields, but also to phenomeno-
in regions of phase space where the invariant tori remaifgic@l collective models, such as the 1BM3] and the
intact. Remarkably, Kaliz and Robnik40] have recently Bohr-Mottelson model[45] as well as some liquid-drop

recalculated the BG normal form through 14th order for themOdels' Since these models are bosonized from the outset,

Henon-Heiles Hamiltonian, obtaining excellent results forthe classical approximatipn s obtaiqed .by simply replacing
the regular regions in the Poincasection plots. Of course, the bosons by-numbers in the Hamiltonian or, what is es-
the normal form is expected to lose all meaning in thosesenually equivalent, averaging in a coherent state, and then

regions of phase space dominated by chaotic trajectories. invoking Eq. (2.'2)' Examples of such applications to the
For low-energy trajectories in the neighborhood of the!BM are given in Refs[27] and[29].

equilibrium point, the cranking principle is expected to hold,

correctly predicting the bifurcation points, as verified by

various models, and providing the correct energies possibly

up to some cutoff point that cannot be determined from the Because of the heuristic nature of the general proof given

formal Taylor expansion. This raises a very important quesfor the CBT in the previous section, it would be reassuring to

Q

Ill. PERTURBATIVE APPLICATIONS
IN THE HARTREE-FOCK APPROXIMATION
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have an independent argument specifically for mean fieldgotating with uniform angular velocitf) about the three-
Such an argument is provided in this section for the TDHFaxis. Thus, the transformation of the density matrix is given
equations. A similar treatment could also be carried out folby

the time-dependent Hartree-Fock-BogoliuddboHFB) [46] 0t 0t

equations with only a little more complexity. The quantal p=e "TH3pets, (3.9

many-body Hamiltonian is taken as the standard form . ) ) ) )
where p, the density matrix with respect to the rotating

: 1 - frame, obeys Eqg3.3) and(3.4) with p replaced byp, and
H= Eb €apa@p T Z;d Vab,cd@a@p@d@c, (3.1 the matrixj; corresponds to the three-component of the an-
a ane gular momentum. The requirement thatbe time indepen-

wherea] (ay) is a fermion creatior(destruction operator, ~dent then leads to the CHF equations

the indicesa,b,c,d referring to a complete set of nucleon
single-particle states, the matrixrepresents either the bare
kinetic energy or a model independent-particle Hamiltonian
andV,; o4 IS an antisymmetrized two-body matrix element.
In the TDHF approximation, the classical Hamiltonian may 0,=TroVi0ps (3.10
be taken as the energy functional of the one-body density

matrix p: is the mean-field potential in the rotating frame. The energy
(3.2 (with p replaced byp) may be regarded as the classical
(HY=E[p]=Trep+ ETr up, (3.2 HamiIEonian expressed in terms of the noncanonical coordi-
2 natesp,, and Eq.(3.9) is the counterpart of Eq2.2) for
equilibrium in the rotating frame subject to a prescribed

where p is Hermitian and for a system oA interacting  quantized value of the angular-momentum compoRent:
nucleons must obey the conditions
(Ja)=Trpjs=1I. (3.1

p?=p (3.3
It will be assumed that the zeroth-order solution of Eg.
(3.9 corresponds to a mean-field Hamiltoniaf?=h(® that
Trp=A, (3.4) s rotationally invariant about the three-axisicluding the
possibility of spherical symmetyy A single-particle basis
while the matrixu corresponds to the self-consistent poten-can then be chosen that simultaneously diagonali#®s

[h—Qj3,p]=0, 3.9

whereh=e+{ and

and

tial, defined by p®, andj;. Furthermore, it will be convenient to decom-
pose the complete set of single-particle staisnoted by
— , 3. !nd!cesa,b,c,d, ...) into occupied states, labeled by the grgek
Hab % VacbdPdc @9 indicesa,B,7,4, ..., andempty states, labeled by the latin
indicesi,j,k,l,... . Thus

which can be written in the shorthand notatian=
Tr, Vip,. The TDHF dynamics are governed by the equa-  hQ=¢,6.p, (j3)ap=Kadap, PU=Na8ap,
tion of motion
n,=1, n;=0. (3.12
dp
T =th.pl, (3.6 The problem of finding perturbative solutions of Eg.9)
can now be tackled. The situation here is fundamentally dif-
where ferent from ordinary cranking in which the zeroth-order sys-
tem is already deformed about the axis of rotation and thus
h=e+u. (3.7 responds to an infinitesimal cranking impulse. Instead, from
the discussion in Sec. Il, one expects a response only for

In this section, the CHF approximation for a system with L .
an axis of symmetry will be examined in self-consistent per_certaln discrete threshold frequencieg . This would seem

turbation theory through third-order corrections to the denl0 suggest that a pertu_rbauon expansion in powers of
sity matrix. This is tantamount to calculating the fourth-orderQ,_QC would be appropnate. Indegd, that is what one ob-
BG normal form for the Hamiltonian. In the first step, the t@ins forN,, by reverting the expansiof2.14. On the other
RPA will be derived by the purely static cranking technique.

Finally, a brief comparison will be made with a more con-

ventional time-dependent perturbation treatment based on’Based on the study of simple models, it appears that a quantiza-
the Lindstedt method. tion rule like (J3)= [1(I1+1)]"2 which is often used in the con-

ventional cranking model, is not valid when applied to vibrations. A
more appropriate rule is of the forfd;)=1+a, wherea is a
properly chosen Maslov index. However, the approach favored by

The CHF approximation can be derived using the ap-the author is to simply usgl;)= 1 in the CHF approximation, and
proach of Thouless and Valatif47], who transform the afterwards to pick up quantal zero-point corrections from a quan-
TDHF equation(3.6) from the laboratory frame to a frame tized RPA about the CHF equilibrium soluti¢&8].

A. Cranked Hartree-Fock approximation
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hand, this implies forg, an expansion in powers of 1. First order: The RPA

|Q—QC|1’2, apart from an arbitrary phase factor. In fact, one  Forn=1, Eq.(3.21) becomes
finds that the latter choice is the correct one for the pertur-
bation treatment of Eq.3.9). Therefore, defining the formal (1- na—nb)pglb)zo, (3.22

perturbation parameter as
which implies that

=10-0|Y2 (3.13 NPT
© P =pp=0. (323
one may introduce into Eq3.9) the decomposition Therefore, the only nonvanishing matrix elements are of the
Q=0c+ 68, (3.14 ph type,p;,’. Taking the ph matrix elements of E(.20

while noting Eqgs(3.17) and(3.19 one obtains the result

where #=sgn() — ), along with the expansions [e—8,— Qc(K —K )p'Y
| a I 43 la
5= 0L A1) 4 5(2) 4 7(3) ()
p=p+p P +p Y+ p .+ p Wt (3115 -
+2 (Vlﬁ aJPJB+VI] a,BP}%;*) 0. (3.29
and
R Since the two-body interaction commutes with it follows
h=h©@+0W+32+0®+...+0™W+... (316 that
where p(Mac g™ implying that G(Me &", since, from Eq. Vab,cd(Kat+Kp—Ke—Kg) =0, (3.29

(3.10,

which implies that the only contributing terms in the first
=T sum on the left in (3.24 are those satisfying
U =TraVipy" 3.19 Ki—Kz=K;—K, and, in the second, those with
Kj—Kz=—(K;—K,). Consequently, E(3.24 can be fac-
tored into separate blocks, each labeled by a constant value
K=K;—K,. Of course, a further factorization of the blocks
may be possible based on other constants of motion, such as
parity, and, for spherical nuclei, total angular momentum,

I - . . but these possibilities will not be explicitly exhibited.
which is satisfied automatically through B@.19. The im- The corresponding density matrix elements will be de-

portant point to note here is that the unperturbed S'nglenoted bypl(l)[K] indicating thatK;—K,=K. In general,

article energies are given b -
P g g y pf.;B[K] denotes thenth-order correction to a density matrix

element such thaf ,— K,=K. Correspondingly, Eq3.24),
together with the equation obtained by replackdy —K
and then taking the complex conjugate, is

The orders in Eq(3.9 can now be separated, starting
with the zeroth-order equation

[h9—Qcj3,p?]=0, (3.18

(h(o)_QCjB)ab:(Sa_QCKa)5a,b- (3.19
The generahth-order equation is

(81— £a= QcKIPFIKI+ D Vg aipfplK]
[h®—Qcjs, p<“>]+2 K K
. + Vi apbis [~ KD =0,
—0&7j3,p"?](1-8,1)=0, n=1. (3.20

~ 1)
In addition, the requirement&3.3) and (3.4) must also be (e e+ QcK)pi [~ KHE Vs, aJplﬁ*[ K]
satisfied order by order for the density matpx This is
automatic in zeroth order, while inth order the condition +V* aﬁpm[K]):O. (3.2

(3.3) becomes
If one definesn{d=0cK, then Eqs(3.26) can be written in

n the compact supermatrix form

E ppn=l=pMm  n=1 (3.20)

k=0 AK]  BK] ) pIIK]

N 1

Equation(3.4), which requires that Tp("=0 for n=1, can B [-K] A*[-K] pt )*[ K]
be shown to be automatically satisfied. In fact, E820 SU[K]
determines the particle-hoipgh) matrix elementqs),(g), while RN ()] B (3.27)
(3.21) determines the particle-particl@p) matrix elements A =pM*[ K]

p{" and the hole-holghh) matrix elementsp), in both . B . .
cases in terms of lower-order particle-hole matrix elementswhere in general the underscored objp€?[K] is defined
The special cases=1,2,3 will be examined in more detail as a column vector formed from the ph matrix elements

next. “)[K] and the matricesl and B are defined by
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A g KI=(8i=€4) 8 00t Vg aj To satisfy the angular-momentum constraBtll), it fol-
lows from (3.32 that
when Ki_Ka:Kj_K,B:Kv

Biai sl KI=Vi o5 When Ki—K, =Kz—K;=K. ~(D): - A
LA ! T a2 () =Tr pPj=K 2 (piy[K1piE*[K]
Equation (3.27) is easily identified as the RPA " 1
eigenfrequency-eigenvector equafidor an excitation mode —pi [—KIpi*[-KD)

that carrieX units of angular momentum along the symme-
try axis. The implications are now clear: A nontrivial solu-
tion for p*) is possible in general only for a discrete set of

cranking frequencies given by This establishes the normalization of the RPA eigenvectors
0) as (—Ig)/K, which is just the number of phonons, each
Qc=wg /K,  K#0, (329 carryingK units, required to change the angular momentum
) . by I —Iq units.
wherew(” is any one of the RPA frequencies.Kf=0, the The total energy(3.2) (laboratory framg is straightfor-

RHS of (3.27) vanishes, so that in general only the trivial ward to evaluate in the RPA order. Since the CHF solution is

solution exists. Once a particular mode is chosen as “acstationary, (H) is a quadratic form in thep{[K]
tive,” the corresponding denfsity mat_ryx(l)[iK] has non- pI*[K], in fact just the RPA Hamiltonian if the density
zero elements, but the density matrices for all other mOdthlaatrix elements are interpreted as bosons. Therefore

vanish.
— . through the RPA order
The normalization of the RPA eigenvectors can be deter- g

mined by considering the angular momentum. It will be as-
sumed that in zeroth order the angular momentum is given <H>=Eo(|o)+(;’(1)T[K] ;,(DT[_K])

by

=1—ly. (3.33

o A[K] BIK] p VK]
(35)O=Tr p@js=l,, (3.30 B [~K] A*[—K])([)<1>*[—K]
wherel, can have either sign in principle. For the ground _ 0), 5 (1)t (DT _
state of an even-even nuclelig=0, in which case time- _E°(|0)+w§<)(£ (KT LK)
reversal conjugate single-particle levels are filled pairwise. p VK]
The nonzero values occur, for example, for rotational-band x( 1) )
terminus states and other axially symmetric lakgestates, —p*[—K]
and also for states in odd nuclei, when the time-reversal con- _ o
jugate single-particle levels are not all filled pairwise. From =Eo(lo) + (@i /K)(1=1o), (3.39
Egs.(3.12 and(3.23 it follows that the first-order change in
the angular momentum vanishes: whereE,(l,) is the zero-order energp(T is the row vec-
3y V=Tr pVj,=0. (3.31) tor obtained by transposing the column vegiédP, and Eq.

(3.27 was used to obtain the second equation and &3
The second-order changé3>(2) requires the diagonal matrix to obtain the third. The final result agrees perfectly with Eq.

elements 0f?, which can be obtained from the pp and hh (2-10-

matrix elements as given by E(.21) for n=2 as follows:
2. Second order

5ro1= SDIKIpD* K]+ p I —K1pW*[ - K1), Since the pp and hh matrix elementspéf) have already
pij 0] % (pialKlpja" K]+ pia L =KIpj" LKD) been found from the conditiop?=p and[Egs.(3.32], the
ph matrix elements may be found from E§.20. It is easily
~ ~ . _ shown that Eq(3.20 is also consistent with the pp and hh
PP 2K]= ; pia[=KIp* K], matrix elements as given by Eq8.32) for the casen=2. It
should be noted that the term {8.20 proportional to#&?
vanishes sincgj;,p®]=0. One then readily obtains in ma-
,3;2/;[0] =->, (;)i(i)*[K]lsi(/lB)[K] +p - K]ﬁf;?[ —K), trix form the f(glzl)owing two inhomogeneous equations for the
[ ph matrix of p*<’:

R?[0]
R2*[0]

Pepl+2K]= =2 pi*[FKIpig[=K].  (3.32 A[0]  B[0]
B*[0] A*[0]

p'?[0]
( p'¥*[0] )

) (3.39

3In a more familiar notationp{M[K ] X [K] and p!V*[—K]

Y [ —K]. and
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~(2)
AK)=20i0Z - B2K] pL2K] BOKI= S Vi LK1+ 3 Vi asblfl K
B*[—2K] A*[—2K]+ 2007 <2>*[ 2K] (3.40
R[2K] )
E( [=2K] The second-order density matrix is especially useful for

determining the leading-order corrections to static electro-
magnetic moments. For example, in the HFB analog it has
been applied to the problem of calculating the static quadru-
pole moments of one-phonon quadrupole vibrations in
Ri(i)[O]E[ﬁ(l)[K],ﬁ(l)[— K1liot[p M —K1,0P[K]Tis spherical nuclei, for which the solution of E@.35 suffices
) [22,26. However, to continue to higher orders, one must
a/10] (3.37  also solve Eq(3.36. It should then be noticed that because
of the presence of the submatti$f 2K]— 20’7, the inver-
sion of the matrix in Eq(3.36) may give rise to resonance
R2[2K]=[pV[K], 0V [K]]i—0/P[2K], (3.39 denominators. This is just the problem of commensurate fre-
guencies mentioned in Sec. |l reappearing now in a different
where[.,.] refers to the commutator of two matrices. The guise. The solution of this problem within the framework of
matrix GY[K], the first-order change in the self-consistentdegenerate perturbation theory will not be discussed here.
field [Eq. (3.17)], is explicitly given by The simpler solution ultimately is to exactly diagonalize the
CHF equations rather than use perturbation theory.

whereZ is an identity matrix andR®?[0] andR(®[2K] are
column vectors constructed from the following ph matrix
elements:

and

L TKI= 2 (Vipaip| B TKI+ Vi apbis * [ KD,
s (3.39 3. Third-order—leading-order corrections to the RPA energy

while 0/{?) is the part of({?) arising from the pp and hh ~ The pp and hh matrix elements pf®) are obtained from

matrix elements 0p?, which for anyn=2 and any integer Eq..(3.21) for n=3, the nonvanishing ones being of the fol-
K is defined by lowing types:

PP =K]= 2 (PP EKIPIZ* 01+ pZ[01p * [ F K]+ pi R [ FKIp(Z* [+ 2K ]+ p{2)[ £ 2K 1p{ U * [ £K]),
pfg[+K]=—E(p.a>*[+K]p<2>[+2K]+p<2>*[ 2K1p{FI T K1+ p{ Y * [ FK1p{Z[01+ p2* [01p{ YT K1), (3.4D)
piyL+3K]= 2 (bl [+ KIp{E™ [+ 2K]+p{F + 2K1pe* [ KD),

P +3K]= —Z (P [FKIp{ B[ £ 2K+ pi2* [+ 2K p{F[ £K]).

This immediately implies that all diagonal matrix element$69 vanish and therefore that
(J)®=Trp¥j5=0, (3.42

guaranteeing that the conditigds;)=1, fixed by Eqs.(3.30 — (3.33), continues to hold through third order. The ph matrix
elements ofp®) are then obtained by taking the ph matrix elements of B0 with n=3. In this way one finds two
inhomogeneous matrix equations, the first being

AK]=— 0QT BK] A(3)[K] RO[K] ;_,m[K]
B*[—K] .A*[ K]-l—w(O)I (3)*[ K] R(3)*[_K] +(Q_QC)K _ﬁ(l)*[—K] (3'43)
and the second
A[3K]-300'T B[3K] pI3K] RO[3K]
B -3K]  A*[-3K]+3'Z)\ p¥*[-3K]) | RE*[-3K])’ (349
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where3(3)[K] is a column vector composed of the ph matrix elements

ROIKI=[pP[0],0V[K]Ti0+[pP[2K], 0] = K] i+ [pVIK1,GP[0T]i 0+ [PV — K], 0P [2K]Ti— U/ P[K],
(3.45

while R®)[3K] is a column vector composed of the ph matrix elements,

RIVI3K]=[p®[2K], 0 V[K]]io+ [PVIK]LGP[2K]Tia— uigP[3K], (346
with u/3[K], u/[3K] defined by Eq(3.40. The term explicitly proportional t6) — Q¢ in (3.43, the role of which will
be discussed momentarily, corresponds to the term proportiom@Ptm Eq. (3.20, which contributes for the first time in the
present order.

If one wishes only to calculate the correction to the energy, then it is not necessary to actually s@# éorto even
consider Eq(3.44). Instead, one may multiply both sides of E8.43 by the row vector §™ (K] pVT[~K1). The LHS of
the result vanishes, as implied by the H.c. of the RPA B®R7), leaving N N

RO[K] p VK]
At AT = At AT z
p K] p [ —K] +(Q-Qo)K(P K] p =KD =0. 34
(_ - ) B(g)*[_K] ( C) (_ s ) _B(l)*[_K] ( 7)
|
But from the RPA normalization conditiof8.33), this result B. Transformation to the laboratory frame
may be written as and the Lindstedt method
1 RO[K] Although all physical quantities of interest can be calcu-

Q_Qc:_( )@(DT[K] [)(N[—K])( — ) lated with the aid ofp, the density matrix in the rotating

I=lo) = - RE*[-K]/"  frame, it is instructive to transform it back to the laboratory

(3.48 frame, using Eq(3.8). Since the angular-momentum matrix

i3 is diagonal, so i®**!s, which then trivially leads to the
which just corresponds to Ed2.14 of the BG method. Jrg.sult g y

Now, one expects the energy, including the leading-order
correction to the RPA energiB.34), to have the form of an pab:;)abeim(Kb—Ka) (3.52
expansion in powers ofl < 14)/K:

for the density matrix in the laboratory frame. If

2 K,—Ka=nK, wheren is a positive or negative integer, then

of1=To) 1 (1=
E=Eq(lg)+ 0l ra i e (3.49 A
papl NK]=pap[ nK]eM K, (3.53

From Eq.(2.16), which is implied by the Hellmann-Feynman where
theorem for the CHF approximation, it then follows that

- w=KQ, (3.54

—lo

Q—Qc=ag K ) 350 g, being defined by Eq(3.48 in lowest order, is the exact

nonlinear frequency, not the RPA frequens{f’ defined by
to the given order of approximation. Comparison wi3w8 Eq. (3.29. The density matrix in the laboratory frame can

then establishes the coefficiemt as then be decomposed as follows:
=504 Dy 24 B4 ...
o=~ e (PTK] ;3(1>T[—K])( RPIK] ) pPO=p Tt p b p T p T (359
(T2 - - RO*[-K]/"  where
(3.5)

p(l):E)(l)[K]efint_i_Z)(l)[_K]eint, (35@
with the use of Eq(3.33. From the discussion in Sec. Il, the , .
result(3.49 is equivalent to that obtained from cranking the ~ p'?=p'?[0]+p'?[2K]e 2K+ p(I[ — 2K Je!2*«!,
BG normal form including quartic anharmonic terms. (3.57

Exploratory calculations ofrx were made for quadrupole

vibrations (K= 2) of spherical nuclei in the Sn region in Ref. and
[26] using the HFB counterpart of E(ﬁ;53) with the_pairing p3= 3K e okt + pA[ —K e “kt+ p3[3K e~ 3wkt
plus quadrupole-quadrupole interaction. Extensive modern
calculations of this parameter for quadrupole excitations +p[ —3K]e'3ekt, (3.58
built on the ground statel {=0) would be highly desirable
in view of the recent claim of a “universal” value for spheri- Here it is understood that the matrix elemep§§[nK] are
cal nuclei by Casten and collaboratdddl]. zero unles¥,— K,=nK. Also, sincep(™ is Hermitian,
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p™[—nK]=p™TnK]. (3.59 ferred to the laboratory frame, as given by E¢3.55 —
(3.58), which is, of course, what one expects. The Lindstedt
Thus, the time-dependent solution in the laboratory frame isnethod has one advantage over perturbed cranking, namely,
obtained as a Fourier expansion. that it can describe modes with=0, although otherwise it
One can interpret Eq$3.55—(3.58 as a boson expansion is a little more cumbersome. On the other hand, the Lindstedt
by first introducing the BG coordinates with the time depen-method is limited to perturbation theory, whereas the self-
dence given by consistent cranking equations can be diagonalized exactly,

|12 BRET which is a major advantage for modes wkh# 0.
BKE< > O) e, B§=< ° e,
C. CBT and the vibrating potential model

K
(3.60
_ The vibrating potential modgVPM) [49,5Q is a purely
so that, for exampleg'**k'—[K/(1—10)](B%)?, etc., while  phenomenological TDMF approximation. Whereas the
constant terms such a$@[0] are multipied by TDHF approximation is based on a initio calculation of
[KI(I=10)] Bk Bx=[K/(I—=1g)INk. In this way, one ob- the fluctuating mean field from a given internucleon interac-
tains an expansion of the noncanonical density matrix eletion, the VPM begins directly with a time-dependent mean
ments in terms of the canonical variables for a particulaffield derived from an empirically successful static deformed
excitation mode. Upon quantization, the density matrix elepotential model such as the Nilsson model by allowing the
ments map into fermion-pair operators and the canonicalleformation parameters to acquire a time dependence. The
variables into boson operators. Of course, such a treatmepmpirical mean field can be used in reverse to derive an
has the usual problems of operator ordering which may nogffective internucleon interactid®1-53, which necessarily
correctly reproduce quantal contraction terms that can bbas many-body components. In effect, this means that the
computed by working with a quantized boson mapping fromVPM can be regarded as an application of the time-
the outset. dependent Hartréer Hartree-Bogoliubowwhen the pairing
As an alternative to the cranking approach, one may tregpotential is includegapproximation. In the VPM, the mean-
the TDHF equation3.6) by direct dynamical perturbation field Hamiltonian for A nucleonsHy=(«(t)), where a(t)
theory as in the work of Meydi22] and of Abada and Vau- denotes a set of time-dependent deformation parameters, is
therin[23]. A convenient way to carry out this program in a defined so that the total ener@y = (Hyr(a(t))), the ex-
way that avoids the problem of secular terms is to use th@ectation value with respect to the TDMF state vector,
method of Lindstedf48]. The first step in this method is the which is a solution of the time-dependent Salinger equa-
introduction of the dimensionless time variablgjiven by tion corresponding to the Hamiltoniadye(e(t)). The de-
formation parameterg(t) are defined to guarantee nuclear
T=wt, (3.61) incompressibility in some manner, usually by requiring vol-
ume conservation, the condition that the volumes of equipo-
tential surfaces be independent of deformation. In addition,
dp at each instant, the shape consistency between the potential
iw=—=[h,p]. (3.62  and density distribution is secured by imposing the set of
dr conditions(dH ye(a(t))/da'y=0, which also guarantee that
E is a constant of motion.
The proposal here is to replace the time-dependent treat-
ment of the VPM with the static cranking modegTVPM).

whereupon the TDHF equatidi8.6) becomes

The next step involves the expansionmfh, and the fre-
guencyw in powers of the amplitude:

p=p Q4 pW4p@ 4 pB .y pMp. . (363 Thus, if|[®(@)) is an eigenvector of the Routhian
h=h©@+uD+u@+...4uM+....  (3.64 Hur(@. Q) =Hye(@) — Qs (3.66
0=+ oM +e@+.. .+ V... (365 O0ne mustseek solutions satisfying the extremum conditions
Upon separation of orders, one obtains of course in the first IH (@, Q)
order the RPA equations of motion, including modes with <q>“(a) ¢.’—¢Q(a)>
K=0, as well as those treated earlier, and®’ is identified - da -

with one of the RPA frequencies. In each higher order, an
inhomogeneous linear differential equation must be solved :<q>ﬂ(a)
involving the RPA kernal. The frequency expansi{8t69 is -
then exploited to eliminate secular terms in the solution. In
second order, this is easily accomplished by lettingOf course, since these equations also include ordinary crank-
»®M=0, tantamount to ignoring the frequency renormaliza-ing solutions, one must locate those that bifurcate from axi-
tion. In third order, however, a nonzero value @f? is
required, which is just proportional to the frequency shift in
Eq. (3.48 for a mode withK # 0. “The exchange term is not included in the VPM.

To make a long story short, for modes wik=0, the ®This means thaH:(«(t)) already contains the corrections to
Lindstedt solution is identical with the cranking solution re- prevent overcounting of internucleon interactions.

IHur(a)
da'

cbﬂ(a)> —0. (3.67
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ally symmetric configurations. It will now be demonstrated PPH e
that these bifurcation points are determined by the RPA oa| {0 o 0
equations for the VPM. 0
Consider first the case of the axially symmetric ground- 2=
state configuration of an even-even nucleus, denoted by |<n|((9HMF/<?a)20|O>| (Eg Eo) =0. (3.74
|0), with orthogonal excited configurations denoted|hy. n#0 (En—Eo)*— (2K)

With the three-axis designated as the symmetry axis, one has o ) _ ) )
Therefore, the nontrivial solutioAa# 0 is possible only if

K#0 andw=QK is a solution of the equation

J3|0>:0, J3|n>:Kn. (36&
D [{n|(dH e/ da)o|0)|*(Eq—Eo) _ I*Hyr
Since |0) is a self-consistent solution of Eq$3.67 for Zmﬁo (E,—Eg)?— w2 ={0 Ja? 0),
Q0 =0, corresponding to the equilibrium deformation param- 0
eter setx(0), it satisfies the conditions (3.79
which is just the RPA dispersion formula derived from the
IHuEe VPM and originally applied toy vibrations of even-even
0 oa 0)=0, (369  deformed nuclef49].
0

The use of a single deformation parameter may be ad-
_ _ equate in the RPA order if it is judiciously chosen, but gen-
with the notation ¢Hye/da')o=(dHpe/da') ,—a0)- FOr  erally not in higher orders. For example, if the axial asym-
simplicity, it will first be assumed that cranking changes onlymetry parameteer= vy is chosen to describg vibrations in
one of the deformation parameters, denoted simplyaby the RPA order, then in higher orders there will be a change
which is assumed to be real and defined so that 6B in the deformation parametg due to anharmonic cou-
plings betweeny and 8 vibrations. Even in the RPA order,

M ye H e several deformation parameters may be associated with a
{33,[%.( Py ) = 2( Py ) ; (3.70  particular mode carryingK units of angular momentum
0 0 along the symmetry axis, for example, parameters that take

into account the coupling of quadrupole and hexadecapole

i.e., the operatordHye/da), transfers+ K units of angular ~ degrees of freedom witlK|=2. The RPA equations for the
momentum along the three-axis. In the neighborhood of &nore general case in which
bifurcation point, the RouthiafB.66) may be expanded as

J3/0)=1,|0) (3.79

IHme

can now readily be derived by the cranking method. The
deformation parameters) , which in general are complex,

(3.71 may be chosen to satisfy
IHyve IHvr
J3,< oo ) =—K( , , (3.77
ayg o dag o

wherea'  =(—1)Xa) . This property is most appropriate
(n|(dH yelda)o|0) for mean fields arising from multipole interactions; a some-
‘I’Q(E):|O>_5argo E —E.— QK In), what different parametrization would be more suitable for
n0 " (3.72 pairing fields with nonzero angular momentum, which can
also be accommodated in this framework. The first-order
state vector now becomes

Hye(@,Q)=Hy(a(0))— QI3+ da

0

to first order in the deformation changer. Since|0) is the
ground state of the zero-order Routhiig-(«(0))—QJ3,
the perturbed ground state to first order is given by

where Hyr((0))|0)=Eq|0) and Hyg(a(0))[n)=Ey[n).

The self-consistency conditio(8.67) may be evaluated to _ (n|(oH MF/0a:()O|O>
) ) . . e i
first order inda using the expansion ®o(a)=|0) % &(Kn#o E —E,7OK [n).
(3.78
o IHue(a) @
a(e) da a(e) The generalization of the first-order self-consistency condi-
tion (3.73,
IHme PHye IH e C [ PHue
2<¢9(a) ( Ja ) +5a(a_a2_ Pala) ) =0, Po(@)|| o= | + 2 S| ———=—| | Pa(a) ) =0,
0 0 K 0 iK' agoay, o
3.73 (3.79

which, with the help 0f(3.72 and the invariance of0)  then leads to the following set of equations for e&cltand
under time reversal, leads to the following result: parity, etc):
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<o

(Ol (aH e/ darc) ol n)(n| (FH e /9l 0[O}
n#0 En_EO_QK

PPH e

% j
day day o

E 5a{<
]

oS (Ol(dHwe/ dait)oln)(nl(dH e/ da)ol O)
70 En—Eo+OK

0. (3.80

This system of linear homogeneous equations in &bz@* being that in the latter case, the strengthis determined
has nontrivial solutions if and only if its determinant has automatically when evaluating the RHS of E¢B.81),
solutions foro=QK, which, of course, is possible only if whereas in the former case, it is a free parameter. It is also
K #0. This determinant is just a generalized form of the RPAinteresting to note that fgiK|= 1, the nonzero values of the
equation when several modes are coupled, as, for examplguadrupole momenté® o (a)|Q1|Po(a)) imply that the
guadrupole and hexadecapole modes in an axially symmetriotation takes place about an axis thatilied with respect to
deformed nucleus. In the special case when only two paranthe principal axes of the mean field. The topic of tilted rota-
etersax anda_=(—1)%a} enter, the determinant simpli- tion has been gaining considerable interest laf&], but

fies to the possible connection with vibrational modes has not been
widely recognized, although it is discussed in Hef7].
[(nl(dH e/ darc)o| 0)|? [(n|(dH W/ dar)o|0) ]2 The advantage of the cranking approach to the VPM is
&0 E,—Eotw ,;O E,—Eo— o that one is not limited to the RPA, but can include anharmo-
nicities of all orders, and also cover the case of odd nuclei. In
PHue the latter case, the approach ofsBand Chung, which, in
={0 W 0). (38D contrast to other methods that require coupling of the odd
0

nucleon with the phonons of the even-even core, allows ex-

citations directly from the ground state of the odd nucleus,

which corresponds physically to the time-reverse obtained by2 be generalized to take into account anharmonicities. Fi-

letting QO — — Q. However, by allowing both positive and ally, '.t should be pointed out that' the Strutinsky shell-
X ' correction method56] could be applied to the CVPM in

negative solutions fow, all RPA roots are contained in Eq. much the same wav as in the normal cranking of bhenom-
(3.81). It should be noted that since the vacuum has the spin Y gorp

projection I, along the three-axis, the admixed configura enological potential models. However, some rethinking of
0 B ’ = NG . . .
tions [n) in the first sum have the spin projectiong+ K, this procedure may be required. For example, normalization

while those in the second sum have the spin projectior%o a rigidly rotating liquid drop would not be correct for a

lo—K, in accord with Eq(3.77). vi_prational band, Where_ t_he moments of inertia may be sig-
RPA equations similar t¢3.81) were first derived by Be nificantly smaller than rigid-body values.
and Chung54] to describey vibrations in odd nuclei and
later by Andersson and Krumlind82] to describey vibra-
tions built on oblate rotational-band termination states, in
both cases with the use of the quadrupole-quadru(@®@)
interaction. Indeed, their equations can be recovered from the The discussion thus far has centered on the calculation of
preceding ones by defining the mean-field Hamiltonian forenergies of multiphonon vibrations using the self-consistent
the QQ interaction as cranking method. The most important remaining question is
whether one can also calculate transition rates within this
2 2 . . .
-, 1 « formalism. In short, the answer is yes, provided that the tran-
HMF:HO_XKZE_Z Qe+ EXKZE_Z agag, (3.82 sitions connect states lying along the cranked trajectory and
that one is content with a semiclassical estimate. It is well
whereH, is the part of the mean-field Hamiltonian that is known that the cranked mean-field method in general ap-
independent of the relevant deformation parametéxs, proximates energies with greater accuracy than wave func-
K==2, =1, 0, are components of the quadrupole tensortions, which carry the added burden of broken symmetries.
x is the strength of the QQ interaction, and the last term o Particular, the wave functions are not angular-momentum
the right is introduced to guarantee that the total endtgy €igenstates. A general remedy is to project out states having
= (Hue(@)) and that the VPM self-consistency condition good angular momentum as well as other symmetries and to
(3.67) is equivalent to the Hartree self-consistency conditionuSe these states to calculate transition matrix elements. While
such an approach is fine, it requires, in its fullest implemen-
<q>Q(a)|QK|q>Q(a)>=aK_ (3.83 tation, a formidable amount of computation and takes one a
o o considerable distance away from the relative simplicity of
In this way, one recovers fofK|=2 the results of Refs. the cranking method. An alternative is provided by the self-
[54,32. It should also be noted that the QQ force gives re-consistent cranking plus RP@GCC+RPA) method[57-59,
sults that are very similar to those derived from the VPMwhich has been successfully applied to high-spin states and
potential based on the Nilsson model, the main differenceould just as well be applied to cranked vibrations. Now, the

and a second equation is obtained by allowig — w,

IV. TRANSITION PROBABILITIES
IN THE CRANKING APPROXIMATION
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SCC model, which describes a uniformly rotating systemcable since the successive members Havé= 2. However,
(including rotating waves generates a “Regge trajectory” for a broken-signature trajectory, whose successive members
on an energy ) vs angular momentumi ) plot. The RPA, have|Al|=1, all of the above transitions are expected to be
in the SCC+RPA, has three principal effect§) It displaces nonzero, including theM 1; this would be the situation for
the trajectory vertically by a small amount due to the inclu-tilted rotation. The SC&RPA gives for the static electric
sion of the angular-momentum-dependent RPA correlatiomuadrupole momen®, and the static magnetic dipole mo-
energy, (ii) it allows for excitations based on the cranked ment u, for states along the cranked trajectory the expres-
trajectory as the reference state; &iid) it isolates the de- sions that have been traditionally used in cranking calcula-
grees of freedom associated with broken symmetries. Propions, namely,
erty (iii) notwithstanding, the SCERPA method does not
directly generate eigenstates with good quantum numbers 167\ 12 4
owing to the appearance of Goldstone modes corresponding Qo= T) (M(E2,0)1,  po= (?)UM(MLO»I-
to the constants of motion violated in the SCC step. Never- 4.2)
theless, as shown in Rd68], it is still possible to correctly
calculate matrix elements by making a connection between There are two caveats concerning the above expressions,
eigenstates and transition operators having good quantui particular, the RTP’s. First, since the SEBPA model
numbers and the corresponding SERPA eigenvectors and assumes that the states connected by a transition lie on a
transition operators, which depend on the Goldstone degregsnoothly varying part of the trajectory, application of the
of freedom. above formulas to states lying on different portions of a
Now, the introduction of RPA correlatiohsn top of the  backbending trajectory and thus having very different struc-
cranked SCC trajectory certainly goes beyond the SCC apures would be highly questionabl60]. The second caveat
proximation itself, including quantal effects left out in the s that, strictly speaking, the above expressions, being semi-
SCC step. Physically, the excitations represent either wavasiassical, are valid for large values of the spinimplying
traveling around the uniformly rotating nucleus or the wob-errors of the order of ~*, which could be significant for the
bling motion of the angular momentum relative to a body-usual low-spin vibrations, in particular for the RTP’s. In
fixed frame. The corresponding quantal excitations or deexprincipal, higher-order corrections to the SERPA model,
citations, as the case may be, take one from the trajectory dficluding those of ordet~?*, could be computed, although
the E vs| plot to other points above or below. In R¢&8],  that goes beyond the cranked mean-field philosophy. A pos-
it has been shown, however, that the transition matrix elesible simple way to partially correct for inaccuracies of order
ments connecting successive states lying on the cranked trg=1 jnh the RTP’s when they are important is to multiply the
jectory itself are proportional to expectation values of theexpressiong4.1) by an |-dependent factor that approaches
transition operatorcalculated with respect to the SCC ynity for large values of. The proposal is not to introduce
vacuum In other words, for such transitions, one need not gaempirical “fudge factors,” but rather factors that allow one
beyond the cranked mean-field approximation; the SCGo smoothly interpolate between the known theoretical quan-
+RPA method is only used to provide the justification. Onta| behavior of the system at low spins and the cranking
the other hand, to calculate transitions departing from theesult at high spins in the spirit of the correspondence prin-
cranked trajectory, one must solve for the RPA amplitudesgijple.
which is beyond the intended purview of this paper. Since For example, assume that the critical bifurcation point
the formal discussion, which depends on connecting theorresponds to zero spin. Then since, as was demonstrated in
Goldstone modes with an extended Holstein-Primakoff repsec. Ill, the solutions Correspond to the RPA in some neigh_
resentation of angular momentum, has already been providasbrhood of the critical point, one may choose the factors so
in the earlier work on the SCERPA, it suffices here to list 35 tg reproduce the well-known RTP's of the fully quantized
the most commonly required reduced transition probabilitieRpA. Here, it is important to distinguish between trajectories
(RTP’9). The electric quadrupole tensor will be denoted bythat describe vibrations in spherical nuclei and those in axi-
M(E2,u) and the magnetic dipole vector by{((M1,.).  ally symmetric deformed nuclei, which require different fac-
The corresponding RTP’s between successive points on thgrs. It is straightforward to check that for the case of aligned

cranked trajectory are just given b§8] quadrupole vibrations forming the sequence mphonon
states withl =2n, Eq. (4.1 (only the first foru=2 is rel-
B(E2;l —1—u)=[(M(E2,—w)) | wn=12, evan) already reproduces the RPA result as it is, thus requir-
ing no correction in this limit. One way to see this is to
B(M1;l—=1—1)=[(M(M1,—-1))? (4.)  directly calculate (M(E2,—2)),=Tr m(E2,—2)p®,

wherem(E2,—2) is the matrix corresponding to the electric
where(- - -), denotes the expectation value of the multipolequadrupole operator, and then to compare with the conven-
operator taken with respect to the SCC state for whicHional quantal calculation of thB(E2) in the RPA. In this
(J3),=1. For a normal cranking trajectory that preserves sig-calculation, the related Eq$3.11) and (3.33 (with 1,=0
nature symmetry, only thE2 transition withu=2 is appli- and K=2), which establish the normalization pf, play

an essential role. They guarantee that the transition matrix

element is proportional ta/n=/1/2, which in the quantal

5This should be distinguished from the RPA diagrams that arecalculation arises from the matrix element of the phonon

summed along with higher-order anharmonicities in the crankednnihilation operator. Another way is provided by the fol-
trajectory itself, as discussed earlier. lowing argument, which also puts into perspective the rela-
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tion between the cranking and quantal transition matrix ele- *

ments when anharmonic corrections to the RPA are included. (18222 =2, '8, 4.8
Let BEM denote a quadrupole phonon creation operator car- n=0

rying p units of angular momentum along the three-axis.
The subspace of aligned phonon states with spingn is
generated by the states

Similar considerations hold for other operators. In this way,
one recovers the BG representation of Sec. Il. The(E®)
with 1,=0 andK, =2 implies that|3,]°=1/2 and one is

v free to choose the real valug,,= /2. With these two
Inll)= (5 'l (B)y'0), (4.3 steps,M(E2,—2)—(M(E2,—2)),, where

1/2
where [nIM) denotes ann-phonon angular momentum (M(EZ,—2)>|=T(|B22|2),822=(—) 7(l) 4.9
eigenstate andi0) the spin-zero vacuum state of an even- 2 2

even nucleus. ThE2 operators projected into this subspace

then must have the following forms: which is to be compared to E¢4.5). From Eq.(4.1) it fol-

lows that the cranking result agrees with the eX2(dE2) to

Q=PM(E2,2P=BJ,f(N,), leading order in the two expansion parametérs and
N1 A similar argument can be given for thevibrations
Q,_,=PM(E2,—2)P=f(N,)B,, (4.49 Of deformed nuclei using strong-coupling eigenvectors,
' ’ where the cranking solution describes the sequence of
P being the projectorN,=BJ}.B,, the phonon number op- aligned-phonon bandheads witk-K=2n, n=1,2,.... In

erator, and an arbitrary(unknown function thereof. It will  this case, the validity of Ed4.1) at low spins is improved by
be assumed from now on that the phonons have been chosBH/tiPlying the first of Eqs(4.1) by the square of a Clebszch-
such that the HamiltoniaH is diagonal, i.e., a function only Gordan  coefficient, namely, [(12 1-2[I-2 1-2)|

of the boson number operators, which implies, incidentally,:(2| —3)/(21+1).

that PHP is a function only ofN,. Then state€4.3) are

exact eigenstates and one immediately has the matrix ele- V. SUMMARY AND CONCLUSIONS

ments

f differs from f by terms of ordetNV"*, where\ is a rela-
tively large number of the order of the number of interacting
particles or available valence levels; i.8/, ! is the small-
ness parameter appearing in boson expandibBk To be
more specific, assume théatis a holomorphic function and
therefore can be expanded in the form

It has been shown that the self-consistent cranking model
(n—=1 1-2 1-2|Q,nll) possesses a class of solutions that has escaped general notice.
—(n—1 1-2 1—-2|M(E2,~2)|nll) Th_ese solutions bifurcate fr_om a state h_avirjg at least one
axis of C,, symmetry, the existence of which is a necessary
1\¥2 /1—-2 condition for the symmetry-breaking bifurcation. The pos-
=<§) f T) (4.5 sible bifurcation points are related in a simple way to the
RPA frequencies for modes carrying nonvanishing angular
From the Wigner-Eckart theorem and the explicit value offomentum about th€,, axis, as expressed in the cranking
the corresponding Clebsch-Gordan coefficient, one then afifurcation theoremCBT). This relationship comes about
rives at the followingexact though very general, reduced Precisely because the uniformly rotating cranking solutions
matrix element: are actually vibrations, i.e., waves traveling about the crank-
ing axis. It was shown explicitly that such a bifurcation in-
12 (-2 cludes anharmonic corrections to the harmonic RPA. An ex-
(n—1 |—2||M(EZ)||H|>=(2|+l)l/2(§) f(T) act (as opposed to perturbativeumerical solution of the
(4.6) cranking equations then sums anharmonicities of all orders
in a classical approximation. The solution trajectory, as de-
The transition from the exact result to the cranked mean-fiel@icted in anE vs | plot, typically corresponds to a sequence
approximation involves two steps. First, the bosons are reof aligned multiphonon states, as, for example, the sequence
placed byc-numbers as followsB,,— B2, By, —B%,, and 1= 2;1 +, folr n—phct)né)n .?#adrq?r?letixcitati(t)nst. Tfh;a Iﬁnethﬁd
2 ; iy 2 can be implemented either within the context of fully self-
No—|B22". Second, the functiof(N,) —f(| 824", where consistent cranked mean fields generated by fundamental
nucleon-nucleon interactions or within the context of phe-
nomenological mean fields, such as the Nilsson model, in
which case the results correspond to an anharmonic exten-
sion of the vibrating potential model. It was also noted that
transition matrix elements connecting states lying on a tra-
jectory can be calculated within the bounds of the formalism.

o The cranking approach to vibrations has a broad range of
F(N.)= . ND. 4. possible applications, although it also has its limitations. One
(N2) nzo n2 @9 limitation already discussed is that only excitation modes

carrying angular momentum are accessible, therefore exclud-
In general, the coefficients can be expected to have expaing the breathing mode an@l vibrations. But that still leaves
sions in powers of ! so tl’]g.t one may write a very wide range of treatable modes. The other limitations
cnchf’)+ O(N1). Then the functiorf is given by are shared with the cranking model for ordinary rotational



174 E. R. MARSHALEK 54

states, and stem from the fact that this method is fundamen- There are many concrete applications for which the pro-
tally a classical one with a superimposed Bohr-Sommerfelgposed formalism may be suitable. These include various
guantization condition on the angular momentum. Thus, adtypes of multiphonon excitations such as the classical quad-
ditional gquantum corrections usually exist, although theseupole and octupole vibrations in spherical nuclgiyibra-
may in many cases be adequately treated by the inclusion dions in deformed nuclei, and dipole and quadrupole giant
the RPA(SCC+RPA). However, one must still be cautious resonances in both spherical and deformed nuclei. In addi-
in situations in which quantal tunneling plays an importanttion, as briefly pointed out earlier, the cranking approach
role. Apart from these caveats, the cranking approach can braay provide a new perspective on vibrations in odd nuclei
a worthy and even superior competitor to adiabatic timeby adding anharmonic corrections to the approximation of
dependent mean-field approximations for bound states. IBes and Chund54]. Of special current interest are octupole
addition to greater simplicity, the cranking approach has theibrations in superdeformed nuclei, which are expected to be
advantage of not assuming the adiabatic approximation, angery soft. Thus far, these have been treated mainly in the
therefore can sum collective kinetic-energy as well asRPA[62]. While the present formalism would certainly pro-
potential-energy anharmonicities of all orders. Of course, ifvide an improvement through the inclusion of anharmonici-
the potential exhibits multiple minima so that tunneling isties for theK=1, 2, 3 octupole bandsk(=0 is not acces-
important, then the adiabatic approach with gquantization isible), it should be kept in mind that there may be important
probably the superior approach. tunneling effects for octupole bands that are not included.
The cranking approach to vibrations may be able to shednother phenomenon accessible to the cranking approach is
a new light on the old question of the repeatability of phononthat of tilted rotation{55]. The CBT implies the existence of
excitations. When are multiple excitations of a given vibra-bands of collective tilted states, as distinguished from the
tional mode to be expected? Since the repeatability of atthose arising through the asymmetries introduced by extra
excitation mode having a pure particle-hole or two-quasiparticles, which have been the main focus of attention.
quasiparticle character is ruled out by the Pauli principle, thé=inally, since the cranking approach to vibrations in pertur-
issue of repeatability is closely tied to the collectivity of the bation theory leads to angular-momentum expansions of the
mode and its interplay with single-particle modes. Since thdorm of Eq. (3.49, which includes the phenomenological
cranking equations are nonlinear, it is possible for a solutionuniversal quadrupole-vibrator energy expression of Casten
trajectory not only to suddenly appear as a bifurcation butind collaboratorfl1], it is uniquely suited for a microscopic
just as suddenly to disappear, thereby signaling a cutoff ogalculation of the parameters.
repeatability. Should a cutoff occur for an amplitude corre- A paper soon to follow will discuss some illustrative ap-
sponding to less than two quanta, one would have to cormplications of the CBT to simple soluble systems.
clude that the mode in question cannot be repeated. Of
course, such behavior can probably be correlated with cross-
ing patterns of the underlying quasiparticle Routhian plots as
for ordinary rotations. One reason for believing that the The author is grateful to the Institute for Nuclear Theory
cranking technique can reproduce cutoffs on vibrations whefINT) at the University of Washington for its hospitality and
they exist is that it can reproduce cutoffs on ordinary rota-support during the completion of this paper. This work was
tional bands in exactly soluble models such as the Elliotalso partially supported by the U.S. Department of Energy
model[61], as will be discussed in a subsequent publicationunder Grant No. DE-FG02-91ER40640.
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